
Estimates for the counting function of the
Laplace operator on domains with rough
boundaries

Y. Netrusov and Y. Safarov

This is a survey of results obtained by the authors in the last few years. Most of
them were proved or implicitly stated in our papers [Ne], [NS] and [Sa]; we give
precise references or outline proofs wherever it is possible. The results announced
in Subsection 5.2 are new.

Let Ω ⊂Rn be an open bounded domain in Rn , and let−∆B be the Laplacian on
Ω subject to Dirichlet (B = D) or Neumann (B = N) boundary condition. Further
on we use the lower index B in the cases where the corresponding statement refers
to (or result holds for) both the Dirichlet and Neumann Laplacian. Let NB(Ω ,λ ) be
the number of eigenvalues of ∆B lying below λ 2; if the number of these eigenvalues
is infinite or−∆B has essential spectrum below λ 2 then we define NN(Ω ,λ ) := +∞.
Let

RB(Ω ,λ ) := NB(Ω ,λ )− (2π)−n ωn |Ω |λ n ,

where ωn is the volume of the n-dimensional unit ball and |Ω | denotes the volume
of Ω . According to the Weyl formula, RB(Ω ,λ ) = o(λ n) as λ →+∞. If B = D then
this is true for every bounded domain [BS]. If B = N then the Weyl formula holds
only for domains with sufficiently regular boundaries. In the general case RN may
well grow faster than λ n; moreover, the Neumann Laplacian on a bounded domain
may have a nonempty essential spectrum (see, for instance, Remark 5 or [HSS]).
The necessary and sufficient conditions for the absence of the essential spectrum in
terms of capacities were obtained by V. Maz’ya [M1].

The aim of this note is to present estimates for RB(Ω ,λ ), which involve only
the most basic characteristics of Ω and constants depending only on the dimen-
sion n. The estimate from below (2) for RB(Ω ,λ ) and the estimate from above (3)

Y. Netrusov
Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK.
e-mail: y.netrusov@bristol.ac.uk

Y. Safarov
Department of Mathematics, King’s College London, Strand, London WC2R 2LS, UK.
e-mail: yuri.safarov@kcl.ac.uk

1



2 Y. Netrusov and Y. Safarov

for RD(Ω ,λ ) hold for all bounded domains. The upper bound (4) for RN(Ω ,λ ) is
obtained for domains Ω of class C , that is, under the following assumption:

• every point x ∈ ∂Ω has a neighbourhood Ux such that Ω ∩Ux coincides (in a
suitable coordinate system) with the subgraph a continuous function fx .

If all the functions fx satisfy the Hölder condition of order α , one says that
Ω belongs to the class Cα . For domains Ω ∈ Cα with α ∈ (0,1) , our estimates
RD(Ω ,λ )= O(λ n−α) and RN(Ω ,λ )= O(λ (n−1)/α) are order sharp in the scale Cα

as λ →∞ . The latter estimate implies that the Weyl formula holds for the Neumann
Laplacian whenever α > 1− 1

n . If α ≤ 1− 1
n then there exist domains in which

the Weyl formula for NN(Ω ,λ ) fails (see Remark 4 for details or [NS] for more
advanced results).

For domains of class Cα with α ≥ 1, our methods only give the known re-
mainder estimate RB(Ω ,λ ) = O(λ n−1 logλ ) . To obtain the order sharp estimate
O(λ n−1) one has to use more sophisticated techniques. The most advanced results
in this direction were obtained in [Iv], where the estimate RB(Ω ,λ ) = O(λ n−1) was
established for domains which belong to a slightly better class than C1.

Throughout the paper we shall be using the following notation.

• d(x) is the Euclidean distance from the point x ∈Ω to the boundary ∂Ω .
• Ω b

δ := {x ∈Ω |d(x)≤ δ} is the internal closed δ -neighbourhood of ∂Ω .
• Ω i

δ := Ω \Ω b
δ is the interior part of Ω .

1 Lower bounds

Denote by ΠB(λ ) the spectral projection of the operator −∆B corresponding to the
interval [0,λ 2), and let eB(x,y;λ ) be its integral kernel (the so-called spectral func-
tion). It is well known that eB(x,y;λ ) is a infinitely differentiable function on Ω×Ω
for each fixed λ and that eB(x,x;λ ) is a nondecreasing polynomially bounded func-
tion of λ for each fixed x ∈Ω .

