List of Alexander Pushnitski's publications

  1. S. N. Naboko, A. B. Pushnitski,
    Point spectrum on a continuous spectrum for weakly perturbed Stark type operators
    Functional analysis and its applications, 29, no. 4 (1995), 248-257.
    DOI: 10.1007/BF01077472

  2. E. L. Korotyaev, A. B. Pushnitski,
    Scattering by anisotropic potential in a constant electric field (in Russian),
    Zap. Nauchn. Seminarov POMI, 230 (1995), 103-114.
    English translation in: J. Math. Sci. (New York) 91, no. 2 (1998), 2768--2775.
    DOI: 10.1007/BF02433992
    preprint

  3. S. N. Naboko, A. B. Pushnitski,
    On the embedded eigenvalues and dense point spectrum of the Stark-like Hamiltonians,
    Math. Nachr.183 (1997), 185-200.
    DOI: 10.1002/mana.19971830112

  4. A. B. Pushnitski,
    The spectrum of Liouville operators and multiparticle Hamiltonians associated to one-particle Hamiltonians with singular continuous spectrum,
    J. Math. Phys. 38, no. 5 (1997), 2266-2273.
    DOI: 10.1063/1.531972

  5. M. I. Belishev, A. B. Pushnitski,
    On a triangular factorization of positive operators (in Russian),
    Zap. Nauchn. Seminarov POMI, 239 (1997), 45-60.
    English translation in: J. Math. Sci. (New York) 96, no. 4 (1999), 3312--3320.
    DOI: 10.1007/BF02172806

  6. M. Sh. Birman, A. B. Pushnitski,
    Discrete spectrum in the gaps of the perturbed pseudorelativistic magnetic Hamiltonian (in Russian),
    Zap. Nauchn. Seminarov POMI, 249 (1997), 102-117.
    English translation in J. Math. Sci. (New York) 101 (2000), no. 5, 3437--3447.
    DOI: 10.1007/BF02680144
    Click here for the text of the paper in Russian

  7. A. B. Pushnitski,
    Representation for the spectral shift function for perturbations of a definite sign,
    St.Petersburg Math. J. 9, no. 6 (1998), 1181-1194.
    preprint

  8. M. Sh. Birman, A. B. Pushnitski,
    Spectral shift function, amazing and multifaceted,
    Integr. Equ. Oper. Theory 30, no. 2 (1998), 191-199.

    DOI: 10.1007/BF01238218
    preprint

  9. A. B. Pushnitski,
    Integral estimates for the spectral shift function,
    St.Petersburg Math. J. 10, no. 6 (1999), 1047-1070.
    preprint

  10. A. B. Pushnitski,
    Estimates for the spectral shift function of the polyharmonic operator,
    J. Math. Phys. 40, no. 11 (1999), 5578-5592.
    DOI: 10.1063/1.533047
    preprint

  11. A. B. Pushnitski,
    Spectral shift function of the Schrodinger operator in the large coupling constant limit,
    Comm. in PDE 25, no 3&4 (2000), 703-736.
    DOI: 10.1080/03605300008821528
    preprint

  12. A. B. Pushnitski,
    The spectral shift function and the invariance principle,
    J. Functional Analysis, 183, no.2 (2001), 269-320.
    DOI: 10.1006/jfan.2001.3751
    preprint

  13. A. Pushnitski, M. Ruzhansky,
    Spectral shift function of the Schrodinger operator in the large coupling constant limit, II. Positive perturbations.
    Comm. in PDE, 27, no.7 & 8 (2002), 1373-1405.
    DOI: 10.1081/PDE-120005842
    preprint

  14. A. Pushnitski, M. Ruzhansky,
    Spectral shift function of the Schrodinger operator in the large coupling constant limit,
    Functional Analysis and Its Applications, 36, no. 3 (2002), 250-252.
    DOI: 10.1023/A:1020170626399
    preprint

  15. E. Korotyaev, A. Pushnitski,
    Trace formulae and high energy asymptotics for Stark operator,
    Comm. in PDE 28, no.3 & 4 (2003), 817-842.
    DOI: 10.1081/PDE-120020498
    preprint

  16. E. Korotyaev, A. Pushnitski,
    On the high energy asymptotics of the integrated density of states,
    Bull. London Math. Soc. 35, no.6, 770-776 (2003).
    DOI: 10.1112/S0024609303002467
    preprint

  17. E. Korotyaev, A. Pushnitski,
    A trace formula and high energy spectral asymptotics for the perturbed Landau Hamiltonian,
    J. Funct. Anal. 217, 221-248 (2004).
    DOI: 10.1016/j.jfa.2004.03.003
    preprint

  18. V. Bruneau, A. Pushnitski, G. Raikov,
    Spectral Shift Function in Strong Magnetic Fields,
    St. Petersburg Math. J. 16, no. 1, 207-238 (2005).
    preprint

  19. A.Pushnitski, I. Sorrell,
    High energy asymptotics and trace formulas for the perturbed harmonic oscillator,
    Ann. Henri Poincare, 7, no. 2, 381-396 (2006).
    DOI: 10.1007/s00023-005-0253-5
    preprint

  20. N. Filonov, A. Pushnitski,
    Spectral asymptotics of Pauli operators and orthogonal polynomials in complex domains,
    Comm. Math. Phys. 264 (2006), no. 3, 759-772.

