CCL Library
1.0
|
This structure describes workspace for directly learning the model parameters using linear regression. More...
#include <ccl_learn_ncl.h>
Data Fields | |
gsl_matrix * | HS |
Regularization basis for the H matrix. | |
gsl_matrix * | g |
Dot product of BX and U. | |
gsl_matrix * | Y_T |
Transpose of Y_. | |
gsl_matrix * | Y_ |
Output variable. | |
gsl_matrix * | H |
Dot product of BX and BX'. | |
gsl_matrix * | BX_T |
Transpose of BX_. | |
gsl_matrix * | BX_ |
High dimensionality of the input data. | |
gsl_matrix * | w_ |
Model parameters. | |
gsl_matrix * | pinvH1 |
Peuso inverse of H1. | |
gsl_vector * | V |
Eigen vector of H. | |
gsl_matrix * | D |
Diagobal matrix with eigen values of H. | |
int * | idx |
index | |
This structure describes workspace for directly learning the model parameters using linear regression.
This structure defines the worspace variables and initialises with their dimensionalities. It should always initialised with ccl_learn_ncl_model_alloc, and destroyed with ccl_learn_ncl_model_free.