CCL Library
1.0
|
![]() ![]() | This structure describes a "LEARN_A_MODEL" (a learn alpha model). This structure constains the dimentionality of the defined problems and the model parameters. It should always initialised with ccl_learn_alpha_model_alloc, and destroyed with ccl_learn_alpha_model_free |
![]() ![]() | This structure describes learning a direct locally weighted linear policy model parameters LEARN_MODEL_LW_PI |
![]() ![]() | This structure describes workspace for directly learning the policy model parameters using locally weighted linear regression |
![]() ![]() | This structure describes learning a direct linear policy model parameters LEARN_MODEL_PI |
![]() ![]() | This structure describes workspace for directly learning the policy model parameters using linear regression |
![]() ![]() | This structure describes workspace for directly learning the model parameters using linear regression |
![]() ![]() | This structure describes a "LEARN_NCL_MODEL" (a learn ncl model). This structure constains the dimentionality of the defined problems and the model parameters. It should always initialised with ccl_learn_ncl_model_alloc, and destroyed with ccl_learn_ncl_model_free |
![]() ![]() | This structure describes the workspace memory of calculating matrix pseudo inverse MP_INV_WS |
![]() ![]() | This structure defines the model parameters for NHAT_Model |
![]() ![]() | This structure defines the model parameters for NHAT_result |
![]() ![]() | This structure defines the searching parameters for NHAT_search |
![]() ![]() | This structure defines the workspace variables for calculating objective functions |
![]() ![]() | This structure defines the OPTION for the optimizer |
![]() ![]() | This structure defines the workspace variables for solving the non-linear LM optimization |
![]() ![]() | This structure defines the workspace variables for solving the non-linear LM optimization |