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Abstract. The main aim of the paper is to present a general version
of the Fourier Tauberian theorem for monotone functions. This result,
together with Berezin’s inequality, allows us to obtain a refined version the
Li–Yau estimate for the counting function of the Dirichlet Laplacian which
implies the Li–Yau estimate itself and, at the same time, the asymptotic
results obtained by the variational method.

Introduction

Let F be a non-decreasing function, ρ be an appropriate test function on
the real line R and ρ ∗F be the convolution. Then, under certain conditions
on the derivative ρ ∗ F ′ , one can estimate the difference F − ρ ∗ F . Results
of this type are called Fourier Tauberian theorems.

The Fourier Tauberian theorems have been used by many authors for the
study of spectral asymptotics of elliptic differential operators, with F being
either the counting function or the spectral function (see, for example, [L],
[H1], [H2], [DG], [I1], [I2], [S], [SV]). The required estimate for F −ρ∗F was
obtained under the assumption that the derivative ρ∗F ′ admits a sufficiently
good estimate.

In applications F often depends on additional parameters and we are in-
terested in uniform estimates. Then we have to assume that the estimate for
ρ ∗F ′ holds uniformly with respect to these parameters and to take this into
account when estimating F − ρ ∗ F . As a result, there have been produced
a number of Fourier Tauberian theorems designed for the study of various
parameter dependent problems. This has been done, in particular, for semi-
classical asymptotics (see, for example, [PP]). Note that all the authors used
the same idea of proof which goes back to the papers [L] and [H1].

The main aim of this paper is to present a general version of Fourier Taube-
rian theorem which does not require any a priori estimates of (or growth
conditions on) ρ ∗ F ′ and holds true even if F is not polynomially bounded.
Our estimates contain only convolutions of F and test functions (see Section
1). This enables one to obtain results which are uniform with respect to any
parameters involved.
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Our proof is very different from the usual one. It leads to more general
results and, at the same time, allows one to evaluate constants appearing in
the estimates (Section 2). Therefore our Tauberian theorems can be used not
only for the study of asymptotics but also for obtaining explicit estimates of
the spectral and counting functions.

In particular, in Section 3, applying our Tauberian theorems and Berezin’s
inequality, we prove a refined version of the Li–Yau estimate for the counting
function of the Dirichlet Laplacian in an arbitrary domain of finite volume.
Our inequality implies the Li–Yau estimate itself and, along with that, the re-
sults on the asymptotic behaviour of the counting function which are obtained
by the variational method. Note that the proof of the Berezin inequality does
not use variational techniques. This implies that, even in the non-smooth
case, the classical asymptotic formulae can be proved without referring to
the Whitney decompositions and Dirichlet–Neumann bracketing.

Throughout the paper χ+, χ− denote the characteristic functions of the

positive and negative semi-axes, f̂(t) := (2π)−1/2
∫

e−itτf(τ) dτ is the Fourier

transform of f , and 〈τ〉 :=
√

1 + τ 2 .

1. Tauberian theorems I: basic estimates

Let F be a non-decreasing function on R. For the sake of definiteness, we
shall always be assuming that

(1.1) F (τ) =
1

2
[F (τ + 0) + F (τ − 0)] , ∀τ ∈ R .

1.1. Auxiliary functions. If ρ is a continuous function on R, let us intro-
duce the following conditions:

(1m) |ρ(τ)| ≤ const 〈τ〉−2m−2 , where m > −1
2
;

(2) cρ,0 :=
∫

ρ(τ) dτ = 1 ;
(3) ρ is even;
(4) ρ ≥ 0 ;
(5) supp ρ̂ ⊂ [−1, 1] .

For every m the functions ρ satisfying (1m)–(5) do exist (see, for example,
[H2], Section 17.5, or Example 1.1 below). However, we will not be always
assuming that ρ satisfies all these five conditions.

Example 1.1. Let l be a positive integer and

(1.2) γ(τ) :=
∫ π

2

−π
2
( τ

2l
+ s)−2l sin2l( τ

2l
+ s) ds .

The function γ satisfies (3), (5), and

(1.3) c−γ 〈τ〉−2l ≤ γ(τ) ≤ c+
γ 〈τ〉−2l

with some positive constants c±γ . Indeed, (3) and (1.3) are obvious, and (5)

follows from the fact that −2(2π)−1/2τ−1 sin τ is the Fourier transform of the
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characteristic function of the interval [−1, 1]. If ρ(τ) := c−1
γ,0γ(τ) then the

conditions (2)–(5) are fulfilled and (1m) holds with m = l − 1.

