CCL Library  1.0
Data Fields
LEARN_MODEL_LW_PI_WS Struct Reference

This structure describes workspace for directly learning the policy model parameters using locally weighted linear regression. More...

#include <ccl_learn_policy.h>

Data Fields

gsl_vector * g
 Col vector of YPhit.
 
gsl_matrix * Y_N
 Normalised Y.
 
gsl_vector * YN_vec
 Vector view of Y_N.
 
gsl_matrix * Y_Phit
 Dot product of Y * WPhi'.
 
gsl_matrix * ones
 Matrix of all ones.
 
gsl_matrix * Y_
 Output variable.
 
gsl_matrix * H
 Accumulated Hessian.
 
gsl_matrix * Phi
 Feature matrix.
 
gsl_vector * Phi_vec
 Feature vector.
 
gsl_matrix * Phi_vec_T
 Transpose of Feature vector.
 
gsl_matrix * YN_Phit
 Dot prodcut of YN * Phit.
 
gsl_vector * YN_Phi_vec
 Vector view of YN_Phit.
 
gsl_matrix * YN_Phi_vec_T
 Transpose of YN_Phi_vec.
 
gsl_matrix * vv
 Dot product of v * v.
 
gsl_matrix * WX_
 Dot product of W * X_.
 
gsl_vector * WX_row
 Row vector of WX_.
 
gsl_matrix * WPhi
 Dot product of W * Phi.
 
gsl_matrix * WPhi_T
 Transpose of WPhi.
 
gsl_matrix * pinvH1
 Peudo inverse of H1.
 
gsl_vector * V
 Eigen vector of H.
 
gsl_vector * r
 Normalisation scaler for YN.
 
gsl_matrix * r_rep
 Replication matrix of r.
 
gsl_matrix * D
 Eigen values of H.
 
int * idx
 Index.
 
gsl_vector * w_vec
 Vector view of model parameter w for each center.
 
gsl_matrix * w_
 Model parameter w for each center.
 
gsl_matrix * w_T
 Transpose of model parameter w for each center.
 
gsl_matrix * w [NUM_CENTRES]
 Model parameter w for all centers.
 

Detailed Description

This structure describes workspace for directly learning the policy model parameters using locally weighted linear regression.

This structure defines the worspace variables and initialises with their dimensionalities. It should always initialised with ccl_learn_model_lw_pi_ws_alloc, and destroyed with ccl_learn_model_lw_pi_ws_free.


The documentation for this struct was generated from the following file: