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Abstract. Dirichlet and Neumann problems for the Laplace operator in a bounded domain
in Euclidean space are considered. Some estimates of the difference NN(λ) − ND(λ) of
counting functions are discussed.

Introduction

Let Ω ⊂ Rd be an open bounded set in the Euclidean space of the dimension d > 2 , and
let ∆D and ∆N be the Dirichlet and Neumann Laplacians on Ω . Recall that −∆D and
−∆N are defined as the nonnegative self-adjoint operators generated by the Dirichlet form∫
Ω
|∇u|2 dx with domains W 1

2,0(Ω) and W 1
2 (Ω) respectively. Here W 1

2 (Ω) is the Sobolev

space and W 1
2,0(Ω) is the W 1

2 -closure of C∞
0 (Ω) . Note that the Dirichlet and Neumann

Laplacian are well-defined even if the boundary ∂Ω is not smooth.
Further on we shall be using the subscript B instead of D or N whenever the definition

refers to or the result is valid both for the Dirichlet and Neumann Laplacians.
Let NB(λ) be the counting functions of the operators −∆B . By definition,

NB(λ) := rank Pλ(−∆B)

where Pλ(−∆B) denotes the spectral projection of −∆B corresponding to the interval
[0, λ2) . Since the embedding W 1

2,0(Ω) ⊂ L2(Ω) is compact, ND(λ) is finite for each λ .
The Neumann counting function NN(λ) may well be infinite. For instance, if Ω consists
of infinitely many connected components then dim ker(−∆N) = ∞ and NN(λ) = ∞ for all
λ > 0 .

The aim of this paper is to obtain estimates of the difference NN(λ) − ND(λ) for large
values of λ . If the boundary ∂Ω is sufficiently smooth and the billiard flow in Ω satisfies
the non-periodicity condition (see the Section 1) then, by the Weyl asymptotic formula,

ND(λ) = κd |Ω|d λd − 1

4
κd−1 |∂Ω|d−1 λd−1 + o(λd−1) , λ →∞ ,(0.1)

NN(λ) = κd |Ω|d λd +
1

4
κd−1 |∂Ω|d−1 λd−1 + o(λd−1) , λ →∞ .(0.2)
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Here and further on | · |n stands for the n-dimensional volume, κn := (2π)−nωn , and ωn is
the volume of the n-dimensional unit ball.

The above asymptotic formulae imply that

NN(λ)−ND(λ) =
1

2
κd−1 |∂Ω|d−1 λd−1 + o(λd−1) , λ →∞ .

However, (0.1) and (0.2) may fail for the following two reasons.

(a) The boundary ∂Ω is not smooth enough. Indeed, there are many examples showing
that the two-term Weyl asymptotic formulae do not hold for general domains with
irregular boundaries.

(b) The boundary ∂Ω is smooth but the non-periodicity condition is not fulfilled. It is
not known whether such domains exist (see Remark 1.3), so it is possible that this
obstacle is only of technical nature.

In this paper we show that

NN(λ)−ND(λ) 6 CΩ λ(d−1)/α , if ∂Ω ∈ Cα , α ∈ (0, 1) ,

NN(λ)−ND(λ) 6 CΩ λd−1 ln λ , if ∂Ω is Lipschitz ,

NN(λ)−ND(λ) > CΩ λd−4|Ωλ−1|−1
d for an arbitrary domain Ω ,

where Ωε := {x ∈ Ω : dist (x, ∂Ω) 6 ε}. The last estimate implies, in particular, that

NN(λ)−ND(λ) →∞ as λ →∞ for all d > 4.

For domains with smooth boundaries we obtain the following more precise estimate,

1

4
κd−1 |∂Ω|d−1 λd−1+o(λd−1) 6 NN(λ)−ND(λ) 6 3

4
κd−1 |∂Ω|d−1 λd−1+o(λd−1) , λ →∞ ,

which holds without the non-periodicity condition.
Throughout the paper Cd and CΩ denote various constants, depending either only on the

dimension d or on the domain Ω , whose precise values are not important for our purposes.

1. Weyl type asymptotic formulae

Let us assume that the boundary ∂Ω is sufficiently smooth and denote by nx the unit
normal vector to the boundary at the point x directed inside Ω . Let S Ω be the unit
tangent bundle over Ω ,

S Ω := {(x, ξ) : x ∈ Ω, ξ ∈ Rd, |ξ| = 1} ,

and let
S+Ω := {(x, ξ) ∈ S Ω : either x ∈ Ω, or x ∈ ∂Ω and ξ · nx > 0} ,

If (x, ξ) ∈ S+Ω , let us consider the trajectory

(x(t), ξ(t)) := (x + tξ, ξ) = (x(t), ẋ(t)) , t > 0 .

Clearly, (x(t), ξ(t)) ∈ S+Ω for all sufficiently small t . When the trajectory x(t) hits the
boundary at a time t0, we reflect it according to the standard law of geometric optics and
define ξ(t) to be the unit tangent vector of the reflected trajectory for t > t0. Continuing
the procedure, we obtain a trajectory (x(t), ξ(t)) in S+Ω composed of line segments of the
form (x + tξ, ξ) , which is called a billiard trajectory. The family of maps Φt : S+Ω 7→ S+Ω
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defined by Φt(x, ξ) := (x(t), ξ(t)) is said to be the billiard flow. It is known that Φt is well
defined almost everywhere for all t > 0 and that Φt preserves the standard measure dx dξ
on S+Ω . Precise definitions and proofs of these and other relevant results can be found, for
instance, in [CFS, Chapter 6] or [SV].

The point (x, ξ) ∈ S+Ω is called periodic if ΦT (x, ξ) = (x, ξ) for some T > 0. Let Π ⊂ S+Ω
be the set of periodic points of the flow Φt . The non-periodicity condition asserts that

|Π|2d−1 :=

∫

Π

dx dξ = 0 .

Theorem 1.1. The Weyl asymptotic formulae (0.1) and (0.2) hold whenever the billiard
flow Φt satisfies the non-periodicity condition.

Remark 1.2. Theorem 1.1 was obtained in [Iv1] for infinitely smooth boundaries ∂Ω (see
also [SV] for a detailed and relatively simple proof). Later V. Ivrii extended this result to
the sets Ω whose boundaries belong to the Hölder class Cα with α > 1 [Iv2].

Remark 1.3. It is a long standing conjecture that |Π|2d−1 = 0 for every domain Ω with
a sufficiently smooth boundary. While no counterexamples are known, to the best of our
knowledge, there are only two positive results in this direction. Namely, |Π|2d−1 = 0 if

(i) ∂Ω is analytic and convex (see [Va2, Section 1] or [SV, Lemma 1.3.19]);
(ii) ∂Ω is piecewise smooth and concave (see [Va1, Theorem 2]). In particular, it is true

if Ω is a polyhedron.

If |Π|2d−1 > 0 then the asymptotic behaviour of the counting functions may depend on
the properties of periodic trajectories. It turns out that there are two characteristics which
affect the second asymptotic term. The first is the minimal period T (x, ξ) of the periodic
trajectory originating from (x, ξ) ∈ Π , and the second is the so-called total phase shift
qB(x, ξ) along the primitive periodic trajectory γ(x, ξ) := {Φt(x, ξ)}t∈[0,T (x,ξ)] . The phase
shift depends on the boundary condition. The precise definition of the phase shift qB(x, ξ)
is given in [SV], where it is shown that the set Π and the functions T (x, ξ) , qB(x, ξ) are
measurable.

If τ ∈ R , let {τ}2π = τ + 2πk where k is the integer such that τ + 2πk ∈ (−π, π] .
Denote

(1.1) QB(λ) := (2π)−d

∫

Π

{π − qB(x, ξ)− λT (x, ξ)}2π

T (x, ξ)
dx dξ .

