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Introduction

The aim of the paper is to construct a calculus of pseudodifferential operators (ψDOs)
on a smooth manifold M without using local coordinate systems. Instead we deal with
linear connections Γ of M .

The fact that a linear connection Γ is a global object enables one to associate with a
ψDO its full symbol, which is a function on the cotangent bundle T ∗M (depending on
the choice of Γ ). This idea was put forward by H. Widom. He has suggested a method of
defining full symbols of ψDOs on a manifold with a linear connection and constructed a
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2 Yu. SAFAROV

version of symbolic calculus [W1], [W2]. More advanced results in this direction were ob-
tained later in [FK3]. However, in these papers the classes of pseudodifferential operators
are defined in local coordinates, with use of standard local phase functions.

On the contrary, we define ψDOs in a coordinate-free way, using invariant oscillatory
integrals over T ∗M . The phase functions in these oscillatory integrals are linear with
respect to the phase variables and are determined by Γ , and the symbols are functions on
T ∗M . (In [FK3], [Re] it is mentioned that similar phase functions have been introduced
by L. Drager [D].) We also include in the oscillatory integrals a weight factor which allows
us to consider ψDOs in the spaces of κ-densities for any κ ∈ R1. If the connection Γ is
(locally) flat then the phase functions take the usual form (x−y) ·θ and the weight factor
is identically equal to 1 in the “flat” coordinates. So our construction is a generalization
of the standard one, which corresponds from our point of view to locally flat connections.

The invariant approach allows us to define τ -symbols of ψDOs acting on a manifold; in
particular, we define the Weyl symbols. In fact, it is a kind of quantization on a manifold
provided with a linear connection. This problem is of interest for physicists (see, for
example, [FK1], [FK2], [LQ]). But we discuss only local results, and this subject is left
out of the paper.

We deal with Hörmander’s classes of symbols Sm
ρ,δ assuming 1 6 δ < ρ 6 1 . The

standard definition of these classes is given in local coordinates, and when ρ > 1 − δ
(and, consequently, ρ > 1/2 ) they turn out to be invariant under change of coordinates.
However, in order to introduce these classes it is sufficient only to define the horizontal
and vertical derivatives. This can be done in terms of a linear connection Γ . We associate
with Γ some classes of symbols Sm

ρ,δ(Γ) . If 1− ρ 6 δ then these classes are independent
of Γ and the corresponding classes of ψDOs coincide with the usual ones. In this case
our construction leads only to a version of invariant symbolic calculus.

When δ < 1 − ρ we obtain new classes of pseudodifferential operators. In local coor-
dinates their amplitudes belong to Sm

ρ,1−ρ. If ρ 6 1/2 , one can neither define symbols of
these ψDOs nor obtain most of the other standard results in the usual way. But it can
be done by means of invariant oscillatory integrals. We prove that all the basic results of
the classical theory of ψDOs ([H], [Sh], [T], [Tr]) remain valid for these new classes when
ρ > 1/3 and the connection Γ is symmetric. Moreover, some of these results are valid
without any additional restrictions.

To illustrate the main idea of the paper let us consider the class of differential (or
pseudodifferential) operators with constant coefficients in Rn . This class is invariant
with respect to linear transformations of coordinates, and in any “linear” coordinates
we can easily obtain various results (in particular, concerning functional calculus) in
terms of the full symbols. If we chose other (“non-linear”) coordinates on Rn , then the
operators would have variable coefficients and most of the results (even local ones) relying
upon full symbols would fail. Thus, studying the operators with constant coefficients we
single out a class of “preferred” coordinates on Rn which is invariant with respect to
linear transformations. From the geometric point of view this means that we fix a linear
connection of Rn .

Analogously, given a class of ψDOs or a particular ψDO acting on a manifold M ,
we can try to choose a “preferred” linear connection of M which allows us to obtain
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more advanced results in terms of the corresponding symbolic calculus. Note that the
“preferred” linear connection may well be non-flat even when M = Rn or M is a domain
in Rn .

In particular, in Section 10 we consider (pseudo)differential operators which are semi-
elliptic with respect to the linear connection generated by a system of (non-commuting)
linearly independent vector fields. Under some additional restrictions on the vector fields
we prove that such operators are hypoelliptic and admit pseudodifferential parametrices.

In Section 11 we deal with functions of the Laplace operator ∆ on a closed Riemannian
manifold. It appears that for some natural class Sm

ρ (R1) of functions ω the operator ω(∆)
is a ψDO corresponding to the Levi–Civita connection. The same is valid for operators
of the form ω(∆ + ν) where ν is a lower order differential operator. This allows one to
study fine properties of the operators like ω(∆ + ν) or ω(∆ + ν) − ω(∆). For instance,
we immediately obtain that the operator ω(∆ + ν) is pseudolocal as far as ω ∈ Sm

ρ (R1).
These results have already been known for ρ ∈ (1/2, 1] (see [T, Ch.12.1]). Our technique
works in the case 0 < ρ 6 1/2 as well.

There are many papers devoted to generalizations of the classical ψDOs calculus where
much more general classes of symbols (than Sm

ρ,δ) have been introduced. However, the
known generalizations are connected with other kinds of estimates for the derivatives
of symbols and have nothing to do with the phase functions. On the contrary, we use
very standard estimates but non-standard phase functions. Therefore our results are not
contained in any other known results but can be combined with them (see Remark 3.5).

Throughout the paper we shall use the following standard notations:
[·, ·] denotes the commutator of two operators or vector fields;
a ³ b means that C−1 a 6 b 6 C a with some positive constant C ;
the sign ∼ stands for an asymptotic expansion which is uniform with respect to all
the parameters when they run over a compact set, and which can be differentiated
infinitely many times.

Indices are denoted by Latin letters i, j, . . . , multi-indices — by Greek letters α, β, . . . .
As usual, we set Dα

θ = (−i)|α|∂θ .
We shall use some elementary notions and results from differential geometry. We recall

them in Sections 1 and 2; for more details see, for example, [KN].

1. Linear connections

1. Let M be a smooth n-dimensional manifold. We denote the points of M by x, y or z,
and the covectors from T ∗x M , T ∗y M , T ∗z M by ξ, η, ζ respectively. The same letters denote
also coordinates on M and the corresponding dual coordinates in the fibres of T ∗M .

We are going to consider operators acting in the spaces of κ-densities on M , κ ∈ R1.
Recall that a complex “function” u on M is said to be a κ-density if it behaves under
change of coordinates in the following way

u(y) = |det{∂xi/∂yj}|κ u
(
x(y)

)
.

The usual functions on M are 0-densities. The κ-densities are sections of some complex
linear bundle Ωκ over M . We denote by C∞(M ; Ωκ) and C∞0 (M ; Ωκ) the spaces of
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smooth κ-densities and smooth κ-densities with compact supports respectively. If u ∈
C∞0 (M ; Ωκ) and v ∈ C∞(M ; Ω1−κ) then the product u v is a density and the integral∫

M
u v dx is independent of the choice of coordinates. This allows us to define the inner

product (u, v) =
∫

M
u v̄ dx on the space of half-densities C∞0 (M ; Ω1/2) and to introduce

the Hilbert space L2(M ; Ω1/2) in the standard way.
We shall deal with the (p, q)-tensor bundles over M and with the induced bundles over

T ∗M . For the sake of simplicity the sections of the induced bundles are also called (p, q)-
tensors. The components of symmetric tensors in local coordinates are often numbered
by multi-indices instead of sets of indices. For example, {Fα}|α|=q denotes the (0, q)-
tensor whose components Fi1,i2,...,iq

coincide with Fα if the set of indices {i1, i2, . . . , iq}
corresponds to the multi-index α.

We shall always identify vector fields with the corresponding first order differential
operators.

2. We assume the manifold M to be provided with a linear connection Γ (which may
be non-complete). This means that in any local coordinate system we have defined a set
of smooth “functions” Γ i

jk(x), i, j, k = 1, . . . , n, which are called the Christoffel symbols.
Under change of coordinates the Γ i

jk behave as follows

∑

l

∂yi

∂xl
Γ l

pq(x) =
∑
p,q

∂yj

∂xp
Γ i

jk

(
y(x)

) ∂yk

∂xq
+

∂2yi

∂xp ∂xq
. (1.1)

The Christoffel symbols can be chosen arbitrarily (assuming that (1.1) is fulfilled), and
each set of Christoffel symbols determines some linear connection of M .

A curve y(t) ⊂ M , t ∈ R1, is said to be a geodesic if
··
yk(t) +

∑

i,j

Γ k
ij

(
y(t)

)
ẏi(t) ẏj(t) = 0 . (1.2)

For any point x ∈ M and any θ ∈ TxM there exists a unique geodesic y(t) starting at x
such that ẏ(0) = θ.

3. Let x ∈ M be a fixed point and Ux be a sufficiently small neighbourhood of x . One
can choose local coordinates y = {yk} on Ux in such a way that all the geodesics starting
at x have the form y(t) = tθ + y(x) , where y(x) are the coordinates of the points x and
θ = ẏ(0). Such coordinate systems on Ux are called normal coordinate systems (n.c.s.)
with origin x. Normal coordinates with a fixed origin are invariant with respect to linear
(and only linear) transformations.

Let {xk} be some local coordinates on Ux . We say that the n.c.s. {yk} with origin x
is associated with the coordinates {xk} if yk(x) = xk and the Jacobi matrix {∂yj/∂xk}
is equal to I at the point x. Obviously, a change of the coordinates {xk} → {x̃k}
leads to the linear transformation of the associated normal coordinates {yk} → {ỹk} =
{∑j(∂x̃k/∂xj) yj} . From (1.2) it follows that in the n.c.s. y = {yk} associated with
coordinates {xk} we have

∑

i,j

Γ k
ij(y) (yi − xi) (yj − xj) ≡ 0 . (1.3)
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For y ∈ Ux we denote by γy,x(t) the “shortest” (lying in Ux) geodesic joining x and
y such that t ∈ [0, 1] , γy,x(0) = x, γy,x(1) = y . This geodesic exists and is uniquely
defined. We denote by γ̇y,x(t) its tangent vector at the point γy,x(t) .

Let γk
y,x(t) be the y-coordinates of the point γy,x(t) , γ̇k

y,x(t) be the corresponding
components of the vector γ̇y,x(t) , and

γ̇α
y,x(t) = (γ̇1

y,x)α1 . . . (γ̇n
y,x)αn

(where α = (α1, . . . , αn) is a multi-index). If {yk} is the n.c.s. with origin x associated
with some coordinates {xk} then

γk
y,x(t) = xk + t (yk − xk) , γ̇k

y,x(t) = (yk − xk) , γ̇α
y,x(t) = (y − x)α , (1.4)

where xk and yk are the coordinates of the points x and y respectively.
Let now {yk} be the same coordinate system as {xk}. Then (1.2) implies

γk
y,x(t) ∼ xk + t γ̇k

y,x(0) − t2

2

∑

i,j

Γ k
ij(x) γ̇i

y,x(0) γ̇j
y,x(0)

+
∑

|α|>3

t|α|

α!
Γk

α(x) γ̇α
y,x(0) , t → 0 ,

where Γk
α are some polynomials in the Christoffel symbols and their derivatives. Obvi-

ously, t γ̇y,x(0) = γ̇zt,x(0) where zt = γy,x(t) . Therefore the same asymptotic expansion
holds as t = 1 and y → x . From here it follows that

γ̇k
y,x(0) ∼ (yk − xk) +

1
2

∑

i,j

Γ k
ij(x) (yi − xi) (yj − xj)

+
∑

|α|>3

1
α!

Γ̃k
α(x) (y − x)α , y → x , (1.5)

where Γ̃k
α are also some polynomials in the Christoffel symbols and their derivatives.

4. Let F = {F i1,...,ip

j1,...,jq
} be a (p, q)-tensor and ν =

∑
νk(y) ∂yk be a vector field. Then the

“functions”

DνF
i1,...,ip

j1,...,jq
(y) =

∑

k

νk(y) ∂yk F
i1,...,ip

j1,...,jq
(y)

+
∑

k,i′1

Γ i1
ki′1

(y) νk(y)F
i′1,...,ip

j1,...,jq
(y) + . . . +

∑

k,i′p

Γ ip

ki′p
(y) νk(y)F

i1,i2,...,i′p
j1,j2...,jq

(y)

−
∑

k,j′1

Γ j′1
kj1

(y) νk(y) F
i1,...,ip

j′1,...,jq
(y) − . . . −

∑

k,j′q

Γ
j′q
kjq

(y) νk(y) F
i1,...,ip

j1,...,j′q
(y)
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are components of a (p, q)-tensor which is called the covariant derivative of F with respect
to ν . Using this notion one can reformulate the definition of a geodesic : y(t) is a geodesic
if the covariant derivative of the vector field ẏ(t) with respect to itself is equal to zero.

Let Dk be the covariant differentiation with respect to the coordinate vector fields
∂yk . A (p, q + l)-tensor with the components

Dk1 . . .Dkl
F

i1,...,ip

j1,...,jq
(y) , 1 6 k1, . . . , kl 6 n ,

is called the l-th covariant differential of F . Generally speaking, the covariant differential
is not symmetric with respect to the indices k1, . . . , kl . We denote its symmetrization
with respect to k1, . . . , kl by {DαF}|α|=l . This tensor is said to be the l-th symmetric
covariant differential of F . A tensor is said to be parallel if all its covariant differentials
are identically equal to zero.

5. For arbitrary vector fields νl =
∑

k νk
l (y)∂yk we have

Dν1ν2 − Dν2ν1 − [ν1, ν2] =
∑

i,j,k

T i
jk(y) νj

1(y) νk
2 (y) ∂yi , (1.6)

Dν1Dν2ν3 − Dν2Dν1ν3 − D[ν1,ν2]ν3 =
∑

i,j,k,l

R i
jkl(y) νk

1 (y) νl
2(y) νj

3(y) ∂yi , (1.7)

where T = {T i
jk} and R = {R i

jkl} are some tensors. The tensors T and R are said to
be the torsion tensor and the curvature tensor of the connection Γ . The tensor with the
components Rkl =

∑
i R i

kil is called the Ricci tensor .
Let T (ν1, ν2) and R(ν1, ν2) ν3 be the vector fields (1.6) and (1.7) respectively. Then

S {R(ν1, ν2) ν3 } = S {T (T (ν1, ν2), ν3) + Dν1T (ν2, ν3) } ,

S {Dν1R(ν2, ν3) + R (T (ν1, ν2), ν3) } = 0 ,

where S { · } denotes the cyclic sum with respect to ν1 , ν2 and ν3 . These formulae are
called Bianchi’s identities.

In an arbitrary coordinate system

T i
jk(y) = Γ i

jk(y) − Γ i
kj(y) ,

R i
jkl(y) = ∂ykΓ i

lj(y) − ∂ylΓ i
kj(y) +

∑
p

Γ i
kp(y)Γ p

lj(y) −
∑

p

Γ i
lp(y) Γ p

kj(y) .

Obviously, T i
jk = −T i

kj and R i
jkl = −R i

jlk . If T ≡ 0 then, by the first Bianchi’s identity,
we also have R i

jkl + R i
ljk + R i

klj = 0 .
When T ≡ 0 and R ≡ 0 the linear connection is flat, i.e., Γ i

jk ≡ 0 in any n.c.s. When
T ≡ 0 the connection is said to be symmetric. If the connection is symmetric, then for
any fixed point x ∈ M there exists a coordinate system such that Γ i

jk(x) = 0. It is valid,
for example, in any n.c.s. with origin x. In the general case the identity (1.3) implies that
Γ i

jk = T i
jk/2 at the origin of a n.c.s.

In (1.2) one can replace Γ i
jk by (Γ i

jk+Γ i
kj)/2 . Thus, for an arbitrary given connection Γ

there exists a symmetric connection generating the same geodesics and normal coordinate
systems; in a sense these objects are independent of the torsion tensor.
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6. We say that a tensor F is a polynomial of tensors F(j) if F =
∑

k ck G(k) , where ck

are constants and G(k) are tensor products of F(j) or the traces of tensor products of F(j)

with respect to a part of indices. Differentiating the identity (1.3) with respect to y one
can prove the following simple lemma.

