regular seminar Giuseppe Cannizarro (University of Warwick)
at: 15:00 - 16:00 KCL, Strand room: S4.29 abstract: | The study of stochastic PDEs has known tremendous advances in recent years and, thanks to Hairer's theory of regularity structures and Gubinelli and Perkowski's paracontrolled approach, (local) existence and uniqueness of solutions of subcritical SPDEs is by now well-understood. The goal of this talk is to move beyond the aforementioned theories and present novel tools to derive the scaling limit (in the so-called weak coupling scaling) for some stationary SPDEs at the critical dimension. Our techniques are inspired by the resolvent method developed by Landim, Olla, Yau, Varadhan, and many others, in the context of particle systems in the supercritical dimension. Time allowing, we will explain how it is possible to use our techniques to study a much wider class of statistical mechanics models at criticality such as (self-)interacting diffusions in random environment. Keywords: SPDEs, Regularity structures, resolvent method, statistical mechanics |