The following theorem was proved in [GS] (see also [SV, Section 1.7]).
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Theorem 1.4. If ∂Ω is infinitely smooth then there exists a function h : R+ → R such
that

ND(λ) 6 κd |Ω|d λd − 1

4
κd−1 |∂Ω|d−1 λd−1 + QD(λ + h(λ))λd−1 + o(λd−1) ,(1.2)

ND(λ) > κd |Ω|d λd − 1

4
κd−1 |∂Ω|d−1 λd−1 + QD(λ− h(λ))λd−1 + o(λd−1) ,(1.3)

NN(λ) 6 κd |Ω|d λd +
1

4
κd−1 |∂Ω|d−1 λd−1 + QN(λ + h(λ))λd−1 + o(λd−1) ,(1.4)

NN(λ) > κd |Ω|d λd +
1

4
κd−1 |∂Ω|d−1 λd−1 + QN(λ− h(λ))λd−1 + o(λd−1)(1.5)

and h(λ) → 0 as λ →∞ .

Note that the function QB may well be discontinuous. Therefore, generally speaking, it
is impossible to remove h(λ) from the right hand sides of the above inequalities (see the
discussion in [SV, Section 1.7]).

2. Estimates for domains with smooth boundaries

Theorem 2.1. If ∂Ω is infinitely smooth then

NN(λ)−ND(λ) 6 3

4
κd−1 |∂Ω|d−1 λd−1 + o(λd−1) , λ →∞ ,(2.1)

NN(λ)−ND(λ) > 1

4
κd−1 |∂Ω|d−1 λd−1 + o(λd−1) , λ →∞ .(2.2)

Proof. Let B∂Ω be the set of pairs (x′, ξ′) where x′ ∈ ∂Ω and ξ′ is an (d− 1)-dimensional
tangent vector to ∂Ω at the point x′ such that |ξ′| < 1 . For each (x′, ξ′) ∈ B∂Ω there exists
a unique d-dimensional vector θ(ξ′) such that (x′, θ(ξ′)) ∈ S+Ω and θ(ξ′)− ξ′ is a normal
to ∂Ω vector directed inside Ω . The billiard trajectories Φt(x

′, θ(ξ′)) originating from all
such points cover a subset of S+Ω of full measure. Moreover, if we parameterize S+Ω by
t ∈ R and (x′, ξ′) ∈ B∂Ω then dx dξ = dt dx′dξ′ , where dx′ is the standard measure on
∂Ω [CFS, Chapter 6].

Let Πk ⊂ S+Ω be the set of points (x, ξ) ∈ Π such that the corresponding primitive
periodic trajectories γ(x, ξ) experience k reflections. Let

Mk = {(x′, ξ′) ∈ B∂Ω : (x′, θ(ξ′)) ∈ Πk}.
Consider the set

Π̂k := {(t, x′, ξ′) : (x′, ξ′) ∈ Mk , 0 6 t < T (x′, θ(ξ′))}
and the mapping Ψk : (t, x′, ξ′) 7→ (x, ξ) := Φt(x

′, θ(ξ′)) from Π̂k onto Πk . Obviously, the

inverse image Ψ−1
k (x, ξ) of every point (x, ξ) ∈ Πk consists of k distinct points of Π̂k . By

the above, ∫

V

dt dx′ dξ′ =

∫

Ψk(V )

dx dξ
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for any measurable set V ⊂ Π̂k such that the restriction Ψk|V is a bijection. Therefore
∫

Πk

f(x, ξ) dx dξ = k−1

∫

Π̂k

f(Ψk(t, x
′, ξ′)) dt dx′ dξ′

for all measurable functions f : Πk 7→ R+ .
In particular, if f(x, ξ) = 1

T (x,ξ)
then, integrating over t , we obtain

∫

Πk

dx dξ

T (x, ξ)
= k−1

∫

Π̂k

dx dξ

T (Ψk(t, x′, ξ′))
dt dx′ dξ′ = k−1

∫

Mk

dx′ dξ′ .

Since the sets Πk are disjoint, the integral in the right hand side of (1.1) is equal to the sum
of integrals over Πk . Estimating in each of these integrals |{π − qB(x, ξ)− λT (x, ξ)}2π| 6 π
and using the above identity, we see that

(2.3) |QB(λ)| 6 (2π)−d π

∞∑

k=1

k−1

∫

Mk

dx′ dξ′ .