Lemma 1.1. Let y = {yk} be a n.c.s. with origin x associated with coordinates {xk} .
Then {∂α

y Γ i
jk

∣∣∣
y=x

}|α|=q is a (1, q + 2)-tensor in the coordinates {xk} which coincides

with a polynomial of the torsion and curvature tensors and their symmetric covariant
differentials.

In particular, if Γ is symmetric then (1.3) implies

∂ylΓ i
jk(x) + ∂yj Γ i

kl(x) + ∂ykΓ i
lj(x) = 0 ,

and therefore
∂ylΓ i

jk(x) =
1
3

(
R i

jlk(x) + R i
klj(x)

)
. (1.8)

7. When M is a Riemannian (or, more generally, pseudo-Riemannian) manifold, we
denote the corresponding metric tensor by {gij} , and the inverse metric tensor — by
{gij} . Then |ξ|x :=

(∑
i,j gij(x) ξi ξj

)1/2 is the length of the covector ξ ∈ T ∗y M .
The Laplace operator ∆ on M is defined in local coordinates by the formula

∆u(x) = g−1(x)
∑

i,j

∂xi

(
g(x) gij(x) ∂xj u(x)

)
,

where g := | det{gij}|1/2 . The “function” g is a smooth density on M , which is called the
canonical Riemannian density . The operator gκ∆ g−κ is said to be the Laplace operator
in the space of κ-densities; we shall also denote it by ∆ .

A linear connection of a Riemannian manifold is said to be metric if the metric tensor
is parallel. There exists a unique symmetric metric connection which is called the Levi–
Civita connection. When Γ is the Levi–Civita connection, the function S =

∑
j,k gjkRjk

is said to be the scalar curvature of M .
The curvature tensor of the Levi–Civita connection possesses some extra properties.

In particular,
(1) the corresponding Ricci tensor is symmetric;
(2) Rij,kl = Rkl,ij = −Rji,kl = −Rij,lk , where Rij,kl :=

∑
p gipR

p
jkl .

2. Horizontal distribution and horizontal differentials

1. Let ν =
∑

νk(y) ∂yk be a vector field on M . Then by (1.1)

∇ν =
∑

k

νk(y) ∂yk +
∑

i,j,k

Γ i
kj(y) νk(y)ηi ∂ηj (2.1)

is a vector field on T ∗M . The vector field (2.1) is said to be the horizontal lift of ν .
The horizontal lifts generate a n-dimensional subbundle HT ∗M ⊂ TT ∗M which is called
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the horizontal distribution. The vertical vector fields ∂η1 , . . . , ∂ηn
generate another n-

dimensional subbundle V T ∗M ⊂ TT ∗M which is called the vertical distribution.
Since HT ∗M ∩ V T ∗M = {0} , we have TT ∗M = HT ∗M + V T ∗M . Obviously, the

horizontal distribution depends on the choice of Γ whereas the vertical distribution does
not.

Lemma 2.1. The horizontal distribution HT ∗M is involutive if and only if the connec-
tion Γ is curvature free, and it is Lagrangian if and only if Γ is symmetric.

Proof. In an arbitrary coordinate system we have

[∇k,∇l] =
∑

i,j

R i
jkl(y) ηi ∂ηj

, 〈 dy ∧ dη , ∇k ∧∇l 〉 =
∑

i

T i
kl(y) ηi .

The second identity is equivalent to the second statement of the lemma. The first identity
implies that the commutator of any horizontal vector fields is also a horizontal vector field
if and only if R ≡ 0. It is equivalent to the first statement. ¤

A curve in the cotangent bundle T ∗M is said to be horizontal (or vertical) if its tangent
vectors belong to HT ∗M (or V T ∗M). For any given curve y(t) ⊂ M and covector
η0 ∈ T ∗y(0)M there exists just one horizontal curve

(
y(t), η(t)

) ⊂ T ∗M starting at the
point (y(0), η0) . It is defined in local coordinates y by the equations

d

dt
ηj(t) −

∑

i,k

Γ i
kj

(
y(t)

)
ẏk(t) ηi(t) = 0 , j = 1, . . . , n .

The curve
(
y(t), η(t)

)
is said to be the horizontal lift of y(t) . The corresponding linear

transformation η0 → η(t) is called the parallel displacement along the curve y(t). By
duality horizontal curves and parallel displacements are defined in the tangent bundle
TM , and then in all the tensor bundles over M .

Let F be a tensor and ν be a vector field on M . Then

DνF = lim t→0(F − Ft)/t , (2.2)

where Ft is the tensor obtained from F by the parallel displacement along the integral
curves of ν . If F is a (p, 0)-tensor and

F(y, η) =
∑

i1,...,ip

F i1,...,ip(y) ηi1 . . . ηip

is the corresponding polynomial on T ∗M , then

∇ν F(y, η) =
∑

i1,...,ip

DνF i1,...,ip(y) ηi1 . . . ηip . (2.3)

Remark 2.2. The equality (2.2) implies that a curve y(t) is a geodesic if and only if the
curve

(
y(t), ẏ(t)

) ∈ TM is horizontal.
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2. Let Φy,x : T ∗x M → T ∗y M be the parallel displacement along the geodesic γy,x and
Υy,x = |detΦy,x|. Obviously, Φx,y = Φ−1

y,x, Υx,y = Υ−1
y,x, and Υy,x is a density in y and a

(−1)-density in x.
Let y = {yk} be the n.c.s. with origin x associated with coordinates {xk} . We denote

by Φx(y) and Υx(y) = | detΦx(y)| the n × n-matrix-function and the function which
represent in the chosen coordinates Φy,x and Υy,x respectively. Since the curve (γy,x, γ̇y,x)
is horizontal, the explicit formulae (1.4) imply

∑

j

(yj − xj) (Φx)i
j(y) = (yi − xi) . (2.4)

By the definition of parallel displacement

r ∂r(Φx)i
j(y) =

∑

k,l

(yk − xk) Γ l
kj(y) (Φx)i

l(y) , Φx(y)|y=x = I , (2.5)

and then by the Liouville formula

r ∂rΥx(y) =
∑

k,l

(yk − xk) Γ j
kj(y)Υx(y) , Υx(y)|y=x = 1 , (2.6)

where
r = |y − x| , ∂r = r−1

∑

k

(yk − xk) ∂yk .

From (2.5) and (1.3) we obtain by straightforward calculation

r ∂2
r

(
r (Φx)i

j(y)
)

= r ∂r

(∑

k

(yk − xk)T l
kj(y) (Φx)i

l(y)
)

−
∑

k,m

(yk − xk) (ym − xm)R l
kjm(y) (Φx)i

l(y) . (2.7)

The sets of values of the derivatives {∂α
y Φx(y)}|α|=q and {∂α

y Υx(y)}|α|=q at the point
y = x are (1, q + 1)-tensors and (0, q)-tensors respectively. By Lemma 1.1 these ten-
sors are polynomials in the curvature and torsion tensors and their symmetric covariant
differentials. From (2.5) and (2.6) it follows that

∂yk(Φx)i
j(y)

∣∣
y=x

= Γ i
kj(y)

∣∣
y=x

=
1
2

T i
kj(x) , (2.8)

∂ykΥx(y)
∣∣
y=x

=
∑

j

Γ j
kj(y)

∣∣∣
y=x

=
1
2

∑

j

T j
kj(x) . (2.9)

The values of the higher order derivatives of Φx(y) and Υx(y) at y = x can be easily
derived from (2.7). In particular, if Γ is symmetric then we obtain

∂yk∂yl(Φx)i
j(y)

∣∣
y=x

= − 1
6

(
R i

kjl(x) + R i
ljk(x)

)
, (2.10)

∂yk∂ylΥx(y)
∣∣
y=x

= − 1
6

(
Rkl(x) + Rlk(x)

)
. (2.11)
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Remark 2.3. Let M be a pseudo-Riemannian manifold and Γ be the Levi–Civita con-
nection. Then in an arbitrary coordinate system ΦT

y,x · {gij(y)} · Φy,x = {gij(x)} and,
consequently, Υy,x = g−1(x) g(y) . Differentiating these equalities with respect to y and
taking into account (2.8)–(2.11), we obtain

∂ykgij(y)
∣∣
y=x

= ∂ykgij(y)
∣∣
y=x

= 0 , ∂ykg(y)
∣∣
y=x

= 0 ,

∂yk∂ylgij(y)
∣∣
y=x

= − 1
3

(
Rikjl(x) + Riljk(x)

)
,

∂yk∂ylg(y)
∣∣
y=x

= − 1
3

g(x)Rkl(x)

in the n.c.s. y = {yk} with origin x associated with coordinates x = {xk} .

3. Let a ∈ C∞(T ∗M) and

∇α
xa(x, ξ) =

dα

dyα
a(y, Φx(y)ξ)

∣∣∣∣
y=x

. (2.12)

Then {∇α
xa}|α|=q is a symmetric (0, q)-tensor, which is called the q-th symmetric hor-

izontal differential of a. The symmetric (p, 0)-tensor {∂α
ξ a(x, ξ)}|α|=p is said to be the

p-th vertical differential of the function a .

Lemma 2.4. In an arbitrary coordinate system {xk} and the associated n.c.s. y = {yk}
with origin x we have

q!
∑

|α|=q

1
α!

(y − x)α dα

dyα
a
(
y, Φx(y)ξ

)

=
∑

16i1,...,iq6n

(yi1 − xi1) . . . (yiq − xiq )
(∇(x)

i1
. . .∇(x)

iq
a
)(

y, Φx(y)ξ
)
, (2.13)

where ∇(x)
k = ∇(x)

k (y, η, ∂y, ∂η) are the horizontal lifts of the vector fields ∂yk .

Proof. Taking into account (2.5) and the identity

d

dyk
a
(
y, Φx(y)ξ

)
=

(
∂yka

)(
y, Φx(y)ξ

)
+

∑

i,j

∂yk(Φx)i
j(y) ξi

(
∂ηj a

)(
y, Φx(y)ξ

)
,

we see that

∑

k

(yk − xk)
d

dyk
a
(
y, Φx(y)ξ

)
=

∑

k

(yk − xk)
(∇(x)

k a
)(

y, Φx(y)ξ
)
.



PSEUDODIFFERENTIAL OPERATORS 11

From here by induction with respect to q we obtain

q!
∑

|α|=q

1
α!

(y − x)α dα

dyα
a
(
y, Φx(y)ξ

)

=
∑

16i1,...,iq6n

(yi1 − xi1) . . . (yiq − xiq )
dq

dyi1 . . . dyiq
a
(
y, Φx(y)ξ

)

=
∑

16i1,...,iq6n

(yi1 − xi1) . . . (yiq − xiq )
(∇(x)

i1
. . .∇(x)

iq
a
)(

y, Φx(y)ξ
)

for all q ∈ N. ¤
Corollary 2.5. The q-th symmetric horizontal differential of a coincides with the sym-
metrization of the tensor {(∇(x)

i1
. . .∇(x)

iq
a
)
(x, ξ)} .

Proof. In view of (2.13)

q!
∑

|α|=q

1
α!

(y − x)α∇α
xa(x, ξ)

=
∑

16i1,...,iq6n

(yi1 − xi1) . . . (yiq − xiq )
(∇(x)

i1
. . .∇(x)

iq
a
)
(x, ξ)

modulo O(|y−x|q+1). Multiplying both sides of this equality by |y−x|−q we obtain that

q!
∑

|α|=q

1
α!

cα∇α
xa(x, ξ) =

∑

16i1,...,iq6n

ci1,...,iq
(∇(x)

i1
. . .∇(x)

iq
a
)
(x, ξ)

for an arbitrary symmetric tensor {ci1,...,iq}16i1,...,iq6n = {cα}|α|=q. This immediately
implies the corollary. ¤

From Corollary 2.5 it follows that a function a ∈ C∞(T ∗M) is constant along any
horizontal curve if and only if all its symmetric horizontal differentials are equal to zero.

Remark 2.6. By (2.3) ∇α
x F(x, ξ) =

∑
i1,...,ip

DαF i1,...,ip(x) ξi1 . . . ξip for any (p, 0)-
tensor F and the corresponding polynomial F(x, ξ) .

Remark 2.7. If the connection Γ is flat then ∇α
x∇β

x = ∇α+β
x and ∂α

ξ ∇β
x = ∇β

x∂α
ξ . In the

general case this is not true. For example,

(∇xk∇xl −∇xl∇xk) a(x, ξ) =
∑

i,j

R i
jkl(x) ξi aξj (x, ξ) ,

(∂ξk∇xl −∇xl∂ξk) a(x, ξ) =
1
2

∑

j

T k
lj (x) aξj (x, ξ) .
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3. Classes of symbols

1. Let us fix a positive function w(y, η) ∈ C∞(T ∗M \ 0) homogeneous in η of degree one
and define 〈η〉y := (1 + w2(y, η))1/2.

Remark 3.1. All the further definitions and results are independent of the choice of w .
If M is a Riemannian manifold then we can take, for example, w(y, η) = |η|y .

For an arbitrary coordinate system y = {yk} let ∇k be the horizontal lifts of the
coordinate vector fields ∂yk . We denote by Sm

ρ,δ(Γ) the class of functions a ∈ C∞(T ∗M)
such that in any coordinates y for all α and i1, . . . , iq

∣∣∂α
η∇i1 . . .∇iq

a(y, η)
∣∣ 6 constK,α,i1,...,iq

〈η〉m+δq−ρ|α|
y (3.1)

when y runs over a compact set K ⊂ M . Such functions are said to be symbols. Analo-
gously, we define the class Sm

ρ,δ(Γ) ⊂ C∞(M × T ∗M) of functions a(z; y, η) such that in
any coordinates y and z for all α, β and i1, . . . , iq

∣∣∂β
z ∂α

η∇i1 . . .∇iqa(z; y, η)
∣∣ 6 constK,α,β,i1,...,iq 〈η〉m+δ|β|+δq−ρ|α|

x (3.2)

when (y, z) runs over a compact set K ⊂ M ×M . We call these functions amplitudes.
For the sake of simplicity by Sm

ρ,δ(Γ) we denote also the classes of tensors, and in this
case we mean that the estimates (3.1) or (3.2) hold for all the components of the tensors
in any local coordinate system.

If a ∈ Sm1
ρ,δ (Γ) and b ∈ Sm2

ρ,δ (Γ) then ab ∈ Sm1+m2
ρ,δ (Γ) and a + b ∈ Sm

ρ,δ(Γ) , where
m = max {m1, m2} . Moreover,

∂α
η a ∈ Sm−ρ|α|

ρ,δ (Γ) , ∇ν1 . . .∇νqa ∈ Sm+δq
ρ,δ (Γ) , ∀ a ∈ Sm

ρ,δ(Γ) , (3.3)

for any smooth vector fields ν1, . . . , νq on M . In particular,

∇αa ∈ Sm+δ|α|
ρ,δ (Γ) , ∀a ∈ Sm

ρ,δ(Γ) . (3.4)

We shall always assume that

0 6 δ < ρ 6 1 .

Obviously, if a ∈ Sm
ρ,δ(Γ) for some Γ then a ∈ Sm

ρ,δ′(Γ
′) with δ′ = max {δ, 1 − ρ} for any

other linear connection Γ′ . Therefore under the traditional condition 1 − ρ 6 δ (which
implies ρ > 1/2 ) the definition of the classes Sm

ρ,δ does not depend on the choice of Γ . In
this case Sm

ρ,δ coincides with the standard class defined in local coordinates.
By Sm we denote the class of symbols a ∈ Sm

1,0 which admit an asymptotic expansion

a(y, η) ∼
∞∑

i=0

am−i(y, η) , 〈η〉y →∞ , (3.5)

with am−i positively homogeneous in η of degree m− i. By analogy, we define the class
Sm of amplitudes (or tensor amplitudes) from C∞(M × T ∗M). For all ρ, δ and Γ the
intersection S−∞ = ∩mSm

ρ,δ(Γ) = ∩mSm consists of functions (or tensors) which vanish
with all their derivatives faster than any power of 〈η〉y as 〈η〉y →∞ .
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2. We shall make frequent use of the following two lemmas. The first of them is a simple
modification of [Proposition 18.1.3, H] and is proved in the same way (analogous lemmas
are proved in [Sh] and [T]).