By the spectral theorem, the cosine Fourier transform of d
dλ eB(x,y;λ ) coincides

with the fundamental solution uB(x,y; t) of the wave equation in Ω . On the other
hand, due to the finite speed of propagation, uB(x,x; t) is equal to u0(x,x; t) whenever
t ∈ (−d(x),d(x)), where u0(x,y; t) is the fundamental solution of the wave equation
in Rn. By direct calculation, u0(x,x; t) is independent of x and coincides with the
cosine Fourier transform of the function n(2π)−nωn λ n−1

+ . Applying the Fourier
Tauberian theorem proved in [Sa], we obtain

|eB(x,x;λ )−(2π)−nωn λ n| ≤ 2n(n+2)2 (2π)−nωn

d(x)

(
λ +

(n+2) n+2
√

3
d(x)

)n−1

(1)

for all x ∈Ω and λ > 0 [Sa, Corollary 3.1]. Since
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NB(Ω ,λ ) =
∫

Ω
eB(x,x;λ )dx ≥

∫

Ω i
δ

eB(x,x;λ )dx

for all δ > 0, integrating (1) over Ω i
λ−1 , we arrive at

RB(λ ,Ω) ≥ −2n(n+2)2 (2π)−nωn

(
1+(n+2) n+2√3

)n−1
λ n−1

∫

Ω i
λ−1

dx
d(x)

.

Estimating constants and taking into account the obvious inequality

∫

Ω i
δ

dx
d(x)

=
∫ ∞

δ
s−1 d(|Ω b

s |) ≤
∫ δ−1

0
|Ω b

t−1 |dt ,

we see that

RB(λ ,Ω) ≥ −Cn,1 λ n−1
∫ ∞

λ−1
s−1 d(|Ω b

s |) ≥ −Cn,1 λ n−1
∫ λ

0
|Ω b

t−1 |dt (2)

for all λ > 0, where Cn,1 := 2(n+2)n+1

πn/2 Γ (n/2)
and Γ is the gamma-function.

2 Variational formulae

In order to obtain upper bounds for RB(λ ,Ω) we need to estimate the contribution
of Ω b

δ . For the Neumann Laplacian,
∫

Ω b
δ

eN(x,x;λ )dx may well not be polynomi-
ally bounded, even if Ω ∈ C . In this case the Fourier Tauberian theorems are not
applicable. Instead, we use the variational technique.

The idea is to represent Ω as the union of relatively simple domains and estimate
the counting functions for each of these domains. Then upper bounds for NB(λ ,Ω)
are obtained with the use of the following two lemmas.

Let NN,D(Ω̃ ,ϒ ,λ ) be the counting function of the Laplacian on Ω̃ with Dirichlet
boundary condition on ϒ ⊂ ∂Ω̃ and Neumann boundary condition on ∂Ω̃ \ϒ .

Lemma 1. If {Ωi} is a countable family of disjoint open sets Ωi ⊂ Ω such that
|Ω |= |∪i Ωi| then

∑
i

ND(Ωi,λ ) ≤ ND(Ω ,λ ) ≤ NN(Ω ,λ ) ≤ ∑
i

NN(Ωi,λ )

and
NN(Ω ,λ ) ≥ ∑

i
NN,D(Ωi,∂Ωi \∂Ω ,λ ) .

Proof. The lemma is an elementary corollary of the Rayleigh–Ritz formula.
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Given a collection of sets {Ω j}, let us denote by ℵ{Ω j} the multiplicity of the
covering {Ω j}, that is, the maximal number of the sets Ω j containing a common
element.

Lemma 2. Let {Ω j} be a countable family of open sets Ω j ⊂ Ω such that |Ω | =
|∪ j Ω j| and ℵ{Ω j} ≤ κ < +∞ . If ϒ ⊂ ∂Ω and ϒj := ∂Ω j

⋂
ϒ then

NN,D(Ω ,ϒ ,κ−1/2λ ) ≤ ∑
j

NN,D(Ω j,ϒj,λ ).

Proof. See Lemma 2.2 in [NS].

Remark 1. Lemmas 1 and 2 remain valid for more general differential operator. This
allows one to extend our results to some classes of higher order operators (see [NS]).

3 Partitions of Ω

The following theorem is due to H. Whitney.

