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0. Introduction

Let S1 be a unit circle with the standard measure, Pk be the orthogonal projec-
tion in L2(S1) on the subspace spanned by eijx, j = 0,±1, . . . ,±k, and B be the
operator of multiplication by a smooth function b in L2(S1). The classical Szegö
limit theorem states that under some assumptions on b

Tr log(PkBPk) =
k

π

∫ 2π

0

log b(x) dx + O(1) , k → +∞ . (0.1)

The operators Pk coincide with the spectral projections Pλ of the selfadjoint
operator (− d2/dx2)1/2 in L2(S1) corresponding to the intervals [0, λ) with k <
λ 6 k + 1. Following V. Guillemin [G], we obtain a generalization of this theorem
for Pλ being the spectral projections of an elliptic selfadjoint (pseudo)differential
operator A on a manifold without boundary. We also study the case where A is
the operator of an elliptic boundary value problem.

Moreover, we consider an arbitrary sufficiently smooth function ψ instead of the
logarithm. In other words, we obtain asymptotics of the functional

ρλ(ψ) = TrPλψ(PλBPλ)Pλ =
∑

k

ψ(µk(λ)), (0.2)

where µk(λ) are the eigenvalues of the operator PλBPλ. The functional ρλ is the
sum of δ-functions located at the eigenvalues of the operator PλBPλ. Obviously,
ρλ contains full information about the spectrum of PλBPλ. This means that we
study the asymptotic behaviour of the spectra of operators PλBPλ.

This idea is not new, and similar results have been obtained for various classes of
differential and pseudodifferential operators [G], [H], [R], [Z]. However, in these pa-
pers the asymptotic formulae were proved without any remainder estimates. More
precise results have been obtained only in some special cases [Wi1], [Wi2], [J], [Ok].

In this paper we suggest a new method, which is applicable to a wide class of
operators and allows one to obtain asymptotics with the same remainder estimate as
in the classical spectral asymptotic formulae (in many cases this estimate proves to
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be precise). The method is based on some results from the abstract operator theory.
Namely, we use the combination of the Berezin–Lieb inequality (see Appendix)
and the technique of double operator integrals developed by M. Birman and M.
Solomyak (see Section 1).

Further on we often assume the function ψ in (0.2) to be from the Sobolev class
W 2
∞, and then we always mean that ψ is continuous.

1. Some results from the abstract operator theory

1. In this subsection we recall some results from the theory of double operator
integrals developed in [BS1] (see also [Ya]).

Let H be a Hilbert space and I be the identity operator in H. The class of
Hilbert–Schmidt operators in H is denoted by S2. The class S2 itself is a Hilbert
space with the inner product

(T1, T2)S2 = Tr(T1 T ∗2 ) , T1, T2 ∈ S2 .

Let E1 and E2 be spectral measures on R1. This means that the measures E1 and
E2 are defined on the Borel subsets of R1, their values are orthogonal projections
in H, and E1(R1) = E2(R1) = I. We consider integrals of the form

∫∫
f(t, s) dE1(t)T dE2(s) , (1.1)

where f is a measurable complex-valued function on R2 and T is a bounded operator
in H. The integral (1.1) is said to be a double operator integral . Under suitable
assumptions it is well-defined and determines an operator in H.

To justify the integral (1.1) one needs certain restrictions on f and T . We shall
use the simplest version of the theory, assuming T ∈ S2. Then for any measurable
sets ω1, ω2 ∈ R1, the map

S2 3 T → E1(ω1)T E2(ω2) ∈ S2

is an orthogonal projection in S2. Let E be the spectral measure on R2 with values
in the space of projections in S2 such that

E(ω1 × ω2)T = E1(ω1) T E2(ω2) , ∀T ∈ S2 .

For measurable functions f on R2 we now define
∫∫

f(t, s) dE(t)T dE(s) =
∫

f(t, s) dE(t, s) T ,

where the right hand side is understood as an integral with respect to the spectral
measure E in the Hilbert space S2 (see, for example, [BS2, Ch.5]). From the
previous definition it follows that the double operator integral (1.1) linearly depends
on f and T , and that

‖
∫∫

f(t, s) dE1(t) T dE2(s) ‖S2 6 sup |f | ‖T‖S2 . (1.2)

We need the following obvious result.
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Proposition 1.1. Let g1 and g2 be bounded measurable functions on R1, and let

G1 =
∫

g1(t) dE1(t) , G2 =
∫

g2(s) dE2(s)

be the corresponding normal operators. Then for all T ∈ S2 and all measurable
functions f on R2 we have

∫∫
g1(t) f(t, s) g2(s) dE1(t) T dE2(s) =

∫∫
f(t, s) dE1(t)G1 T G2 dE2(s) .