We shall always be assuming (1m). Let

ρ1,1(τ) :=


∫∞

τ
ρ(µ) dµ, τ > 0,

0, τ = 0,

−
∫ τ

−∞ ρ(µ) dµ, τ < 0,

and, if (1m) holds with m > 0,

ρ1,0(τ) :=

∫ ∞

τ

µ ρ(µ) dµ , ρ1,2(τ) :=

{∫∞
τ

∫∞
µ

ρ(λ) dλ dµ, τ ≥ 0,∫ τ

−∞

∫ µ

−∞ ρ(λ) dλ dµ, τ ≤ 0.

One can easily see that

ρ1,0(τ) ≤ const 〈τ〉−2m, ρ1,1(τ) ≤ const 〈τ〉−2m−1, ρ1,2(τ) ≤ const 〈τ〉−2m

for all τ ≥ 0. Integrating by parts, we obtain

(1.4) ρ1,0(τ) = −
∫ ∞

τ

µ ρ′1,1(µ) dµ = ρ1,2(τ) + τ ρ1,1(τ) , ∀τ ≥ 0 .

Denote

cρ,κ :=

∫
|µ|κ ρ(µ) dµ , ∀κ ∈ (−1, 2m + 1) .

Under condition (2), by Jensen’s inequality, we have

(1.5) cκ
ρ,r ≤ cr

ρ,κ , ∀κ ≥ r ≥ 0 .

If the condition (3) is fulfilled then ρ1,0 and ρ1,2 are even continuous
functions, ρ1,1 is an odd function continuous outside the origin and

(1.6) ρ1,1(±0) = ± 1
2
cρ,0 , ρ1,0(0) = ρ1,2(0) = 1

2
cρ,1 .

Indeed, the first two equalities in (1.6) are obvious, and the last follows from
(1.4).

The condition (4) and (1.4) imply that

(1.7)
0 ≤ ρ1,2(τ) ≤ ρ1,0(τ) , ∀τ ≥ 0 ,
0 ≤ ρ1,k(µ) ≤ ρ1,k(τ) , k = 0, 1, 2, ∀µ ≥ τ ≥ 0 .

Let

(1.8) ρδ(τ) := δρ(δτ) , ρδ,k(τ) := δ1−k ρ1,k(δτ) , k = 0, 1, 2,

where δ is an arbitrary positive number. If (5) is fulfilled then

(1.9) supp ρ̂δ,0 ⊂ supp ρ̂δ ⊂ [−δ, δ] .

Indeed, these inclusions follow from (1.8) and the fact that ρ1,0 is the convo-
lution of the functions µ ρ(µ) and χ−(µ).
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1.2. Main estimates. If f is a piecewise continuous function on R1, we
denote

f ∗ F (τ) := lim
R→∞

∫ R

−R

f(τ − µ) F (µ) dµ ,

f ∗ F ′(τ) := lim
R→∞

∫
(−R,R)

f(τ − µ) dF (µ) ,

whenever the limits exist. We shall deduce the estimates for F (τ) from the
following simple lemma.

Lemma 1.2. Let ρ satisfy the conditions (1m)–(3) and ρT,1(τ − s) F (s) → 0
as s → ±∞ for some T > 0 and τ ∈ R . Then ρT,1 ∗ F ′(τ) is well defined
if and only if ρT ∗ F (τ) is well defined, and

(1.10) F (τ)− ρT ∗ F (τ) = ρT,1 ∗ F ′(τ) .

Proof. Integrating by parts, we obtain∫
(−R,R)

ρT,1(τ−µ) dF (µ) =

∫
(−R,τ)

ρT,1(τ−µ) dF (µ)+

∫
(τ,R)

ρT,1(τ−µ) dF (µ)

= −
∫ R

−R

ρT (τ − µ) F (µ) dµ + ρT,1(+0) F (τ − 0)− ρT,1(−0) F (τ + 0)

− ρT,1(τ + R) F (−R + 0) + ρT,1(τ −R) F (R− 0) .

In view of (1.1), (1.6) and (2), we have

ρT,1(+0) F (τ − 0)− ρT,1(−0) F (τ + 0) = F (τ) .

Now the lemma is proved by passing to the limit as R →∞. �

Theorem 1.3. Let ρ satisfy the conditions (1m)–(4) with m > 0 . Assume
that ρδ,0(τ − s) F (s) → 0 as s → ±∞ and ρδ,0 ∗F ′(τ) < ∞ for some δ > 0
and τ ∈ R . Then ρT ∗ F (τ) < ∞ and

(1.11) |F (τ)− ρT ∗ F (τ)| ≤ c−1
ρ,1 δ−1 ρδ,0 ∗ F ′(τ)

for all T ≥ δ.

Proof. The identity (1.4) and (4) imply that

d

dτ

(
ρ1,1(τ)

ρ1,0(τ)

)
=

ρ(τ) (τ ρ1,1(τ)− ρ1,0(τ))

(ρ1,0(τ))2 ≤ 0 , ∀τ > 0 .