Lemma 3.2. Let ak ∈ Smk

ρ,δ (Γ) where mk → −∞ as k → ∞ , and m = max {mk} .
Then there exists a function a ∈ Sm

ρ,δ(Γ) unique modulo S−∞ , such that a ∼ ∑
k ak . The

functions ak may depend on some parameters λ ; in this case we assume in addition that
∂α

λ ak ∈ Smk

ρ,δ (Γ) , ∀α .

Lemma 3.3. Let a ∈ Sm
ρ,δ(Γ). Then for all non-negative integers q

a(y, Φy,xξ) =
∑

|α|6q

1
α!

γ̇α
y,x∇α

xa(x, ξ) +
∑

|α|=q+1

γ̇α
y,x ãα(y;x, ξ) , (3.6)

where ãα ∈ Sm+δ|α|
ρ,δ′ (Γ) , δ′ = max {δ, 1− ρ} .

Proof. Let {xk} be some local coordinates and y = {yk} be the associated n.c.s. with
origin x . By Taylor’s formula

a(y, Φx(y)ξ) =
∑

|α|6q

1
α!

(y − x)α∇α
xa(x, ξ)

+ (q + 1)
∑

|α|=q+1

1
α!

(y − x)α

∫ 1

0

(1− t)q dα

dyα
a(y, Φx(y)ξ)

∣∣∣∣
y=zt

dt ,

where zt = x + t(y − x) . Since y − x = t−1(zt − x) we can apply (2.13) with zt instead
of y . Then we obtain (3.6) with

ãα(y; x, ξ) = (q!)−1
∑

i1,... iq+1

∫ 1

0

(1− t)q
(∇(x)

i1
. . .∇(x)

iq+1
a
)
(zt,Φx(zt)ξ) dt ,

where the sum is taken over all the ordered sets of indices i1, . . . iq+1 corresponding to
the multi-index α . In view of (3.3) these functions belong to Sm+δ|α|

ρ,δ′ (Γ) . ¤

Example 3.4. Let M be a Riemannian manifold and Γ be a metric connection. By (2.3)
the function |ξ|2x is constant along the horizontal curves (the same is valid when M is a
pseudo-Riemannian manifold). Therefore for an arbitrary f ∈ C∞(R1) all the horizontal
derivatives of the function f(|ξ|x) are equal to zero. Let f(r) = 0 in a neighbourhood of
r = 0 and |dkf/drk| 6 constk for all k = 0, 1, . . . Then f(|ξ|1−ρ

x ) ∈ S 0
ρ,0(Γ) . However,

when the curvature tensor is not equal to zero, even the first differential dx(|ξ|x) in local
coordinates x can not vanish on an open set. Therefore in any local coordinates we have
only f(|ξ|1−ρ

x ) ∈ S 0
ρ,1−ρ .

Remark 3.5. In [H] L. Hörmander has introduced very general classes of ψDOs in Rn .
The corresponding classes of symbols are defined in terms of a slowly varying Riemannian
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metric on the Euclidean space Rn
x ×Rn

ξ . This Riemannian metric determines a weight
function h (which plays the role of 〈ξ〉−1

x ), and the main results in [H] are obtained under
the assumption h 6 1 . In particular, the standard classes Sm

ρ,δ are generated by the
metric

〈ξ〉2δ |dx|2 + 〈ξ〉−2ρ |dξ|2 , (3.7)

where 〈ξ〉 = (1 + |ξ|2)1/2 . In this case the weight function coincides with 〈ξ〉−1 .
When M = Rn , the classes Sm

ρ,δ(Γ) can be defined in the same manner. The corre-
sponding metric has the form

〈ξ〉2δ |dx|2 + 〈ξ〉−2ρ
∑

j

| dξj −
∑

i,k

Γ i
kj(x) ξi dxk | 2 , (3.8)

where Γ i
kj are the Christoffel symbols. This means that the length of a vector (y, η) ∈

T(x,ξ)(R
n
x ×Rn

ξ ) is defined by the equality

|(y, η)|2(x,ξ) = 〈ξ〉2δ |y|2 + 〈ξ〉−2ρ
∑

j

| ηj −
∑

i,k

Γ i
kj(x) ξi yk | 2 . (3.9)

Assume that Γ i
kj are uniformly bounded with all their derivatives. It can be eas-

ily seen from (3.9) that the metrics (3.7) and (3.8) are equivalent when ρ > 1 − δ . If
1− ρ 6 2δ and, consequently, ρ > 1/3 then the metric (3.8) is slowly varying (i.e., there
exist positive constants c and C such that |(y, η)|(x,ξ) 6 c implies |(z, ζ)|(x+y,ξ+η) 6
C |(z, ζ)|(x,ξ) for all (z, ζ) ∈ R2n). However, when ρ < 1/2 the weight function h corre-
sponding to the canonical Euclidean structure on T ∗Rn = Rn

x ×Rn
ξ , generally speaking,

is not bounded. It is quite possible that the technique developed in [H] can be adapted
to the classes Sm

ρ,δ(Γ) (and other classes of symbols depending on a connection Γ) by
introducing a “proper” structure on T ∗Rn .

4. Representation of ψDOs by invariant oscillatory integrals

1. Let A : C∞0 (M ; Ωκ) → C∞(M ; Ωκ) be a linear operator with the Schwartz kernel
A(x, y). The operator A is said to be pseudodifferential if

(1) A(x, y) is smooth outside the diagonal in M ×M ;
(2) in each coordinate patch U×U ⊂ M×M the kernel A(x, y) is represented modulo

a smooth function by an oscillatory integral of the form

∫

Rn

e(x−y)·θ a(x, y, θ) dθ ,

where a(x, y, θ) is an amplitude from some coordinate class Sm
ρ,δ′ with ρ, δ′ ∈ [0, 1]

(we do not assume that ρ > δ′).
A ψDO A is said to be properly supported if both projections suppA → M are

proper maps (a continuous map is called proper if the inverse image of any compact set is
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compact). A properly supported ψDO acts from C∞0 (M ; Ωκ) into C∞0 (M ; Ωκ) and from
C∞(M ; Ωκ) into C∞(M ; Ωκ) .

We denote by Ψ−∞(Ωκ) the class of operators with smooth kernels acting in the space
of κ-densities. Clearly, an arbitrary ψDO can be represented as the sum of a properly
supported ψDO and an operator from Ψ−∞(Ωκ) (whose kernel is equal to zero in a
neighbourhood of the diagonal).

Let Ψm(Ωκ) be the class of ψDOs acting in the space of κ-densities such that the
amplitudes in the corresponding local oscillatory integrals belong to Sm. These ψDOs are
said to be classical. In particular, differential operators are properly supported classical
ψDO, and their local amplitudes are polynomials with respect to the variables θ .

2. Let V be some sufficiently small neighbourhood of the diagonal in M × M , and
zτ = zτ (x, y) = γy,x(τ) where τ ∈ [0, 1] (here and further on τ is considered as a
parameter). We introduce the phase functions

ϕτ (x, ζ, y) = −〈γ̇y,x(τ), ζ〉 , (x, y) ∈ V , ζ ∈ T ∗zτ
M .

Obviously, the phase functions ϕτ are linear in ζ. If {yk} is the same coordinate system
as {xk} then by (1.5)

ϕ0(x, ζ, y) ∼ (x− y) · ζ − 1
2

∑

i,j,k

Γ k
ij(x) (yi − xi) (yj − xj) ζk

−
∑

k

∑

|α|>3

1
α!

Γ̃k
α(x) (y − x)α ζk , y → x . (4.1)

If {yk} is the n.c.s. with origin x associated with coordinates {xk} then by (1.4)

ϕτ (x, ζ, y) = (x− y) · ζ , ∀τ ∈ [0, 1] , (4.2)

where we take the components of ζ corresponding to the y-coordinates. Since the curve
(γy,x, γ̇y,x) is horizontal, we have for all τ, s ∈ [0, 1]

ϕτ (x, ζ, y) = −ϕ1−τ (y, ζ, x, ) , ϕτ (x, ζ, y) = ϕs(x, Φzs,zτ ζ, y) . (4.3)

Remark 4.1. In the classical theory of ψDOs one deals with phase functions of the form
(4.2) assuming, however, that the coordinates {yk} are the same as {xk} .

We associate with a symbol a ∈ Sm
ρ,δ(Γ) the oscillatory integral

A(x, y) = pκ,τ

∫
eiϕτ (x,ζ,y)a(zτ , ζ) d̄ζ , (x, y) ∈ V , (4.4)

where d̄ζ = (2π)−ndζ and

pκ,τ = pκ,τ (x, y) = Υ1−κ
y,zτ

Υ−κzτ ,x
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is a weight factor. In any local coordinates x and y the oscillatory integral (4.4) admits
the standard regularization (see, for example, [Sh]) which allows us to interpret it as
a distribution defined on V . This distribution is also denoted by A(x, y). It is easy
to see that (when we change coordinates) A(x, y) behaves as a κ-density in x and a
(1− κ)-density in y.

Let U × U ⊂ V be a coordinate patch, and {yk} be the same coordinates as {xk} .
From (4.1) and (4.3) it follows that

ϕτ (x, ζ, y) = (x− y) ·Ψτ ζ , ∀(x, y) ∈ U × U ,

where Ψτ = Ψτ (x, y) is a smooth non-degenerate n× n-matrix-function. Changing vari-
ables ζ̃ = Ψτ ζ in (4.4), we obtain

A(x, y) = pκ,τ | detΨτ |−1

∫
ei(x−y)·ζ a(zτ , Ψ−1

τ ζ̃) d̄ζ̃ , (x, y) ∈ U × U .

The amplitude pκ,τ | detΨτ |−1 a(zτ , Ψ−1
τ ζ̃) belongs to the coordinate class Sm

ρ,δ′ with
δ′ = max {δ, 1 − ρ} . Therefore A(x, y) coincides in V with the Schwartz kernel of a
ψDO A . This ψDO acts in the space of κ-densities on M , and it is determined uniquely
modulo an operator with smooth kernel.

Definition 4.2. We denote by Ψm
ρ,δ(Ω

κ ,Γ, τ) the class of ψDOs A acting in the space of
κ-densities whose Schwartz kernels are represented in a neighbourhood of the diagonal
by oscillatory integrals (4.4) with a ∈ Sm

ρ,δ(Γ). The function a from (4.4) is called the τ -
symbol of the ψDO A and it is denoted by σA,τ . The functions σA = σA,0 and σW

A = σA,1/2

are said to be the symbol and the Weyl symbol of the ψDO A respectively.

We can replace the symbol in (4.4) by an amplitude a(zs; zτ , ζ) ∈ Sm
ρ,δ(Γ) where

s ∈ [0, 1]. In this case A coincides in V with the Schwartz kernel of a ψDO as well. If
the amplitude (or symbol) a is from S−∞ then the oscillatory integral (4.4) determines
a smooth density and the corresponding ψDO belongs to Ψ−∞(Ωκ) .

Remark 4.3. Since the definition of geodesics depends only on the symmetric part of
the Christoffel symbols, the phase functions ϕτ are independent of the torsion tensor
T , and the τ -symbols σA,τ of a ψDO A are independent of T modulo some inessential
factor coming from pκ,τ . However, when ρ < 1/2 the classes Sm

ρ,δ(Γ) and, consequently,
Ψm

ρ,δ(Ω
κ , Γ, τ) depend on T .

Proposition 4.4. For all τ, s ∈ [0, 1] the classes Ψm
ρ,δ(Ω

κ ,Γ, τ) and Ψm
ρ,δ(Ω

κ ,Γ, s) coin-
cide, and

σA,s(x, ξ) ∼
∑ 1

α!
(τ − s)|α|Dα

ξ∇α
xσA,τ (x, ξ) , 〈ξ〉x →∞ .

Proof. Let us change variables ζ = Φzτ ,zsζ
′ in (4.4). Then, in view of (4.3), we obtain

the oscillatory integral

A(x, y) = pκ,s

∫
eiϕs(x,ζ′,y) a(zτ ,Φzτ ,zsζ

′) d̄ζ ′ . (4.5)
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We substitute in (4.5) the expansion (3.6) with x = zs and y = zτ . Then using the
equality

γ̇zτ ,zs
eiϕs = (τ − s) γ̇y,x(s) eiϕs = (s− τ) Dζ′e

iϕs ,

we replace γ̇α
zτ ,zs

by (s − τ)|α|Dα
ζ′e

iϕs and integrate by parts with respect to ζ ′ . This
procedure transforms the oscillatory integral (4.5) into an oscillatory integral with the
same phase function and with an amplitude of the form

∑

|α|6q

1
α!

(τ − s)|α|Dα
ζ′∇α

z a(zs, ζ
′) + rq+1(zs, zτ , ζ ′) ,

where rq+1 ∈ Sm−(ρ−δ)(q+1)
ρ,δ′ . Since ρ > δ the oscillatory integral with the amplitude

rq+1 defines a smoother and smoother density as q →∞. ¤

In the same way one can prove

Proposition 4.5. Let τ, s ∈ [0, 1] and a be an amplitude from Sm
ρ,δ(Γ) . Then the

oscillatory integral

A(x, y) = pκ,τ

∫
eiϕτ (x,ζ,y)a(zs; zτ , ζ) d̄ζ

coincides with the Schwartz kernel of a ψDO A ∈ Ψm
ρ,δ(Ω

κ ,Γ, τ) such that

σA,τ (x, ξ) ∼
∑ 1

α!
(s− τ)|α| Dα

ξ∇α
y a(y; x, ξ)

∣∣
y=x

, 〈ξ〉x →∞ , (4.7)

σA,s(x, ξ) ∼
∑ 1

α!
(τ − s)|α|Dα

η∇α
y a(x; y, η)

∣∣∣
(y,η)=(x,ξ)

, 〈ξ〉x →∞ .

By Proposition 4.4 the classes Ψm
ρ,δ(Ω

κ , Γ, τ) do not depend on the parameter τ ,
and further on we denote them by Ψm

ρ,δ(Ω
κ , Γ). If 1 − ρ 6 δ then, in addition, the

classes Ψm
ρ,δ(Ω

κ ,Γ) are independent of Γ and coincide with the standard classes of ψDOs
Ψm

ρ,δ(Ω
κ) defined in local coordinates. In this case the choice of the connection Γ de-

termines only the definition of the full symbols. For δ < 1 − ρ, generally speaking, the
classes of ψDOs corresponding to different connections Γ are different.

The symbol σA of a ψDO A ∈ Ψm
ρ,δ(Ω

κ , Γ) is determined uniquely modulo S−∞. In-
deed, we can easily find σA calculating the asymptotic behaviour of the Fourier transform
Fy→η

(
p−1
κ,0A(x, y)

)
in the n.c.s. y with origin x associated with some coordinates {xk}.

Therefore Proposition 4.4 implies the following

Corollary 4.6. For any κ ∈ R1, τ ∈ [0, 1] the map A → σA,τ is an isomorphism of the
factor-classes Ψm

ρ,δ(Ω
κ ,Γ) / Ψ−∞(Ωκ) and Sm

ρ,δ(Γ) /S−∞.
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5. Symbols of differential operators

If A is a differential operator in the space of κ-densities then its τ -symbols are poly-
nomials in ζ . In an arbitrary coordinate system {xk} and the associated n.c.s. y = {yk}
with origin x we have

(Au)(x) = σA(y,Dy)
(
Υ1−κ

x (y) u(y)
) ∣∣

y=x
, ∀u ∈ C∞0 (M ; Ωκ) , (5.1)

σA(x, ξ) = A(y,Dy)
(
ei(y−x)·ξ Υκ−1

x,κ (y)
)∣∣∣

y=x
, (5.2)

where Υκ−1
x,κ is the κ-density which coincides in the coordinates y with Υκ−1

x . This
observation enables us to calculate the symbols of differential operators.