2. Let B be a selfadjoint operator and P be an orthogonal projection in H. We
shall now consider the operator PBP . The operator B is allowed to be unbounded,
and then we must assume that PBP is well-defined. Moreover, we shall assume
that the operator PB is from the Hilbert–Schmidt class S2. Denote

K = ∪
06t61

t σ(B) ⊂ R1 , (1.3)

where σ(B) is the spectrum of B. Then the spectra of operators B and PBP lie
in K.

Let S1 ⊂ S2 be the trace class. From the Berezin inequality one can deduce the
following result.

Theorem 1.2. Let PB ∈ S2. Then for any function ψ ∈ W 2
∞(K)

Pψ(B)P − Pψ(PBP )P ∈ S1

and

| Tr
(
Pψ(B)P − Pψ(PBP )P

)
| 6 1

2
‖ψ′′‖L∞(K) ‖PB(I − P )‖2S2

. (1.4)

Proof. See Appendix.

3. Let A be a selfadjoint, semibounded from below operator in H with a domain
D(A), and let E be its spectral measure. We denote

Pλ = E ((−∞, λ)) , Pµ,λ = Pλ − Pµ = E ([µ, λ)) , µ 6 λ .

We shall now obtain an estimate of the Hilbert–Schmidt norm appearing in the
right hand side of (1.4) with P = Pλ and I − P = I − Pλ = Pλ,∞. Without loss
of generality we shall assume that A > 0; this can be always achieved by adding a
sufficiently large positive constant to A.
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Theorem 1.3. Let A > 0 and PλBA ∈ S2. Then for all r > 0 we have

‖PλBPλ,∞‖2S2
6 ‖Pλ−r,λBPλ,∞‖2S2

+ ‖(A− λ)−1Pλ−r[A,B]Pλ,∞‖2S2
. (1.5)

Remark 1.4. Generally speaking, the commutator [A,B] = AB−BA is not always
well-defined. However, since A−1 is bounded, PλBA ∈ S2 implies PλB ∈ S2.
Therefore

Pλ−r[A,B] = (A− λ)Pλ−rB − Pλ−rB(A− λ) ∈ S2 , ∀ r > 0.

Proof of Theorem 1.3. Obviously,

‖PλBPλ,∞‖2S2
= ‖Pλ−r,λBPλ,∞‖2S2

+ ‖Pλ−rBPλ,∞‖2S2
,

and we only need to estimate the second term in the right hand side.
Let χ and χr be the characteristic functions of the intervals (−∞, λ) and

(−∞, λ− r) respectively. By Proposition 1.1 (with E1 = E2 = E) we have

Pλ−rBPλ,∞ =
∫∫

χr(t) (1− χ(s)) dE(t) Pλ−rBPλ,∞ dE(s)

=
∫∫

χr(t) (1− χ(s)) (t− λ)(t− s)−1 dE(t) (A− λ)−1Pλ−r[A, B]Pλ,∞ dE(s).

Since
0 6 χr(t) (1− χ(s)) (t− λ)(t− s)−1 6 1 , ∀ t, s ∈ R1 ,

(1.2) implies that the Hilbert–Schmidt norm of this integral is estimated by the
second term in the right hand side of (1.5). ¤

Combining Theorems 1.2 and 1.3 we immediately obtain

Theorem 1.5. Let conditions of Theorem 1.3 be fulfilled. Then for all ψ ∈ W 2
∞(K)

we have

| Tr
(
Pλψ(B)Pλ − Pλψ(PλBPλ)Pλ

)
|

6 1
2
‖ψ′′‖L∞(K)

(
‖Pλ−r,λB‖2S2

+ ‖(A− λ)−1Pλ−r[A,B]‖2S2

)
. (1.6)

4. Assume now that rank Pλ < ∞. This obviously implies that the operator A is
semibounded from below. Let

N(λ) = rankPλ , Nr(λ) = sup
µ6λ

(N(µ)−N(µ− r)) , r > 0 .
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Theorem 1.6. Let A > 0 and rankPλ < ∞. Then for all ψ ∈ W 2
∞(K) and for all

