Found 1 result(s)
colloquium Chandrashekhar Khare (UCLA)
at: 15:00 - 16:00 KCL, Strand room: K6.29 abstract: | The Shimura-Taniyama-Weil modularity conjecture asserts that all elliptic curves over Q arise as images of quotients of the Poincare upper half plane by congruence subgroups of the modular group SL2(Z). Wiles proved Fermat's Last Theorem by establishing the modularity of semistable elliptic curves over Q. Subsequent work of Breuil-Conrad-Diamond-Taylor established the modularity of elliptic curves over Q in full generality. My work with J-P. Wintenberger gave a proof of the generalized Shimura-Taniyama-Weil conjecture which asserts that all "odd, rank 2 motives over Q" are modular. This is a corollary of our proof of Serre's modularity conjecture.
|