    DOI: 10.1007/s00220-006-1520-0
    preprint

  21. A. Pushnitski, V. Sloushch,
    Spectral shift function for the Stark operator in the large coupling constant limit,
    Asymptotic Analysis 51, no. 1, 63-89 (2007).
    preprint

  22. A. Pushnitski, G. Rozenblum,
    Eigenvalue clusters of the Landau Hamiltonian in the exterior of a compact domain,
    Documenta Math. 12, 569-586 (2007).

    preprint

  23. A. Pushnitski,
    The scattering matrix and the differences of spectral projections,
    Bulletin London Math. Soc. 40, 227-238 (2008).
    preprint

  24. F. Gesztesy, A. Pushnitski, B. Simon,
    On the Koplienko spectral shift function, I. Basics
    Journal of Mathematical Physics, Analysis, Geometry 4 (2008), no. 1, 63-107
    preprint

  25. D. Damanik, A. Pushnitski, B. Simon,
    The analytic theory of matrix orthogonal polynomials,
    Surveys in Approximation Theory 4, 1-85 (2008).
    preprint

  26. A. Pushnitski,
    The spectral flow, the Fredholm index, and the spectral shift function,
    in: Spectral Theory of Differential Operators: M.Sh.Birman 80th Anniversary Collection, AMS Translations (2), Advances in Mathematical Sciences, 225, 141-155 (2008).
    preprint

  27. A. Pushnitski,
    Operator theoretic methods for the eigenvalue counting function in spectral gaps,
    Ann. Henri Poincare 10, 793-822 (2009).
    DOI: 10.1007/s00023-009-0422-z
    preprint

  28. V. Buslaev, A. Pushnitski,
    The scattering matrix and associated formulas in Hamiltonian mechanics,
    Comm. Math. Phys. 293, no.2, 563-588 (2010).
    DOI: 10.1007/s00220-009-0937-7
    preprint

  29. A. Pushnitski and D. Yafaev,
    Spectral theory of discontinuous functions of self-adjoint operators and scattering theory,
    J. Funct. Anal. 259, no. 8, 1950-1973 (2010).
    DOI: 10.1016/j.jfa.2010.07.001
    preprint

  30. A. Pushnitski,
    Spectral theory of discontinuous functions of self-adjoint operators: essential spectrum
    Integr. Equ. Oper. Theory, 68, 75-99 (2010).
    DOI: 10.1007/s00020-010-1789-4
    preprint

  31. A. Pushnitski,
    The Birman-Schwinger principle on the essential spectrum,
    J. Functional Analysis, 261, 2053-2081 (2011).
    DOI: 10.1016/j.jfa.2011.06.002
    preprint

  32. A. Pushnitski, G. Rozenblum,
    On the spectrum of Bargmann-Toeplitz operators with symbols of a variable sign,
    Journal d'Analyse Mathematique, 114, no. 1, 317-340 (2011).
    DOI: 10.1007/s11854-011-0019-6
    preprint

  33. E.B.Davies, A. Pushnitski,
    Non-Weyl Resonance Asymptotics for Quantum Graphs,
    Analysis & PDE, 4 no.5, 729-756 (2011).
    DOI: 10.2140/apde.2011.4.729
    preprint

  34. A. Pushnitski,
    An integer-valued version of the Birman-Krein formula,
    Functional Analysis and Its Applications, vol. 44, no. 4, 307-312 (2011).
    DOI: 10.1007/s10688-010-0041-y
    preprint

  35. A. Pushnitski,
    Scattering matrix and functions of self-adjoint operators,
    Journal of Spectral Theory, 1, 221-236 (2011).
    DOI: 10.4171/JST/10
    preprint

  36. D. Bulger, A. Pushnitski,
    The spectral density of the scattering matrix for high energies,
    Comm. Math. Phys. 316, no.3, 693-704 (2012).
    DOI:10.1007/s00220-012-1551-7
    preprint

  37. D. Bulger, A. Pushnitski,
    The spectral density of the scattering matrix of the magnetic Schrodinger operator for high energies,
    J. Spectral Theory 3, no. 4, 517-534 (2013).
    DOI: 10.4171/JST/54
    preprint