λ > 0, r > 0, κ > 0 we have

| Tr
(
Pλψ(B)Pλ − Pλψ(PλBPλ)Pλ

)
|

6 1
2
‖ψ′′‖L∞(K) Nr(λ)

(
‖Pλ−r,λB‖2 +

π2

6
λ2κ

r2
‖A−κPλ−r[A,B]‖2

)
. (1.7)

Proof. The operator PλBA ∈ S2 is of finite rank, so we can apply Theorem 1.5.
Since

‖Pλ−r,λB‖2S2
6 ‖Pλ−r,λ‖2S2

‖Pλ−r,λB‖2
= (N(λ)−N(λ− r)) ‖Pλ−r,λB‖2 6 Nr(λ) ‖Pλ−r,λB‖2 ,

it is sufficient to prove that

‖(A− λ)−1Pλ−r[A,B]‖2S2
6 π2

6
λ2κ

r2
Nr(λ) ‖A−κPλ−r[A,B]‖2 . (1.8)

Obviously,

‖(A− λ)−1Pλ−r[A,B]‖2S2

= ‖(A− λ)−1Pλ−rA
κA−κPλ−r[A,B]‖2S2

6 ‖(A− λ)−1Pλ−rA
κ‖2S2

‖A−κPλ−r[A, B]‖2 ,

and

‖(A− λ)−1Pλ−rA
κ‖2S2

=
∑

λj<λ−r

λ2κ
j

(λj − λ)2
=

∫ λ−r

0

µ2κ

(µ− λ)2
dN(µ)

where λj > 0, j = 1, 2, . . . , are the eigenvalues of the operator A. Let J = [λr−1]
be the integer part of λr−1. Then the right hand side is estimated as follows

∫ λ−r

0

µ2κ

(µ− λ)2
dN(µ) 6 λ2κ

∫ λ−r

0

dN(µ)
(µ− λ)2

= λ2κ
J∑

j=1

∫ λ−rj

λ−r(j+1)

dN(µ)
(µ− λ)2

6 λ2κ Nr(λ)
J∑

j=1

r−2j−2 6 λ2κ

r2
Nr(λ)

∞∑

j=1

j−2 =
π2

6
λ2κ

r2
Nr(λ). (1.9)

This implies (1.8). ¤

2. Applications

In this section we apply Theorems 1.5 and 1.6 to some particular classes of
operators A and B and obtain the corresponding Szegö type theorems.

In the following A will be a selfadjoint (pseudo)differential operator. We shall
denote by e(x, y, λ) the spectral function of A, i.e., the Schwartz kernel of the
spectral projection Pλ. If the spectrum of A is discrete then

e(x, y;λ) =
∑

λj<λ

wj(x) wj(y) ,

where 0 < λ1 6 λ2 6 . . . 6 λj . . . are the eigenvalues of A and wj ∈ L2 are the
corresponding orthonormed eigenfunctions. In this case e(x, x, λ) belongs to the
corresponding space L1 for each fixed λ.
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1. Differential operators with constant coefficients.
Let A be a differential operator in Rn with constant coefficients,

A(D) =
∑

|α|62m

aα Dα , Dα = i−|α|
∂α

∂xα
,

and let
a(ξ) =

∑

|α|62m

aα ξα , a2m(ξ) =
∑

|α|=2m

aα ξα

be its full and principal symbols respectively. We assume that a is real, and that
a2m(ξ) > 0 for all ξ 6= 0 . Then A is elliptic and defines a selfadjoint operator in
L2(Rn). The spectral projections and spectral function of A are given by

Pλ u = (2π)−n

∫
eOλ

eixξ û(ξ) dξ , e(x, y, λ) = (2π)−n

∫
eOλ

ei(x−y)ξ dξ ,

where Õλ = {ξ : a(ξ) < λ} .

Theorem 2.1. Let B be the multiplication by a real function b ∈ C2m
0 (Rn) in

L2(Rn), and let ψ ∈ W 2
∞(R1). If ψ(0) = 0 then

TrPλψ(PλBPλ)Pλ =
∫

ψ (b(x)) e(x, x, λ) dx + O(λ(n−1)/2m)

= (2π)−n λn/2m

∫

a2m<1

dξ

∫
ψ (b(x)) dx + O(λ(n−1)/2m) (2.1)

as λ → +∞.