Therefore, in view of (2) and (1.6),

|ρ1,1(τ)|
ρ1,0(τ)

≤ |ρ1,1(+0)|
ρ1,0(0)

= c−1
ρ,1 , ∀τ > 0 .

Taking into account (3), (1.8) and the second inequality (1.7), we obtain

(1.12) |ρT,1(τ)| ≤ ρT,0(τ)

cρ,1 T
≤ ρδ,0(τ)

cρ,1 δ
, ∀T ≥ δ > 0, ∀τ ∈ R .
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The inequality (1.12) implies that ρ and F satisfy the conditions of Lemma
1.2 and that ρT ∗ F (τ) < ∞ . Obviously, (1.11) follows from (1.10) and
(1.12). �

Remark 1.4. If T = δ then the estimate (1.11) can be rewritten in the form

(1.13) ρ+
δ ∗ F (τ) ≤ F (τ) ≤ ρ−δ ∗ F (τ) ,

where ρ±δ (τ) := ρδ(τ)± c−1
ρ,1 δτ ρδ(τ) .

Remark 1.5. The inequality (1.11) is not precise in the sense that, apart
from some degenerate situations, it never turns into an equality. The crucial
point in our proof is the estimate |ρT,1| ≤ c−1

ρ,1 δ−1 ρδ,0 which implies that

|ρT,1 ∗ F ′| ≤ c−1
ρ,1 δ−1 ρδ,0 ∗ F ′(τ) . However, the function ρT,1 is negative on

one half-line and positive on another, so |ρT,1 ∗ F ′| may well admit much a
better estimate. Using this observation, one can try to improve our results
under additional conditions on the function F .

Theorem 1.6. Let [a, b] be a bounded interval. Assume that the conditions of
Theorem 1.3 are fulfilled for every τ ∈ [a, b] and that ρδ,0∗F ′(τ) is uniformly
bounded on [a, b] . Then

−T−1δ−1 f(b) ρδ,0 ∗ F ′(b)

≤
∫ b

a

f(τ) [F (τ)− ρT ∗ F (τ)] dτ(1.14)

≤ T−1δ−1 f(a) ρδ,0 ∗ F ′(a) + T−1δ−1

∫ b

a

f ′(τ) ρδ,0 ∗ F ′(τ) dτ

for every non-negative non-decreasing function f ∈ C1[a, b] and all T ≥ δ.

Proof. In view of (1.7) and (1.8) we have

(1.15) TρT,2(τ) ≤ T−1ρT,0(τ) ≤ δ−1ρδ,0(τ) , ∀T ≥ δ > 0 , ∀τ ∈ R .

This estimates, (1.12) and Lemma 1.2 imply that the functions ρT,2 ∗ F ′(τ) ,
|ρT,1| ∗F ′(τ) and ρT ∗F (τ) are uniformly bounded on [a, b] . Since ρ′T,2(s) =
−ρT,1(s) whenever s 6= 0 , integrating by parts with respect to τ we obtain∫ b

a

f(τ)

∫
ρT,1(τ − µ) dF (µ) dτ = f(a)

∫
ρT,2(a− µ) dF (µ)

− f(b)

∫
ρT,2(b− µ) dF (µ) +

∫ b

a

f ′(τ)

(∫
ρT,2(τ − µ) dF (µ)

)
dτ .

Now (1.14) follows from Lemma 1.2 and (1.15). �

If f ≡ 1 then (1.14) turns into

(1.16) − ρδ,0 ∗ F ′(b) ≤ Tδ

∫ b

a

[F (µ)− ρT ∗ F (µ)] dµ ≤ ρδ,0 ∗ F ′(a) .
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This estimate and the obvious inequalities

(1.17) ε−1

∫ τ

τ−ε

F (µ) dµ ≤ F (τ) ≤ ε−1

∫ τ+ε

τ

F (µ) dµ , ∀ε > 0 ,

imply the following corollary.

Corollary 1.7. Under conditions of Theorem 1.6

F (b) ≥ ε−1

∫ b

b−ε

ρT ∗ F (µ) dµ− ε−1T−1δ−1 ρδ,0 ∗ F ′(b) ,(1.18)

F (a) ≤ ε−1

∫ a+ε

a

ρT ∗ F (µ) dµ + ε−1T−1δ−1 ρδ,0 ∗ F ′(a)(1.19)

for all ε ∈ (0, b− a] and T ≥ δ .

If (4) is fulfilled then ρT ∗F is a non-decreasing function. Therefore (1.18)
and (1.19) imply that

F (b) ≥ ρT ∗ F (b− ε)− ε−1T−1δ−1 ρδ,0 ∗ F ′(b) ,(1.20)

F (a) ≤ ρT ∗ F (a + ε) + ε−1T−1δ−1 ρδ,0 ∗ F ′(a) .(1.21)

Remark 1.8. It is clear from the proof that Theorems 1.3 and 1.6 remain valid
(with some other constants independent of δ and T ) if we drop the condition
(4) and replace ρδ,0(τ) with an arbitrary non-negative function γδ such that
|ρT,1(τ)| ≤ const δ−1γδ(τ) and |ρT,2(τ)| ≤ const T−1δ−1γδ(τ) . In particular,
one can take γδ(τ) = δγ(δτ), where γ is the function defined by (1.3) with
l = m .