  38. A. Pushnitski, G. Raikov, C. Villegas-Blas,
    Asymptotic density of eigenvalue clusters for the perturbed Landau hamiltonian,
    Comm. Math. Phys. 320, no.2, 425-453 (2013).
    DOI: 10.1007/s00220-012-1643-4
    preprint

  39. A. Pushnitski, D.Yafaev,
    A multichannel scheme in smooth scattering theory,
    J. Spectr. Theory 3, no. 4, 601-634 (2013).
    DOI: 10.4171/JST/58
    preprint

  40. S. Nakamura, A. Pushnitski,
    The spectrum of the scattering matrix near resonant energies in the semiclassical limit,
    Transactions Amer. Math. Soc. 366, 1725-1747 (2014).
    DOI:10.1090/S0002-9947-2013-06077-1
    preprint

  41. A. Pushnitski, D.Yafaev,
    Spectral theory of piecewise continuous functions of self-adjoint operators,
    Proc. Lond. Math. Soc. (3) 108, no. 5, 1079-1115 (2014).
    DOI:10.1112/plms/pdt049
    preprint

  42. A. Pushnitski, A.Volberg,
    Scattering theory and Banach space valued singular integrals,
    Int. Math. Res. Notices 2014, no. 20, 5667-5696 (2014).
    DOI:10.1093/imrn/rnt137
    preprint

  43. A. Pushnitski, A.Volberg,
    Spectral perturbation theory and the two weights problem,
    Indiana Univ. Math. J. 63, no. 5, 1349-1364 (2014).
    DOI:10.1512/iumj.2014.63.5389
    preprint

  44. P. Gerard, A. Pushnitski,
    An inverse problem for self-adjoint positive Hankel operators,
    Int. Math. Res. Notices 2015, no. 13, 4505-4535 (2015).
    DOI:10.1093/imrn/rnu073
    preprint

  45. R. Frank, A. Pushnitski,
    Trace class conditions for functions of Schrödinger operators,
    Commun. Math. Physics 335, 477-496 (2015).
    DOI:0.1007/s00220-014-2205-8
    preprint

  46. A. Pushnitski, D. Yafaev,
    Spectral and scattering theory of self-adjoint Hankel operators with piecewise continuous symbols,
    J. Operator Theory 74, no.2, 417-455 (2015).
    DOI:10.7900/jot.2014aug11.2052
    preprint

  47. R. Frank, A. Pushnitski,
    The spectral density of a product of spectral projections,
    J. Functional Analysis, 268, no. 12, 3867-3894 (2015).
    DOI:10.1016/j.jfa.2015.03.018
    preprint

  48. A. Pushnitski,
    The spectral density of a difference of spectral projections,
    Comm. Math. Phys. 338, no. 3, 1153-1181 (2015).
    DOI:10.1007/s00220-015-2393-x
    preprint

  49. A. Pushnitski, D. Yafaev,
    Sharp estimates for singular values of Hankel operators,
    Integr. Equ. Oper. Theory, 83, no. 3, 393-411 (2015).
    DOI:10.1007/s00020-015-2239-0
    preprint

  50. A. Pushnitski, D. Yafaev,
    Asymptotic behavior of eigenvalues of Hankel operators,
    Int. Math. Res. Notices 2015, no. 22, 11861-11886 (2015).
    DOI: 10.1093/imrn/rnv048
    preprint

  51. A. Pushnitski, D. Yafaev,
    Localization principle for compact Hankel operators,
    J. Funct. Anal. 270 (2016), pp. 3591-3621.
    DOI:10.1016/j.jfa.2015.10.018
    preprint

  52. A. Pushnitski, D. Yafaev,
    Best rational approximation of functions with logarithmic singularities,
    Constructive Approximation 46 (2017), pp. 243-269.
    DOI:10.1007/s00365-016-9347-1
    preprint

  53. A. Pushnitski, D. Yafaev,
    Spectral asymptotics for compact self-adjoint Hankel operators,
    Journal of Spectral Theory (special issue dedicated to the memory of Yuri Safarov) 6 (2016), pp. 921-953.
    DOI: 10.4171/JST/148
    preprint

  54. K.-M. Perfekt, A. Pushnitski,
    On Helson matrices: moment problems, non-negativity, boundedness, and finite rank,
    Proceedings of the London Math. Soc, 116, no. 1 (2018), pp. 101-134.
    DOI: 10.1112/plms.12068
    preprint

  55. K.-M. Perfekt, A. Pushnitski,
    On the spectrum of the multiplicative Hilbert matrix,
    Arkiv for Mathematik, 56, no.1 (2018), pp. 163-183
    DOI: http://dx.doi.org/10.4310/ARKIV.2018.v56.n1.a10
    preprint

  56. E. Fedele, A. Pushnitski,
    Weighted integral Hankel operators with continuous spectrum,
    Concrete Operators, 4, no.1 (2017), 121-129.
    DOI: http://dx.doi.org/10.1515/conop-2017-0009
    preprint