Proof. We assume that a > 0 and, consequently, A > 0 (otherwise we add to A a
sufficiently large positive constant).

Let Oλ = {ξ : a2m(ξ) < λ}. It is obvious that

a2m 6 a + const (a(2m−1)/2m + 1) , a 6 a2m + const (a(2m−1)/2m
2m + 1)

with a sufficiently large positive constant. Thus it follows that

Oµ− ⊂ Õλ ⊂ Oµ+ , µ± = µ±(λ) = λ± C(λ(2m−1)/2m + 1) (2.2)

with some constant C > 0.
Denote

Ñ(λ) = vol Õλ , Ñr(λ) = sup
µ6λ

[Ñ(µ)− Ñ(µ− r)] .

Since volOλ =
∫

a2m<λ
dξ = λn/2m

∫
a2m<1

dξ , (2.2) implies

Ñ(λ) = λn/2m

∫

a2m<1

dξ + O(λ(n−1)/2m) , λ → +∞ . (2.3)



SZEGÖ TYPE THEOREMS 7

The commutator [A,B] is a differential operator of order 2m − 1 which can be
written in the form

[A, B] u(x) =
∑

|α|62m−1

Dα (cα(x)u(x))

with cα ∈ C
|α|
0 (Rn). Then

PλBA u(x) = Pλ(AB − [A, B]) u(x) =
∫
K(x, y)u(y) dy

where

K(x, y) = (2π)−n

∫
eOλ

ei(x−y)ξ
(
a(ξ) b(y) −

∑

|α|62m−1

ξα cα(y)
)

dξ .

Since K ∈ L2(Rn × Rn), we obtain PλBA ∈ S2 and can therefore apply Theorem
1.5. We shall take r = λ(2m−1)/2m, then by (2.3)

Ñr(λ) = O(λ(n−1)/2m) , λ → +∞ .

Now we have

‖Pλ−r,λB‖2S2
=

∫
eOλ\ eOλ−r

dξ

∫
b2(x) dx

6 Ñr(λ)
∫

b2(x) dx = O(λ(n−1)/2m) ,

‖(A− λ)−1Pλ−r[A,B]‖2S2

=
∫ ∫

eOλ−r

( ∑

|α|62m−1

cα(x) ξα
)2

(a(ξ)− λ)−2
dξ dx

6 const
∫
eOλ−r

a(2m−1)/m (a− λ)−2
dξ = const

∫
eOλ−r

µ(2m−1)/m

(µ− λ)2
dÑ(µ) .

Applying (1.9) with κ = (2m− 1)/2m we obtain

‖(A− λ)−1Pλ−r[A,B]‖2S2
= O(λ(n−1)/2m) .

Now from (1.6) it follows that

Tr
(
Pλψ(B)Pλ − Pλψ(PλBPλ)Pλ

)
= O(λ(n−1)/2m) .

If ψ(0) = 0 then Pλψ(B)Pλ ∈ S1, and by (2.3)

TrPλψ(B)Pλ =
∫

ψ (b(x)) e(x, x, λ) dx = (2π)−n

∫
ψ (b(x)) dx

∫

a<λ

dξ

= (2π)−n λn/2m

∫

a2m<1

dξ

∫
ψ (b(x)) dx + O(λ(n−1)/2m) .

This implies (2.1). ¤
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2. Operators on closed manifolds.
Let M be a smooth compact manifold without boundary, dim M = n. Let A and

B be selfadjoint pseudodifferential operators (PDOs) acting in the space L2(M) of
half-densities on M . We assume that A is a positive elliptic PDO of order m > 1
and that B is a PDO of order 0.

Theorem 2.2. For any function ψ ∈ C∞(R1) we have

TrPλψ(PλBPλ)Pλ

= (2π)−n λn/m

∫

a(x,ξ)<1

ψ(b(x, ξ)) dx dξ + O(λ(n−1)/m) , (2.4)

where a(x, ξ) and b(x, ξ) are the principal symbols of the PDOs A and B respectively,
and dx dξ is the invariant measure on the cotangent bundle T ∗M .

This theorem has been announced in [LS1]. Its proof is based on the following
well-known result (see, for example, [S]).