Clearly, M1 = ∅ . One can easily show that |M2|2d−2 = 0 . Finally, according to [Vo], the
measure of M3 is also zero. Thus we have

|QB(λ)| 6 (2π)−d π

4

∞∑

k=4

∫

Mk

dx′ dξ′ 6 (2π)−d π

4

∫

B∂Ω

dx′ dξ′ =
1

8
κd−1 |∂Ω| .

This estimate and (1.2)–(1.5) imply the theorem. ¤

Remark 2.2. It is plausible that Theorem 1.4 remains valid whenever ∂Ω ∈ Cα with α > 1
(cf. Remark 1.2). If it is true then Theorem 2.1 also holds for such domains.

Remark 2.3. Theorem 1.4 can be extended to the Laplacian on a Riemannian manifold Ω
with boundary. If the measure of the set of periodic trajectories lying in the interior Ω \ ∂Ω
is equal to zero then the same arguments as in the proof of Theorem 2.1 yield (2.3). In this
case, making additional assumptions about the measure of the sets Πk with small k , one
can obtain estimates similar to (2.1) and (2.2).

3. Irregular boundaries: upper bounds

In order to estimate NN−ND from above, we prove a lower bound for ND and an upper
bound for NN . The former is a relatively simple task (see [NS, Theorem 1.8] and [Sa,
(3.18)]).

Theorem 3.1. For every open set Ω ⊂ Rd

(3.1)
∣∣ND(λ)− κd |Ω|d λd

∣∣ 6 Cd λd−1

∫ λ

0

|Ωt−1| dt , ∀λ > 0 ,

where

Ωε := {x ∈ Ω : dist (x, ∂Ω) 6 ε} .
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If the boundary ∂Ω is Lipschitz then |Ωε|d ∼ ε as ε → 0 , and

(3.2) λd−1

∫ λ

0

|Ωt−1| dt = O(λd−1 ln λ) , λ →∞.

If ∂Ω ∈ Cα , α ∈ (0, 1), then

(3.3) λd−1

∫ λ

0

|Ωt−1| dt = O(λd−α) , λ →∞

(see [NS, Lemma 4.4]).
The problem of estimating NN for irregular domains is much more difficult. To the best

of our knowledge, the most general results in this direction were obtained in [NS] and [N].
The statements of these results are not simple; it turns out that the asymptotic behaviour
of NN(λ) as λ →∞ depends on subtle properties of the boundary. The following theorem
is contained in [NS].

Theorem 3.2. If the boundary ∂Ω is Lipschitz then

(3.4) NN(λ) = κd |Ω|d λd + O(λd−1 ln λ) , λ →∞ .

If ∂Ω ∈ Cα with α ∈ (0, 1) then

(3.5) NN(λ) = κd |Ω|d λd + O(λ(d−1)/α) , λ →∞ .

Since (d− 1)/α > d−α for all α ∈ (0, 1) , the estimates (3.1), (3.3) and (3.5) imply that

(3.6) NN(λ)−ND(λ) 6 CΩ λ(d−1)/α , ∀λ > 1 , ∀α ∈ (0, 1) ,

whenever ∂Ω ∈ Cα . From (3.1), (3.2) and (3.4) it follows that for domains with Lipschitz
boundaries

(3.7) NN(λ)−ND(λ) 6 CΩ λd−1 ln λ , ∀λ > 2 .

4. Irregular boundaries: lower bounds

Theorem 4.1. If d > 4 then there exists a constant CΩ > 0 such that

(4.1) NN(λ)−ND(λ) > CΩ λd−4|Ωλ−1|−1
d , ∀λ > 0 .

Note that |Ωε|d → 0 as ε → 0 because
⋂

ε>0 Ωε = ∅ , |Ωε|d 6 |Ω|d < ∞ and Ωδ ⊂ Ωε

for all ε > 0 and δ 6 ε . Thus Theorem 4.1 implies that

(4.2) NN(λ)−ND(λ) →
λ→∞

∞ , ∀ d > 4 .

