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Abstract. The spectral shift function ξ(λ) is considered for the pair of operators
H0, H0 + V , where H0 is the Schrödinger operator with variable Riemannian metric
and with electromagnetic field, and V is the operator of multiplication by the po-
tential V (x). For the integrals of type

∫
ξ(λ)f(λ) dλ, where f(λ) is a weight, some

estimates in terms of the integral characteristics of the potential V are obtained.
These estimates are of asymptotically sharp order in λ and V ; in a subsequent paper
they will be applied to the problem of the asymptotics of ξ(λ) in the large coupling
constant limit.

§0. Introduction

0.1. Let H0 and H be selfadjoint operators in a Hilbert space H; we assume that
their difference V is a trace-class operator:

(0.1) V := H − H0 ∈ S1(H).

Then the following Lifshits–Krĕın trace formula holds (see [21, 19]):

(0.2) Tr(ϕ(H) − ϕ(H0)) =
∫ ∞

−∞
ξ(λ;H, H0)ϕ′(λ) dλ.

Here ϕ is any function of some function class, and ξ(λ;H, H0) is the spectral shift
function (SSF) for the pair H0, H, which is given by the Krĕın formula

(0.3) ξ(λ;H, H0) =
1
π

lim
ε→+0

arg det(I + V (H0 − (λ + iε)I)−1) for a.e. λ ∈ R.

The branch of the argument in (0.3) is fixed by the condition

arg det(I + V (H0 − zI)−1) → 0 as Im z → +∞.
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A historical review and a description of the modern state of the SSF theory can be
found in [8, 36]. Among the most important facts of the SSF theory (see [19]) we
mention the Krĕın inequality

(0.4)
∫ ∞

−∞
|ξ(λ;H, H0)| dλ ≤ ‖V ‖S1

and the monotonicity of the SSF:

(0.5) ±V ≥ 0 ⇒ ±ξ(λ;H, H0) ≥ 0.

From (0.5) it follows that

(0.6) ξ(λ;H0 − V−, H0) ≤ ξ(λ;H0 + V, H0) ≤ ξ(λ;H0 + V+, H0),

where 2V± = |V | ± V .

0.2. In applications, instead of condition (0.1) it is usually possible to check the
relation

(0.7) h(H) − h(H0) ∈ S1(H),

where h : R → R is a sufficiently smooth monotone function. In this case, the SSF
for the pair H0, H is defined by the natural formula

(0.8) ξ(λ;H, H0) := sgnh′ · ξ(h(λ);h(H), h(H0)).

Of course, the trace formula (0.2) remains valid; only the class of admissible func-
tions ϕ must be changed. As to relation (0.5), sometimes it can also be justified,
but this problem is far from being trivial if the SSF is defined via (0.8). In [18] (see
also [36, 8.10]), the implication (0.5) was proved for

(0.9) h(λ) = (λ − λ0)−k, where k > 0, λ0 < inf(σ(H0) ∪ σ(H)).

This is sufficient for most applications.

0.3. Let

(0.10) H0 = −� in L2(Rd), d ≥ 1, V = V (x), H = H0 + V.

If the potential V decays sufficiently fast at infinity, then the relation (0.7) can be
verified for the functions h of the form (0.9). This makes it possible to define the
SSF via (0.8); relations (0.5), (0.6) are valid in this case due to the results of [18].

Estimates for the SSF for the pair H0, H as in (0.10) were studied in [35]. The
potential V was assumed to satisfy the condition

|V (x)| ≤ (1 + |x|)−ρ, ρ > d.

The following estimate (see [35, Theorem 4.2]) was obtained:

(0.11) ξ(λ;H0 + αV, H0) ≤ C(α(d/2) + αλ(d/2)−1(| log λ| + 1)), α > 0, λ ≥ c;

for V ≥ 0 it was improved up to the inequality

(0.12) ξ(λ;H0 + αV, H0) ≤ Cαλ(d/2)−1(| log λ| + 1), α > 0, λ ≥ c.

Here C, c are some positive numbers independent of the spectral parameter λ and
the coupling constant α, but possibly depending on V (this dependence was not
studied in [35]).

Besides estimates (0.11), (0.12), there are many results concerning the asymp-
totics of ξ(λ;H0 + αV, H0) as λ → ∞ for fixed α (high energy asymptotics; here
the initial results were obtained in [9]) and as α → ∞ and λ → ∞ with λ/α fixed
(semiclassical asymptotics); see, e.g., [30] and the references therein.



INTEGRAL ESTIMATES FOR THE SPECTRAL SHIFT FUNCTION 3

0.4. The above results on the pointwise estimates and asymptotics for the SSF
of the pair (0.10) are based on the fact that the spectrum of H0 is absolutely
continuous and that V is smooth with respect to H0 in some sense. In this paper
we use a different approach, considering the SSF entirely in the framework of the
trace class perturbation theory. Starting with the Krĕın inequality (0.4), we obtain
integral estimates for the SSF. As an example, we present the following weighted
estimate obtained for the SSF of the pair (0.10) for d ≥ 3 (see Theorem 6.4(ii) and
Corollary 6.8(ii) below and also (0.6)):

∫ ∞

0

|ξ(λ;H0 + V, H0)|f(λ) dλ

≤ C1

∫ ∞

0

f(λ) dλ

∫
V

d/2
− (x) dx + +C2

∫ ∞

0

λ(d/2)−1f(λ) dλ

∫
|V (x)| dx.

(0.13)

If V ≥ 0, then, obviously, the first term on the right vanishes and we obtain

(0.14)
∫ ∞

0

ξ(λ;H0 + V, H0)f(λ) dλ ≤ C2

∫ ∞

0

λ(d/2)−1f(λ) dλ

∫
V (x) dx.

Here f = f(λ) is any nonnegative monotone decreasing function and C1, C2 are
the constants independent of λ, V , f . The precise statements are given in Subsec-
tions 6.2 and 6.3.

Clearly, the pointwise estimates (0.11), (0.12) are stronger than the integral ones
(0.13), (0.14) (up to constants and a logarithmic factor). However, our method of
deriving integral estimates is “insensitive” to the specific nature of the spectrum
of H0. This allows us to consider a wide class of H0’s (the Schrödinger operators
with variable metric and electromagnetic field; see Subsection 5.2 below) and to
avoid imposing too restrictive conditions on V . Moreover, in contrast to (0.11),
(0.12), estimates (0.13), (0.14) explicitly indicate the dependence on V . Also, we
obtain some analogs of (0.13), (0.14) for H0 = (−�)l in L2(Rd), d ≥ 1; here l is
not necessarily an integer.

We note that the properties of concavity and subadditivity with respect to V

were studied in [12] for the quantities
∫ λ

0
ξ(t;H0 +αV, H0) dt and

∫ ∞
0

e−tλξ(λ;H0 +
αV, H0) dλ, related to the pair (0.10) for d = 3.

0.5. Largely, the present paper is aimed at applications to the problem of asymp-
totics of the SSF in the large coupling constant limit (these applications themselves
will be considered elsewhere). To a great extent, this has determined the style of
presentation. Let V ≥ 0; then for λ < inf σ(H0) the SSF ξ(λ;H0 −αV, H0) is equal
to minus the number N+(λ;H0,

√
V , α) of the eigenvalues of H0 − αV located to

the left from the point λ on the real axis (see, e.g., [8]). The asymptotic properties
of N+(λ;H0,

√
V , α) as α → ∞ are well studied (see, e.g., [7] and the references

therein). In particular, a description is known of the class of perturbations V (reg-
ular perturbations) such that the leading term of the asymptotics does not depend
on λ. For this reason, in order to study the SSF in the large coupling constant limit
for regular perturbations V ≥ 0, it is natural to consider the quantity

(0.15) ξ(λ;H0 − αV, H0) + N+(Λ−;H0,
√

V , α)

with some fixed Λ− < inf σ(H0). Our initial estimates for ξ(λ;H0 − αV, H0) are
formulated in terms of this quantity (see Theorems 6.6, 6.9). As a consequence, we
obtain inequalities of the form (0.13) (see Corollary 6.8).
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0.6. Relation (0.6) shows that in order to obtain estimates for the SSF, we can
restrict ourselves to perturbations of definite sign. We use the following approach.
Suppose that a nonnegative operator V is factored as V = G∗G. In [25], the
following new representation of the SSF was obtained (see Propositions 2.6, 2.7
below):

(0.16) ξ(λ;H0 ± V, H0) = ±N∓(λ;H0, G).