Example 5.1. If A is the operator of multiplication by a smooth function q then all its
τ -symbols are equal to q(x) .

Example 5.2. Let M be a pseudo-Riemannian manifold, Γ be the Levi–Civita connec-
tion, and ∆ be the Laplace operator in the space of κ-densities. Taking into account
Remark 2.3, we obtain from (5.2) that for all κ ∈ R1

σ∆(x, ξ) = − |ξ|2x +
1
3

S(x)

where S(x) is the scalar curvature. Since the function |ξ|2x is constant along the horizontal
curves (Example 3.3), by Proposition 4.4 σ∆,τ = σ∆ , ∀τ .

Example 5.3. Let A(κ) = A(κ)(y, Dy) be the Lie differentiation along a vector field
ν(y) = {νj(y)} in the space of κ-densities. In an arbitrary local coordinate system
y = {yk}

A(κ)u(y) :=
∑

j

νj(y) ∂yj u(y) + κ
(∑

j

∂yj νj(y)
)

u(y)

=
∑

j

νj(y) ∂yj u(y) + κ
( ∑

j

Djν
j(y) −

∑

j,k

Γ j
jk(y) νk(y)

)
u(y) ,

where Djν
j(y) = ∂yj ν

j(y) +
∑

k Γ j
jk(y) νk(y) is the j-th component of the covariant

derivative of ν with respect to the coordinate vector field ∂yj . From (5.2) and (2.9) it
follows that

σA(κ)(x, ξ) = i
∑

j

νj(x) ξj + κ
∑

j

Djν
j(x) + (κ − 1/2)

∑

j,k

T j
kj(x) νk(x) ,

and then by Proposition 4.4

στ,A(κ)(x, ξ) = i
∑

j

νj(x) ξj + (κ − τ)
∑

j

Djν
j(x) + (κ − 1/2)

∑

j,k

T j
kj(x) νk(x) .
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Example 5.4. Let us assume that on M there exist n smooth linearly independent
vector fields ν1, . . . , νn . We denote by A

(κ)
l = A

(κ)
l (y,Dy) the Lie differentiations along

νl in the space of κ-densities (see Example 5.3) and define

Aα
(κ)(y, Dy) =

∑

i1,...,iq

A
(κ)
i1

. . . A
(κ)
iq

, q = |α| ,

where the sum is taken over all the ordered sets of indices i1, . . . , iq corresponding to the
multi-index α = {α1, . . . αn} . In other words, Aα

(κ) is the symmetrized composition of

the operators A
(κ)
ik

.
For s ∈ R1 let sΓ be the linear connection of M such that sDνk

νj = s [νk, νj ] . Here
and later on we mark the objects corresponding to sΓ with the left lower index s which
is omitted when s = 0 .

In an arbitrary coordinate system the Christoffel symbols of sΓ are equal to

sΓ i
kj(y) = (s− 1)

∑

l

ν̃l
j(y) ∂ykνi

l (y) − s
∑

l

ν̃l
k(y) ∂yj νi

l (y) .

Here νi
l are the components of vector fields νl and ν̃l

k are the elements of inverse matrix,
i.e.,

∑
l ν̃l

k(y) νi
l (y) ≡ δi

k where δi
k are the Kronecker symbols. By (1.6) and (1.7) we have

sT
i

kj(y) = (2s− 1)
∑

i′,j′,k′
C i′

k′j′(y) νi
i′(y) ν̃j′

j (y) ν̃k′
k (y) , (5.3)

sR
i
kjl(y) = s (1− s)

∑

i′,j′,k′,l′
S i′

k′j′l′(y) νi
i′(y) ν̃j′

j (y) ν̃k′
k (y) ν̃l′

l (y) , (5.4)

where C i
jk and S i

jkl are the functions on M defined by the equalities

[νj , νk] =
∑

i

C i
jk νi , [ νj , [νk, νl] ] =

∑

i

S i
jkl νi .

For all s the connections sΓ generate the same geodesics and n.c.s. The geodesics coincide
with the integral curves of the vector fields

∑
l c

lνl , where cl are arbitrary constants.
If s = 0 then all the covariant differentials Dανl of the vector fields νl are equal to

zero. In this case the parallel displacement along a curve connecting points x and y is
independent of the curve and is determined only by these points. In arbitrary coordinates
{xk} and {yj} we have (Φy,x)k

j =
∑

l ν̃
l
j(y) νk

l (x) .
Let {xk} be a coordinate system such that νk

l (x) = δk
l , and y = {yk} be the associated

n.c.s. with origin x . Then by (2.4)

∑

l

(yl − xl) νk
l (y) = (yk − xk) . (5.5)
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The equalities (5.2) and (5.5) imply that the sΓ-symbol of Aα
(κ) is equal to

sσAα
(κ)

(x, ξ) =
∑

i1,...,iq

∂̃i1 . . . ∂̃iq

(
ei(y−x)·ξ(

κΥx(y)
)−1

)∣∣∣
y=x

, q = |α| , (5.6)

where ∂̃k = ∂yk + s (κ − 1)
∑

j C j
kj(y) and the sum is taken over all the ordered sets of

indices i1, . . . , iq corresponding to α . Indeed, from the definition of Lie differentiation
and (5.5) it follows that

∑

l

(yl − xl)Al(y,Dy)
(
f(y) sΥκ−1

x,κ (y)
)

= sΥκ−1
x,κ (y) κΥx(y)

∑

l

(yl − xl) ∂̃l

(
f(y)

(
κΥx(y)

)−1
)

for all f ∈ C∞(M) . By induction with respect to q we derive
∑

|α|=q

1
α!

(y − x)α Aα
(κ)(y,Dy)

(
ei(y−x)·ξ

sΥκ−1
x,κ (y)

)
= sΥκ−1

x,κ (y) κΥx(y)

×
∑

i1,...,iq

(yi1 − xi1) . . . (yiq − xiq ) ∂̃i1 . . . ∂̃iq

(
ei(y−x)·ξ(

κΥx(y)
)−1

)
, ∀q ∈ N .

Now (5.6) is proved by the same procedure as Corollary 2.5.
From (2.7) and (5.5) it follows that

r ∂2
r

(
r ν̃l

j(y)
)

= − r ∂r

(∑

i,k

(yk − xk)C l
ki(y) ν̃i

j(y)
)

(5.7)

(here we take s = 0 ). Let us assume that

C i
jk ≡ 0 , ∀i > k . (5.8)

Then the solution {ν̃i
j(y)} of the equation (5.7) with the initial condition {ν̃i

j(x)} = I is
a triangular matrix whose diagonal elements are equal to 1. Therefore in our coordinates

T i
jk ≡ 0 , ∀i > j ; R i

jkl ≡ 0 , ∀i > l .

Now (2.7) implies that for all s the matrices sΦx(y) are of the same form as {ν̃i
j(y)} .

Thus, sΥx ≡ 1 , ∀s ∈ R1 , and by (5.6)

sσAα
(κ)

(x, ξ) = i|α|σα(x, ξ) , ∀s,κ ∈ R1 , (5.9)

where
σα = (σ1)α1 . . . (σn)αn , σl = σl(x, ξ) = 〈νl(x), ξ〉 . (5.10)

Note that the functions σα are constant along the horizontal curves generated by the
connection Γ . Therefore under the condition (5.8) all the τ -symbols of Aα

(κ) corresponding
to Γ coincide with i|α|σα .

Remark 5.5. When the functions C i
jk are constant, the vector fields νl form the basis

of a Lie algebra, and then C i
jk are said to be the structure constants. In this case the

condition (5.8) implies that the corresponding Lie algebra is nilpotent. Conversely, any
nilpotent n-dimensional Lie algebra admits a basis {νl} satisfying (5.8) (see, for example,
[V]).
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6. Transformation formulae for symbols

1. All the τ -symbols of a classical ψDO A ∈ Ψm(Ωκ) admit asymptotic expansions of the
form (3.5). In the classical theory of ψDOs it is proved that the leading homogeneous term
in these expansions does not depend on τ , and that it is a correctly defined function on
the cotangent bundle. This function is said to be the principal symbol of A. The second
term in the expansion of the Weyl symbol σW

A is called the subprincipal symbol . The
subprincipal symbol is a correctly defined function on T ∗M if κ = 1/2, i.e., if A is a
ψDO in the space of half-densities.

Analogous results are also obtained under our approach. We have defined all the
symbols as functions on the cotangent bundle. In the next subsection we prove a trans-
formation formula which implies that the principal symbol does not depend on Γ, and
the subprincipal symbol is independent of Γ when κ = 1/2 .

2. Let Γ̃ be another linear connection of M and D l
kj = Γ l

kj − Γ̃ l
kj be the deformation

tensor. Further on all the objects corresponding to Γ̃ are marked by ˜.
Let y = {yk} and ỹ = {ỹk} be the n.c.s. with origin x associated with some coordinates

{xk} , and J(ỹ) = { ∂yj/∂ỹk } be the Jacobi matrix. We introduce the functions

Θ(x, ỹ, ξ) = ei(y(ỹ)−ỹ)·ξ Υκ−1
x (y(ỹ)) Υ̃1−κ

x (ỹ) | detJ(ỹ)|κ ,

P (κ)
α (x, ξ) = ∂α

ỹ Θ(x, ỹ, ξ)
∣∣
ỹ=x

.

Obviously, P
(κ)
α (x, ξ) are polynomials in ξ defined on T ∗M . Since y(ỹ) − ỹ has a the

second order zero at the point ỹ = x , the degrees d
(κ)
α of the polynomials P

(κ)
α are

estimated from above by |α|/2 .

Proposition 6.1. Let A ∈ Ψm
ρ,δ(Ω

κ, Γ̃) with ρ > 1/2 . Then A ∈ Ψm
ρ,δ(Ω

κ ,Γ) and

σA(x, ξ) ∼
∑
α

1
α!

P (κ)
α (x, ξ)Dα

ξ σ̃A(x, ξ) . (6.1)

In particular,

σA(x, ξ) = σ̃A(x, ξ) + (2i)−1
∑

j,k,l

∂ξk

(
D j

kl(x)ξj ∂ξl
σ̃A(x, ξ)

)

+ (2i)−1 (2κ − 1)
∑

j,l

D l
jl(x) ∂ξj σ̃A(x, ξ) (mod Sm+2−4ρ

ρ,δ ) , (6.2)

σW
A (x, ξ) = σ̃W

A (x, ξ)

+ (2i)−1 (2κ − 1)
∑

j,l

D l
jl(x) ∂ξj σ̃

W
A (x, ξ) (mod Sm−2r

ρ,δ ) , (6.3)

where r = min {ρ− δ, 2ρ− 1} .
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Proof. First of all, let us note that (6.1) is an asymptotic series because ρ > 1/2 and
d
(κ)
α 6 |α|/2 . The first two terms of this series are written in (6.2); they are easily

obtained from (2.9) and the equality

∂2yj

∂ỹk ∂ỹl

∣∣∣∣
ỹ=x

= D j
kl(x) +

1
2

T̃ j
kl(x) − 1

2
T j

kl(x)

which follows from (1.1). Proposition 4.4 and (6.2) immediately imply (6.3). Thus, it
remains to prove (6.1).

Let A be the Schwartz kernel of the operator A, and for sufficiently close x and y let
Ψ̃(x, y) be the non-degenerate matrix defined by the formula

x − ỹ(y) = Ψ̃T (x, y) (x− y) .

For close x and y we have in the coordinates ỹ

A(x, ỹ) = Υ̃1−κ
x (ỹ)

∫
ei(x−ỹ)·ξ σ̃A(x, ξ) d̄ξ .

Therefore A(x, y) coincides in the coordinates y with

Υ̃1−κ
x (ỹ(y)) | detJ−1(ỹ(y))|1−κ

∫
ei(x−y)·Ψ̃(x,y)ξ σ̃A(x, ξ) d̄ξ = Υ̃1−κ

x (ỹ(y))

× | detJ(ỹ(y))|κ−1 |det Ψ̃(x, y)|−1

∫
ei(x−y)·ξ σ̃A

(
x, Ψ̃−1(x, y)ξ

)
d̄ξ , (6.4)

i.e., with an oscillatory integral of the form (4.4) with the phase function corresponding
to the connection Γ and the amplitude

Υ̃1−κ
x (ỹ(y)) | detJ(ỹ(y))|κ−1 Υκ−1

x (y) |det Ψ̃(x, y)|−1 σ̃A
(
x, Ψ̃−1(x, y) ξ

)

This amplitude belongs to Sm
ρ,δ′(Γ) where δ′ = max {δ, 1 − ρ} . Since δ′ < ρ , from

Proposition 4.5 it follows that A ∈ Ψm
ρ,δ′(Ω

κ , Γ) , and by (4.7)

σA(x, ξ) ∼
∑
α

P̃ (κ)
α (x, ξ) Dα

ξ σ̃A(x, ξ) , (6.5)

where P̃
(κ)
α are some polynomials in ξ independent of the symbol σ̃A. Clearly, (6.5)

implies σA ∈ Sm
ρ,δ(Γ) , and so A ∈ Ψm

ρ,δ(Ω
κ ,Γ) .

In order to prove the explicit formula (6.1) let us assume that A is a differential
operator. By (5.2) we have

σA(x, ξ) = A(y, Dy)
(
ei(y−x)·ξ Υκ−1

x,κ (y)
)
,

and then by (5.1)

σA(x, ξ) = σ̃A(ỹ, Dỹ)
(
ei(ỹ−x)·ξ Θ(x, ỹ, ξ)

) ∣∣∣
ỹ=x

=
1
α!

∑
α

Dα
ξ σ̃A(x, ξ) ∂α

ỹ Θ
∣∣
ỹ=x

.

Since P̃α are independent of A , from here and (6.5) it follows that P̃
(κ)
α = P

(κ)
α . ¤
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3. The diffeomorphism G : M → M is said to be an affine transformation if the induced
transformation of the cotangent bundle

T ∗M 3 (x, ξ) → (
G(x), (dGT )−1(x) ξ

) ∈ T ∗M (6.6)

transfers any horizontal curve into a horizontal curve. In this case G completely preserves
all the objects generated by the linear connection such as the geodesics, the horizontal
differentials, etc. (see [KN]). In particular,

zτ

(
G(x), G(y)

)
= G

(
zτ (x, y)

)
, (6.7)

ϕτ

(
G(x), (dGT )−1ζ,G(y)

)
= ϕτ (x, ζ, y) , (6.8)

ΥG(y),G(x) = |det dG(y)|−1 Υy,x | det dG(x)| . (6.9)

Proposition 6.2. Let G : M → M be an affine transformation and

Gk : u(x) → |det dG(x)|κ u(G(x))

be the corresponding operator acting in the space of κ-densities on M . Then for any
A ∈ Ψm

ρ,δ(Ω
κ ,Γ) the operator Gκ AG−1

κ also belongs to Ψm
ρ,δ(Ω

κ , Γ), and its τ -symbol is
equal to σA,τ

(
G(x), (dGT )−1(x) ξ

)
.

Proof. The Schwartz kernel of the operator Gκ AG−1
κ is smooth outside the diagonal and

coincides in some neighbourhood of the diagonal with

| det dG(x)|κ |det dG(y)|1−κ A(
G(x), G(y)

)
= | det dG(x)|κ | det dG(y)|1−κ

× pκ,τ

(
G(x), G(y)

) ∫
eiϕτ(G(x),ζ′,G(y)) σA,τ (z′τ , ζ ′) d̄ζ ′ ,

where z′τ (x, y) = zτ

(
G(x), G(y)

)
and ζ ′ ∈ T ∗z′τ M .

Now changing variables ζ ′ = (dGT )−1(z′τ ) ζ and taking into account (6.7)–(6.9), we
obtain (4.4) with a(zτ , ζ) = σA,τ

(
G(zτ ), (dGT )−1(zτ ) ζ

)
. ¤

Corollary 6.3. Let G : M → M be an affine transformation of M and A be a differential
operator on M acting in the space of κ-densities. Then A = Gκ AG−1

κ if and only if the
τ -symbol σA,τ is invariant with respect to the induced transformation (6.6) for some (and
then for any) τ ∈ [0, 1] .