Theorem 1. There exists a countable family {Qi,m}m∈Mi , i∈I of mutually disjoint
open n-dimensional cubes Qi,m with edges of length 2−i such that

Ω =
⋃

i∈I

⋃

m∈Mi

Qi,m and Qi,m ⊂
(

Ω b
4δi
\Ω b

δi

)

where δi :=
√

n2−i , I is a subset of Z , and Mi are some finite index sets.

Proof. See, for example, Chapter VI in [St].

Lemma 3. For every δ > 0 there exists a finite family of disjoint open sets {Mk}
such that

(i) each set Mk coincides with the intersection of Ω and an open n-dimensional
cube with edges of length δ ;

(ii) Ω b
δ0
⊂ ⋃

k Mk ⊂ Ω b
δ1

⋃
∂Ω , where δ0 := δ/

√
n and δ1 :=

√
nδ +δ/

√
n.

Proof. Consider an arbitrary covering of Rn by disjoint cubes of size δ and select
the cubes which have nonempty intersections with Ω .

Theorem 1 and Lemma 3 imply that Ω can be represented (modulo a set of
measure zero) as the union of Whitney cubes and the subsets Mk lying in cubes
of size δ . This is sufficient to estimate RD(λ ,Ω). However, the condition (1) of
Lemma 3 does not imply any estimates for NN(λ ,Mk). In order to obtain an upper
bound for RN(λ ,Ω), one has to consider a more sophisticated partition of Ω .

If Ω ′ is an open (d−1)-dimensional set and f is a continuous real-valued func-
tion on the closure Ω ′, let
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• G f ,b(Ω ′) := {x ∈ Rn |b < xd < f (x′), x′ ∈Ω ′} , where b is a constant such that
inf f > b ;

• Osc( f ,Ω ′) := sup
x′∈Ω ′

f (x′)− inf
x′∈Ω ′ f (x′) ;

• Vδ ( f ,Ω ′) be the maximal number of disjoint (n−1)-dimensional cubes Q′
i ⊂Ω ′

such that Osc( f ,Q′
i)≥ δ for each i.

If n = 2 then, roughly speaking, Vδ ( f ,Ω ′) coincides with the maximal number of
oscillations of f which are not smaller than δ . Let

• V(δ ) be the class of domains V which are represented in a suitable coordinate
system in the form V = G f ,b(Q′) , where Q′ is an (n− 1)-dimensional cube
with edges of length not greater than δ , f : Q′ 7→ R is a continuous function,
b = inf f −δ and Osc( f ,Q′)≤ δ/2;

• P(δ ) the set of n-dimensional rectangles such that the length of the maximal edge
does not exceed δ .

Assume that Ω ∈C . Then there is a finite collection of domains Ωl ⊂ Ω such
that Ωl = G fl ,bl (Q

′
l)∈V(δl) with some δl > 0 and ∂Ω ⊂⋃

l∈L Ωl . Let us fix such
a collection, and let

• nΩ be the number of the sets Ωl ;
• Vδ (Ω) := max{1,Vδ ( f1,Q′

1),Vδ ( f2,Q′
2), . . .} ;

• δΩ be the largest positive number such that Ω b
δΩ
⊂⋃

l∈L Ωl , δΩ ≤ diamQ′
l and

2δΩ ≤ inf fl −bl for all l.

Theorem 2. Let Ω ∈C . Then for each δ ∈ (0,δΩ ] there exist finite families of sets
{Pj} and {Vk} satisfying the following conditions:

(i) Pj ∈ P(δ ) and Vk ∈ V(δ );
(ii) ℵ{Pj} ≤ 4n nΩ and ℵ{Vk} ≤ 4n−1 nΩ ;

(iii) Ω b
δ0
⊂ ∪ j,k

(
Pj

⋃
Vk

) ⊂ Ω b
δ1

, where δ0 := δ/
√

n and δ1 :=
√

nδ +δ/
√

n;

(iv) #{Vk} ≤ 23(n−1)
(

3n−1 Vδ/2(Ω)+nΩ δ−n |Ω b
δ1
|
)

and

#{Pj} ≤ 23n−13n−1 δ−1
∫ 4/δ

(2 diamΩ)−1
t−2 Vt−1(Ω)dt + 23n nn/2 nΩ δ−n |Ω b

δ1
| .