Here N±(λ;H0, G) is the integral (see (2.4)) of the counting function for the eigen-
values of a certain family of compact operators (this family is related to G and to
the resolvent of H0). Formula (0.16) is of abstract nature. In applications it turns
out that the existence of the quantities N± can be established under somewhat
more general and more natural conditions than the existence of the SSF (see Sub-
section 6.1). For this reason, we regard the quantities N± as an initial object and
define them independently of SSF. To analyze N±, we combine different approaches,
employing, on the one hand, the straightforward analysis of the integral represen-
tation for N± and, on the other hand, identity (0.16) together with estimate (0.4)
for “intermediate” objects. This yields integral estimates for N±(λ;H0, G). The
corresponding inequalities for the SSF are obtained by using Propositions 2.6 and
2.7, which give conditions sufficient for the validity of (0.16).

0.7. The paper is organized as follows. In §1 we collect the necessary notation and
definitions. In §2 we define the quantities N±(λ;H0, G) and discuss their basic prop-
erties and relationship with the SSF and the “counting function” N±(λ;H0, G, α).
Estimates for the quantities N± are obtained in §3 and for the quantity (0.15) in
§4. The results of §§2–4 are of abstract nature. In §5 we introduce the Schrödinger
operator and the polyharmonic operator (in applications, they play the role of H0)
and present relevant information. Finally, in §6, on the basis of the results of §§3–4
we obtain integral estimates for N±(λ;H0,

√
V ), where H0 is the Schrödinger or

the polyharmonic operator and V is the operator of multiplication by the potential
V (x) ≥ 0.

0.8. Acknowledgments. The author is deeply grateful to his scientific advisor
M. Sh. Birman, who introduced him into the SSF theory, for many valuable discus-
sions and remarks. The author thanks V. S. Buslaev, who attracted his attention to
the problem of integral estimates for the SSF. The author is grateful to A. Laptev
and G. Rozenblum for consultations and to N. D. Filonov for useful remarks on the
text of the paper. Finally, the author expresses his gratitude to the Department of
Mathematics of the Royal Institute of Technology, Stockholm, for hospitality and
to the ISF foundation for financial support.

§1. Notation and preliminaries

1.1. Notation.
1) The integrals in which the integration domain is not indicated explicitly are

taken over Rd. We denote ωd := vol{x ∈ Rd : |x| ≤ 1 }. The statements with
double indices ± or ∓ should be understood as a pair of statements: in one of them
all indices take the upper values, and in the other all indices take the lower values.
In the statements involving upper estimates we assume that all quantities (norms
and integrals) on the right-hand side are finite. A constant that appears for the
first time in formula (i.j) is denoted by Ci.j .
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2) Functions. The spaces Lp(Rd), Lp, loc(Rd) are defined in a usual way. Let
Qd = (0, 1)d ⊂ Rd. The space l1(Zd;L2(Qd)) consists of the functions u ∈ L2(Rd)
such that the functional

‖u‖l1(L2) :=
∑
j∈Zd

(∫
Qd+j

|u|2 dx

)1/2

,

is finite. For a real-valued function F we put 2F± := |F | ± F . The characteristic
function of a set M is denoted by χM .

3) Operators. In what follows, H, H1, H2 are separable Hilbert spaces. By
Dom A, RanA, and KerA we denote the domain, the range and the kernel of a
linear operator A, respectively; |A| :=

√
A∗A; I is the identity operator. For a

selfadjoint operator A, the symbols σ(A), ρ(A) = C \ σ(A), and EA(δ) denote,
respectively, the spectrum, the resolvent set, and the spectral measure of a Borel
set δ ⊂ R; we put 2A± := |A| ± A. The resolvent of a selfadjoint operator H0 is
denoted by R0(z) = (H0 − zI)−1.

We denote by S∞(H1,H2) the space of compact operators acting from H1 into
H2; S∞(H) := S∞(H,H). For T = T ∗ ∈ S∞(H) and s > 0 we put n±(s, T ) :=
dim RanET±(s,+∞), and for T ∈ S∞(H1,H2) we put n(s, T ) := n+(s2, T ∗T ). If
T1, T2 are compact selfadjoint operators, then

(1.1) n±(s1 + s2, T1 + T2) ≤ n±(s1, T1) + n±(s2, T2), s1, s2 > 0

(see, e.g., [3]); this estimate can be written in the form

(1.2) n±(s1, T1 + T2) ≥ n±(s1 + s2, T1) − n∓(s2, T2), s1, s2 > 0.

For 1 ≤ p < ∞, the Neumann–Schatten class Sp(H1,H2) ⊂ S∞(H1,H2) is defined
as the set of all compact operators T for which the norm

‖T‖Sp
:=

(
p

∫ ∞

0

sp−1n(s, T ) ds

)1/p

is finite. In particular, S1 is the trace class and S2 is the Hilbert–Schmidt class.

1.2. Auxiliary facts from perturbation theory. Let H be a “basic” and K an
“auxiliary” Hibert space, H0 a selfadjoint operator in H, and G a linear operator
acting from H into K. Assume that

(1.3) G is closed, Dom G ⊃ Dom |H0|1/2, G(|H0| + I)−1/2 ∈ S∞(H,K).

For z ∈ ρ(H0) we introduce the operator

(1.4) T (z;H0, G) := (G(|H0| + I)−1/2)(|H0| + I)R0(z)(G(|H0| + I)−1/2)∗,

which is compact in K. We shall write T (z) in place of T (z;H0, G) if the choice
of H0, G is clear from the context. On the set Dom G∗ (dense in K) the operator
T (z) can be defined by a simpler formula:

(1.5) T (z)ψ = GR0(z)G∗ψ, ψ ∈ Dom G∗.

It is easy to check that for all z ∈ C\R the operator I ±T (z;H0, G) has a bounded
inverse. Let V := G∗G. Below we introduce the operator corresponding to the
formal sum H0 ± V . For z ∈ C \ R, we define a bounded operator R±(z) in H by
the formula

(1.6) R±(z) = R0(z) ∓ (GR0(z))∗(I ± T (z;H0, G))−1(GR0(z)).
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Proposition 1.1 (see [14] or [36]). The operator R±(z) coincides with the resolvent
(evaluated at the point z) of an operator H± = H±(H0, G) selfadjoint in H and
independent of z. For all z ∈ ρ(H0) ∩ ρ(H±) the operator I ± T (z;H0, G) has a
bounded inverse, and identity (1.6) is fulfilled for R±(z) = (H± − zI)−1. If H0 is
lower semibounded , then H± coincides with the sum H0 ± V in the form sense. If
V is H0-bounded with relative bound γ < 1, then H± = H0 ± V in the sense of the
Kato–Rellich theorem.

From (1.6) and (1.3) it follows that the difference R±(z) − R0(z) is compact;
consequently, the essential spectra of H± and H0 coincide. It is easy to check that
H±(H0, G) = H±(H0, |G|).

Proposition 1.2 ([17, Lemma 1]). Under conditions (1.3), for every λ ∈ ρ(H0)∩R

we have

(1.7) dim Ker(H±(H0, G) − λI) = dim Ker(T (λ;H0, G) ± I).

In particular, Proposition 1.2 implies that the eigenvalues of H±(H0,
√

αG),
α > 0, are monotone functions of α. For λ ∈ ρ(H0) ∩ R and α > 0, the
“counting function” N±(λ;H0, G, α) is defined as the number of the eigenvalues
of H∓(H0,

√
tG) (counting multiplicities) that cross the point λ as t grows mono-

tonically in the interval (0, α). Proposition 1.2 implies the following identity, known
as the Birman–Schwinger principle:

(1.8) N±(λ;H0, G, α) = n±(α−1;T (λ;H0, G)), λ ∈ ρ(H0) ∩ R.

In this paper, the scope of applications is restricted to lower semibounded op-
erators H0 (the Schrödinger and the polyharmonic operator). In this case, H±
can be defined as a form sum, which simplifies the arguments. However, in the
abstract part of the paper we do not suppose that H0 is lower semibounded (with
the exception of §4, where this condition is dictated by the nature of the question).

We note that the requirement that G be closed is imposed only for the sake
of simplicity. The content of the present section, as well as that of §§2–4, can be
reformulated for the case of a nonclosable operator G. What matters is that the
second and the third of conditions (1.3) be fulfilled.

§2. The functions N±

2.1. The definition of the functions N±. In this and the next two sections
H is a “basic” and K an “auxiliary” Hilbert space, H0 is a selfadjoint operator in
H, and G is an operator acting from H into K and satisfying conditions (1.3). For
z ∈ ρ(H0) we use (1.4) to define operators T (z;H0, G) compact in K; next, we put

(2.1) A(z;H0, G) := Re T (z;H0, G), K(z;H0, G) := ImT (z;H0, G).

We shall write A(z), K(z) in place of A(z;H0, G), K(z;H0, G) if the choice of H0,
G is clear from the context. Suppose that for some λ ∈ R the pair of operators H0,
G satisfies the following condition.
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Condition 2.1. The limit

(2.2) lim
ε→+0

T (λ + iε;H0, G) =: T (λ + i0;H0, G)

exists in the operator norm, and

(2.3) K(λ + i0; H0, G) ∈ S1(K).