7. Adjoint operators

1. Let A be a ψDO in the space of κ-densities. We denote by A∗ the formally adjoint
operator (with respect to the form (u, v) =

∫
M

u v̄ dx ) acting in the space of (1 − κ)-
densities on M . When κ = 1/2 and A = A∗, we say that the operator A is formally
self-adjoint.



24 Yu. SAFAROV

Theorem 7.1. If A ∈ Ψm
ρ,δ(Ω

κ , Γ) then A∗ ∈ Ψm
ρ,δ(Ω

1−κ , Γ) and

σA∗,τ (x, ξ) ∼
∑
α

1
α!

(1− 2τ)|α|Dα
ξ∇α

x σA,τ (x, ξ) , 〈ξ〉x →∞ .

In particular, σW
A∗ (x, ξ) = σW

A (x, ξ) .

Proof. Let A(x, y) and A∗(x, y) be the Schwartz kernels of the operators A and A∗. Then
A∗(x, y) = A(y, x). Since zτ (x, y) = z1−τ (y, x) and Υy,x = Υ−1

x,y , we obtain from (4.4)
that for close x and y

A∗(x, y) = p1−κ,1−τ (x, y)
∫

eiϕ1−τ (x,ζ,y) σA,τ (z1−τ , ζ) d̄ζ ,

where ζ ∈ T ∗z1−τ
M . Therefore A∗ ∈ Ψm

ρ,δ(Ω
1−κ ,Γ) and σA∗,1−τ = σA,τ . Now the theorem

follows from Proposition 4.4. ¤

Theorem 7.1 immediately implies

Corollary 7.2. A differential operator is formally self-adjoint if and only if its Weyl
symbol is real.

8. Composition of ψDOs

1. Let
Υκ(x, y, z) = Υ1−κ

y,z Υ2−κ
z,x Υ1−κ

x,y ,

ψ(x, ξ; y, z) = 〈γ̇y,x, ξ〉 − 〈γ̇z,x, ξ〉 − 〈γ̇y,z,Φz,xξ〉 .

It is easy to see that

Υκ(x, y, x) ≡ 1 , Υκ(x, x, z) = Υκ(x, z, z) = Υz,x , (8.1)

ψ(x, ξ; y, x) = ψ(x, ξ; x, z) = ψ(x, ξ; z, z) = 0 . (8.2)

Let y = {yk} and z = {zk} be the normal coordinate systems with origin x associated
with some coordinates {xk} . We define

P
(κ)
β,γ (x, ξ) =

(
(∂y + ∂z)β∂γ

y

∑

|β′|6|β|

1
β′!

Dβ′

ξ ∂β′
y (eiψΥκ)

)∣∣∣
y=z=x

. (8.3)

The functions P
(κ)
β,γ ∈ C∞(T ∗M) are polynomials in ξ ; we denote their degrees by d

(κ)
β,γ .

Obviously, P
(κ)
0,0 ≡ 1 . From Lemma 1.1, (1.5) and (2.7) it follows that for |β|+ |γ| > 1 the

coefficients of a polynomial P
(κ)
β,γ are components of some tensors, which are polynomials

in the curvature and torsion tensors and their symmetric covariant differentials.
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Lemma 8.1. For an arbitrary connection Γ

d
(κ)
β,γ 6 min { |β|, |γ| } . (8.4)

If Γ is symmetric then

d
(κ)
β,γ 6 min { |β|, |γ|, (|β|+ |γ|)/3 } . (8.5)

If Γ is flat then P
(κ)
β,γ ≡ 0 as |α|+ |β| > 1 .

Proof. By (8.2) ∂β
z ∂γ

y ψ
∣∣
y=z=x

= 0 if |β| = 0 or |γ| = 0 . If |β| > 1 and |γ| > 1 then

∂β
z ∂γ

y ψ(x, ξ; y, z)
∣∣
z=x

= − ∂γ
y∇β

x 〈γ̇y,x , ξ〉 = − ∂γ
y

〈
Dβ

x γ̇y,x , ξ
〉

, (8.6)

where ∇β
x is the symmetric horizontal differential and Dβ is the symmetric covari-

ant differential. Taking into account (1.5), we obtain from (8.6) ∂zj ∂ykψ
∣∣
y=z=x

=∑
p T p

kj(x) ξp /2 . Thus,

ψ(x, ξ; y, z) =
1
2

∑

j,k,p

T p
kj(x) (yk − xk) (zj − xj) ξp

+
1
2

∑

j,k,p

ψ p
kj(x, y, z) (yk − xk) (zj − xj) ξp , (8.7)

where ψ p
kj = 0 at the point y = z = x.

From (8.7) it is clear that in the right hand side of (8.3) ξα can appear (with a factor
which does not vanish at y = z = x) only when we take at least |α| derivatives ∂y and
at least |α| derivatives ∂z for each fixed β′. This implies (8.4). If T p

kj ≡ 0 then, in
addition, the total number of these derivatives must be greater than or equal to 3|α| ,
and therefore (8.5) holds. The third statement of the lemma follows from the fact that
for a flat connection ψ ≡ 0 and Υκ ≡ 1 in any n.c.s. ¤

Proposition 8.2. For an arbitrary connection Γ

P
(κ)
0,γ ≡ 0 , ∀γ 6= 0 , P

(κ)
β,0 ≡ 0 , ∀β 6= 0 , (8.8)

and
P

(κ)
j,k (x, ξ) = (2i)−1

∑
p

T p
jk(x) ξp (8.9)

modulo a function of x . If Γ is symmetric then

P
(κ)
j,k ≡ 1

6
(Rjk + Rkj) − κ

2
(Rjk −Rkj) , (8.10)
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and

P
(κ)
j,kl (x, ξ) = − i

3

∑
p

(
R p

kjl(x) + R p
ljk(x)

)
ξp , (8.11)

P
(κ)
jk,l(x, ξ) =

i

6

∑
p

(
R p

jlk(x) + R p
klj(x)

)
ξp (8.12)

modulo some functions of x .

Proof. The first identity (8.8) immediately follows from (8.1) and (8.2).
In order to prove the second identity (8.8) let us note that

P
(κ)
β,0 (x, ξ) = ∂β

z

( ∑

|β′|6|β|

1
β′!

Dβ′

ξ ∂β′
y (eiψΥκ)

∣∣∣
y=z

)∣∣∣
z=x

and, by (4.1) and (4.2), ∇yψ(x, ξ; z, z) = (I − Φx(z)) ξ. Taking into account (8.1) and
(8.2) we obtain

∑

|β′|6|β|

1
β′!

Dβ′

ξ ∂β′
y (eiψΥκ)

∣∣∣
y=z

= Υx(z)
∑

|β′|6|β|

1
β′!

Dβ′

ξ ∂β′
y eiψ̃

∣∣∣
y=z

,

where ψ̃ = ψ̃(x, ξ; y, z) = (y − z) · ∇yψ(x, ξ; z, z) = (y − z) · (I −Φx(z))ξ. It is clear that

∑

|β′|6|β|

1
β′!

Dβ′

ξ ∂β′
y eiψ̃

∣∣∣
y=z

=
∑

06j1+j2+···+jk6|β|
cj1,j2,...,jk

Tr (I − Φx(z))j1 Tr (I − Φx(z))j2 . . . Tr (I − Φx(z))jk ,

where cj1,j2,...,jk
are some constants depending only on the dimension n and |β|. Therefore

∑

|β′|6|β|

1
β′!

Dβ′

ξ ∂β′
y (eiψΥκ)

∣∣∣
y=z

= Υx(z)
∑

|β′|6|β|

1
β′!

Dβ′

ξ ∂β′
y eiψ̃

∣∣∣
y=z

,

is a polynomial in the eigenvalues λ1, . . . , λn of the matrix I − Φx(z) whose coefficients
depend only on n and |β|. In order to find these coefficients we may assume that Φx(z)
is a diagonal matrix, and then we obtain

Υx(z)
∑

|β′|6|β|

1
β′!

Dβ′

ξ ∂β′
y eiψ̃

∣∣∣
y=z

= (1− λ1) . . . (1− λn)
∑

06k1+···+kn6|β|
λk1

1 . . . λkn
n

(of course, the same equality holds for an arbitrary matrix Φx(z)). By induction in n
one can easily prove that the right hand side coincides with 1 modulo a polynomial in
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λj which contains only the terms of degree higher than |β|. Since Φx(x) = I, we have
λj = O(|x− z|) for all j and, consequently,

∑

|β′|6|β|

1
β′!

Dβ′

ξ ∂β′
y (eiψΥκ)

∣∣∣
y=z

= 1 + O(|x− z||β|+1) .

This implies the second equality (8.8).
Since ψ has a second order zero at y = z = x , the degrees of the polynomials (8.3)

corresponding to |β′| = 1 are equal to zero. For |β′| = 0 we derive from (8.7)

(∂yj + ∂zj )∂yk (eiψ Υκ)
∣∣
y=z=x

= (2i)−1
∑

p

T p
jk(x) ξp

modulo a function of x . This proves (8.9).
Let Γ be symmetric. Then ψ has a third order zero at y = z = x and the first

derivatives of Υ and Φ are equal to zero at the origin of a n.c.s. Therefore

P
(κ)
j,k ≡ (∂yj + ∂zj )∂ykΥκ

∣∣
y=z=x

+
∑

p

(∂yj + ∂zj )∂yk Dξp∂yp(eiψ)
∣∣
y=z=x

≡ ∂yj ∂yk

(
Υκ−1

y,x

)∣∣
y=x

+ ∂zj

(
∂ykΥ1−κ

y,z

∣∣
y=z

)∣∣∣
z=x

+
∑

p

∂zj

(
∂yk∂ypψξp

∣∣
y=z

)∣∣∣
z=x

,

and

P
(κ)
j,kl (x, ξ) = (∂yj + ∂zj )∂yk∂yl(eiψ)

∣∣
y=z=x

= i ∂zj

(
∂yk∂ylψ

∣∣
y=z

)∣∣∣
z=x

,

P
(κ)
jk,l(x, ξ) = (∂yj + ∂zj )(∂yk + ∂zk)∂yl(eiψ)

∣∣
y=z=x

= i ∂zj ∂zk

(
∂ylψ

∣∣
y=z

)∣∣∣
z=x

modulo a a function of x . Now (4.1), (4.2) and (1.8) imply

∂zj

(
∂yk∂ylψ

∣∣
y=z

)∣∣∣
z=x

= − 1
3

∑
p

(
R p

kjl(x) + R p
ljk(x)

)
ξp ,

and (4.1), (4.2) and (2.10) imply

∂zj ∂zk

(
∂ylψ

∣∣
y=z

)∣∣∣
z=x

=
1
6

∑
p

(
R p

jlk(x) + R p
klj(x)

)
ξp .

Thus, we obtain (8.11) and (8.12).
We have
∑

p

∂zj

(
∂yk∂ypψξp

∣∣
y=z

)∣∣∣
z=x

= − 1
3

∑
p

(
R p

kjp(x) + R p
pjk(x)

)
=

1
3

(
2 Rkj(x)−Rjk(x)

)
,
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and, by (2.11),

∂yj ∂yk

(
Υκ−1

y,x

)∣∣
y=x

= (κ − 1) ∂yj ∂ykΥx(y)
∣∣
y=x

=
1− κ

6
(
Rkj(x) + Rjk(x)

)
.

Therefore in order to obtain (8.10) it remains to prove that

∂zj

(
∂ykΥ1−κ

y,z

∣∣
y=z

)∣∣∣
z=x

=
κ − 1

3
(
2 Rkj −Rjk(x)

)
(8.13)

Let {ỹk} be the n.c.s. with origin z associated with coordinates {yk} . Then

∂ykΥ1−κ
y,z

∣∣
y=z

= ∂ỹk

(
|det{∂y/∂ỹ}|κ−1Υ1−κ

z (ỹ)
)∣∣∣

ỹ=z

= ∂ỹk

(
| det{∂y/∂ỹ}|κ−1

)∣∣∣
ỹ=z

= (κ − 1)
∑

p

∂2yp

∂ỹk ∂ỹp

∣∣∣∣
ỹ=z

.

Now from (1.1) it follows that ∂ykΥ1−κ
y,z

∣∣
y=z

= (1 − κ)
∑

p Γ p
kp(z) . This equality and

(1.8) yield (8.13). ¤
2. In this subsection we prove the following two theorems.

Theorem 8.3. Let A ∈ Ψm1
ρ,δ (Ωκ , Γ) , B ∈ Ψm2

ρ,δ (Ωκ, Γ) , and let at least one of these
ψDOs be properly supported. Assume that at least one of the following conditions is
fulfilled :

(1) ρ > 1/2 ;
(2) the connection Γ is symmetric and ρ > 1/3 ;
(3) the connection Γ is flat.

Then AB ∈ Ψm1+m2
ρ,δ (Ωκ , Γ) and

σAB(x, ξ) ∼
∑

α,β,γ

1
α!

1
β!

1
γ!

P
(κ)
β,γ (x, ξ) Dα+β

ξ σA(x, ξ) Dγ
ξ∇α

xσB(x, ξ) (8.14)

as 〈ξ〉x →∞ .

Theorem 8.4. Let A ∈ Ψm1
ρ,δ (Ωκ , Γ) , B ∈ Ψm2

ρ,δ (Ωκ, Γ) , and let at least one of these
ψDOs be properly supported. Assume that A ∈ Ψm1

1,0(Ωκ) or B ∈ Ψm2
1,0(Ωκ) . Then

AB ∈ Ψm1+m2
ρ,δ (Ωκ , Γ) and σAB admits the asymptotic expansion (8.14).

Remark 8.5. Lemma 8.1 implies that under the conditions of Theorem 8.3 or Theorem
8.4 the terms in the right hand side of (8.14) form an asymptotic series.

Remark 8.6. Substituting in (8.14) σA ≡ 1 or σB ≡ 1 we obtain (8.8).

Proof of Theorem 8.3. Since at least one of the operators A and B is properly supported,
the composition AB is a well-defined operator, acting from C∞0 (M ; Ωκ) into C∞(M ; Ωκ) ,
whose Schwartz kernel is smooth outside the diagonal. Let χ ∈ C∞0 (M ×M) be a cut-off
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function which is equal to 0 outside some small neighbourhood of the diagonal and to 1
in a smaller neighbourhood. Then the kernel of the operator AB is represented modulo
C∞ by the oscillatory integral

∫
eiϕ0(x,ξ;z)+iϕ0(z,ζ;y) χ(x, z) χ(z, y)σA(x, ξ)σB(z, ζ)Υ1−κ

y,z Υ1−κ
z,x d̄ζ dz d̄ξ . (8.15)

Changing variables ζ = Φz,xξ̃ , ξ = (ξ̃ + ξ′), we obtain from (8.15)

Υ1−κ
y,x

∫
eiϕ0(x,ξ′;z)+iϕ0(x,ξ̃;y) σA(x, ξ′ + ξ̃) σB(z, Φz,xξ̃)

× χ(x, z) χ(z, y) eiψ(x,ξ̃;y,z) Υκ(x, y, z) d̄ξ̃ dz d̄ξ′ . (8.16)

Let us fix a coordinate system {xk}, and let y = {yk} and z = {zk} be the associated
n.c.s. with origin x . We denote by Ψ̂ the matrix-function with elements Ψ̂p

k =
∑

k(T p
kj +

ψ p
kj)(z

j − xj)/2 , where ψ p
kj are defined by (8.7), and set

Ψ(x, y, z) =
(
I − Ψ̂(x, y, z)

)−1
.

Then
ϕ0(x, Ψξ, y) + ψ(x, Ψξ; y, z) = ϕ0(x, ξ, y) .