For Lipschitz boundaries (4.1) turns into

(4.3) NN(λ)−ND(λ) > CΩ λd−3 .

Remark 4.2. In the dimensions d = 2, 3 the inequalities (4.1) and (4.3) have no significance,
since NN(λ) − ND(λ) > 1 for all d > 2 (this estimate was proved in [Fr] for domains Ω
with smooth boundaries and extended in [Fi] to arbitrary bounded open sets Ω).
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Remark 4.3. There are reasons to believe that the difference NN(λ)−ND(λ) grows faster as
the boundary of Ω becomes less regular. Therefore, in view of Theorem 2.1, (4.2) is likely
to be true in all dimensions d > 2 . Moreover, it is plausible that NN(λ)−ND(λ) > CΩ λd−1

for all d > 2 and all bounded open domains Ω . However, we are unaware of any technique
that could be used to prove these conjectures.

Remark 4.4. Recall that W 1
2,0(Ω) is a closed subspace of W 1

2 (Ω) of infinite codimension. One
could assume that the difference between counting functions of two nonnegative operators
generated by the same quadratic form on two such domains always tends to infinity. However,
it is not true. One can construct a positive function g on R and two dense subspaces D1,
D2 of L2(R) such that

• D1 is a subspace of D2 of infinite codimension;
• ∫

R g(t) |u′(t)|2 dt < ∞ for all u ∈ D2 ;
• D1 and D2 are closed with respect to the form

∫
R g(t) |u′(t)|2 dt ;

• the counting functions of the operators generated by the restriction of this form to
D1 and D2 coincide on an unbounded subset of R+ .

Proof of Theorem 4.1. The proof proceeds in several steps.

Step 1. Denote by LD(λ) the subspace of W 1
2,0(Ω) spanned by the eigenfunctions of the

operator −∆D corresponding to the eigenvalues λk < λ2 . Suppose that L is a subspace of
W 1

2 (Ω) such that

(4.4) L ∩ LD(λ) = {0} , −∆v = λ2v and λ2 ‖v‖2
L2(Ω) > ‖∇v‖2

L2(Ω) for all v ∈ L \ {0} .

If u ∈ LD(λ), v ∈ L and u + v 6= 0 then

‖∇(u + v)‖2
L2(Ω) =

∫

Ω

(|∇u|2 + |∇v|2 + 2 Re 〈∇u,∇v〉) dx

< λ2

∫

Ω

(|u|2 + |v|2) dx− 2 Re

∫

Ω

u ∆ v dx = λ2‖u + v‖2
L2(Ω) .

Clearly, dim (LD(λ) + L) = ND(λ) + dim L . By the variational principle,

NN(λ) = max{dim F : F ⊂ W 1
2 (Ω) and ‖∇f‖2 < λ2‖f‖2 for all f ∈ F \ {0}} .

This implies that

(4.5) NN(λ) > ND(λ) + dim L .

In Step 5 we shall construct a subspace L satisfying (4.4) and estimate its dimension. It
will consist of certain linear combinations of the functions uσm,j defined in the next step.

Step 2. Let χ̂ be the Fourier transform of the characteristic function χ of the set Ω . Let
us fix positive constants δ and Cδ,Ω such that

|χ̂(θ)| > Cδ,Ω whenever |θ| 6 δ

(such constants exist because χ̂ is continuous and χ̂(0) = (2π)−d/2|Ω|d > 0 ).
Let ξ ∈ Rd and |ξ| = λ with λ > δ/2 . Let us denote

Sδ(ξ) := {η ∈ Rd : |η| = |ξ| , |η − ξ| = δ} .
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Clearly, the set Sδ(ξ) is a (d− 2)-dimensional sphere whose volume does not depend on ξ .
We shall write |Sδ(λ)|d−2 := |Sδ(ξ)|d−2 .