Lemma 2.3. For an arbitrary PDO Q of order zero

TrPλQ =
∫

M

(Q(x,Dx) e(x, y, λ))|y=x dx

= (2π)−n λn/m

∫

a(x,ξ)<1

q(x, ξ) dx dξ + O(λ(n−1)/m), (2.5)

where q is the principal symbol of the PDO Q.

Proof of Theorem 2.2. The spectrum of the operator A consists of isolated positive
eigenvalues tending to +∞. Therefore for each fixed λ the rank of the projection
Pλ is finite.

For all s ∈ R1 the operator PλAs is bounded and ‖PλAs‖ 6 λs. The operator
A−sBA is a PDO of order (1 − s)m. If s is sufficiently large then this operator is
from S2. Therefore PλBA = (PλAs)(A−sBA) ∈ S2. Thus, the operators A and B
satisfy the conditions of Theorem 1.6.

We apply the estimate (1.7) with κ = (m− 1)/m and r = λκ . From (2.5) with
Q = I it follows that Nλκ (λ) = O(λ(n−1)/m). The operators B and A−κ[A,B] are
PDOs of order zero, so they are bounded in L2(M). Now (1.7) yields

Tr
(
Pλψ(B)Pλ − Pλψ(PλBPλ)Pλ

)
= O(λ(n−1)/m). (2.6)

The operator ψ(B) is a PDO of order zero with the principal symbol ψ(b) (see,
for example, [T, Section 12.1]). Therefore (2.4) follows from (2.5) with Q = ψ(B)
and (2.6). ¤
Remark 2.4. Theorem 2.2 remains valid if we only assume that a(x, ξ) > 0 as ξ 6= 0.
Then the operator A is semibounded from below, and we can consider the positive
operator A + λ0I instead of A.

Remark 2.5. We have proved Theorem 2.2 assuming that ψ ∈ C∞(R1), whereas
Theorem 1.6 is valid for all ψ ∈ W 2

∞(K). This stronger condition is needed in order
for ψ(B) to be a PDO. If B is the operator of multiplication by a smooth function
then Theorem 2.2 remains valid for all ψ ∈ W 2

∞(K).
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3. Boundary value problems for second order differential operators.
Let Ω ⊂ Rn be an open bounded domain, C∞(Ω) be the space of functions from

C∞(Rn) restricted to Ω, and ρ ∈ L1(Ω) be a non-negative density. Then

C∞0 (Ω) ⊂ C∞(Ω) ⊂ L2(Ω, ρdx)

and C∞0 (Ω) is dense in L2(Ω, ρdx).
In this subsection we deal with the differential operator

A(x, ∂x) = −
∑

i,j

aij(x) ∂xi
∂xj

−
∑

i

ai(x) ∂xi
+ a0(x)

in Ω, where aij , aj and a0 are real functions from L2(Ω, ρdx) such that
(1) {aij} is a real symmetric non-negative n× n-matrix-function;
(2)

∑
j ∂xj (aij ρ) = ai ρ , i = 1, . . . , n ;

(3) a0 > const > 0 .
Obviously, A : C∞(Ω) → L2(Ω, ρdx) and

(Au, v)L2(Ω,ρdx) =
∫

Ω

∑

i,j

aij uxi v̄xj ρ dx +
∫

Ω

a0 u v̄ ρ dx (2.7)

for all u, v ∈ C∞0 (Ω).
We fix a linear subspace D0 such that C∞0 (Ω) ⊂ D0 ⊂ C∞(Ω) , and denote by

[u, v]a the sesquilinear form (2.7) extended to D0. Let Da be the completion of D0

with respect to [·, ·]a, and let A be the corresponding Friedrichs extension of the
differential operator A(x, ∂x). Then A is a positive operator in L2(Ω, ρdx) and

(A1/2u, A1/2v)L2(Ω,ρdx) = [u, v]a , ∀u, v ∈ Da = D(A1/2) .

The domain D(A) is a dense subset of the Hilbert space Da with the inner product
[·, ·]a. By definition D(A) consists of u ∈ L2(Ω, ρdx) such that

[u, v]a = (f, v)L2(Ω,ρdx) , ∀ v ∈ Da , (2.8)

for some f ∈ L2(Ω, ρdx), and then Au = f . In particular, integrating by parts we
obtain C∞0 (Ω) ∈ D(A).