If the connection Γ is flat then Ψ̂ ≡ 0 and Ψ ≡ I . In the general case (8.7) implies

Ψ|z=x = I , ∂zj Ψp
k|z=y=x

=
1
2

T p
kj(x) . (8.17)

Now we change variables ξ̃ = Ψξ′′ in (8.16). Then in our coordinates this integral
takes the form

Υ1−κ
x (y)

∫
ei(x−z)·ξ′ ei(x−y)·ξ′′ σA(x, ξ′ + Ψξ′′) σB(z, Φx(z)Ψξ′′)

× χ(x, z) χ(z, y) Υκ | detΨ| d̄ξ′ dz d̄ξ′′ . (8.18)

Substituting in (8.18) the Taylor expansion of the function σA(x, ξ′ + Ψξ′′) at the point
ξ′ = 0 we obtain

Υ1−κ
x (y)

∫
ei(x−z)·ξ′ ei(x−y)·ξ′′ ∑

|α|6p

1
α!

(ξ′)α ∂α
ξ σA(x, Ψξ′′) σB(z, Φx(z)Ψξ′′)

× χ(x, z) χ(z, y) Υκ | detΨ| d̄ξ′ dz d̄ξ′′

+ (p + 1) Υ1−κ
x (y)

∫
ei(x−z)·ξ′ ei(x−y)·ξ′′ ∑

|α|=p+1

1
α!

(ξ′)α

∫ 1

0

(1− t)p

× ∂α
ξ σA(x, Ψξ′′ + tξ′) σB(z, Φx(z)Ψξ′′) χ(x, z) χ(z, y) Υκ |detΨ| dt d̄ξ′ dz d̄ξ′′ .
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In the first term we integrate with respect to ξ′ and z , and in the second term we replace
(ξ′)αei(x−z)·ξ′ by (−Dz)αei(x−z)·ξ′ and then integrate by parts in z. Then we obtain

Υ1−κ
x (y)

∫
ei(x−y)·ξ′′ ∑

|α|6p

1
α!

QA,B
α (x, y, x, 0, ξ′′) d̄ξ′′

+ (p + 1) Υ1−κ
x (y)

∫
ei(x−y)·ξ′′ ei(x−z)·ξ′

∫ 1

0

(1− t)p

×
∑

|α|=p+1

1
α!

QA,B
α,Ψ (x, y, z, tξ′, ξ′′) dt d̄ξ′ dz d̄ξ′′ , (8.19)

where

QA,B
α,Ψ (x, y, z, tξ′, ξ′′)

= Dα
z

(
∂α

ξ σA(x, Ψξ′′ + tξ′) σB(z, Φx(z)Ψξ′′) χ(x, z) χ(z, y) Υκ | detΨ|
)

. (8.20)

Obviously, the function
∑

α6p QA,B
α,Ψ (x, y, x, 0, ξ′′)/α! can be written as a finite sum of

the form ∑

α,β,γ

Qα
β,γ(y, x, ξ′′) Dβ

ξ′′σA(x, ξ′′) Dγ
ξ′′∇α

xσB(x, ξ′′) ,

where Qα
β,γ(y, x, ξ′′) are some polynomials in ξ′′ independent of the symbols σA and σB .

Therefore this function is an amplitude from Sm1+m2
ρ,δ (Γ), and the first integral in (8.19)

defines a ψDO from Ψm1+m2
ρ,δ (Ωκ ,Γ). By (4.7) its symbol has the form
∑

α,β,γ

P̃α
β,γ(x, ξ) Dβ

ξ σA(x, ξ) Dγ
ξ∇α

xσB(x, ξ) ,

where P̃α
β,γ are polynomials in ξ which are also independent of σA and σB .

In order to find these polynomials we assume A and B to be differential operators. In
this case σA and σB are polynomials in ξ . We substitute in (8.16) instead of σA(x, ξ̃ + ξ′)
its Taylor expansion at the point ξ′ = 0 and integrate with respect to ξ′ and z. Then
(8.16) takes the form

Υ1−κ
x (y)

∫
ei(x−y)·ξ ∑

α

1
α!

Dα
ξ σA(x, ξ) ∂α

z

(
σB(z, Φx(z)ξ) eiψ Υκ

)∣∣∣
z=x

d̄ξ (8.21)

(we have replaced ξ̃ by ξ and omitted the inessential factor χ(x, z)χ(z, y)). The integrand
in (8.21) is also a polynomial in ξ. We expand its coefficients by Taylor’s formula at the
point y = x, then replace (y − x)αei(x−y)·ξ by (−Dξ)αei(x−y)·ξ and integrate by parts in
ξ. This transforms (8.21) into the integral

Υ1−κ
x (y)

∫
ei(x−y)·ξ ∑

α,β

1
α!

1
β!

× Dβ
ξ

(
Dα

ξ σA(x, ξ) ∂α
z

(
σB(z, Φx(z)ξ) ∂β

y

(
eiψΥκ

))∣∣∣
y=z=x

)
d̄ξ .
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We have

∑

α,β

1
α!

1
β!

Dβ
ξ

(
Dα

ξ σA(x, ξ) ∂α
z

(
σB(z, Φx(z)ξ) ∂β

y

(
eiψΥκ

))∣∣∣
y=z=x

)

=
∑

α,α1,β

1
α!

1
α1!

1
β!

Dβ
ξ

(
Dα+α1

ξ σA(x, ξ) ∇α
xσB(x, ξ) ∂α1

z ∂β
y

(
eiψΥκ

)∣∣
y=z=x

)
,

∑

α,α1,β

1
α!

1
α1!

1
β!

Dβ
ξ

(
Dα+α1

ξ σA ∇α
xσB ∂α1

z ∂β
y

(
eiψΥκ

))

=
∑

α,α1,β1,β′,γ

1
α!

1
α1!

1
β′!

1
β1!

1
γ!

Dα+α1+β1
ξ σA Dγ

ξ∇α
xσB Dβ′

ξ ∂α1
z ∂β1+β′+γ

y

(
eiψΥκ

)

=
∑

α,β,γ

1
α!

1
β!

1
γ!

Dα+β
ξ σA Dγ

ξ∇α
xσB ∂γ

y (∂z + ∂y)β
∑

β′

1
β′!

Dβ′

ξ ∂β′
y

(
eiψΥκ

)
.

Since ψ has a second order zero at the point z = y = x , in the last sum all the terms
with |β′| > |β| are equal to zero at this point. Thus, we obtain (8.3).

Now it remains to prove that the remainder term in (8.19) gets smoother and smoother
as p →∞ . Changing variables ξ′′ = Ψ−1ξ̃ we can write it in the form

(p + 1) Υ1−κ
x (y)

∫
ei(x−y)·Ψ−1ξ̃ ei(x−z)·ξ′

∫ 1

0

(1− t)p

×
∑

|α|=p+1

1
α!

QA,B
α (x, y, z, tξ′, ξ̃) dt d̄ξ′ dz d̄ξ̃ ,

where QA,B
α (x, y, z, tξ′, ξ̃) = QA,B

α,Ψ (x, y, z, tξ′, ξ′′)
∣∣∣
ξ′′=Ψ−1ξ̃

. We split this integral into the
sum

(p + 1) Υ1−κ
x (y)

∫
ei(x−y)·Ψ−1ξ̃ ei(x−z)·ξ′

∫ 1

0

(1− t)p

×
∑

|α|=p+1

1
α!

(
1− ς(ξ′, ξ̃)

)
QA,B

α (x, y, z, tξ′, ξ̃) dt d̄ξ′ dz d̄ξ̃

+ (p + 1) Υ1−κ
x (y)

∫
ei(x−y)·Ψ−1ξ̃ ei(x−z)·ξ′

∫ 1

0

(1− t)p

×
∑

|α|=p+1

1
α!

ς(ξ′, ξ̃) QA,B
α (x, y, z, tξ′, ξ̃) dt d̄ξ′ dz d̄ξ̃ , (8.22)

where ς is a smooth function bounded with all its derivatives and such that

supp (1− ς) ⊂ {2C
〈
ξ′

〉
x

>
〈
ξ̃
〉

x
} ∪ {〈ξ′〉

x
+

〈
ξ̃
〉

x
6 C} ,

supp ς ⊂ {C〈
ξ′

〉
x

6
〈
ξ̃
〉

x
} ∪ {〈ξ′〉

x
+

〈
ξ̃
〉

x
6 C}
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for a sufficiently large constant C.
Assuming that |x− y| is sufficiently small on supp QA,B

α (one can always achieve this
by shrinking supp χ), in the first integral we replace ei(x−y)·Ψ−1ξ̃ei(x−z)·ξ′ by

(
(x− y) ·Ψ−1ξ̃ + (x− z) · ξ′)

z
·Dz

(
ei(x−y)·Ψ−1ξ̃ei(x−z)·ξ′)

∣∣((x− y) ·Ψ−1ξ̃ + (x− z) · ξ′)
z

∣∣2

and then integrate by parts in z. This reduces the order of the amplitude by one.
Repeating this procedure N times we obtain an integral with the same phase function
and an amplitude which is estimated by const 〈ξ′〉mp,N with

mα,N = m1 + m2 + (p + 1) − N max {1− ρ, δ} .

Since mp,N → −∞ as N → ∞ , the first integral in (8.22) defines an infinitely smooth
function for each fixed p .

Let us consider the second integral in (8.22). Since y and z are close to x, on
supp (ςQA,B

α ) we have the uniform estimates

〈
Φx(z)ξ̃

〉
x
³ 〈

ξ̃
〉

x
,

〈
ξ̃ + tξ′

〉 ³ ξ̃ .

This implies that the function ς(ξ′, ξ̃)QA,B
α (x, y, z, tξ′, ξ̃) is estimated by const

〈
ξ̃
〉mα

x
where

mα = m1 + m2 − |α| ρ + |α|max {1− ρ, δ} , (8.23)

and analogous estimates hold for its derivatives with respect to x and y. If ρ > 1/2 then
mα → −∞ as |α| → ∞ , so for sufficiently large p the second integral in (8.22) defines a
Cnp -function where np →∞ as p →∞.

If ρ 6 1/2 then mα do not tend to −∞ as |α| → ∞ . For any symbols a and b we have

d

dzk
a(x, Ψξ + tξ′) = (Ψ)zkξ · aξ(x, Ψξ + tξ′) , (8.24)

d

dzk
b(z, Φx(z)Ψξ) = ∇zkb(z, Φx(z)Ψξ) + F(k)ξ · bζ(z, Φx(z)Ψξ) , (8.25)

where F(k) = F(k)(x, y, z) is some smooth matrix-function. Therefore, generally speaking,
each differentiation ∂zk in (8.20) increases the order of the amplitude by max {1− ρ, δ} .
However, if T ≡ 0 then, in view of (2.8) and (8.17), the matrix-functions (Ψ)zk and F(k)

in (8.24) and (8.25) are equal to zero at the point y = z = x . We can single out the
factor (x− z) or (x− y) , replace (x− z)ei(x−z)·ξ′ by Dξ′e

i(x−z)·ξ′ or (x− y)ei(x−y)·Ψ−1ξ̃

by ΨT Dξ̃e
i(x−y)·Ψ−1ξ̃ , and then integrate by parts. Clearly, each of these factors allows

us to decrease the order of the amplitude by ρ , and then the differentiation with respect
to z leads to an increase of the order only by 1 − 2ρ. Certainly, the factor (x − z) or
(x−y) can disappear when we differentiate (Ψ)zk or F(k) once more, but then the further
differentiation does not increase the order of the amplitude. In this case only two (or
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more) differentiations in z increase the order by 1− ρ . As a result, after all the possible
integrations by parts we obtain in the second integral in (8.22) a new amplitude of the
order

m(p+1) = m1 + m2 − (p + 1) ρ + (p + 1) max {δ, 1− 2ρ, (1− ρ)/2} .

If ρ > 1/3 then m(p+1) → −∞ as p → ∞. Thus, if T ≡ 0 and ρ > 1/3 then the second
integral in (8.22) also defines a Cnp -function with np →∞ as p →∞.

Finally, if the connection Γ is flat then in the flat coordinates Φx(z) ≡ Ψ ≡ I . In this
case the function defined by the second integral gets smoother and smoother as p → ∞
without any additional restriction on ρ and δ. ¤
Proof of Theorem 8.4. We apply the same procedure as in the proof of Theorem 8.3.
Then we obtain instead of (8.23)

mα = m1 + m2 − |α| + |α|max {1− ρ, δ} if A ∈ Ψm1
1,0 ,

mα = m1 + m2 − |α| ρ if B ∈ Ψm2
1,0 .

Obviously, in both these cases mα → −∞ as |α| → ∞ . Therefore AB is a ψDO whose
symbol is defined modulo S−∞ by the asymptotic expansion (8.14). ¤
3. Propositions 8.2 and 4.4 immediately imply

Corollary 8.7. Let the conditions of Theorem 8.3 or Theorem 8.4 be fulfilled, and
r = min {ρ− δ , 2ρ− 1} under condition (1) of Theorem 8.3,
r = min {ρ− δ , (3ρ− 1)/2} under condition (2) of Theorem 8.3,
r = ρ− δ in the other cases.

Then

σAB = σA σB +
∑

k

Dξk
σA ∇xkσB − (2i)−1

∑

j,k,p

T p
jk ξp ∂ξj σA ∂ξk

σB , (8.26)

σ[A,B] = −i {σA, σB} , σW
AB = σW

A σW
B − (2i)−1 {σW

A , σW
B } (8.27)

modulo Sm1+m2−2r
ρ,δ (Γ) . Moreover, if Γ is symmetric then

σAB =
∑

|α|62

1
α!

Dα
ξ σA ∇α

xσB

+
1
6

∑

j,k,l,p

(R p
kjl + R p

ljk) ξp ∂ξj σA ∂ξk
∂ξl

σB

− 1
12

∑

j,k,l,p

(R p
jlk + R p

klj) ξp ∂ξj ∂ξk
σA ∂ξl

σB

− 1
6

∑

j,k

(Rjk + Rkj) ∂ξj σA ∂ξk
σB +

κ
2

∑

j,k

(Rjk −Rkj) ∂ξj σA ∂ξk
σB (8.28)

modulo Sm1+m2−3r
ρ,δ (Γ) .
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9. L2-estimates

Let Hs be the Sobolev space W s
2 (defined in local coordinates), Hs

comp (M ; Ωκ) be the
space of Hs-densities on M with compact supports, and Hs

loc (M ; Ωκ) be the space of
densities whose restrictions to compact subsets of M belong to Hs. In this section we
prove

Theorem 9.1. Let at least one of the conditions (1)–(3) of Theorem 8.3 be fulfilled.
Then a ψDO A ∈ Ψm

ρ,δ(Ω
κ , Γ) is bounded from Hs

comp (M ; Ωκ) to Hs−m
loc (M ; Ωκ) for all

s ∈ R1 .

Remark 9.2. It is known that A : Hs
comp (M ; Ωκ) → Hs−m

loc (M ; Ωκ) if in local coordinates
the Schwartz kernel of A can be represented by an oscillatory integral with the standard
phase function (x − y) · θ and an amplitude from Sm

ρ,δ with δ 6 ρ [T], [Tr]. Therefore
Theorem 9.1 gives a new result only when 1/3 < ρ < 1/2 and the connection Γ is
symmetric.

Proof of Theorem 9.1. In view of Theorem 8.4 it is sufficient to prove that

ρ1 Aρ2 : L2(M ; Ωκ) → L2(M ; Ωκ) (9.1)

for all ρ1, ρ2 ∈ C∞0 (M) and A ∈ Ψ0
ρ,δ(Ω

κ , Γ) . Fixing a smooth density, we can always
identify κ-densities with half-densities. Therefore it is sufficient to consider only κ = 1/2 .

If A ∈ Ψ0
ρ,δ(Ω

1/2, Γ) then sup |ρ1(x) ρ2(x)σW
A (x, ξ)| < 2 C for some positive constant

C . We are going to prove that

C2 − (ρ1 Aρ2)∗(ρ1 Aρ2) = B∗B + R , (9.2)

where B ∈ Ψ0
ρ,δ(Ω

1/2, Γ) and R is an operator with smooth Schwartz kernel. Obviously,
(9.2) implies (9.1).