Let us now consider collections σm := {ξ(p)
j }p=1,2

j=1,2,...,m consisting of 2m points ξ
(p)
j ∈ Rd

such that |ξ(p)
j | = λ and ξ

(2)
j ∈ Sδ(ξ

(1)
j ) . Such collections form a (2d − 3)m-dimensional

manifold Σδ,m(λ) whose volume is

|Σδ,m(λ)|(2d−3)m =
(
(d− 1) ωd−1λ

d−1 |Sδ(λ)|d−2

)m
.

Given a collection σm = {ξ(p)
j }p=1,2

j=1,2,...,m ∈ Σδ,m(λ) , let us define the functions

uσm,j(x) = (2π)−d/4
(
eix·ξ(1)

j + ζ(ξ
(2)
j − ξ

(1)
j ) eix·ξ(2)

j

)
, j = 1, . . . , m ,

where ζ(θ) := χ̂(θ)|χ̂(θ)|−1 . Since

λ2 − ξ
(p)
j · ξ(q)

k =
1

2
|ξ(p)

j − ξ
(q)
k |2 ,

we have

(4.6)
∣∣λ2 (uσm,j, uσm,k)L2(Ω) − (∇uσm,j,∇uσm,k)L2(Ω)

∣∣

6 (2π)−d/2
∑

p,q=1,2

∣∣∣λ2 (eix·ξ(p)
j , eix·ξ(q)

k )L2(Ω) − (∇eix·ξ(p)
j ,∇eix·ξ(q)

k )L2(Ω)

∣∣∣

=
1

2

∑
p,q=1,2

|ξ(p)
j − ξ

(q)
k |2 |χ̂(ξ

(p)
j − ξ

(q)
k )|

for all j 6= k , and

(4.7) λ2 ‖uσm,j‖2
L2(Ω) − ‖∇uσm,j‖2

L2(Ω) = |ξ(1)
j − ξ

(2)
j |2 |χ̂(ξ

(1)
j − ξ

(2)
j )| > Cδ,Ω δ2 , ∀j

due to the choice of δ.

Step 3. Let L′σm
be the subspace of W 1

2 (Ω) spanned by all the functions uσm,j . Obviously,

we have −∆u = λ2u for all u ∈ L′σm
. If all the points {ξ(p)

j }p=1,2
j=1,...,m in σm are distinct then

the functions uσm,j are linearly independent and dim L′σm
= m . Denote the set of points

σm ∈ Σδ,m(λ) such that dim L′σm
= m and L′σm

⋂
LD(λ) = {0} by Σ

(1)
δ,m(λ) . This set is

everywhere dense in Σδ,m(λ) .
If v ∈ L′σm

and v =
∑m

j=1 αj uσm,j then

(4.8) λ2 ‖v‖2
L2(Ω) − ‖∇v‖2

L2(Ω) = (Bσm~α, ~α)Cm ,

where ~α is the column (α1, . . . , αm)T and Bσm is the Hermitian m ×m-matrix with the
entries

bjk := λ2 (uσm,j, uσm,k)L2(Ω) − (∇uσm,j,∇uσm,k)L2(Ω) .

Let B̃σm be the diagonal matrix with entries b11, . . . , bmm . By (4.7),

(4.9) B̃σm > Cδ,Ω δ2I .
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The estimate (4.6) implies that

‖Bσm − B̃σm‖2
2 =

∑

j 6=k

|bjk|2 6
∑

j 6=k

∑
p,q=1,2

|ξ(p)
j − ξ

(q)
k |4 |χ̂(ξ

(p)
j − ξ

(q)
k )|2 ,

where ‖ · ‖2 is the Hilbert–Schmidt norm.

Step 4. If d > 3 then for all λ > 0 we have the inequality

(4.10)

∫

Σδ,m(λ)

(∑

j 6=k

∑
p,q=1,2

|ξ(p)
j − ξ

(q)
k |4 |χ̂(ξ

(p)
j − ξ

(q)
k )|2

)
dξ

(1)
1 dξ

(2)
1 . . . dξ(1)

m dξ(2)
m

6 Cd |Σδ,m(λ)|(2d−3)m m2 λ4−d |Ωλ−1|d .

This is proved by straightforward calculations see §5).