Then we define

(2.4) N±(λ;H0, G) :=
1
π

∫ ∞

−∞

dt

1 + t2
n±(1;A(λ + i0) + tK(λ + i0)).

It is easily seen that condition (2.3) implies the convergence of the integral (2.4).

Lemma 2.2. Fixing an open interval δ ⊂ R and a number λ ∈ δ, we put Gδ :=
GEH0(δ). At the point λ, condition 2.1 is satisfied for the pair H0, G if and only
if it is satisfied for the pair H0, Gδ.

Proof. Let G̃δ := GEH0(R \ δ). Obviously, for every z ∈ ρ(H0) we have

T (z;H0, G) = T (z;H0, Gδ) + T (z;H0, G̃δ).

It is clear that the limit T (λ + i0;H0, G̃δ) exists in the operator norm and that
K(λ + i0;H0, G̃δ) = 0. This implies the assertion of the lemma. �
Lemma 2.3. For any λ ∈ R, Condition 2.1 is satisfied for H0, G if and only if it
is satisfied for H0, |G|; moreover ,

(2.5) N±(λ;H0, G) = N±(λ;H0, |G|).

Proof. Let G = Φ|G| be a polar decomposition of G; the operator Φ acts unitarily
from Ran |G| into RanG. It is easy to check that

ΦT (z;H0, |G|) = T (z;H0, G)Φ, z ∈ ρ(H0).

This implies the first assertion of the lemma and the identity
n±(1;A(λ + i0;H0, G) + tK(λ + i0;H0, G))

= n±(1;A(λ + i0;H0, |G|) + tK(λ + i0;H0, |G|)).
Integrating this relation in t with the weight π−1(1 + t2)−1, we arrive at (2.5). �
Lemma 2.4. Let V1, V2 be selfadjoint operators in H such that 0 ≤ V1 ≤ V2.
Suppose that for some λ ∈ R Condition 2.1 is fulfilled for the pair H0, V

1/2
2 ; then

so it is for the pair H0, V
1/2
1 , and

N±(λ;H0, V
1/2
1 ) ≤ N±(λ;H0, V

1/2
2 ).

Proof. We write V1 = (BV
1/2
2 )∗BV

1/2
2 , where ‖B‖ ≤ 1. Then

T (z;H0, V
1/2
1 ) = BT (z;H0, V

1/2
2 )B∗, z ∈ ρ(H0).

It follows that Condition 2.1 is satisfied for the pair H0, V
1/2
1 , and

n±(1;A(λ + i0;H0, V
1/2
1 ) + tK(λ + i0;H0, V

1/2
1 ))

≤ n±(1;A(λ + i0;H0, V
1/2
2 ) + tK(λ + i0;H0, V

1/2
2 )).

Integrating this inequality in t with the weight π−1(1 + t2)−1, we get the desired
result. �
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2.2. Relationship between N± and the “counting function” N±. Let λ ∈
ρ(H0)∩R. Comparing (1.8) and (2.4) and observing that K(λ+ i0;H0, G) = 0 and
A(λ + i0;H0, G) = T (λ + i0;H0, G), we arrive at the following statement.

Proposition 2.5. For λ ∈ ρ(H0) ∩ R we have

(2.6) N±(λ;H0, G) = N±(λ;H0, G, 1).

2.3. Relationship between N± and the SSF. Here we formulate the results
of [25] that will be used in what follows.

1) Trace class perturbations. Let H0 be a selfadjoint operator in H, and let
G ∈ S2(H,K). It is well known that under these conditions for a.e. λ ∈ R the
limits (2.2) exist in the Hilbert–Schmidt norm and that (2.3) is true (see [2] or
[36]).

Proposition 2.6 ([25]). If H0 is a selfadjoint operator in H and G ∈ S2(H,K),
then

(2.7) ξ(λ;H0 ± G∗G, H0) = ±N∓(λ;H0, G) for a.e. λ ∈ R.

2) Relatively nuclear perturbations. Let H0 be a selfadjoint lower semibounded
operator in H,

(2.8) H0 = H∗
0 in H, −∞ < inf σ(H0).

Suppose that the operator G : H → K satisfies conditions (1.3), and for some m > 0
we have

(2.9) GRm
0 (µ) ∈ S2(H,K), µ < inf σ(H0).

Then for a.e. λ ∈ R Condition 2.1 is fulfilled for the pair H0, G (see, e.g., Corollary
3.8 below). Let H± = H±(H0, G) (see Proposition 1.1). In order to define the
SSF for the pair H0, H±, assume additionally that for some k > 0 and some
λ0 < inf(σ(H0) ∪ σ(H±)) we have

(2.10±) (H± − λ0I)−k − (H0 − λ0I)−k ∈ S1(H).

Relation (2.10) allows us to define the SSF via (0.8) with h(λ) = (λ − λ0)−k.

Proposition 2.7 ([25]). Under conditions (1.3), (2.8)–(2.10) we have

(2.11) ξ(λ;H±, H0) = ±N∓(λ;H0, G) for a.e. λ ∈ R.

Finally, we mention two conditions ensuring (2.10).

Proposition 2.8. (i) If conditions (1.3) and (2.9) are true with m = 1, then (2.10)
with k = 1 is true for all λ0 ∈ ρ(H0) ∩ ρ(H±).

(ii) Under conditions (1.3) and (2.8), if for some m > 0 we have

(2.12) (GR
1/2
0 (µ))∗(GRm

0 (µ)) ∈ S1(H), µ < inf σ(H0),

then (2.10) is true for all integers k > m + 1/2 provided that the absolute value of
λ0 < inf(σ(H0) ∪ σ(H±)) is sufficiently large.

Statement (i) follows directly from the definition (1.6). Statement (ii) was proved
in [28, Theorem XI.12].
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§3. Estimates for N±

In this section, H0 is a selfadjoint operator in H and G is an operator acting
from H into K and satisfying conditions (1.3).

3.1. Monotonicity estimates. For λ ∈ R we put

(3.1) E(λ) := EH0(−∞, λ), G−(λ) := GE(λ), G+(λ) := GEH0(λ, +∞).

Lemma 3.1. Let λ, λ± be numbers satisfying ±(λ−λ±) > 0. Then Condition 2.1
is fulfilled for H0, G±(λ±) if and only if it is fulfilled for H0, G, and

(3.2±) N±(λ;H0, G) ≤ N±(λ;H0, G±(λ±)).

Proof. The first assertion follows from Lemma 2.2. For definiteness, we prove
(3.2−). It is easily seen that

A(λ + i0;H0, G) ≥ A(λ + i0;H0, G−(λ−)),

K(λ + i0;H0, G) = K(λ + i0;H0, G−(λ−)).

This implies (3.2−). �
Corollary 3.2. For any λ ∈ R we have the estimate1

(3.3±)
∫
±(t−λ)≥0

N±(t;H0, G) dt ≤ ‖G±(λ)‖2
S2

.

Proof. Using Lemma 3.1, Proposition 2.6, and inequality (0.4), we obtain∫
±(t−λ)≥0

N±(t;H0, G) dt

≤
∫
±(t−λ)≥0

N±(t;H0, G±(λ)) dt =
∫
±(t−λ)≥0

|ξ(t;H0 ∓ G∗
±(λ)G±(λ), H0)| dt

≤
∫ ∞

−∞
|ξ(t;H0 ∓ G∗

±(λ)G±(λ), H0)| dt

≤ ‖G∗
±(λ)G±(λ)‖S1 = ‖G±(λ)‖2

S2
. �

Lemma 3.3. Let f : R → [0,∞) be a function such that ±f is monotone nonde-
creasing. Then

(3.4±)
∫ ∞

−∞
N±(λ;H0, G)f(λ) dλ ≤ ‖G

√
f(H0)‖2

S2
.

Proof. For definiteness, we consider the case of the lower signs. First, we assume
that f(λ) → 0 as λ → +∞. We denote

(3.5) λmax := sup supp f ≤ +∞.

1We remind the reader that in the upper estimates all quantities on the right-hand side are
assumed to be finite.
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Since G
√

f(H0) ∈ S2, it follows that G−(λ) ∈ S2 for λ < λmax. We fix two
numbers R1, R2 such that R1 < R2 < λmax (from what follows it will be seen
that if f is bounded, we can take R1 = −∞). For λ ∈ (R1, R2), we put S(λ) :=∫ λ

R1
N−(t;H0, G) dt (since G−(λ) ∈ S2, inequality (3.3−) shows that this integral

converges). Integrating by parts, we get∫ R2

R1

N−(λ;H0, G)(f(λ) − f(R2)) dλ

=
∫ R2

R1

(f(λ) − f(R2)) dS(λ) = −
∫ R2

R1

S(λ) df(λ)

≤ −
∫ R2

R1

‖G−(λ)‖2
S2

df(λ),

(3.6)

where at the last step we have used inequality (3.3−). Next, we integrate by parts
once again to obtain

−
∫ R2

R1

‖G−(λ)‖2
S2

df(λ)

= −Tr(G−(R2)
∫ R2

R1

E(λ) d(f(λ) − f(R2))G∗
−(R2))

= Tr(G−(R2)(f(R1) − f(R2))E(R1)G∗
−(R2)

+ Tr(G−(R2)(f(H0) − f(R2)I)EH0(R1, R2)G∗
−(R2))

≤ Tr(G−(R2)f(H0)E(R1)G∗
−(R2)) + Tr(G−(R2)f(H0)G∗

−(R2))

≤ ‖G
√

f(H0)E(R1)‖2
S2

+ ‖G
√

f(H0)‖2
S2

.