From Propositions 4.4 and 4.5 it follows that the Weyl symbol of the ψDO ρ1 Aρ2

is equal to ρ1(x) ρ2(x)σW
A (x, ξ) modulo S δ−ρ

ρ,δ (Γ) . Let B0 ∈ Ψ0
ρ,δ(Ω

1/2, Γ) be a properly
supported ψDO with the Weyl symbol

σW
B0

=
(
C2 − |ρ1(x) ρ2(x)σW

A (x, ξ)|2)1/2
.

Then Theorems 7.1 and 8.3 imply

C2 − (ρ1 Aρ2)∗(ρ1 Aρ2) − B∗
0B0 ∈ Ψ−r

ρ,δ(Ω
1/2,Γ)

with some positive r .
Assume that we have constructed ψDOs Bj ∈ Ψ−rj

ρ,δ (Ω1/2, Γ) for j = 0, 1, . . . , k − 1
such that the operator

Rk = C2 − (ρ1 Aρ2)∗(ρ1 Aρ2) − (B0 + · · ·+ Bk−1)∗(B0 + ... + Bk−1)



PSEUDODIFFERENTIAL OPERATORS 35

belongs to Ψ−kr
ρ,δ (Ω1/2, Γ) . Since Rk is formally self-adjoint, its Weyl symbol is real.

Let Bk ∈ Ψ−kr
ρ,δ (Ω1/2, Γ) be a properly supported ψDO whose symbol coincides with

σW
Rk

(
2 σW

B0

)−1

for sufficiently large 〈ξ〉x . Then

C2 − (ρ1 Aρ2)∗(ρ1 Aρ2)

− (B0 + · · ·+ Bk)∗(B0 + ... + Bk) ∈ Ψ−(k+1)r
ρ,δ (Ω1/2, Γ) . (9.3)

Thus, step by step we can find ψDOs Bj ∈ Ψ−jr
ρ,δ (Ω1/2,Γ) satisfying (9.3) for all k .

Then (9.2) holds for any properly supported ψDO B whose Weyl symbol admits the
asymptotic expansion σW

B ∼ ∑∞
j=0 σW

Bj
, 〈ξ〉x →∞ . ¤

10. Operators with pseudodifferential parametrices

1. Let HSm,m0
ρ,δ (Γ) be the subclass of symbols a ∈ Sm

ρ,δ(Γ) satisfying the following condi-
tion : for any compact subset K ⊂ M there exists a positive constant cK such that

〈η〉m0
y 6 constK |a(y, η)| , ∀(y, η) ∈ T ∗M : y ∈ K , 〈η〉y > cK , (10.1)

and

|∂α
η∇i1 . . .∇iqa(x, ξ)| 6 constK,α,i1,...iq 〈η〉δq−ρ|α|

y |a(y, η)| ,
∀α, ∀ i1, . . . , iq , ∀(y, η) ∈ T ∗M : y ∈ K , 〈η〉y > cK . (10.2)

We denote by HΨm,m0
ρ,δ (Ωκ ,Γ) the class of ψDOs with symbols from HSm,m0

ρ,δ (Γ).
In the same way as in the classical theory of ψDOs (see, for example, [Sh]) one can

prove the following lemmas.

Lemma 10.1. Let a ∈ HSm,m0
ρ,δ (Γ) , b ∈ HSm′,m′

0
ρ,δ (Γ) , and ã ∈ S m̃

ρ,δ(Γ) with m̃ < m0 .

Then ab ∈ HSm+m′,m0+m′
0

ρ,δ (Γ) and a + ã ∈ HSm,m0
ρ,δ (Γ) .

Lemma 10.2. Let σA ∈ HSm,m0
ρ,δ (Γ) , σ

(−1)
A ∈ C∞(T ∗M) and

σ
(−1)

A (y, η) = σ−1
A (y, η) , ∀∀(y, η) ∈ T ∗M : y ∈ K , 〈η〉y > cK ,

for all compact subsets K ⊂ M . Then σ
(−1)

A ∈ HS−m0,−m
ρ,δ (Γ) .

Lemma 10.1, Proposition 4.4, 6.1 and Theorems 7.1, 8.3, 8.4 immediately imply the
following simple results.

(1) If A ∈ HΨm,m0
ρ,δ (Ωκ , Γ), Ã ∈ Ψm̃

ρ,δ(Ω
κ ,Γ) , m̃ < m0 , then A+Ã ∈ HΨm,m0

ρ,δ (Ωκ , Γ) .
(2) A ∈ HΨm,m0

ρ,δ (Ωκ, Γ) if and only if σA,τ ∈ HSm,m0
ρ,δ (Γ) for some (and then for all)

τ ∈ [0, 1] .
(3) If ρ > 1/2 then the classes HΨm,m0

ρ,δ (Ωκ ,Γ) do not depend on Γ .
(4) If A ∈ HΨm,m0

ρ,δ (Ωκ ,Γ) then A∗ ∈ HΨm,m0
ρ,δ (Ω1−κ , Γ) .

(5) If A ∈ HΨm,m0
ρ,δ (Ωκ ,Γ), B ∈ HΨm′,m′

0
ρ,δ (Ωκ ,Γ) then under the conditions of Theo-

rem 8.3 or Theorem 8.4 AB ∈ HΨm+m′, m0+m′
0

ρ,δ (Ωκ , Γ) .
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Remark 10.3. If ρ 6 1/2 then, generally speaking, (3) is not true. For example, the heat
operator ∂xn+1 − ∂2

x1 − ...− ∂2
xn in Rn+1 belongs to HΨ2,1

1/2,0 in the standard coordinates
(i.e., for the corresponding flat connection Γ). However, in other coordinates its full
symbol can have a big zero set, and then the estimates (10.1), (10.2) do not hold (see
[Tr, Ch.4.2, Example 2.1]).

An operator B such that AB = BA = I (mod Ψ−∞) is said to be the parametrix
of A. Obviously, if A has a pseudodifferential parametrix then A is hypoelliptic, i.e.,
Au ∈ C∞(M) implies u ∈ C∞(M) .

Theorem 10.4. Assume that at least one of the conditions (1)–(3) of Theorem 8.3
is fulfilled. Then any ψDO A ∈ HΨm,m0

ρ,δ (Ωκ ,Γ) has a pseudodifferential parametrix
B ∈ HΨ−m0,−m

ρ,δ (Ωκ, Γ).

Proof. Let σ
(−1)

A be the symbol from Lemma 10.2, b ∈ S m̃
ρ,δ(Γ) , and B̃ be a properly

supported ψDO with the symbol σB̃(y, η) = σ
(−1)

A (y, η) b(y, η) . Then by (8.14)

σAB̃ = b − b′ , σB̃A = b − b′′ , (10.3)

where b′, b′′ ∈ S m̃−r
ρ,δ (Γ) with some positive r .

Let b1 ≡ 1 and bk+1 = b′k, k = 0, 1, 2, . . . , where b′k is the symbol which appears in the
first equality (10.3) when we replace b by bk . Then bk ∈ S−kr

ρ,δ (Γ) , and for any properly
supported ψDO B whose symbol admits the asymptotic expansion

σB(y, η) ∼ σ
(−1)

A (y, η)
∞∑

k=1

bk(y, η) , 〈η〉y →∞ ,

we obtain AB = I (mod Ψ−∞) .
By analogy (using the second equality (10.3)) we can construct a properly supported

ψDO B′ such that B′A = I (mod Ψ−∞) . Since B′ = B′AB = B modulo Ψ−∞ , we also
have BA = I (mod Ψ−∞) . ¤
2. In this subsection we assume that there exist n smooth linearly independent vector
fields ν1, . . . , νn on M . Further on we use the notation introduced in Example 5.4; in
particular, Γ = 0Γ is the linear connection for which all the covariant differentials of νl

are equal to zero.
Let d1 6 d2 6 . . . 6 dn be some positive numbers and d = (d1, . . . , dn) be the

corresponding n-vector. We say that a function ã(y, θ) ∈ C∞(M × Rn \ {0}) is d-
homogeneous of degree m if

ã(y, λ1/d1θ1, . . . , λ
1/dnθn) = λm ã(y, θ) , ∀λ > 0 .

Then the derivatives ∂α
θ ∂β

y ã are d-homogeneous of degrees m− |α : d| where

|α : d| :=
∑

k

αk/dk .
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A typical example of a d-homogeneous function of degree one is

|θ|d :=
(∑

k

|θk|2dk

)1/2

.

Obviously, if ã is d-homogeneous of degree m and K is a compact subset of M then
|ã(y, θ)| 6 constK |θ|md for all (y, θ) ∈ K ×Rn .

Let us introduce the vector-function ~σ := (σ1, . . . , σn) , where σl ∈ C∞(T ∗M) are
defined in (5.10). We denote by Sm

d (Γ) the class of functions a ∈ C∞(T ∗M) which admit
the asymptotic expansion

a(y, η) ∼
∞∑

k=0

ãk

(
y, ~σ(y, η)

)
, |~σ(y, η)|d →∞ , (10.4)

with ãk d-homogeneous of degree mk , where m0 = m and mk → −∞ as k →∞ . Since
the functions σl are constant along the horizontal curves generated by Γ , (10.4) implies
that

|∂α
η∇β

ya(y, η)| 6 constK |~σ(y, η)|m−|α|/dn

d ,

∀(y, η) : y ∈ K , |~σ(y, η)|d > 1 , (10.5)

for all compact subsets K ⊂ M .
Let Ψm

d (Ωκ ,Γ) be the class of ψDO acting in the space of κ-densities whose Γ-symbols
belong to Sm

d (Γ) . In view of (10.5) Ψm
d (Ωκ , Γ) ⊂ Ψmdn

d1/dn, 0(Ω
κ , Γ) .

For a ψDO A ∈ Ψm
d (Ωκ ,Γ) we set σ0

A(y, η) = ã0(y, ~σ) , where a0 is the leading term in
the expansion (10.4) with a = σA . The function σ0

A is said to be the principal symbol of
the ψDO A ∈ Ψm

d (Ωκ , Γ) .

Example 10.5. Let

A(y, Dy) =
∑

|α:d|6m

cα(y)Aα
(κ)(y, Dy) ,

where cα ∈ C∞(M) and Aα
(κ) are the symmetrized compositions of the Lie differentiations

A
(κ)
l . Then A ∈ Ψm

d (Ωκ , Γ) and (5.6) (with s = 0) implies

σ0
A(y, η) =

∑

|α:d|=m

cα(y) i|α| σα(y, η) .

Definition 10.6. A ψDO A ∈ Ψm
d (Ωκ , Γ) is said to be semi-elliptic if there exists a

positive constant c such that |σ0
A(y, η)| > c |θ|md .

Obviously, if A ∈ Ψm
d (Ωκ , Γ) is semi-elliptic then A ∈ HΨmdn,md1

d1/dn, 0 (Ωκ , Γ) .
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Theorem 10.7. Assume that

d−1
j + d−1

k > d−1
i , ∀ i, j, k : C i

jk 6≡ 0 . (10.6)

Then any semi-elliptic differential operator A ∈ Ψm
d (Ωκ ,Γ) has a pseudodifferential

parametrix B ∈ Ψ−m
d (Ωκ, Γ) .

Proof. The connection Γ is curvature free. Therefore the coefficients of the polynomials
(8.3) are components of some polynomials in the torsion tensor and its symmetric co-
variant differentials. In other words, Pβ,γ(y, η) is a linear combination of terms of the
form ∑

Dα(1)

y T i1
j1k1

(y) . . .Dα(q)

y T
iq

jqkq
(y) ηi1 . . . ηip

, p 6 q ,

where the sum is taken over i1, . . . , ip , and over the remaining upper indices ip+1, . . . iq
and some (q−p) lower indices (which are jl , kl and those corresponding to α(l)). In view
of (5.3) we have

Dα
y T i

jk(y) = −
∑

i′,j′,k′
νi

i′(y) ν̃j′
j (y) ν̃k′

k (y)Dα
y C i′

j′k′(y) , (10.7)

where Dα
y C i′

j′k′ are the symmetric covariant differentials of functions C i′
j′k′ .

Let ε = min {d−1
j + d−1

k − d−1
i } where the minimum is taken over all i, j, k such that

C i
jk 6≡ 0 . The equality (10.7) implies that
∑

i,j,k

Dα
y T i

jk(y) ηi ∂ηj a1(y, η) ∂ηk
a2(y, η)

=
∑

i,j,k

Dα
y C i

jk(y)σi (ã1)θj (y, ~σ) (ã2)θk
(y, ~σ)

for all functions a1(y, η) = ã1(y, ~σ) and a2(y, η) = ã2(y, ~σ) . From here it follows that
under condition (10.6)

Pβ,γ(y, η) ∂β
η a1(y, η) ∂γ

η a2(y, η) ∈ Sm1+m2−ε
d (Γ) (10.8)

for all a1 ∈ Sm1
d (Γ) , a2 ∈ Sm2

d (Γ) .
Let us fix a symbol a ∈ S−m

d (Γ) such that a =
(
σ0
A(y, η)

)−1 as |~σ|d > 1 . Let B̃ be
a properly supported ψDO with the symbol σB̃(y, η) = a(y, η) b(y, η) where b ∈ Sm̃

d (Γ) .
Then by Theorem 8.4 the compositions AB̃ and B̃A are pseudodifferential operators.
In view of (10.8) their symbols satisfy (10.3) with b′, b′′ ∈ Sm̃−ε

d (Γ) . Therefore we can
construct the parametrix B ∈ Ψ−m

d (Ωκ ,Γ) in the same way as in the proof of Theorem
10.4. ¤
Remark 10.8. If a ∈ Sm

d (Γ) then in an arbitrary coordinate system

|∂α
η ∂β

y a(y, η)| 6 const |~σ(y, η)|m−ρ|α|+δ|β|
d

with ρ = d−1
n and δ = max

j,k
|d−1

j − d−1
k |. When C i

kj 6≡ 0 for all i, j, k, the condition (10.6)

implies ρ > δ . In this case the local parametrices of semi-elliptic differential operators
belong to the coordinate classes of ψDO associated with the weight function |~σ| (instead
of 〈ξ〉x).
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11. Functions of second order differential operators

1. Let M be a closed Riemannian manifold, ∆ be the Laplace operator, and ν be a first
order differential operator (or a classical ψDO) on M . We assume that both operators
∆ and ν act in the space of half-densities and that the operator ν is self-adjoint. We also
assume that the operator −∆ + ν is strictly positive (when M is compact, this can be
always achieved by adding a large positive constant).

Let
A = (−∆ + ν)1/2 . (11.1)

It is well known that A is a classical ψDO from Ψ1(Ω1/2) whose principal symbol is equal
to |ξ|x . Moreover, Aλ ∈ Ψλ(Ω1/2) for all λ ∈ R1 , all the homogeneous terms of the
symbol σAλ are analytic functions of λ , and σAλ(x, ξ) = |ξ|λx modulo Sλ−1 . Certainly,
these facts are independent of the choice of the linear connection.

If Γ is the Levi–Civita connection, then the function |ξ|x is constant along the hori-
zontal curves (see Example 3.4) and

σA2(x, ξ) = |ξ|2x + σν(x, ξ) − 1
3

S(x) , (11.2)

where σν is the symbol of ν and S is the scalar curvature (Example 5.2). Let

ξ̂i := ∂ξi(|ξ|x) =
∑

j

gij(x) ξj/|ξ|x , ξ̂γ := (ξ̂1)γ1 . . . (ξ̂n)γn . (11.3)

Lemma 11.1. Let Γ be the Levi–Civita connection. Then

σA(x, ξ) = |ξ|x +
1
12
|ξ|−1

x

(∑

j,k

Rjk(x) ξ̂j ξ̂k − 2 S(x)
)

+ σ′ν(x, ξ) (mod S−2)

where

σ′ν(x, ξ) =
1
2
|ξ|−1

x σν(x, ξ) +
i

4
|ξ|−2

x

∑

j

ξ̂j ∇xj σν(x, ξ) − 1
8
|ξ|−3

x σ2
ν(x, ξ) .

