CCL Library
1.0
|
This structure describes workspace for directly learning the policy model parameters using locally weighted linear regression. More...
#include <ccl_learn_policy.h>
Data Fields | |
gsl_vector * | g |
Col vector of YPhit. | |
gsl_matrix * | Y_N |
Normalised Y. | |
gsl_vector * | YN_vec |
Vector view of Y_N. | |
gsl_matrix * | Y_Phit |
Dot product of Y * WPhi'. | |
gsl_matrix * | ones |
Matrix of all ones. | |
gsl_matrix * | Y_ |
Output variable. | |
gsl_matrix * | H |
Accumulated Hessian. | |
gsl_matrix * | Phi |
Feature matrix. | |
gsl_vector * | Phi_vec |
Feature vector. | |
gsl_matrix * | Phi_vec_T |
Transpose of Feature vector. | |
gsl_matrix * | YN_Phit |
Dot prodcut of YN * Phit. | |
gsl_vector * | YN_Phi_vec |
Vector view of YN_Phit. | |
gsl_matrix * | YN_Phi_vec_T |
Transpose of YN_Phi_vec. | |
gsl_matrix * | vv |
Dot product of v * v. | |
gsl_matrix * | WX_ |
Dot product of W * X_. | |
gsl_vector * | WX_row |
Row vector of WX_. | |
gsl_matrix * | WPhi |
Dot product of W * Phi. | |
gsl_matrix * | WPhi_T |
Transpose of WPhi. | |
gsl_matrix * | pinvH1 |
Peudo inverse of H1. | |
gsl_vector * | V |
Eigen vector of H. | |
gsl_vector * | r |
Normalisation scaler for YN. | |
gsl_matrix * | r_rep |
Replication matrix of r. | |
gsl_matrix * | D |
Eigen values of H. | |
int * | idx |
Index. | |
gsl_vector * | w_vec |
Vector view of model parameter w for each center. | |
gsl_matrix * | w_ |
Model parameter w for each center. | |
gsl_matrix * | w_T |
Transpose of model parameter w for each center. | |
gsl_matrix * | w [NUM_CENTRES] |
Model parameter w for all centers. | |
This structure describes workspace for directly learning the policy model parameters using locally weighted linear regression.
This structure defines the worspace variables and initialises with their dimensionalities. It should always initialised with ccl_learn_model_lw_pi_ws_alloc, and destroyed with ccl_learn_model_lw_pi_ws_free.