(3.7)

Combining (3.6) and (3.7), we see that∫ R2

R1

N−(λ; H0, G)(f(λ) − f(R2)) dλ ≤ ‖G
√

f(H0)‖2
S2

+ ‖G
√

f(H0)E(R1)‖2
S2

.

Now, letting R1 → −∞ and R2 → λmax, we arrive at (3.4−).
Suppose that limλ→+∞ f(λ) =: f(∞) �= 0. Then G

√
f(H0) ∈ S2 implies G ∈ S2.

Hence, by Proposition 2.6 and inequality (0.4), we have

(3.8)
∫ ∞

−∞
N−(λ;H0, G) dλ ≤ ‖G∗G‖S1 = ‖G‖2

S2
.

The first part of the proof shows that∫ ∞

−∞
N−(λ;H0, G)(f(λ) − f(∞)) dλ

≤ ‖G
√

f(H0) − f(∞)I‖2
S2

= Tr(G(f(H0) − f(∞)I)G∗) = ‖G
√

f(H0)‖2
S2

− f(∞)‖G‖2
S2

.

Combining this inequality with (3.8), we arrive at (3.4−). �
The following result of [4] is very close to Lemma 3.3.
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Proposition 3.4. Suppose that H0 = H∗
0 in H, V = V ∗ ∈ S1(H), and H =

H0 + V . Let f(λ), λ ∈ R, be a continuous2 nonnegative monotone nonincreasing
function. Then

Tr(f(H)V ) ≤
∫ ∞

−∞
ξ(λ;H, H0)f(λ) dλ ≤ Tr(f(H0)V ).

It is easy to check that for trace-class perturbations of definite sign and for
bounded functions f Proposition 3.4 and Lemma 3.3 are equivalent.

In a certain important special case, estimates of the form (3.4−) for the SSF can
be proved straightforwardly, without using N−.

Proposition 3.5. Let H0 ≥ 0 be a selfadjoint operator in H. Suppose that G
satisfies (1.3) and that GR0(−1) ∈ S2(H,K). We put H+ = H+(H0, G). Then for
any λ0 < 0 relation (2.10+) is true with k = 1; thus, the SSF for the pair H0, H+

is well defined. Moreover , we have

(3.9)
∫ ∞

−∞
(λ − λ0)−2ξ(λ;H+, H0) dλ ≤ ‖GR0(λ0)‖2

S2
, λ0 < 0.

Proof. Relation (2.10+) with k = 1 follows from (1.6). On the basis of (2.10+), the
SSF ξ(λ;H+, H0) can be defined via (0.8) (with H = H+ and h(λ) = (λ − λ0)−1).
Applying (0.4) and taking into account the fact that T (λ0;H0, G) ≥ 0, we find∫ ∞

−∞
(λ − λ0)−2ξ(λ;H+, H0) dλ

≤ ‖(H+ − λ0I)−1 − (H0 − λ0I)−1‖S1

= ‖(GR0(λ0))∗(I + T (λ0;H0, G))−1(GR0(λ0))‖S1

≤ ‖GR0(λ0)‖2
S2

. �

3.2. Partition of the spectrum. Let δ1, δ2 ⊂ R be Borel sets such that δ1∩δ2 =
∅ and σ(H0) ⊂ δ1 ∪ δ2. We put Gj = GEH0(δj), j = 1, 2.

Lemma 3.6. If for some λ ∈ R Condition 2.1 is fulfilled for the pairs of operators
H0, Gj , j = 1, 2, then so is it for the pair H0, G, and

N±(λ;H0, G) ≤ N±(λ;H0, (1 − θ)−1/2G1) + N±(λ;H0, θ
−1/2G2), θ ∈ (0, 1),

(3.10± )

N±(λ;H0, G) ≥ N±(λ;H0, (1 + θ)−1/2G1) −N∓(λ;H0, θ
−1/2G2), θ > 0.

(3.11± )

Proof. Clearly, for all z ∈ ρ(H0) we can write

(3.12)

T (z;H0, G) = T (z;H0, G1) + T (z;H0, G2),

A(z;H0, G) = A(z;H0, G1) + A(z;H0, G2),

K(z;H0, G) = K(z;H0, G1) + K(z;H0, G2),

2It is easily seen that the condition of continuity of f can be lifted.
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which implies the first assertion of the lemma. Using (3.12) and (1.1), we obtain

n±(1;A(λ + i0;H0, G) + tK(λ + i0;H0, G))

≤ n±(θ;A(λ + i0;H0, G1) + tK(λ + i0;H0, G1))

+ n±(1 − θ;A(λ + i0;H0, G2) + tK(λ + i0;H0, G2)).

Integrating this inequality in t with the weight π−1(1 + t2)−1, we arrive at (3.10).
Relation (3.13) can be proved in a similar way, by using (1.2) instead of (1.1). �
Remark 3.7. We sketch another proof of Lemma 3.6, which clarifies the role of the
fact that the perturbation is of definite sign. In order to prove (3.10), first we
observe that, as is easily checked, for any θ ∈ (0, 1) we have

V = G∗G ≤ (1 − θ)−1G∗
1G1 + θ−1G∗

2G2 = G̃∗G̃,

where the operator G̃ = (1 − θ)−1/2G1 ⊕ θ−1/2G2 acts from H to K⊕K. Here the
condition V ≥ 0 is essential. Next, we use Lemma 2.4 (for V1 = V , V2 = G̃∗G̃) and
Lemma 2.3 to obtain

N±(λ;H0, G) ≤ N±(λ;H0, (G̃∗G̃)1/2) = N±(λ;H0, G̃)

= N±(λ;H0, (1 − θ)−1/2G1) + N±(λ;H0, θ
−1/2G2).

The proof of (3.11) is similar. Also, we note that there is a version of Lemma 3.6
for a partition of the spectrum into an arbitrary finite number of sets δj .

Corollary 3.8. Suppose that

(3.13) GEH0(δ) ∈ S2(H,K)

for some open interval δ ⊂ R. Then for a.e. λ ∈ δ Condition 2.1 is fulfilled for the
pair H0, G, and

(3.14) N±(λ;H0, G) ∈ L1,loc(δ).

In particular , if (3.13) is true for any bounded interval δ ⊂ R, then

N±(λ;H0, G) ∈ L1,loc(R).

Proof. For definiteness, we consider the case of the upper signs. In (3.10+) we take
θ = 1/2, δ1 = δ, δ2 = R \ δ. By (3.13), Proposition 2.6, and inequality (0.4), we
have

N+(λ;H0,
√

2G1) = −ξ(λ;H0 − 2G∗
1G1, H0) ∈ L1(R).

At the same time, it is easy to check that T (λ + i0;H0, G2) is selfadjoint and
that N+(λ;H0,

√
2G2) = n+(1; 2T (λ + i0;H0, G2)) is a monotone nonincreasing

Z+-valued function of λ ∈ δ, possibly unbounded near sup δ. It follows that
N+(λ;H0,

√
2G2) ∈ L1,loc(δ), which yields (3.14). �

We note that for the SSF there is no statement similar to Corollary 3.8. Namely,
operators H0, G and an interval δ can be constructed such that the hypotheses
of Corollary 3.8 are true, but ϕ(H±) − ϕ(H0) �∈ S1 for some ϕ ∈ C∞

0 (δ). Thus,
the SSF for the pair H±, H0 cannot be defined on the interval δ in any reasonable
sense.
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§4. Estimates for N+ − N+

The content of this section is aimed at applications to the asymptotics of SSF in
the large coupling constant limit. The operator H0 is assumed to be nonnegative;
we consider the function N+(λ;H0, G). For λ < inf σ(H0), the asymptotic behavior
of N+(λ;H0,

√
tG) = N+(λ;H0, G, t) as t → ∞ is well studied in applications. For

this reason, we estimate the difference

Q(λ; Λ−, α) := N+(λ;H0, G) − N+(Λ−;H0, G, α),

where Λ− < inf σ(H0) is fixed, and α > 0 is some auxiliary parameter. Let

Q±(λ; Λ−, α) := (Q(λ; Λ−, α))±.