Proof. Let B be a properly supported ψDO such that σB(x, ξ) = |ξ|x+σ(x, ξ) as |ξ|x > 1 ,
where σ ∈ S0 . Since

∑
j,k,l R p

jkl ξ̂j ξ̂k ξ̂l ≡ 0 , we obtain from (8.28) that

σB2 = |ξ|2x + 2 |ξ|x σ + σ2 − i
∑

j

ξ̂j ∇xj σ

− 1
3

∑

j,k

Rjk ξ̂j ξ̂k +
1
12
|ξ|−1

x

∑

j,k,l,p

(R p
kjl + R p

ljk) gkl ξp ξ̂j

modulo S−1 . We have

|ξ|−1
x

∑

j,k,l,p

(R p
klj + R p

lkj) gkl ξp ξ̂j =
∑

j,k,l,p

(Rpkjl + Rpljk) gkl ξ̂p ξ̂j

=
∑

j,k,l,p

(Rkplj + Rlpkj) gkl ξ̂p ξ̂j = 2
∑

j,p

Rpj ξ̂p ξ̂j ,
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and therefore

σB2 = |ξ|2x + 2 |ξ|x σ + σ2 − i
∑

j

ξ̂j ∇xj σ − 1
6

∑

j,k

Rjk ξ̂j ξ̂k

modulo S−1 . Taking σ = σ′ν + |ξ|−1
x

(∑
j,k Rjk ξ̂j ξ̂k − 2 S

)
/12 we obtain σB2 = σA2

(mod S−1) . This implies the lemma. ¤
2. Let Sm

ρ (R1) be the class of functions ω ∈ C∞(R1) such that

| ∂k
s ω(s) | 6 constk (1 + |s|)m−kρ , ∀k = 0, 1, . . .

If ω ∈ Sm
ρ (R1) then tkω̂(t) ∈ CNk(R1) , where Nk → +∞ as k → +∞ . Therefore the

Fourier transform ω̂(t) is a distribution which coincides with a smooth rapidly decreasing
function outside any neighbourhood of t = 0 .

The main result of this section is the following

Theorem 11.2. Let ω ∈ Sm
ρ (R1) , ρ ∈ (0, 1] . Then ω(A) ∈ Ψm

ρ,0(Ω
1/2,Γ) , where

Γ is the Levi–Civita connection. The symbol of the ψDO ω(A) admits the asymptotic
expansion

σω(A)(x, ξ) ∼ ω(|ξ|x) +
∞∑

j=1

cj(x, ξ)ω(j)(|ξ|x) , |ξ|x →∞ , (11.4)

where cj ∈ S0 and ω(j)(s) := ∂j
sω(s) . The functions cj are determined recursively from

the system of equations

σAk(x, ξ) = |ξ|kx +
k∑

j=1

k!
(k − j)!

|ξ|k−j
x cj(x, ξ) . (11.5)

In particular,

c1(x, ξ) =
1
12
|ξ|−1

x

(∑

j,k

Rjk(x) ξ̂j ξ̂k − 2 S(x)
)

+ σ′ν(x, ξ) (mod S−2) (11.6)

where σ′ν is defined in Lemma 11.1, and

c2(x, ξ) = − 1
12

∑

j,k

Rjk(x) ξ̂j ξ̂k

− i

4
|ξ|−1

x

∑

j

ξ̂j ∇xj σν(x, ξ) +
1
8
|ξ|−2

x σ2
ν(x, ξ) (mod S−1) . (11.7)

Remark 11.3. Since |ξ|x is constant along the horizontal curves generated by the connec-
tion Γ , we have ω(j)(|ξ|x) ∈ Sm−jρ

ρ,0 .

Remark 11.4. In [T, Ch. XII.3] it has been proved that ω(A) belongs to the coordinate
class Ψm

ρ,1−ρ(Ω
1/2) when ρ > 1/2 . The author has also conjectured that ω(A) can be

included in some appropriate classes of ψDOs when 0 < ρ 6 1/2 . By Theorem 11.2 the
appropriate classes corresponding to operators of the form (11.1) are those generated by
the Levi–Civita connection.

Theorem 11.2 immediately implies
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Corollary 11.5. Let A1 and A2 be positive differential operators of the form (11.1) with
ν = ν1 and ν = ν2 respectively. Let ω ∈ Sm

ρ (R1) and B = ω(A1) − ω(A2) . Then
B ∈ Ψm−ρ

ρ,0 (Ω1/2, Γ) where Γ is the Levi–Civita connection, and

σB =
1
2
|ξ|−1

x ω′(|ξ|x)
(
σν1 − σν2

)

+
i

4
|ξ|−1

x

(
|ξ|−1

x ω′(|ξ|x)− ω′′(|ξ|x)
) ∑

j

ξ̂j ∇xj

(
σν1 − σν2

)

− 1
8
|ξ|−2

x

(
|ξ|−1

x ω′(|ξ|x)− ω′′(|ξ|x)
) (

σ2
ν1
− σ2

ν2

)

modulo Sm−3ρ
ρ,0 (Γ) .

3. From now on we assume that Γ is the Levi–Civita connection. We will deduce Theorem
11.2 from

Proposition 11.6. Let λ ∈ [0, 1) and Uλ(t) = exp(itAλ) . Then

Uλ(t) ∈ Ψ0
1−λ,0(Ω

1/2, Γ) , σUλ(t) = eit|ξ|λx b(λ)(t; x, ξ) , ∀t ∈ R1 ,

where b(λ) ∈ C∞(R1 × T ∗M) and Dk
t b(λ) ∈ S0 , ∀t ∈ R1 , ∀k = 0, 1, . . . Moreover,

b(λ)(t; x, ξ) ∼ 1 +
∞∑

j=1

(it)j b
(λ)
j (x, ξ) , |ξ|x →∞ , (11.8)

where b
(λ)
j ∈ S−j(1−λ) , ∀k = 0, 1, . . .

The proof of Proposition 11.6 is based on the following technical lemmas.

Lemma 11.7. Let P
(1/2)
β,γ be the polynomials of degree d

(1/2)
β,γ defined by (8.3). Then

∑

|γ|=d

ξ̂γ

γ!
P

(1/2)
β,γ (x, ξ) ≡ 0

for all d and β such that |β| < 2d
(1/2)
β,γ .

Proof. Since the coefficients of polynomials P
(1/2)
β,γ are components of some polynomials

in the curvature tensor and its symmetric covariant differentials, the sum
∑

|γ|=d

P
(1/2)
β,γ (x, ξ) ξ̂γ/γ!

coincides with a linear combination of sums of the form
∑

Dα(1)
R i1

j1k1l1
(x) . . .Dα(q)

R
iq

jqkqlq
(x) ξi1 . . . ξip ξ̂n1 . . . ξ̂nd , (11.9)
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where p 6 d
(1/2)
β,γ , q > p and

d + q + |β| = 3q + p + |α(1)| + · · ·+ |α(q)| . (11.10)

In (11.9) the sum is taken over the indices i1, . . . , ip, and over the remaining upper indices
ip, . . . , iq , n1, . . . , nd and some (q + d− p) lower indices (which are js , ks , ls and those
corresponding to α(s) ).

When |β| < 2p , (11.10) implies that

d > 2q − p + |α(1)| + · · ·+ |α(q)| .

Then (11.9) contains at least one partial sum of the form
∑
j,k,l

Dα(s)
R i

jkl ξ̂j ξ̂k ξ̂l or

∑
i,k,l

Dα(s)
R i

jkl ξi ξ̂k ξ̂l or
∑

i,j,k

Dα(s)
R i

jkl ξi ξ̂j ξ̂k , which vanishes due to the symmetries

of the curvature tensor (see Section 1). This proves the lemma. ¤

Lemma 11.8. Let A1 ∈ Ψm1(Ω1/2) , ω ∈ S 0
ρ (R1) , and B be a properly supported ψDO

with a symbol of the form σB(x, ξ) = ω(|ξ|x) b(x, ξ) where b ∈ Sm . Then

σA1B(x, ξ) ∼
∞∑

k=0

ω(k)(|ξ|x) bk(x, ξ) , (11.11)

where b0 − σA1b ∈ Sm+m1−1 and bj ∈ Sm+m1−1 for j > 1 . The symbols bk admit the
asymptotic expansions

bk(x, ξ) ∼
∑

α,β,γ

∑

γ′6γ,
|γ′|>k

1
α!

1
β!

1
γ′!

(−i)|γ
′|

(γ − γ′)!
P

(1/2)
β,γ (x, ξ)

× ak,γ′(x, ξ) Dα+β
ξ σA1(x, ξ) Dγ−γ′

ξ ∇α
xb(x, ξ) , (11.12)

where ak,γ′ are functions homogeneous in ξ of degree k − |γ′| depending only on the
Riemannian metric {gij} . In particular, a|γ′|,γ′ = ξ̂γ′ .

Proof. Obviously, B ∈ Ψm
ρ,0(Ω

1/2, Γ) . By Theorem 8.4 A1B ∈ Ψm+m1
ρ,0 (Ω1/2, Γ) and

σA1B(x, ξ) ∼
∑

α,β,γ

1
α!

1
β!

1
γ!

P
(1/2)
β,γ (x, ξ) Dα+β

ξ σA1(x, ξ) Dγ
ξ∇α

xσB(x, ξ)

=
∑

α,β,γ

∑

γ′6γ

1
α!

1
β!

1
γ′!

(−i)|γ
′|

(γ − γ′)!
P

(1/2)
β,γ (x, ξ)

×Dα+β
ξ σA1(x, ξ) ∂γ′

ξ ω(|ξ|x) Dγ−γ′

ξ ∇α
xb(x, ξ) .
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Differentiating ω(|ξ|x) we obtain

∂γ′

ξ ω(|ξ|x) =
∑

k6|γ′|
ak,γ′(x, ξ) ω(k)(|ξ|x) ,

where ak,γ′ are functions homogeneous in ξ of degree |γ′| − k depending only on the
Riemannian metric, and ak,γ′ = ξ̂γ′ as k = |γ′| . Therefore the asymptotic expansion for
σA1B can be rewritten in the form (11.11) with bk satisfying (11.12). From (11.12) it
follows that b0 − σA1b ∈ Sm+m1−1 . It remains to prove that bk ∈ Sm+m1−1 for k > 1 .

In the asymptotic expansions (11.12) with k > 1 the orders of the terms are

m + m1 + d
(1/2)
β,γ − |α| − |β| − |γ| + k , (11.13)

where d
(1/2)
β,γ are the degrees of the polynomials P

(1/2)
β,γ . By (8.4) we have d

(1/2)
β,γ 6 |β| .

Therefore (11.13) is estimated by m + m1 − 1 if k < |γ| .
Let us consider the terms with k = |γ| . Then γ′ = γ and ak,γ′ = ξ̂γ′ . By Lemma

11.7 the sum of the terms with |β| < 2d
(1/2)
β,γ is equal to zero. Since P

(1/2)
0,γ ≡ 0 for γ 6= 0

(Proposition 8.2), all the terms with β = 0 are also equal to zero. Now the estimates
|β| > 1 and |β| > 2d

(1/2)
β,γ imply that (11.13) is not greater than m + m1 − 1 . ¤

Proof of Proposition 11.6. Uλ(t) is a unique solution of the Cauchy problem

DtUλ(t) − Aλ Uλ(t) = 0 , (11.14)

Uλ(0) = I . (11.15)

We will construct a properly supported ψDO Uλ(t) ∈ Ψ0
1−λ,0(Ω

1/2,Γ) smoothly depen-
dent on t which satisfies (11.14) and (11.15) modulo Ψ−∞ . Then from the well-known
a priori estimates it follows that Dk

t

(
Uλ(t)−Uλ(t)

) ∈ Ψ−∞ for all k and, consequently,
Uλ(t) ∈ Ψ0

1−λ,0(Ω
1/2, Γ) and

Dk
t (σUλ(t) − σUλ(t)) ∈ S−∞ , ∀t ∈ R1 , ∀k = 0, 1 . . .

Obviously, for all t ∈ R1 the functions ft(s) = eitsλ

belong to S 0
1−λ(R1) (outside a

neighbourhood of s = 0 ). Let B be a properly supported ψDO with a symbol of the
form eit|ξ|λx b(t;x, ξ) , where Dk

t b ∈ Sm , ∀t ∈ R1 , ∀k = 0, 1 . . . Then by Lemma 11.8

σAλB = eit|ξ|λx |ξ|λx b(t; x, ξ) + eit|ξ|λx Lλb(t; x, ξ) , (11.16)

where Dk
t (Lλb) ∈ Sm+λ−1 , ∀t ∈ R1 , ∀k = 0, 1 . . . Moreover, (11.11) and (11.12) imply

that

Lλb(t; x, ξ) ∼
∞∑

k=0

tk L(k)
λ b(t; x, ξ) , |ξ|x →∞ , (11.17)
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where L(k)
λ b ∈ Sm−1−k(1−λ) and

tjDl
t(L(k)

λ b) = L(k)
λ (tjDl

tb) , ∀t ∈ R1 , ∀j, k, l = 0, 1 . . . (11.18)

Let Uλ(t) be a properly supported ψDO such that σUλ(t) = eit|ξ|λx b(λ)(t;x, ξ) , where

b(λ) ∼ b̃
(λ)
0 + b̃

(λ)
1 + b̃

(λ)
2 + . . . , |ξ|x →∞ ,

b̃
(λ)
0 ≡ 1 , b̃

(λ)
k (t; x, ξ) = i

∫ t

0

Lλb̃
(λ)
k−1(s;x, ξ) ds , |ξ|x > 1 , (11.19)

and Lλ is the operator defined by (11.16). Then b(λ)(0; x, ξ) = 1 , and so Uλ(t) satisfies
(11.15). The operator (Dt −Aλ)Uλ(t) is a ψDO with the symbol

eit|ξ|λx
(
Dtb

(λ) − Lλb(λ)
)

∼ eit|ξ|λx Dtb̃
(λ)
0 + eit|ξ|λx

(
Dtb̃

(λ)
1 − Lλb̃

(λ)
0

)
+ eit|ξ|λx

(
Dtb̃

(λ)
2 − Lλb̃

(λ)
1

)
+ . . .

By (11.19) all the terms in this asymptotic series are equal to zero as |ξ|x > 1 . Therefore
(Dt −Aλ)Uλ(t) ∈ Ψ−∞ .

Finally, substituting (11.17) in (11.19) and taking into account (11.18), we obtain the
asymptotic expansion (11.8). ¤
Proof of Theorem 11.2. The operator A is positive, and therefore we can assume that
supp ω ∈ (0,+∞) . Let us fix λ ∈ (1 − ρ, 1) and set ωλ(s) = ω(s1/λ) . Then ωλ ∈
Sm/λ

1−(1−ρ)/λ(R1) , where 1− (1− ρ)/λ > 0 .
Since the Fourier transform ω̂λ(t) coincides with a rapidly decreasing function for large

t , we have

ω(A) =
∫

ω̂λ(t) eitAλ

dt ,

where the integral converges in the weak operator topology. Let ς ∈ C∞0 (R1) , ς(t) = 1
in a neighbourhood of t = 0 and ς(t) = 0 for large t . Then∫ (

1− ς(t)
)
ω̂λ(t) eitAλ

dt = A−kλ

∫
(−Dt)k

((
1− ς(t)

)
ω̂λ(t)

)
eitAλ

dt

for all positive integer k , and therefore

ω(A) =
∫

ς(t) ω̂λ(t) eitAλ

dt (mod Ψ−∞) .

Now from Proposition 11.6 it follows that ω(A) is a ψDO with the symbol

σω(A) =
∫

eit|ξ|λx ω̂λ(t) ς(t) b(λ)(t; x, ξ) dt . (11.20)

Substituting in (11.20) the asymptotic expansion (11.8) we get

σω(A) ∼ ω(|ξ|x) +
∞∑

j=1

ωλ,j(|ξ|x) b
(λ)
j (x, ξ) , |ξ|x →∞ ,

where ωλ,j(s) = dj
(
ω(r1/λ)

)/
drj

∣∣
r=sλ . This implies (11.4) with some symbols cj ∈ S0 .

Taking ω(s) = sk we obtain from (11.4) the equations (11.5). The equalities (11.6) and
(11.7) immediately follow from (11.2), Lemma 11.1 and (11.5). ¤
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