Let b ∈ L∞(Ω) be a real function such that ∂α
x b ∈ L1,loc(Ω) for all |α| 6 2, and

B be the operator of multiplication by b in L2(Ω, ρdx). Obviously, B is bounded
and selfadjoint. We assume that

a−1
0 |

∑

i,j

aij bxixj +
∑

i

ai bxi | 2 ∈ L∞(Ω, ρdx) (2.9)

and ∑

i,j

aij bxi bxj ∈ L∞(Ω, ρdx) . (2.10)

Then A(x, ∂x)(bu) ∈ L2(Ω, ρdx) and, consequently, bu ∈ D(A) for all u ∈ C∞0 (Ω).
Moreover,

[A,B] u = − 2
∑

i,j

aij bxi uxj −
∑

i,j

aij bxixj u −
∑

i

ai bxi u (2.11)

for all u ∈ C∞0 (Ω), and

([A,B]u, v)L2(Ω,ρdx) = −(u, [A,B]v)L2(Ω,ρdx) , ∀u, v ∈ C∞0 (Ω) . (2.12)

Clearly, the operator [A,B] can be extended to D0, and then (2.11) and (2.12)
remain valid for all u ∈ D0 and v ∈ C∞0 (Ω).
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Proposition 2.6. Under the conditions (2.9) and (2.10) the operator A−1/2[A,B]
is bounded in L2(Ω, ρdx).

Proof. The inclusions (2.9) and (2.10) imply

‖[A,B]u‖2L2(Ω,ρdx) 6 const [u, u]a = const ‖A1/2u‖2L2(Ω,ρdx) , ∀u ∈ D0 .

Therefore for all u ∈ A1/2D0 and v ∈ C∞0 (Ω) we have

| (u,A−1/2[A,B]v)L2(Ω,ρdx)| = | ([A,B]A−1/2u, v)L2(Ω,ρdx)|
6 const ‖u‖L2(Ω,ρdx)‖v‖L2(Ω,ρdx) . (2.13)

Since D0 is dense in Da with respect to [·, ·]a, the set A1/2D0 is dense in L2(Ω, ρdx).
Thus, the estimate (2.13) holds uniformly on a dense set in L2(Ω, ρdx)×L2(Ω, ρdx),
which implies that A−1/2[A,B] is bounded. ¤

Let us now assume that the spectrum of A is discrete and that

N(λ + λ1/2) − N(λ) = O(λθ) , λ → +∞ , (2.14)

or
N(λ + λ1/2) − N(λ) = o(λθ) , λ → +∞ . (2.15)

The estimates (2.14) and (2.15) follow from the asymptotic formulae

N(λ) = c0 λp + O(λθ) , λ → +∞ ,

and
N(λ) = c0 λp + o(λθ) , λ → +∞ ,

respectively. Here c0 is some constant and θ 6 p 6 θ + 1/2. The asymptotic
formulae of these types have been obtained under various additional assumptions
on the operator A (see, for example, [BS3], [RShS]). For non-degenerate problems c0

is the standard Weyl coefficient and p = n/2, and in the “regular” case θ = (n−1)/2
(see [Iv2], [V]).

Theorem 2.7. For all ψ ∈ W 2
∞(K)

TrPλψ(PλBPλ)Pλ =
∫

Ω

ψ (b(x)) e(x, x, λ) ρ(x) dx +
{

O(λθ), if (2.14),
o(λθ), if (2.15).

Proof. If q ∈ L∞(Ω) and Q is the corresponding multiplication operator then

Tr PλQPλ =
∫

Ω

q(x) e(x, x, λ) ρ(x) dx . (2.16)

Therefore the theorem immediately follows from (1.7) with κ = 1/2 and r = λ1/2

and Proposition 2.6. ¤
Thus, the study of TrPλψ(PλBPλ)Pλ is reduced to the computation of asymp-

totics of (2.16) with q = ψ(b). Clearly, the latter is a much simpler object. However,
it has not been studied so actively as the counting function

N(λ) =
∫

Ω

e(x, x, λ) ρ(x) dx ,

and we are unaware of any general results concerning the asymptotic behavior of
(2.16) for non-regular problems.
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4. Boundary value problems — the regular case.
If ρ ≡ 1, A is uniformly elliptic, and ∂Ω, b and the coefficients of A are infinitely

smooth, then
∫

Ω

ψ (b(x)) e(x, x, λ) dx = (2π)−nλn/2

∫∫

a(x,ξ)61

ψ (b(x)) dx dξ + O(λ(n−1)/2) ,

where a(x, ξ) =
∑

i,j aij(x) ξi ξj is the principal symbol of A (see, for example,
[Iv1]). Therefore by Theorem 2.7

TrPλψ(PλBPλ)Pλ

= (2π)−nλn/2

∫∫

a(x,ξ)61

ψ (b(x)) dx dξ + O(λ(n−1)/2) . (2.17)

Remark 2.8. Using the results from [Iv2], [V] one can easily extend (2.17) to do-
mains (or smooth manifolds) with a piecewise smooth boundary.