We keep the notation introduced in (3.1) and set Ẽ(λ) = I − E(λ).

4.1. Local estimates.

Lemma 4.1. Suppose that conditions (1.3) are satisfied for the operators H0 ≥ 0
and G. Then for any θ ∈ (0, 1) and any Λ− ≤ λ− < λ+ < Λ+, Λ− < inf σ(H0), we
have

(4.1)
∫ λ+

λ−

Q+

(
λ, Λ−,

Λ+ − Λ−
(1 − θ)(Λ+ − λ+)

)
dλ ≤ θ−1‖GEH0(λ−,Λ+)‖2

S2
.

Proof. We apply estimate (3.10+) for δ1 = [Λ+,+∞), δ2 = (−∞,Λ+), λ ∈
(λ−, λ+) ⊂ δ2, obtaining

(4.2) N+(λ;H0, G) ≤ N+(λ;H0, (1− θ)−1/2GẼ(Λ+))+N+(λ;H0, θ
−1/2G−(Λ+)).

We dominate the first summand on the right in (4.2). To do this, first we observe
that for λ ≤ λ+ we have the following simple relation:

R0(λ)Ẽ(Λ+) ≤ Λ+ − Λ−
Λ+ − λ+

R0(Λ−).

This implies that

(4.3) T (λ + i0;H0, GẼ(Λ+)) ≤ Λ+ − Λ−
Λ+ − λ+

T (Λ−;H0, G),

which yields the estimate

N+(λ;H0, (1 − θ)−1/2GẼ(Λ+)) = n+(1; (1 − θ)−1T (λ + i0;H0, GẼ(Λ+))

≤ n+

(
1;

Λ+ − Λ−
(1 − θ)(Λ+ − λ+)

T (Λ−;H0, G)
)

= N+

(
Λ−;H0, G,

Λ+ − Λ−
(1 − θ)(Λ+ − λ+)

)
for any λ ≤ λ+. Substituting this in (4.2), we find:

Q+

(
λ; Λ−,

Λ+ − Λ−
(1 − θ)(Λ+ − λ+)

)
≤ N+(λ;H0, θ

−1/2G−(Λ+)).

Integrating the latter inequality in λ and using (3.3+), we see that∫ λ+

λ−

Q+

(
λ, Λ−,

Λ+ − Λ−
(1 − θ)(Λ+ − λ+)

)
dλ

≤
∫ λ+

λ−

N+(λ;H0, θ
−1/2G−(Λ+)) dλ ≤

∫ ∞

λ−

N+(λ;H0, θ
−1/2G−(Λ+)) dλ

≤ θ−1‖GEH0(λ−,Λ+)‖2
S2

. �
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Lemma 4.2. Under the assumptions of Lemma 4.1, for any θ1, θ2 > 0 and any
Λ− ≤ λ− < λ+, Λ− < inf σ(H0), we have∫ λ+

λ−

Q−(λ, Λ−, (1 + θ1 + θ2)−1) dλ

≤ θ−1
1 (λ+ − λ−)‖G−(λ+)R1/2

0 (Λ−)‖2
S2

+ θ−1
2 ‖G−(λ+)‖2

S2
.

(4.4)

Proof. We apply (3.11+) with δ1 = [λ+,+∞), δ2 = (−∞, λ+), λ ∈ (λ−, λ+) ⊂ δ2,
θ = θ2; this yields

(4.5) N+(λ;H0, G) ≥ N+(λ;H0, (1+θ2)−1/2GẼ(λ+))−N−(λ;H0, θ
−1/2
2 G−(λ+)).

In order to get a lower estimate of the first summand on the right in (4.5), first we
observe that for λ ∈ (λ−, λ+) we can write

Ẽ(λ+)R0(λ) ≥ Ẽ(λ+)R0(Λ−) = R0(Λ−) − E(λ+)R0(Λ−),

which implies that

T (λ + i0;H0, GẼ(λ+))

≥ T (Λ−;H0, GẼ(λ+)) = T (Λ−;H0, G) − T (Λ−;H0, G−(λ+)).

Recalling (1.2), we deduce that

N+(λ;H0, (1 + θ2)−1/2GẼ(λ+)) = n+(1 + θ2, T (λ + i0;H0, GẼ(λ+)))

≥ n+(1 + θ2 + θ1;T (Λ−;H0, G)) − n+(θ1;T (Λ−;H0, G−(λ+)))

= N+(Λ−;H0, G, (1 + θ1 + θ2)−1) − n+(θ1;T (Λ−;H0, G−(λ+))).

(4.6)

The second summand on the right in (5.6) will be estimated as follows:

n+(θ1;T (Λ−;H0, G−(λ+)))

≤ θ−1
1 ‖T (Λ−;H0, G−(λ+))‖S1 = θ−1

1 ‖G−(λ+)R1/2
0 (Λ−)‖2

S2
.

(4.7)

Substituting (4.6) and (4.7) in (4.5), we obtain

Q−(λ, Λ−, (1 + θ1 + θ2)−1)

≤ θ−1
1 ‖G−(λ+)R1/2

0 (Λ−)‖2
S2

+ N−(λ;H0, θ
−1/2
2 G−(λ+)).

We integrate this inequality in λ and estimate the second summand on the right in
accordance with (0.4) to get∫ λ+

λ−

Q−(λ, Λ−, (1 + θ1 + θ2)−1) dλ

≤ θ−1
1 (λ+ − λ−)‖G−(λ+)R1/2

0 (Λ−)‖2
S2

+
∫ λ+

λ−

N−(λ;H0, θ
−1/2
2 G−(λ+)) dλ

≤ θ−1
1 (λ+ − λ−)‖G−(λ+)R1/2

0 (Λ−)‖2
S2

+ θ−1
2 ‖G−(λ+)‖2

S2
. �
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4.2. Weighted estimates.

Lemma 4.3. Under the assumptions of Lemma 4.1, let Λ− < inf σ(H0), and let
f : (Λ−,∞) → [0,∞) be a monotone nonincreasing function such that f(λ) → 0 as
λ → ∞. Then for any θ1, θ2 ∈ (0, 1) we have

∫ ∞

Λ−

Q+(λ; Λ−, (1 − θ1)−1(1 − θ2)−1)f(λ) dλ

≤ θ−1
1 ‖G

√
f(θ2H0 + Λ−(1 − θ2))‖2

S2
.

(4.8)

Proof. Replacing H0 and f(x) by H0 + Λ− and f(x − Λ−), we see that it suffices
to consider the case where Λ− = 0. We restore the notation (3.5). The relation
G

√
f(θ2H0) ∈ S2 implies that G−(λ/θ2) ∈ S2 for λ < λmax. Taking Λ− = λ− = 0,

θ = θ1 and λ+/Λ+ = θ2 in (4.1), we get

(4.9)
∫ λ

0

Q+(t; 0, (1 − θ1)−1(1 − θ2)−1) dt ≤ θ−1
1 ‖G−(λ/θ2)‖2

S2
, λ < λmax.

Let S(λ) denote the left-hand side of (4.9). As in the proof of Lemma 3.3, we
integrate by parts and use (3.7) to obtain

∫ R

0

Q+(λ; 0, (1 − θ1)−1(1 − θ2)−1)(f(λ) − f(R)) dλ =
∫ R

0

(f(λ) − f(R)) dS(λ)

= −
∫ R

0

S(λ) df(λ) ≤ −θ−1
1

∫ R

0

‖G−(λ/θ2)‖2
S2

df(λ)

≤ θ−1
1 ‖G

√
f(θ2H0)‖2

S2
,

where R < λmax. Letting R → λmax, we arrive at (4.8). �
Lemma 4.4. Under the assumptions of Lemma 4.1, let f : (0,∞) → [0,∞) be a
monotone nonincreasing integrable function, and let F (λ) =

∫ ∞
λ

f(t) dt. Then for
all Λ− < 0, θ1, θ2 > 0 we have

∫ ∞

0

Q−(λ, Λ−, (1 + θ1 + θ2)−1)f(λ) dλ

≤ θ−1
1 ‖GR

1/2
0 (Λ−)

√
F (H0)‖2

S2
+ (θ−1

1 + θ−1
2 )‖G

√
f(H0)‖2

S2
.

(4.10)

Proof. First, assume that f is bounded. Taking λ− = 0 in (4.4), we obtain

∫ λ

0

Q−(t,Λ−, (1 + θ1 + θ2)−1) dt

≤ θ−1
1 λ‖G−(λ)R1/2

0 (Λ−)‖2
S2

+ θ−1
2 ‖G−(λ)‖2

S2
.