  57. N. Miheisi, A. Pushnitski,
    A Helson matrix with explicit eigenvalue asymptotics,
    J. Funct. Anal, 275, no.4 (2018), 967-987.
    https://doi.org/10.1016/j.jfa.2017.11.002
    preprint

  58. A. Pushnitski,
    Spectral asymptotics for a class of Toeplitz operators on the Bergman space,
    Proceedings of IWOTA-2017:
    Oper. Theory Adv. Appl., 268 (2018), 397-412.
    preprint

  59. P. Gerard, A. Pushnitski,
    Inverse spectral theory for a class of non-compact Hankel operators,
    Mathematika, 65, no.1 (2019), 132-156.
    DOI: https://doi.org/10.1112/S0025579318000281
    preprint

  60. R. Frank, A. Pushnitski,
    Kato smoothness and functions of perturbed self-adjoint operators ,
    Adv. Math. 351 (2019), 343-387.
    DOI: https://doi.org/10.1016/j.aim.2019.05.002
    preprint

  61. R. Frank, A. Pushnitski,
    Schatten class conditions for functions of Schrodinger operators,
    Ann. Henri Poincaré 20, no. 11 (2019), 3543-3562.
    DOI: https://doi.org/10.1007/s00023-019-00838-8
    preprint

  62. P. Gerard, A. Pushnitski,
    Weighted model spaces and Schmidt subspaces of Hankel operators,
    J. Lond. Math. Soc. (2) 101, no. 1 (2020) 271-298.
    DOI: https://doi.org/10.1112/jlms.12270
    preprint

  63. N. Miheisi, A. Pushnitski,
    Restriction theorems for Hankel operators,
    Studia Math. 254, no. 1 (2020), 1-21.
    DOI: https://doi.org/10.4064/sm181109-2-7
    preprint

  64. P. Gerard, A. Pushnitski,
    The structure of Schmidt subspaces of Hankel operators: a short proof,
    Studia Math. 256, no. 1 (2021), 61-71.
    DOI: https://doi.org/10.4064/sm190717-7-2
    preprint

  65. N. Nikolski, A. Pushnitski,
    Szegő-type limit theorems for "multiplicative Toeplitz" operators and non-Følner approximations,
    St.Petersburg Math. J. 32, no. 6 (2021), 1033–1050.
    preprint

  66. O. F. Brevig, K. Perfekt, A. Pushnitski,
    The spectrum of some Hardy kernel matrices,
    to appear in Annales de l'Inst. Fourier,
    preprint

  67. A. Pushnitski,
    The spectral density of Hardy kernel matrices,
    J. Operator Theory, 89, no. 1 (2023), 3-21.
    preprint

  68. T. Hilberdink, A. Pushnitski,
    Spectral asymptotics for a family of LCM matrices,
    St.Petersburg Math. J. 34 (2023), 463-481.
    preprint

  69. P. Gerard, A. Pushnitski,
    Unbounded Hankel operators and the flow of the cubic Szegő equation,
    Invent. Math. 232 (2023), 995–1026.
    preprint

  70. P. Gerard, A. Pushnitski,
    An inverse problem for Hankel operators and turbulent solutions of the cubic Szegő equation on the line,
    to appear in J. of Eur. Math. Soc. (JEMS).
    preprint

  71. P. Gerard, A. Pushnitski, S. Treil,
    An inverse spectral problem for non-compact Hankel operators with simple spectrum,
    to appear in Journal d'Analyse Mathematique.
    preprint

  72. F. Štampach, A. Pushnitski,
    An inverse spectral problem for non-self-adjoint Jacobi matrices,
    Int. Math. Res. Notices, 2024, no. 7 (2024), 6106–6139.
    preprint

  73. P. Gerard, A. Pushnitski,
    The cubic Szegő equation on the real line: explicit formula and well-posedness on the Hardy class,
    to appear in Commun. Math. Phys.
    preprint

  74. A. Pushnitski, A. Sobolev,
    Hankel operators with band spectra and elliptic functions,
    to appear in Duke Math. J.
    preprint

  75. A. Pushnitski, I. Wigman,
    Eigenvalue clusters for the hemisphere Laplacian with variable Robin condition,
    to appear in Probability and Mathematical Physics
    preprint

  76. T. Hilberdink, A. Pushnitski,
    Spectral asymptotics for a family of arithmetical matrices and connection to Beurling primes,
    to appear in Pure and Applied Functional Analysis (Fritz Gesztesy 70th birthday volume)
    preprint

  77. A. Pushnitski,
    Three families of matrices,
    Exposit. Math. 42, no.2 (2024), 125546.
    preprint

  78. F. Štampach, A. Pushnitski,
    A functional model and tridiagonalisation for symmetric anti-linear operators,
    to appear in J. Operator Theory
    preprint