Appendix

In the early seventies F. Berezin [B] and E. Lieb [L] (see also [Si]) independently
obtained a Jensen type inequality for convex functions of selfadjoint operators. It
has been generalized in [LS2], where we have extended this inequality to wider
classes of functions and operators. For the sake of completeness we give here the
version of the Berezin–Lieb inequality which is needed in this paper, and then prove
Theorem 1.2.

Let B be a selfadjoint operator, P be an orthogonal projection in the Hilbert
space H and K be the set defined by (1.3).

Theorem A.1 (Berezin–Lieb inequality). Let ϕ be a convex function on K.
Assume that PB is a compact operator and that

Pϕ(B)P − Pϕ(PBP )P ∈ S1.

Then
Tr

(
Pϕ(B)P − Pϕ(PBP )P

)
> 0. (A.1)

Proof. Let {ξk} be an orthonormal basis in PH formed by the eigenfunctions ξk of
the compact selfadjoint operator PBP . We denote by EB the spectral measure of
the operator B. If νk are the positive measures with dνk(t) = (dEB(t)ξk, ξk) then

(Pϕ(PBP )Pξk, ξk) = (ϕ(PBP )ξk, ξk) = ϕ
(
(PBPξk, ξk)

)

= ϕ
(
(Bξk, ξk)

)
= ϕ

(∫
t(dEB(t)ξk, ξk)

)
= ϕ

(∫
t dνk(t)

)
. (A.2)

Clearly, νk(R1) = 1. By applying the Jensen inequality for convex functions, we
obtain from (A.2)

(Pϕ(B)Pξk, ξk) − (Pϕ(PBP )Pξk, ξk) = (ϕ(B)ξk, ξk) − (ϕ(PBP )ξk, ξk)

=
∫

ϕ(t) dνk(t) − ϕ
(∫

t dνk(t)
)

> 0.
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This implies (A.1). ¤
Proof of Theorem 1.2. Since the operator Pψ(B)P −Pψ(PBP )P does not change
when we add a linear function to ψ, we can assume without loss of generality that

|ψ(t)| 6 t2

2
‖ψ′′‖L∞(K). (A.3)

Let ϕ(t) = t2/2. In view of (A.3) we have

| (Pψ(B)Pζk, ζk) | 6 ‖ψ′′‖L∞(K) (Pϕ(B)Pζk, ζk), (A.4)

| (Pψ(PBP )Pζk, ζk) | 6 ‖ψ′′‖L∞(K) (Pϕ(PBP )Pζk, ζk), (A.5)

for any orthonormal basis {ζk} in H. Since PB ∈ S2, we also have

Pϕ(B)P =
1
2

PB2P ∈ S1 and Pϕ(PBP )P =
1
2

PBPBP ∈ S1. (A.6)

From (A.4), (A.5) and (A.6) it follows that

Pψ(B)P ∈ S1 and Pψ(PBP )P ∈ S1

(see, for example, [RS, Ch. VI, Problem 26]). Now applying Theorem A.1 to convex
functions

ϕ+(t) =
t2

2
‖ψ′′‖L∞(K) + ψ(t) and ϕ−(t) =

t2

2
‖ψ′′‖L∞(K) − ψ(t)

and taking into account the equality

Tr
(
Pϕ(B)P − Pϕ(PBP )P

)
=

1
2
‖PB(I − P )‖2S2

,

we obtain (1.4). ¤
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aux derivees parielles, Saint-Jean-De-Monts (1991), XV-1— XV-7.

[LS2] , A generalization of the Berezin inequality, Report No.15, Institut Mittag-Leffler,
1993.

[Ok] K. Okikiolu, The analogue of the strong Szegö limit theorem on the torus and the 3-sphere,
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