(4.11)

Since G
√

f(H0) ∈ S2, the right-hand side of (4.11) is finite for λ < λmax (see
(3.5)); we denote by S(λ) the left hand side of this inequality. As in the proof of
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Lemma 4.3, we integrate by parts and use (4.11) to obtain

∫ R

0

Q−(λ, Λ−, (1 + θ1 + θ2)−1)(f(λ) − f(R)) dλ

=
∫ R

0

(f(λ) − f(R)) dS(λ) = −
∫ R

0

S(λ) df(λ)

≤ −θ−1
1

∫ R

0

λ‖G−(λ)R1/2
0 (Λ−)‖2

S2
df(λ) − θ−1

2

∫ R

0

‖G−(λ)‖2
S2

df(λ),

(4.12)

where R < λmax. We estimate the first summand on the right in (4.12). As in
(3.7), we get

−
∫ R

0

λ‖G−(λ)R1/2
0 (Λ−)‖2

S2
df(λ) = −Tr(G−(R)R0(Λ−)

∫ R

0

λE(λ) df(λ)G∗
−(R))

= −Tr(G−(R)R0(Λ−)
∫ R

0

E(λ) d(F (λ) + λf(λ))G∗
−(R))

= Tr(G−(R)R0(Λ−)(F (H0) + H0f(H0) − F (R)I − RF (R)I)G∗
−(R))

≤ ‖GR
1/2
0 (Λ−)

√
F (H0)‖2

S2
+ ‖G

√
f(H0)H

1/2
0 R

1/2
0 (Λ−)‖2

S2

≤ ‖GR
1/2
0 (Λ−)

√
F (H0)‖2

S2
+ ‖G

√
f(H0)‖2

S2
.

Substituting this inequality and (3.7) in (4.12), we see that

∫ R

0

Q−(λ; Λ−, (1 + θ1 + θ2)−1)(f(λ) − f(R)) dλ

≤ θ−1
1 ‖GR

1/2
0 (Λ−)

√
F (H0)‖2

S2
+ (θ−1

1 + θ−1
2 )‖G

√
f(H0)‖2

S2
.

Letting R → λmax, we arrive at (4.10). Now, suppose that f is unbounded (i.e., f
has a singularity at x = 0). We pick a sequence of bounded integrable functions
fn such that fn+1(x) ≥ fn(x) and fn(x) → f(x) for any x > 0. Using inequality
(4.10) for fn and passing to the limit as n → ∞, we obtain the desired result. �

§5. Preliminary facts on differential operators

5.1. Operators dominated by the “free Hamiltonian”. In this subsection
H0 is an operator such that

(5.1) H0 = H∗
0 ≥ 0 in H = L2(Rd), d ≥ 1,

and

(5.2) |e−H0tψ| ≤ Meβ
t|ψ|, t > 0, ψ ∈ H,

for some constants M > 0, β > 0. Below we shall often use the following obvious
observation. Let

(5.3) η(λ) =
∫ ∞

0

e−tλ dµ(t), where µ is a finite measure on (0,∞).
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Then (5.2) implies the inequality

(5.4) |η(H0)ψ| ≤ Mη(β(−�))|ψ|, ψ ∈ H.

In particular, taking dµ(t) = e−tγtm−1dt with m > 0, γ > 0, we obtain

(5.5) |(H0 + γI)−mψ| ≤ M(β(−�) + γI)−m|ψ|, ψ ∈ H.

The following two propositions are obvious generalizations of the corresponding
statements in [1].

Proposition 5.1. Let V ≥ 0 be the operator of multiplication by a measurable
function in H; suppose V is (−�)-form compact. Then V is H0-form compact.

Proof. We argue as in [1]. Inequality (5.5) implies the pointwise estimate

|
√

V (H0 + I)−1/2ψ| ≤ M
√

V (β(−�) + I)−1/2|ψ|, ψ ∈ H.

By assumption, the operator on the right-hand side of the above relation is compact;
hence (see [1, Theorem 2.2]), so is the operator on the left-hand side. �

Sufficient conditions for the (−�)-form compactness of a multiplication operator
can be formulated in various terms; see, e.g., [22, 5].

Proposition 5.2. (i) Let F be the operator of multiplication by a function F ∈
L2(Rd), and let η be a function of the form (5.3). Then

(5.6) ‖Fη(H0)‖2
S2

≤ (2π)−dωd
d

2
M2β−d/2

∫ ∞

0

λd/2−1η2(λ) dλ

∫
|F (x)|2 dx;

in particular ,

(5.7) FRm
0 (−1) ∈ S2(H), m > d/4.

(ii) Let F be the operator of multiplication by a function F ∈ l1(Zd;L2(Qd)).
Then

(5.8) FRm
0 (−1) ∈ S1(H), m > d/2.

Proof. (i) By (5.4), we have

‖Fη(H0)‖S2 ≤ ‖F‖L2‖η(H0)‖2,∞ ≤ ‖F‖L2M‖η(β(−�))‖2,∞,

where ‖ · ‖2,∞ denotes the norm of an operator acting from L2(Rd) into L∞(Rd).
Calculating the norms on the right-hand side of the above inequality, we obtain
(5.6).

Statement (ii) was proved in [1, Theorem 2.12] in the case of a magnetic
Schrödinger operator H0 (see also [32, Theorem B.9.2]). The proof presented in
[1] can be carried over to the general case without any modifications. �
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5.2. The Schrödinger operator. As a basic example of an operator of the
form (5.1), (5.2), we consider the Schrödinger operator with variable metric and
electromagnetic field. In Rd, d ≥ 1, we fix a real (d × d)-matrix-valued function
g = g(x) such that

(5.9) g−1 ≤ g(x) ≤ g+1, 0 < g− ≤ g+ < ∞
(here and in what follows 1 denotes the unit (d × d)–matrix), a real magnetic
vector-potential A = A(x) with

(5.10) |A| ∈ L2,loc(Rd),

and a scalar electric potential U = U(x) with

(5.11) U ∈ L1,loc(Rd), U ≥ 0.

We introduce the quadratic form
(5.12)

h
(0)
g,A,U [u, u] =

d∑
k,j=1

∫
gkj(x)

(
− i

∂u

∂xk
− Aku

)(
− i

∂u

∂xj
− Aju

)
dx +

∫
U |u|2 dx

on the domain d[h(0)
g,A,U ] = C∞

0 (Rd).

Proposition 5.3. Under conditions (5.9)–(5.11), the form h
(0)
g,A,U is closable, and

the domain of its closure hg,A,U is given by the formula

(5.13) d[hg,A,U ] = {u ∈ L2(Rd) | i∇u + Au ∈ L2(Rd), U1/2u ∈ L2(R2)},
where the expression ∇u is understood in the distribution sense. The corresponding
selfadjoint operator H0 = H0(g,A, U) satisfies conditions (5.1), (5.2) with some
constants M > 0, β > 0.

For the flat metric (gij(x) ≡ δij) Proposition 5.3 is well known (see, e.g., [34]
and the references therein); in this case we have M = β = 1. Essentially, in the
above form Proposition 5.3 was proved in [11]. Some comments on this point can
be found in the Appendix.

Proposition 5.4. Let d ≥ 3, let H0 = H0(g,A, U) be a selfadjoint operator cor-
responding to the form hg,A,U , and let V be the operator of multiplication by a
function V (x) ≥ 0, V ∈ Ld/2(Rd). Then V is H0-form compact , and

(5.14) N+(λ;H0,
√

V , 1) ≤ C5.14(d)g−d/2
−

∫
V d/2(x) dx, λ < 0.

Proof. Obviously, H0(g,A, U) ≥ g−H0(1,A, 0). For the operator H0(1,A, 0) the
following magnetic variant of the Cwikel–Lieb–Rozenblum estimate is known (see
[20], and [31, p. 168]):

N+(λ;H0(1,A, 0),
√

V , 1) ≤ C(d)
∫

V d/2(x) dx, λ < 0.

This implies (5.14). �
We note that in [23] an estimate of the form (5.14) was proved under condi-

tions on A and g much more general than (5.9), (5.10). Concerning estimates of
N+(λ;H0,

√
V , 1) for d = 2, see [27].
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5.3. The polyharmonic operator. Let

(5.15) H0 = (−�)l, l > 0 in H = L2(Rd), d ≥ 1;

here l is not necessarily an integer. We denote κ := d/(2l).

Proposition 5.5. (i) Let F be the operator of multiplication by a function F ∈
L2(Rd), and let f : (0,∞) → [0,∞) be a function such that

∫ ∞
0

λκ−1f2(λ) dλ < ∞.
Then

(5.16) ‖Ff(H0)‖2
S2

≤ (2π)−dωdκ

∫ ∞

0

λκ−1f2(λ)dλ

∫
|F (x)|2 dx;

in particular ,

(5.17) FRm
0 (−1) ∈ S2(H), m > κ/2.

(ii) Let F be the operator of multiplication by a function F ∈ l1(Zd;L2(Qd)).
Then

(5.18) FRm
0 (−1) ∈ S1(H), m > κ.