Step 5. The estimate (4.10) implies that there exists a non-empty open set Σ
(2)
δ,m(λ) ⊂

Σδ,m(λ) such that

(4.11) ‖Bσm − B̃σm‖2
2 < Cd m2 λ4−d |Ωλ−1|d , ∀σm ∈ Σ

(2)
δ,m(λ) .

Recall that the square of the Hilbert–Schmidt norm of a matrix coincides with the sum
of the squares of its eigenvalues. The estimate (4.11) shows that the number of eigen-
values of the matrix Bσm − B̃σm lying in the interval (−∞,−Cδ,Ωδ2] does not exceed
C ′

δ,Ω δ−4 m2 λ4−d |Ωλ−1|d . This observation and (4.9) imply that Bσm has at least m −
C ′

δ,Ω δ−4 m2 λ4−d |Ωλ−1|d positive eigenvalues for all σm ∈ Σ
(1)
δ,m(λ)

⋂
Σ

(2)
δ,m(λ) .

Let us fix σm ∈ Σ
(1)
δ,m(λ)

⋂
Σ

(2)
δ,m(λ) and let Lσm be the subspace of W 1

2 (Ω) generated
by the corresponding eigenvectors of Bσm . Then Lσm satisfies the conditions (4.4) due to
(4.8), and

dim Lσm > m− C ′
δ,Ω δ−4 m2 λ4−d |Ωλ−1|d .

Optimizing in m the expression in the right hand side we obtain dim Lσm > CΩ λd−4|Ωλ−1|−1
d

for all sufficiently large λ . This inequality and (4.5) imply (4.1). ¤

5. Appendix. Proof of the estimate (4.10)

We shall deduce (4.10) from the following two lemmas.

Lemma 5.1.
∫
|θ|62λ

|θ|2 |χ̂(θ)|2 dθ 6 9λ2 |Ωλ−1|d for all d > 1 and all λ > 0 .

Proof. Let

ψ(x) =





1, x ∈ Ω \ Ωλ−1 ,

λ dist(x, ∂Ω), x ∈ Ωλ−1 ,

0, x /∈ Ω .

The triangle inequality implies that

|ψ(x)− ψ(y)| 6 λ |x− y| ∀x, y ∈ Rd .
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Therefore ψ ∈ W 1
∞(Rd) and ‖∇ψ‖L∞ = λ . Since the function χ−ψ vanishes outside Ωλ−1 ,∫

|θ|62λ

|θ|2 |χ̂(θ)− ψ̂(θ)|2 dθ 6 4λ2 ‖χ̂− ψ̂‖2
L2(Rd) = 4λ2 ‖χ− ψ‖2

L2(Rd) 6 4λ2 |Ωλ−1|d .

The gradient ∇ψ vanishes outside Ωλ−1 , so∫

|θ|62λ

|θ|2 |ψ̂(θ)|2 dθ 6
∫

Rd

|θ|2 |ψ̂(θ)|2 dθ = ‖∇ψ‖2
L2(Rd) 6 λ2 |Ωλ−1|d .

These inequalities and the elementary estimate |χ̂|2 6 3|ψ̂|2 + 3
2
|χ̂− ψ̂|2 imply the required

result. ¤
Lemma 5.2. If d > 2 then

(5.1)

∫

|ξ|=λ

∫

|η|=λ

f(ξ − η) dξ dη = (d− 1) ωd−1λ
2

∫

|θ|62λ

f(θ) |θ|−1(λ2 − |θ|2/4)(d−3)/2 dθ

for all λ > 0 , f ∈ C(Rd).

Proof. Let r ∈ (0, λ] . First, we consider the integral of f(ξ − η) over the product of two
balls {ξ : |ξ| < λ} and {η : |η| < r} . Changing variables ξ = η + θ , we see that

(5.2)

∫

|ξ|<λ

∫

|η|<r

f(ξ − η) dξ dη =

∫

|θ|<λ+r

f(θ) F (θ) dθ ,

where F (θ) is the volume of intersection of the d-dimensional balls {η ∈ Rd : |η| < r} and
{η ∈ Rd : |θ + η| < λ} .