Proof. The theorem follows from Corollary 3.8 in [NS].

4 Upper bounds

The counting functions of the Laplacian on Whitney cubes can be evaluated explic-
itly. For other domains introduced in the previous section the counting functions are
estimated as follows.

Lemma 4.

(i) If P ∈ P(δ ) then NN(P,λ ) = 1 for all λ ≤ πδ−1.
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(ii) If V ∈ V(δ ) then NN(V,λ ) = 1 for all λ ≤ (1+2π−2)−1/2δ−1.
(iii) If M is a subset of an n-dimensional cube Q with edges of length δ and

ϒ := ∂M
⋂

Q then
NN,D(M,ϒ ,λ ) = 0 for all λ ≤ (2−1−2−1δ−n|M|)1/2 πδ−1 and
NN,D(M,ϒ ,λ )≤ 1 for all λ ≤ πδ−1.

Proof. See Lemma 2.6 in [NS].

Remark 2. The first estimate in Lemma 4(iii) is very rough. Much more precise
results in terms of capacities were obtained in [M2, Chapter 10, Section 1].

Applying Theorem 1 and Lemmas 1, 2, 3, 4 and putting δ = Cλ−1 with an ap-
propriate constant C, we obtain

RD(Ω ,λ ) ≤ 27n n2n λ n−1
∫ λ

0
|Ω b

t−1 |dt , ∀λ > 0 . (3)

Similarly, if Ω ∈C then Theorems 1, 2 and Lemmas 1, 2, 4 imply that

RN(Ω ,λ ) ≤ 27n n1/2
Ω λ

∫ CΩ λ

(2 diamΩ)−1
t−2 Vt−1(Ω)dt

+ 28n n2n nΩ λ n−1
∫ CΩ λ

0
|Ω b

t−1 |dt (4)

for all λ ≥ δ−1
Ω , where CΩ := 2n+3 n1/2

Ω (see [NS] for details). Note that

|Ω b
t−1 | ≤ 22n−2 3n nΩ (diamΩ)d−1t−1 +23n−3 32n t−n Vt−1(Ω)

for all t > 0 [NS, Lemma 4.3]. Therefore (4) implies the estimate

RN(Ω ,λ ) ≤ C′Ω λ n−1
(

logλ +
∫ C′Ω λ

(2 diamΩ)−1
t−n Vt−1(Ω)dt

)
(5)

with a constant C′Ω depending on Ω .

Remark 3. Assume that Ω belongs to the Hölder class Cα for some α ∈ (0,1).
Then, by [NS, Lemma 4.5], there are constants C′1 and C′2 such that

Vt−1(Ω) ≤ C′1 t(n−1)/α +C′2 .

Now (2) and (4) imply that

RN(Ω ,λ ) = O
(

λ (n−1)/α
)

, λ → ∞ .

This estimate is order sharp. More precisely, for each α ∈ (0,1) there exists a do-
main Ω with Cα -boundary such that RN(Ω ,λ )≥ cλ (n−1)/α for all sufficiently large
λ , where c is a positive constant [NS, Theorem 1.10 ]. The inequalities (2) and (3)
imply the well known estimate
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RD(Ω ,λ ) = O
(
λ n−α)

, λ → ∞ .

Obviously, (n− 1)/α > n−α . Moreover, if α < 1− n−1 then (n− 1)/α > n ,
which means that RN(Ω ,λ ) may grow faster than λ n as λ → ∞ .

Remark 4. In a number of papers, estimates for RD(Ω ,λ ) were obtained in terms of
the so-called upper Minkowski dimension and the corresponding Minkowski con-
tent of the boundary (see, for instance, [BC], [BL] or [FV]). Our formulae (2) and
(3) are universal and imply the known estimates.

5 Planar domains

In the two-dimensional case it is much easier to construct partitions of a domain Ω ,
since the intersection of Ω with any straight line consists of disjoint open intervals.
This allows one to refine the above results. Throughout this section we shall be
assuming that Ω ⊂ R2 .

5.1 The Neumann Laplacian

Consider the domain

Ω = Gϕ := {(x,y) ∈ R2 | 0 < x < 1,−1 < y < ϕ(x)} , (6)

where ϕ : (0,1) 7→ [0,+∞] is a lower semicontinuous function such that |Gϕ | < ∞
(this implies, in particular, that ϕ is finite almost everywhere). Note that Ω does
not have to be bounded; the results of this subsection hold for unbounded domains
of the form (6).