2. Tauberian theorems II: remarks and examples

2.1. General remarks. From now on we shall be assuming that the function
F is polynomially bounded. Then the conditions of Theorems 1.3 and 1.6 are
fulfilled for all τ, a, b ∈ R1 and T ≥ δ > 0 whenever ρ satisfies (1m) with a
sufficiently large m.

So far we have not used the condition (5), which is not needed to prove the
estimates. However, this condition often appears in applications. It implies
that the convolutions ρT ∗ F and ρT,0 ∗ F ′ are determined by the restrictions

of F̂ to the interval (−T, T ). If

(2.1) F̂0(t)
∣∣∣
(−T,T )

= F̂ (t)
∣∣∣
(−T,T )

then, under condition (5), ρT ∗ F = ρT ∗ F0 and ρδ,0 ∗ F ′ = ρδ,0 ∗ F ′
0 for all

δ ≤ T . If F0(τ) behaves like a linear combination of homogeneous functions
for large τ then ρδ,0 ∗ F ′

0 is of lower order than ρT ∗ F0, so it plays the role of
an error term in asymptotic formulae.

It is not always possible to find a model function F0 satisfying (2.1).
However, one can often construct F̃0 in such a way that the convolutions
ρT ∗ (F − F̃0)(τ) and ρδ,0 ∗ (F ′ − F̃ ′

0)(τ) admit good estimates for large τ
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(roughly speaking, it happens if the Fourier transforms of F and F̃0 have
similar singularities on the corresponding interval). Then the Tauberian the-
orems imply estimates with the error term

±
(
|ρT ∗ (F − F̃0)(τ)|+ |ρδ,0 ∗ (F ′ − F̃ ′

0)(τ)|
)

.

In particular, if F is the spectral or counting function of an elliptic partial dif-
ferential operator with smooth coefficients then (1.11) gives a precise reminder
estimate in the Weyl asymptotic formula, and the refined estimates (1.20),
(1.21) allow one to obtain the second asymptotic term by letting T →∞ (see
[SV] for details).

In applications to the second order differential operators it is usually more
convenient to deal with the cosine Fourier transform of F ′. The following
elementary observation enables one to apply our results in the case where
information on the sine Fourier transform of F ′ is not available.

Proposition 2.1. If the cosine Fourier transforms of the derivatives F ′ and
F ′

0 coincide on an interval (−δ, δ) then the Fourier transforms of the functions
F (τ)− F (−τ) and F0(τ)− F0(−τ) coincide on the same interval.

2.2. Test functions ρ. In this subsection we consider a class of functions ρ
satisfying (1m)–(5) and estimate the constants cρ,κ.

Lemma 2.2. Let ζ ∈ Cm+1[−1
2
, 1

2
] be a real-valued even function such that

‖ζ‖L2 = 1 and ζ(k)(±1
2
) = 0 for k = 0, 1, . . . m − 1 , where ζ(k) denotes the

kth derivative. If we extend ζ to R by zero then ρ := (ζ̂)2 satisfies (1m)–(5)
and

(2.2) cρ,2k = ‖ζ(k)‖2
L2

, k = 0, 1, . . . ,m .

Proof. The conditions (3) and (4) are obviously fulfilled; (2), (5) and (2.2)
follow from the fact that ρ̂ = (2π)−1/2 ζ ∗ ζ . Finally, (1m) holds true because
the (m + 1)th derivative of the extended function ζ coincides with a linear
combination of an L1-function and two δ-functions. �

The following lemma is a consequence of the uncertainty principle.

Lemma 2.3. If ρ is defined as in Lemma 2.2 then

(2.3) cρ,1 ≥ π
2
.

Proof. Let Πa be the multiplication operator and Π̂a be the Fourier multiplier
generated by the characteristic function of the interval [−a, a]. Then the

Hilbert-Schmidt norm of the operator Π̂a1Πa2 acting in L2(R) is equal to√
2π−1a1a2 . Therefore

2

∫ µ

0

ζ̂2(τ) dτ = ‖Π̂µΠ1/2ζ‖2
L2

≤ π−1µ ‖ζ‖2
L2

= π−1µ ,
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which implies that

cρ,1 = 2

∫ ∞

0

µ ζ̂2(µ) dµ = 2

∫ ∞

0

∫ ∞

µ

ζ̂2(τ) dτ dµ

≥ 2

∫ π

0

∫ ∞

µ

ζ̂2(τ) dτ dµ ≥
∫ π

0

(1− π−1µ) dµ =
π

2
.