Obviously, F (θ) = ωd rd if |θ| 6 λ− r . By direct calculation,

F (θ) = (d− 1) ωd−1

(∫ ρ

0

(√
λ2 − s2 +

√
r2 − s2 − |θ|

)
sd−2 ds + 2

∫ r

ρ

√
r2 − s2 sd−2 ds

)

whenever λ− r < |θ| 6 √
λ2 − r2 , and

F (θ) = (d− 1) ωd−1

∫ ρ

0

(√
λ2 − s2 +

√
r2 − s2 − |θ|

)
sd−2ds

whenever
√

λ2 − r2 < |θ| 6 λ + r , where

(5.3) ρ = ρ(λ, r, θ) := (2|θ|)−1
√

2λ2r2 + 2λ2|θ|2 + 2r2|θ|2 − λ4 − r4 − |θ|4.
Differentiating (5.2) with respect to λ and taking into account the above formulae for F ,

we obtain

(5.4)

∫

|ξ|=λ

∫

|η|<r

f(ξ − η) dξ dη = (d− 1) ωd−1 λ

∫

λ−r<|θ|<λ+r

f(θ)

(∫ ρ

0

sd−2 ds√
λ2 − s2

)
dθ .

Now, differentiating (5.4) with respect to r , we see that

(5.5)

∫

|ξ|=λ

∫

|η|=r

f(ξ − η) dξ dη = (d− 1) ωd−1 λ r

∫

λ−r<|θ|<λ+r

f(θ) |θ|−1ρd−3 dθ .

Finally, substituting r = λ in (5.3) and (5.5), we arrive at (5.1). ¤
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If d > 3 then the right hand side of (5.1) is estimated by

(d− 1) ωd−1λ
d−1

∫

|θ|62λ

f(θ)|θ|−1 dθ .

Therefore, Lemma 5.1 and Lemma 5.2 with f(θ) = |θ|4 χ̂(θ) imply that

(5.6)

∫

|η|=λ

∫

|ξ|=λ

|ξ − η|4 |χ̂(ξ − η)|2 dξ dη 6 18(d− 1) ωd−1 λd+2 |Ωλ−1|d

for all d > 3 and all λ > 0 .
In order to prove (4.10), let us note that

∫

|ξ|=λ

dξ

∫

η∈Sδ(ξ)

g(ξ) dη = |Sδ(λ)|d−2

∫

|ξ|=λ

g(ξ) dξ =

∫

|ξ|=λ

dξ

∫

η∈Sδ(ξ)

g(η) dη

for all continuous functions g . It follows that for every continuous function f we have
∫

|ξ(1)|=λ

dξ(1)

∫

ξ(2)∈Sδ(ξ(1))

dξ(2)

∫

|η(1)|=λ

dη(1)

∫

η(2)∈Sδ(η(1))

dη(2)
∑

p,q=1,2

f(ξ(p) − η(q))

= 4 |Sδ(λ)|2d−2

∫

|ξ|=λ

∫

|η|=λ

f(ξ − η) dξ dη

and, consequently,
∫

Σδ,m(λ)

∑

j 6=k

∑
p,q=1,2

f(ξ
(p)
j − ξ

(q)
k ) dξ

(1)
1 . . . dξ(2)

m

= m(m− 1)

∫

Σδ,m(λ)

∑
p,q=1,2

f(ξ
(p)
1 − ξ

(q)
2 ) dξ

(1)
1 . . . dξ(2)

m

= 4m(m− 1) ((d− 1) ωd−1λ
d−1)m−2 |Sδ(λ)|md−2

∫

|ξ|=λ

∫

|η|=λ

f(ξ − η) dξ dη

= 4m(m− 1)((d− 1) ωd−1λ
d−1)−2 |Σδ,m(λ)|(2d−3)m

∫

|ξ|=λ

∫

|η|=λ

f(ξ − η) dξ dη .

Substituting f(θ) = |θ|4 |χ̂(θ)|2 and applying (5.6), we obtain (4.10).
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