[fun] = ccl_obj_AUn (model, W, BX, RnUn) Objective funtion: minimise (A * Un)^2 Input: model Model related parameteres W Weights of parametric model BX Higher dimensional representation of X using gaussian kernel RnUn RnUn=Rn*Un Output: fun Returned objective function handle
0001 function [fun] = ccl_obj_AUn (model, W, BX, RnUn) 0002 % [fun] = ccl_obj_AUn (model, W, BX, RnUn) 0003 % Objective funtion: minimise (A * Un)^2 0004 % 0005 % Input: 0006 % model Model related parameteres 0007 % W Weights of parametric model 0008 % BX Higher dimensional representation of X using gaussian kernel 0009 % RnUn RnUn=Rn*Un 0010 % Output: 0011 % fun Returned objective function handle 0012 0013 dim_n = size(BX,2) ; 0014 W = reshape(W, model.dim_u-model.dim_k, model.dim_b ); 0015 fun = zeros(dim_n, 1) ; 0016 theta = [pi/2*ones(dim_n, (model.dim_k-1)), (W * BX)' ] ; 0017 alpha = ccl_math_uvec(theta) ; 0018 for n = 1 : dim_n 0019 fun(n) = alpha(n,:) * RnUn(:,n) ; 0020 end 0021 end