�

Remark 2.4. As follows from Nazarov’s theorem (see [Na] or [HJ]),∫∞
µ

φ̂2(τ) dτ ≥ b1e
−b2µ , ∀φ ∈ C∞

0 (−1
2
, 1

2
) , ∀µ ≥ 0 ,

where b1, b2 > 0 are some absolute constants. Using the estimates for b1, b2

obtained in [Na], one can slightly improve the estimate (2.3).

Example 2.5. Let ν̃m be the first eigenvalue of the operator
d2m

dt2m
on the

interval (−1
2
, 1

2
) subject to Dirichlet boundary condition, and let ζm be the

corresponding real even normalized eigenfunction. Denote νm := (ν̃m)
1

2m . If
we define ρ as in Lemma 2.2 then, in view of (2.2) and (1.5),

(2.4) cρ,2m = ν2m
m , cρ,κ ≤ νκ

m , ∀κ < 2m .

The eigenvalues ν̃m = ν2m
m grow very fast as m →∞. The following lemma

gives a rough estimate for νm.

Lemma 2.6. We have νm ≤ 2m 2m
√

3 for all m ≥ 2.

Proof. If φ(t) =
(

1
4
− t2

)m
and ‖ · ‖L2 is the norm in L2

(
−1

2
, 1

2

)
then

(2.5) ν̃m ≤
‖φ(m)‖2

L2

‖φ‖2
L2

=
(4m + 1)! (m!)2

(2m + 1)! (2m)!
≤ 22m+1 (2m)! .

One can easily see that

22m (2m)!

(2m)2m
=

2 (m2 − 1) . . . (m2 − (m− 1)2)

m2m−2
≤ 2 (m2 − (m− 1)2)

m2
≤ 3

2
.

Therefore (2.5) implies the required estimate. �

2.3. Power like singularities. Assume that |F (τ)| ≤ const (|τ |+ 1)n with
a non-negative integer n and define

σn :=

{
0 , if n is odd,

1 , if n is even,
mn :=

{
n+1

2
, if n is odd,

n+2
2

, if n is even,

P+
n (τ, µ) :=

(τ + µ)n + (τ − µ)n

2
, P−

n (τ, µ) :=
µ (τ + µ)n − µ (τ − µ)n

2
.

Clearly, P±
n are homogeneous polynomials in (τ, µ) with positive coefficients,

which contain only even powers of µ.
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Lemma 2.7. Let ρ be a function satisfying (3), (5) and (1m) with m > n
2
. If

supp F ⊂ (0, +∞) and the cosine Fourier transform of F ′(τ) coincides on
the interval (−δ, δ) with the cosine Fourier transform of the function nτn−1

+

then

ρδ ∗ F (τ) ≥
∫ [

P+
n (τ, δ−1µ)− σn δ−n|µ|n

]
ρ(µ) dµ ,(2.6)

ρδ ∗ F (τ) ≤
∫

P+
n (τ, δ−1µ) ρ(µ) dµ ,(2.7)

ρδ,0 ∗ F ′(τ) ≤ δ2

∫ [
P−

n (τ, δ−1µ) + σn δ−n−1|µ|n+1
]
ρ(µ) dµ(2.8)

for all τ > 0.

Proof. According to Proposition 2.1, the Fourier transform of F (τ)− F (−τ)
coincides on the interval (−δ, δ) with the Fourier transform of

sign τ |τ |n = (1− 2σn χ−(τ)) τn .

Since ρ is even, this implies that

ρδ ∗ F (τ) = δ

∫
(1− 2σn χ−(τ − µ)) (τ − µ)n ρ(δµ) dµ

=

∫
P+

n (τ, δ−1µ) ρ(µ) dµ − 2σn

∫ ∞

δτ

(δ−1µ− τ)n ρ(µ) dµ ,

ρδ,0 ∗ F ′(τ) = ρ′δ,0 ∗ F (τ) = − δ3

∫
(1− 2σn χ−(τ − µ)) (τ − µ)n µ ρ(δµ) dµ

= δ2

∫
P−

n (τ, δ−1µ) ρ(µ) dµ + 2σn δ

∫ ∞

δτ

(δ−1µ− τ)n µ ρ(µ) dµ

for all τ > 0. Estimating 0 ≤ (δ−1µ− τ) ≤ δ−1µ in the integrals on the right
hand sides, we arrive at (2.6)–(2.8). �

The obvious inequalities

τn + σn |ν|n ≤ P+
n (τ, ν) ≤ τn + n |ν| (τ + |ν|)n−1 ,

P−
n (τ, ν) + σn |ν|n+1 ≤ n ν2 (τ + |ν|)n−1

and (2.6)–(2.8) imply that, for all τ > 0,

0 ≤ ρδ ∗ F (τ)− τn ≤ n δ−1

∫
|µ| (τ + δ−1|µ|)n−1 ρ(µ) dµ ,(2.9)

ρδ,0 ∗ F ′(τ) ≤ n

∫
µ2 (τ + δ−1|µ|)n−1 ρ(µ) dµ .(2.10)

Note that mn is the minimal positive integer which is greater than n
2
. If ρ

is defined as in Lemma 2.2 with m = mn then, by (2.2),

(2.11)

∫
P±

n (τ, δ−1µ) ρ(µ) dµ =
(
P±

n (τ, δ−1Dt)ζ, ζ
)

L2
.
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Applying (2.6)–(2.11) and (1.11) or (1.18), (1.19), one can obtain various
estimates for F (τ).