Proof. Statement (i) is obtained by a straightforward estimation of the Hilbert–
Schmidt norm.

Statement (ii) follows from [6, Theorem 11.1]. �

Proposition 5.6 (see [5]). Let H0 be the operator (5.15), let κ > 1, and let V be
the operator of multiplication by a function V (x) ≥ 0, V ∈ Lκ(Rd). Then V is
H0-form compact and

(5.19) N+(λ;H0,
√

V , 1) ≤ C5.19(d, l)
∫

V κ(x) dx, λ < 0.

Estimates of N+(λ;H0,
√

V , 1) for κ ≤ 1 can also be found in [5]; they are
slightly more involved than (5.19).

§6. Estimates for the SSF: applications

Below we apply the abstract results of §§2–4 to the differential operators H0

introduced in §5. In Subsection 6.1 we present conditions sufficient for (2.11), and
in Subsections 6.2, 6.3 we obtain estimates for N±. Estimates for the SSF arise as
direct combinations of the results of Subsections 6.1 and 6.2, 6.3; we do not record
these statements explicitly.

To treat the Schrödinger operator H0(g,A, U), we need only properties (5.1)
and (5.2). Therefore, keeping in mind that the Schrödinger operator is of primary
interest for the applications, we formulate the theorems for an arbitrary operator
H0 satisfying (5.1), (5.2).

6.1. Relationship between N± and the SSF.
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Theorem 6.1. (i) If H0 satisfies conditions (5.1) and (5.2), and the perturbation
potential V = V (x) ≥ 0 in Rd is (−�)-form compact and V ∈ L1(Rd), then
Condition 2.1 for the pair H0,

√
V is satisfied for a.e. λ ∈ R, and N±(λ;H0,

√
V ) ∈

L1,loc(R).
(ii) If H0 is the polyharmonic operator (5.15), and the perturbation potential

V = V (x) ≥ 0 in Rd is H0-form compact and V ∈ L1(Rd), then Condition 2.1 for
the pair H0,

√
V is satisfied for a.e. λ ∈ R, and N±(λ;H0,

√
V ) ∈ L1,loc(R).

Proof. We check the assumptions of Corollary 3.8 with K = H and G =
√

V .
(i) Condition (1.3) (i.e., the H0-form compactness) follows from Proposition 5.1.

Relation (3.13) is valid for any bounded interval δ ⊂ R by Proposition 5.2(i).
(ii) Relation (3.13) is valid for any bounded interval δ ⊂ R by Proposition

5.5(i). �
In connection with the assumptions of Theorem 6.1(i) we note that the relation

V ∈ L1(Rd) implies the (−�)-form compactness of V for d = 1, but, in general, it
does not imply even the (−�)-form boundedness of V for d ≥ 2.

Theorem 6.2. (i) Under the assumptions of Theorem 6.1(i), suppose that d ≤ 3.
Let H± = H±(H0,

√
V ). Then, for any λ0 < inf(σ(H±) ∪ σ(H0)) relation (2.10)

is fulfilled with k = 1; thus, the SSF for the pair H±, H0 is well defined. Identity
(2.11) is true for a.e. λ ∈ R.

(ii) Under the assumptions of Theorem 6.1(ii), suppose that κ < 2. Let H± =
H±(H0,

√
V ). Then for any λ0 < inf(σ(H±) ∪ σ(H0)) relation (2.10) is fulfilled

with k = 1; thus, the SSF for the pair H±, H0 is well defined. Identity (2.11) is
true for a.e. λ ∈ R.

Proof. It suffices to refer to Propositions 2.7 and 2.8(i) with K = H and G =
√

V .
The relation

√
V R0(−1) ∈ S2 is a consequence of Proposition 5.2(i) in case (i) and

of Proposition 5.5(i) in case (ii) (cf. [1, Theorem 2.11]). �
We have not succeeded in extending Theorem 6.2(i) to the case where d ≥ 4

and in extending Theorem 6.2(ii) to the case where κ ≥ 2. However, the quantities
N±(λ;H0,

√
V ) are well defined in these cases (see Theorem 6.1).

Theorem 6.3. (i) Under the assumptions of Theorem 6.1(i), suppose that V ∈
l1(Zd;L2(Qd)). Let H± = H±(H0,

√
V ). Then (2.10) is fulfilled for all integers

k > (d − 1)/2 and all λ0 < inf(σ(H0) ∪ σ(H±)) with sufficiently large absolute
value; thus, the SSF for the pair H0, H± is well defined. Identity (2.11) is true for
a.e. λ ∈ R.

(ii) Under the assumptions of Theorem 6.1(i), suppose that V ∈ l1(Zd;L2(Qd)).
Let H± = H±(H0,

√
V ). Then (2.10) is fulfilled for all integers k > κ−1/2 and all

λ0 < inf(σ(H0) ∪ σ(H±)) with sufficiently large absolute value; thus, the SSF for
the pair H0, H± is well defined. Identity (2.11) is true for a.e. λ ∈ R.

Proof. It suffices to refer to Propositions 2.7 and 2.8(ii) with K = H and G =
√

V .
Relation (2.9) follows from Proposition 5.2(i) in case (i) and from Proposition 5.5(i)
in case (ii). The relation

(
√

V R
1/2
0 (−1))∗(

√
V R

k+1/2
0 (−1)) = R

1/2
0 (−1)V R

k+1/2
0 (−1) ∈ S1(H)

is ensured by Proposition 5.2(ii) in case (i) and by Proposition 5.5(ii) in case (ii)
(cf. [1, Corollary 2.13]). �
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In connection with the assumptions of Theorem 6.3(i) we note that the relation
V ∈ l1(Zd;L2(Qd)) implies the (−�)-form compactness of V for d ≤ 4, but, in
general, it does not imply even the (−�)-form boundedness of V for d ≥ 5.

6.2. Estimates for N−.

Theorem 6.4. (i) Under the assumptions of Theorem 6.1(i), for any t > 0 we
have ∫ ∞

0

N−(λ;H0,
√

V )e−tλ dλ

≤ (2π)−dωd
d

2
M2β−d/2

∫ ∞

0

λd/2−1e−tλ dλ

∫
V (x) dx

= (2π)−dωd
d

2
M2β−d/2t−d/2Γ

(
d

2

) ∫
V (x) dx.

(6.1)

(ii) Under the assumptions of Theorem 6.1(ii), let f : (0,∞) → [0,∞) be a mono-
tone nonincreasing function. Then

(6.2)
∫ ∞

0

N−(λ;H0,
√

V )f(λ) dλ ≤ (2π)−dωdκ

∫ ∞

0

λκ−1f(λ) dλ

∫
V (x) dx.

Proof. (i) It suffices to apply Lemma 3.3 with K = H, G =
√

V , f(λ) = e−tλ (the
case of lower signs) and estimate the right-hand side of (3.4−) in accordance with
(5.6).

(ii) We apply Lemma 3.3 with K = H, G =
√

V and estimate the right-hand
side of (3.4−) in accordance with (5.16). �
Remark 6.5. 1) Let η = η(λ) be a function of the form (5.3). Under the assumptions
of Theorem 6.4(i), inequality (6.1) implies the estimate
(6.3)∫ ∞

0

N−(λ;H0,
√

V )η(λ) dλ ≤ (2π)−dωd
d

2
M2β−d/2

∫ ∞

0

λd/2−1η(λ) dλ

∫
V (x) dx.

2) Suppose that the perturbation potential V = V (x) ≥ 0 decays rapidly as
|x| → ∞. We recall the asymptotic formulas for the SSF as λ → ∞:

ξ(λ;H0(g,A, U) + V, H0(g,A, U)) ∼ (2π)−dωd
d

2
λd/2−1

∫
V (x)(det g(x))−1/2 dx,

(6.4)

ξ(λ; (−�)l + V, (−�)l) ∼ (2π)−dωdκλκ−1

∫
V (x) dx.(6.5)

Formally, these relations can be derived by computing the corresponding phase
space volume. Under certain conditions on g, A, U , V , formulas (6.4), (6.5) can
be justified either as pointwise asymptotics or in the sense of some averaging; we
do not dwell on this subject. It is clear that (6.4), (6.5) agree with (6.3), (6.2);
moreover, the constant in (6.2) is sharp, and in the case of the flat metric the
constant in (6.3) is also sharp.

6.3. Estimates for N+.
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Theorem 6.6. (i) Under the assumptions of Theorem 6.1(i), for any t > 0, Λ− <
0, and θ ∈ (0, 1) we have

∫ ∞

Λ−

(N+(λ;H0,
√

V ) − N+(Λ−;H0,
√

V , (1 − θ)−2))+e−tλ dλ

≤ (2π)−dωd
d

2
M2β−d/2θ−1−d/2e−(1−θ)Λ−tt−d/2Γ(d/2)

∫
V (x) dx.