For each fixed s > 0, the intersection of Gϕ with the horizontal line {y = s}
coincides with a countable collection of open intervals. Let us consider the open set
E(ϕ ,s) obtained by projecting these intervals onto the horizontal axis {y = 0} ,

E(ϕ,s) = {x ∈ (0,1) | (x,s) ∈ Gϕ} =
⋃

j∈Γ (ϕ ,s)

I j ,

where I j are the corresponding open subintervals of (0,1) and Γ (ϕ ,s) is an index
set. Obviously, E(ϕ ,s2)⊂ E(ϕ,s1) whenever s2 > s1.

It turns out that the spectral properties of the Neumann Laplacian on Gϕ are
closely related to the following function, describing geometric properties of Gϕ .
Given t ∈ R+, let us denote

n(ϕ, t) =
+∞

∑
k=1

#
{

j ∈ Γ (ϕ,kt) | µ(I j) < 2 µ
(
I j

⋂
E(ϕ,kt + t)

)}
,
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where µ(·) is the one dimensional measure of the corresponding set. Note that
n(ϕ, t) may well be +∞.

Recall that the first eigenvalue of the Neumann Laplacian is equal to zero, and
the corresponding eigenfunction is constant. If the rest of the spectrum is separated
from 0 and lies in the interval [ν2,∞) then we have the so-called Poincaré inequality

inf
c∈R

‖u− c‖2
L2(Ω) ≤ ν−2 ‖∇u‖2

L2(Ω) , ∀u ∈W 2,1(Ω) ,

where W 2,1(Ω) is the Sobolev space.

Theorem 3. The Poincaré inequality holds in Ω = Gϕ if and only if there exists
t > 0 such that n(ϕ, t) = 0 . Moreover, there is a constant C ≥ 1 independent of ϕ
such that

C−1(t0 +1) ≤ ν−2 ≤ C (t0 +1),

where t0 := inf{t > 0 | n(ϕ, t) = 0}.

Proof. See Theorem 1.2 in [Ne].

Theorem 4. The spectrum of Neumann Laplacian on Gϕ is discrete if and only if
n(ϕ, t) < +∞ for all t > 0.

Proof. See Corollary 1.4 in [Ne].

Theorem 5. Let Ψ : [1,+∞) 7→ (0,+∞) be a function such that

C−1sa ≤ Ψ(st)
Ψ(t)

≤ C sb , ∀s, t ≥ 1,

where a > 1 , b≥ a and C ≥ 1 are some constants. Then the following two condi-
tions are equivalent.

(i) There exist constants C1 ≥ 1 and λ∗ > 0 such that

C−1
1 Ψ(λ ) ≤ RN(Gϕ ,λ ) ≤ C1Ψ(λ ) , ∀λ ≥ λ∗ .

(ii) There exist constants C2 ≥ 1 and t∗ > 0 such that

C−1
2 Ψ(t) ≤ n(ϕ, t−1) ≤ C2Ψ(t) , ∀t ≥ t∗ .

Proof. See Theorem 1.6 in [Ne].

5.2 The Dirichlet Laplacian

M. Berry conjectured in [Be] that the Weyl formula for the Dirichlet Laplacian on
a domain with rough boundary might contain a second asymptotic term depending
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on the fractal dimension of the boundary. This problems was investigated by a num-
ber of mathematicians and physicists and was discussed in many papers (see, for
instance, [BC], [FV] and references therein). To the best of our knowledge, positive
results were obtained only for some special classes of domains (such as domains
with model cusps and disconnected self-similar fractals). The following theorem
justifies the conjecture for planar domains of class C .

Theorem 6. Let Ω be a planar domain of class C such that

|Ω b
δ | = C1δ α1 + · · ·+Cmδ αm +o(δ β ) , δ → 0,

where C j , αi and β are real constants such that 0 < α1 < α2 < · · ·< αm ≤ β < 1
and β < (1+α1)/2 . Then

RD(Ω ,λ ) = τα1C1λ 2−α1 + · · ·+ ταmCmλ 2−αm +o(λ 2−β ) , λ → ∞,

where τα j is a constant depending only on α j for each j = 1, . . . ,m.