Example 2.8. Let n = 3 and ζ be an arbitrary function satisfying conditions
of Lemma 2.2 with m = mn = 2. If the conditions of Lemma 2.7 are fulfilled
then (2.6)–(2.8), (2.11) and (1.19), (1.20) with T = δ imply that

F (τ) ≥ τ 3 − 3ετ 2

2
+ ε2τ − ε3

4
+

3

2δ2

(
τ − τ 2

ε
− ε

2

)
‖ζ ′‖2

L2
− 1

εδ4
‖ζ ′′‖2

L2
,

F (τ) ≤ τ 3 +
3ετ 2

2
+ ε2τ +

ε3

4
+

3

2δ2

(
τ +

τ 2

ε
+

ε

2

)
‖ζ ′‖2

L2
+

1

εδ4
‖ζ ′′‖2

L2

for all ε > 0 and τ > 0. Thus, F (τ) lies between the first Dirichlet eigenvalues
of ordinary differential operators generated by the quadratic forms on the
right hand sides of the above inequalities.

Corollary 2.9. Under conditions of Lemma 2.7

F (τ) ≥ τn − 2π−1ν2
mn

n δ−1(τ + δ−1νmn)n−1,(2.12)

F (τ) ≤ τn + (2π−1ν2
mn

+ νmn) n δ−1 (τ + δ−1νmn)n−1(2.13)

for all τ > 0.

Proof. If we define ρ as in Lemma 2.2 with ζ = ζm (see Example 2.5) then
(2.12), (2.13) follow from (1.11) with T = δ, (2.9), (2.10), (2.3) and (2.4). �

Corollary 2.10. Under conditions of Lemma 2.7∫ λ2

0

F (
√

µ) dµ ≥ 2 λn+2

n + 2
− 2n ν2

mn
δ−2 λ (λ + δ−1νmn)n−1 ,(2.14) ∫ λ2

0

F (
√

µ) dµ ≤ 2 λn+2

n + 2
+ (n + 1) ν2

mn
δ−2 (λ + δ−1νmn)n(2.15)

for all λ > 0.

Proof. Since
∫ λ2

0
F (
√

µ) dµ = 2
∫ λ

0
F (τ) τ dτ , Theorem 1.6 with T = δ, a = 0,

b = λ and f(τ) = τ implies∫ λ2

0

F (
√

µ) dµ ≥ 2

∫ λ

0

τ ρδ ∗ F (τ) dτ − 2δ−2 λ ρδ,0 ∗ F ′(λ) ,(2.16) ∫ λ2

0

F (
√

µ) dµ ≤ 2

∫ λ

0

(
τ ρδ ∗ F (τ) + δ−2ρδ,0 ∗ F ′(τ)

)
dτ .(2.17)

Let ρ be defined as in Lemma 2.2 with ζ = ζm. Then (2.14) follows from
(2.16), (2.9), (2.10) and (2.4). Since τ P+

n (τ, ν) + P−
n (τ, ν) = P+

n+1(τ, ν) , the
inequality (2.17) and (2.7), (2.8) imply that∫ λ2

0

F (
√

µ) dµ ≤ 2

∫ λ

0

∫ (
P+

n+1(τ, δ
−1µ) + σn |δ−1µ|n+1

)
ρ(µ) dµ dτ .
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Estimating∫ λ

0

[
P+

n+1(τ, ν) + σn |ν|n+1
]
dτ ≤ λn+2

n + 2
+

n + 1

2
ν2 (λ + |ν|)n

with ν = δ−1µ and applying (2.4), we obtain (2.15). �

3. Applications to the Laplace operator

Let Ω ⊂ Rn be an open domain and d(x) be the distance from x ∈ Ω to
the boundary ∂Ω.

3.1. Estimates of the spectral function. Consider the Laplacian ∆B in
Ω subject to a self-adjoint boundary condition B(x, Dx)u|∂Ω = 0, where B is
a differential operator. Assume that the operator −∆B is non-negative and
denote by Π(λ) its spectral projection corresponding to the interval [0, λ). Let

e(x, y; λ) be the integral kernel of the operator Π(λ−0)+Π(λ+0)
2

(the so-called
spectral function). The Sobolev embedding theorem implies that e(x, y; λ)
is a smooth function on Ω × Ω for each fixed λ and that e(x, x; λ) is a non-
decreasing polynomially bounded function of λ for each fixed x ∈ Ω.