(6.6)

(ii) Under the assumptions of Theorem 6.1(ii), let Λ− < 0, and let f : (Λ−,∞) →
[0,∞) be a monotone nonincreasing function. Then for any θ ∈ (0, 1) we have

∫ ∞

Λ−

(N+(λ;H0,
√

V ) − N+(Λ−;H0,
√

V , (1 − θ)−2))+f(λ) dλ

≤ (2π)−dωdκθ−1−κ

∫ ∞

(1−θ)Λ−

(λ − (1 − θ)Λ−)κ−1f(λ) dλ

∫
V (x) dx.

(6.7)

Proof. (i) It suffices to apply Lemma 4.3 with K = H, G =
√

V , θ1 = θ2 = θ,
f(λ) = e−tλ and to estimate the right-hand side of (4.8) in accordance with (5.6).

(ii) It suffices to apply Lemma 4.3 with K = H, G =
√

V , θ1 = θ2 = θ and to
estimate the right-hand side of (4.8) in accordance with (5.16). �

Remark 6.7. Let η = η(λ) be a function of the form (5.3) where the measure µ has
the property that the integral in (5.3) is convergent for any λ > Λ−; for example,
we can take η(λ) = (λ − λ0)−γ , λ0 < Λ−, γ > 0. Then, under the assumptions of
Theorem 6.6, inequality (6.6) implies the estimate

∫ ∞

Λ−

(N+(λ;H0,
√

V ) − N+(Λ−;H0,
√

V , (1 − θ)−2))+η(λ) dλ

≤ (2π)−dωd
d

2
M2β−d/2θ−1−d/2

∫ ∞

(1−θ)Λ−

(λ − (1 − θ)Λ−)d/2−1η(λ) dλ

∫
V (x) dx.

(6.8)

Corollary 6.8. (i) Under the assumptions of Theorem 6.1(i), let H0 =
H0(g,A, U), and let d ≥ 3. Then for any function η of the form (5.3) and any
θ ∈ (0, 1) we have

∫ ∞

0

N+(λ;H0,
√

V )η(λ) dλ

≤ C5.14(d)g−d/2
− (1 − θ)−d

∫ ∞

0

η(λ) dλ

∫
V d/2(x) dx

+ (2π)−dωd
d

2
M2β−d/2θ−1−d/2

∫ ∞

0

λ(d/2)−1η(λ) dλ

∫
V (x) dx.

(6.9)
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(ii) Under the assumptions of Theorem 6.1(ii), let κ > 1. Then for any θ ∈ (0, 1)
and any monotone nonincreasing function f : (0,∞) → [0,∞) we have

∫ ∞

0

N+(λ;H0,
√

V )f(λ) dλ

≤ C5.19(d, l)(1 − θ)−2κ

∫ ∞

0

f(λ) dλ

∫
V κ(x) dx

+ (2π)−dωdκθ−1−λ

∫ ∞

0

λκ−1f(λ) dλ

∫
V (x) dx.

(6.10)

Proof. It suffices to relax inequalities (6.7), (6.8) by transferring the terms that in-
volve N+ to the right-hand side, then applying estimates (5.14), (5.19), and putting
Λ− = 0. �
Theorem 6.9. (i) Under the assumptions of Theorem 6.1(i), for any Λ− < 0, any
p > max{1, κ}, and any θ ∈ (0, 1) we have

∫ ∞

0

(N+(λ;H0,
√

V ) − N+(Λ−;H0,
√

V , (1 + θ)−1))−(λ − Λ−)−p dλ

≤ (2π)−dωd
d

2
M2β−d/2θ−1|Λ−|κ−pB(d/2, p − d/2)

4p − 2
p − 1

∫
V (x) dx.

(6.11)

(ii) Under the assumptions of Theorem 6.1(ii), let Λ− < 0, and let f : (0,∞) →
[0,∞) be a monotone nonincreasing integrable function. Then for any θ ∈ (0, 1) we
have

∫ ∞

0

(N+(λ;H0,
√

V ) − N+(Λ−;H0,
√

V , (1 + θ)−1))−f(λ) dλ

≤ (2π)−dωdκθ−1

∫ ∞

0

(
4λκ−1 + 2

∫ λ

0

tκ−1

t − Λ−
dt

)
f(λ) dλ

∫
V (x) dx.

(6.12)

Proof. (i) It suffices to apply Lemma 4.4 with K = H, G =
√

V , θ1 = θ2 = θ/2,
f(λ) = (λ−Λ−)−p and to estimate the right-hand side of (4.10) in accordance with
(5.6).

(ii) We apply Lemma 4.4 with K = H, G =
√

V , θ1 = θ2 = θ/2 and estimate
the right-hand side of (4.10) in accordance with (5.16). �

Remark 6.10. For l ≤ 1, the semigroup e−t(−
)l

in L2(Rd) is positivity preserving.
Using this, we can apply the construction of §§5–6 to the differential operators H0

of order l < 1 that satisfy the condition

|e−tH0ψ| ≤ Me−tβ(−
)l |ψ|, ψ ∈ L2(Rd).

As a typical example we mention the pseudorelativistic magnetic Schrödinger op-
erator

(H0(1,A, 0) + I)1/2 + U(x);

see, e.g., [26].
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§7. Appendix. Remarks on the proof of Proposition 5.3

7.1. In [11], Proposition 5.3 was proved under the additional assumption U ∈
L∞(Rd). It is easy to carry the desired statement over to the general case. Indeed,
first we observe that

(7.1) g−h
(0)
1,A,U ≤ h

(0)
g,A,U ≤ g+h

(0)
1,A,U .

Under conditions (5.10), (5.11), the form h
(0)
1,A,U is closable, and its domain is given

by the expression on the right-hand side of (5.13); see [34]. Now, the first statement
of Proposition 5.3 follows from (7.1).

Next, the results of [11] imply that if conditions (5.9), (5.10) are fulfilled and

(7.2) Ũ ≥ 0, Ũ ∈ L∞(Rd),

then

(7.3) |e−tH0(g,A,Ũ)ψ| ≤ e−tH0(g,0,0)|ψ|, t > 0, ψ ∈ L2(Rd).

We put Un(x) = min{U(x), n}; arguing as in [34, Theorem 2.1], we can check that
H0(g,A, Un) → H0(g,A, U) in the strong resolvent sense. Then, writing (7.3) with
Ũ = Un and passing to the limit as n → ∞ over a subsequence that converges
almost everywhere in Rd, we get

(7.4) |e−tH0(g,A,U)ψ| ≤ e−tH0(g,0,0)|ψ|, t > 0, ψ ∈ L2(Rd)

(cf. the proof of Theorem 3.1 in [16]). It is well known (see, e.g., [10]), that the
semigroup e−tH0(g,0,0) is positivity preserving and that for some constants M > 0,
β > 0 we have

(7.5) e−tH0(g,0,0)|ψ| ≤ Me−tβ(−
)|ψ|, t > 0, ψ ∈ L2(Rd).

Combining (7.4) and (7.5), we arrive at (5.2).

7.2. In [11], the proof of (7.3) was based on a certain new domination criterion for
semigroups (see [24]). We are going to show that (7.3) can be proved by using the
“classical” semigroup theory technique: the Kato inequality [15], the domination
criterion [33, 13], and an approximation argument [16, 34].

Let g ∈ C1(Rd) be of the form (5.9), let A ∈ C1(Rd), and let Ũ be of the form
(7.2). Lemma A in [15] gives the pointwise estimate

Re(sgn uH0(g,A, Ũ)u) ≥ H0(g, 0, 0)|u|,
in the sense of distributions. Using the domination criterion [33, 13], from this
estimate we deduce (7.3) for the class of functions g, A, Ũ specified above. Now,
let g, A be of the form (5.9), (5.10). We take a sequence An ∈ C1(Rd) such
that An → A in L2,loc, and a sequence of matrix-valued functions gn(x) satisfying
g−1 ≤ gn(x) ≤ g+1 (with the same g−, g+ as in (5.9)) and such that gn → g
almost everywhere in Rd. Arguing as in the proof of [34, Theorem 4.1] (see also
[23, Proposition 2.5]), we check that H(gn,An, Ũ) → H(g,A, Ũ) in the strong
resolvent sense. Here the key point of the proof is the fact that if ϕ ∈ C∞

0 (Rd),
then gn(∇− iAn)ϕ → g(∇− iA)ϕ strongly in L2. Next, in the inequality

|e−tH0(gn,An,Ũ)ψ| ≤ e−tH0(gn,0,0)|ψ|
we pass to the limit as n → ∞ along a subsequence converging almost everywhere
in Rd. This yields (7.3).
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7.3. We note that in [11] the condition on the matrix g(x) was much weaker than
(5.9); this allowed the authors of [11] to cover the case where H0(g,A, U) is non-
selfadjoint. Of course, the alternative proof sketched above does not include this
case.
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