Recall that the interior Minkowski content of order α of a planar domain Ω is
defined as

M int
α (Ω) := c(α) lim

δ→0
δ α−2 |Ω b

δ | (7)

provided that the limit exists; here α ∈ (0,2) and c(α) is a normalising constant.
Theorem 6 with m = 1 and α1 = β = α immediately implies the following

Corollary 1. If Ω is a planar domain of class C and 0 < M int
α (Ω) < +∞ for some

α ∈ (1,2) then limλ→+∞ RD(Ω ,λ )/λ 2−α = τα M int
α (Ω) , where τα is a constant

depending only on α .

The proof of Theorem 6 consists of two parts, geometric and analytic. The first
part uses the technique developed in [Ne] and the following lemma about partitions
of planar domains Ω ∈C .

Lemma 5. For every planar Ω ∈C , there exist a finite collection of open connected
disjoint subsets Ωi ⊂Ω and a set D such that

(i) Ω ⊂ ((∪iΩi)∪D)⊂Ω ;
(ii) D coincides with the union of a finite collection of closed line segments;

(iii) each set Ωi is either a Lipschitz domain or is obtained from a domain given by
(6) with a continuous function ϕi by translation, rotation and dilation.

The second, analytic part of the proof involves investigation of some one dimen-
sional integral operators.

6 Concluding remarks and open problems

Remark 5. It is not clear how to obtain upper bounds for NN(Ω ,λ ) for general
domains Ω . It is not just a technical problem; for instance, the Neumann Laplacian
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on the relatively simple planar domain Ω obtained from the square (0,2)× (0,2)
by removing the line segments 1

n × (0,1) , n = 1,2,3 . . . , has a nonempty essential
spectrum.

Remark 6. It may be possible to extend and/or refine our results, using a combina-
tion of our variational approach with the technique developed by V. Ivrii in [Iv].

Remark 7. There are strong reasons to believe that Theorem 6 cannot be extended
to higher dimensions.

Finally, we would like to draw reader’s attention to the following open problems.

Problem 1. By Lemma 2, NN(Ω ,κ−1/2λ ) ≤ ∑ j NN(Ω j,λ ) for any finite family
{Ω j}of open sets Ω j ⊂ Ω such that |Ω | = | ∪ j Ω j| and ℵ{Ω j} ≤ κ < +∞ . It is
possible that the better estimate NN(Ω ,λ ) ≤ ∑ j NN(Ω j,λ ) holds. This conjecture
looks plausible and is equivalent to the following statement: if Ω1 ⊂ Ω , Ω2 ⊂ Ω
and Ω ⊂Ω1

⋃
Ω2 then NN(Ω1,λ )+NN(Ω2,λ )≥ NN(Ω ,λ ).

Problem 2. It would be interesting to know whether the converse statement to
Corollary 1 is true. Namely, assume that Ω is a planar domain of class C such
that

RD(Ω ,λ ) = C λ 2−α +o(λ 2−α) , λ → ∞ ,

with some constant C . Does this imply that the limit (7) exists and finite?

Problem 3. Is it possible to improve the estimate RB(Ω ,λ ) = O(λ n−1 logλ ) for
Lipschitz domains? The variational methods are applicable to all domains Ω of
class C but do not allow one to remove the logλ , whereas Ivrii’s technique gives
the best possible result RB(Ω ,λ ) = O(λ n−1) but works only for Ω which are “log-
arithmically” better than Lipschitz domains.

References

[Be] Berry, M. V.: Some geometric aspects of wave motion: wavefront dislocations, diffraction
catastrophes, diffractals. Geometry of the Laplace Operator, Proc. Sympos. Pure Math.
36, 13–38 (1980).

[BC] Brossard, J., Carmona, R.: Can one hear the dimension of a fractal? Comm. Math. Phys.
104, 103-122 (1986).

[BL] van den Berg, M., Lianantonakis, M.: Asymptotics for the spectrum of the Dirichlet Lapla-
cian on horn-shaped regions. Indiana Univ. Math. J. 50, 299–333 (2001).

[BS] Birman, M.S., Solomyak, M.Z.: The principal term of spectral asymptotics for “non-
smooth” elliptic problems. Funktsional. Anal. i Prilozhen. 4:4, 1–13 (1970) (Russian),
English transl. in Functional Anal. Appl. 4 (1971).
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