Let ∆0 be the Laplacian on Rn , and e0(x, y; λ), ẽ0(x, y; λ), ẽ(x, y; λ) be the

spectral functions of the operators ∆0,
√

∆0,
√

∆B respectively. Then

χ+(τ) e(x, x; τ 2) = ẽ(x, x; τ) ,

χ+(τ) e0(x, x; τ 2) = ẽ0(x, x; τ) = Cn τn
+ ,

where

(3.1) Cn := (2π)−n meas {ξ ∈ Rn : |ξ| < 1} .

By the spectral theorem, the cosine Fourier transform of d
dτ

ẽ(x, y; τ) coin-
cides with the fundamental solution u(x, y; t) of the wave equation in Ω,

utt = ∆u , Bu|∂Ω = 0 , u|t=0 = δ(x− y) , ut|t=0 = 0 .

Due to the finite speed of propagation, u(x, x; t) is equal to u0(x, x; t) when-
ever t ∈ (−d(x), d(x)), where u0(x, y; t) is the fundamental solution of the
wave equation in Rn. Thus, the cosine Fourier transforms of the derivatives
d
dτ

ẽ0(x, x; τ) and d
dτ

ẽ(x, x; τ) coincide on the time interval (−d(x), d(x)). Ap-
plying (2.12)–(2.15) to F (τ) = C−1

n ẽ(x, x; τ) we obtain the following corollary.

Corollary 3.1. For every x ∈ Ω and all λ > 0 we have

e(x, x; λ) ≥ Cn λn/2 −
n Cn 2π−1ν2

mn

d(x)

(
λ1/2 +

νmn

d(x)

)n−1

,(3.2)

e(x, x; λ) ≤ Cn λn/2 +
n Cn (2π−1ν2

mn
+ νmn)

d(x)

(
λ1/2 +

νmn

d(x)

)n−1

,(3.3)
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0

e(x, x; µ) dµ ≥ 2 Cn λn/2+1

n + 2
−

2n Cn ν2
mn

λ1/2

(d(x))2

(
λ1/2 +

νmn

d(x)

)n−1

(3.4) ∫ λ

0

e(x, x; µ) dµ ≤ 2 Cn λn/2+1

n + 2
+

(n + 1) Cn ν2
mn

(d(x))2

(
λ1/2 +

νmn

d(x)

)n

.(3.5)

3.2. Estimates of the counting function of the Dirichlet Laplacian.
In this subsection we shall be assuming that |Ω| < ∞, where | · | denotes the
n-dimensional Lebesgue measure.

Consider the positive operator −∆D, where ∆D is the Dirichlet Laplacian
in Ω. Let N(λ) be the number of its eigenvalues lying below λ. The following
theorem is due to F. Berezin [B].

Theorem 3.2. For all λ ≥ 0 we have

(3.6)

∫ λ

0

N(µ) dµ ≤ 2

n + 2
Cn |Ω|λn/2+1 .

This results was reproduced in [La]. A. Laptev also noticed that the famous
Li–Yau estimate

(3.7) N(λ) ≤ (1 + 2/n)n/2 Cn |Ω|λn/2 , ∀λ ≥ 0 ,

(see [LY]) is a one line consequence of (3.6). Indeed, (3.7) can be proved by
estimating

(3.8) N(λ) ≤ (θλ)−1

∫ λ+θλ

0

N(µ) dµ ≤ 2 (1 + θ)n/2+1

(n + 2) θ
Cn |Ω|λn/2

and optimizing the choice of θ > 0 .

Remark 3.3. In [B] F. Berezin proved an analogue of (3.6) for general oper-
ators with constant coefficients subject to Dirichlet boundary condition. In
the same way as above, applying the first inequality (3.8) and Berezin’s es-
timates, one can easily obtain upper bounds for the corresponding counting
functions (see [La]).

According to the Weyl asymptotic formula

(3.9) N(λ) = Cn |Ω|λn/2 + o(λn/2) , λ → +∞ ,

(in the general case (3.9) was proved in [BS]). The coefficient in the right hand
side of (3.7) contains an extra factor (1 + 2/n)n/2. G. Pólya conjectured [P]
that (3.7) holds without this factor. However, this remains an open problem.

Given a positive ε, denote

Ωb
ε := {x ∈ Ω : d(x) ≤ ε} , Ωi

ε := {x ∈ Ω : d(x) > ε} .

If

(3.10) |Ωb
ε | ≤ const εr , r ∈ (0, 1] ,
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then, using the variational method [CH], one can prove that

(3.11) |N(λ)− Cn |Ω|λn/2 | ≤

{
const λ(n−1)/2 ln λ , r = 1 ,

const λ(n−r)/2 , r < 1 .

It is well known that in the smooth case

N(λ)− Cn |Ω|λn/2 = O(λ(n−1)/2)

(see, for example, [I1] or [SV]), but it is not clear whether this estimate
remains valid for an arbitrary domain satisfying (3.10) with r = 1.

There is a number of papers devoted to estimates of the remainder term
in the Weyl formula. In [BL] the authors, applying the variational technique,
obtain explicit estimates for the constants in (3.11). In order to prove the
estimate of N(λ) from above, they imposed an additional condition on the
outer neighbourhood of the boundary ∂Ω, but this condition can probably be
removed [Ne]. In [Kr] the author estimated the remainder term with the use
of a different technique (similar to that in [LY]); his results seem to be less
precise than those obtained in [BL].

Let

Nb
ε (λ) :=

∫
Ωb

ε

e(x, x; λ) dx , N i
ε(λ) :=

∫
Ωi

ε

e(x, x; λ) dx .

Then N(λ) = Nb
ε (λ) + N i

ε(λ) for every ε > 0.

Corollary 3.4. For all λ > 0 and ε > 0 we have

N i
ε(λ) ≥ Cn |Ωi

ε|λn/2 − Cn,1 (λ1/2 + ε−1νmn)n−1

∫
Ωi

ε

dx

d(x)
,(3.12)

N i
ε(λ) ≤ Cn |Ωi

ε|λn/2 + Cn,2 (λ1/2 + ε−1νmn)n−1

∫
Ωi

ε

dx

d(x)
,(3.13)

Nb
ε (λ) ≤ Cn,3 |Ωb

ε |λn/2 + Cn,4 λ−1/2(λ1/2 + ε−1νmn)n−1

∫
Ωi

ε

dx

(d(x))2
,(3.14)

where

Cn,1 = n Cn 2π−1ν2
mn

, Cn,2 = n Cn (2π−1ν2
mn

+ νmn) ,

Cn,3 = (1 + 2/n)n/2 Cn , Cn,4 = (1 + 2/n)n/2 n2 Cn ν2
mn

.

Proof. The inequalities (3.12), (3.13) are proved by straightforward integra-
tion of (3.2), (3.3). Theorem 3.2 and (3.4) imply that

(3.15)

∫ λ

0

Nb
ε (µ) dµ =

∫ λ

0

N(λ) dµ −
∫ λ

0

N i
ε(µ) dµ

≤ 2

n + 2
Cn |Ωb

ε |λn/2+1 + 2n Cn ν2
mn

λ1/2
(
λ1/2 + ε−1νmn

)n−1
∫

Ωi
ε

dx

(d(x))2
.

Now, applying the first inequality (3.8) with θ = 2/n, we arrive at (3.14). �
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Adding up the inequalities (3.13) and (3.14) we obtain

(3.16) N(λ) ≤ Cn |Ωi
ε|λn/2 + Cn,3 |Ωb

ε |λn/2

+ (λ1/2 + ε−1νmn)n−1

∫
Ωi

ε

Cn,2 d(x) + Cn,4 λ−1/2

(d(x))2
dx , ∀ε > 0 .

Since

(3.17)

∫
Ωi

ε

dx

(d(x))j
=

∫ ∞

ε

s−j d(|Ωb
s |) = j

∫ ∞

ε

s−j−1 |Ωb
s | ds− ε−j |Ωb

ε | ,

(3.10) and the inequalities (3.12), (3.16) with ε = λ−1/2 imply (3.11).
By (3.12) and (3.16) we have

−Cn |Ωb
ε | − |Ωi

ε|
Cn,1

ελ1/2

(
1 +

νmn

ελ1/2

)n−1

≤ λ−n/2 N(λ) − Cn |Ω|(3.18)

≤ (Cn,3 − Cn) |Ωb
ε | + |Ωi

ε|
(

Cn,2

ελ1/2
+

Cn,4

ε2λ

) (
1 +

νmn

ελ1/2

)n−1

for all ε > 0. If ε → ∞ then the second inequality (3.18) turns into (3.7).
Since |Ωb

ε | → 0 as ε → 0, (3.18) implies (3.9). Moreover, taking ε = λ−κ

with an arbitrary κ ∈ (0, 1
2
), we obtain the Weyl formula with a remainder

estimate

λ−n/2N(λ)− Cn |Ω| = O(|Ωb
λ−κ|+ λκ−1/2) , λ → +∞ .

Remark 3.5. If the condition (3.10) is fulfilled then integrating (3.4) over
Ωi

λ−1/2 , applying (3.17) and taking into account (3.6), we see that

(3.19) λ−1

∫ λ

0

N(µ) dµ =
2

n + 2
Cn |Ω|λn/2 + O(λ(n−r)/2)

for all r ∈ (0, 1].
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