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To Mikhail Shlëmovich Birman on his 80th birthday

Introduction

Let NN(λ) and ND(λ) be the counting functions of the Dirichlet and Neumann
Laplacian on a domain Ω ⊂ Rn. If λ is not a Dirichlet or Neumann eigenvalue,
then

(*) NN(λ) = ND(λ) + g−(λ) ,

where g−(λ) denotes the number of negative eigenvalues of the Dirichlet-to-
Neumann map at λ ∈ R. The equality (*) was proved in [Fr1] for domains with
sufficiently smooth boundaries. L. Friedlander also noticed that (*) immediately
implies Payne’s conjecture for the Laplacian on a bounded domain, according to
which the (k + 1)th Neumann eigenvalue does not exceed the kth Dirichlet eigen-
value. Later R. Mazzeo remarked that (*) remains valid for domains with smooth
boundaries in any Riemannian symmetric space of noncompact type and gave a
geometric explanation of Friedlander’s result [M].

For irregular boundaries, the Dirichlet-to-Neumann map may not be well-
defined and then (*) does not make sense. In 2004, N. Filonov suggested another
proof of Payne’s conjecture for the Laplacian [Fi]. This proof does not use (*)
and works for nonsmooth boundaries. The author assumed that the resolvent of
the Neumann Laplacian on Ω is compact, but this condition can be removed (see
Remark 1.9).

The aim of this note is to show that (*) holds for abstract operators in a Hilbert
space H, provided that the Dirichlet-to-Neumann map is understood in a proper
sense. Traditionally, one assumes that the Dirichlet-to-Neumann map is a family of
operators acting in the same space and depending on the spectral parameter λ (see
Subsection 1.3). In our understanding, it is a family of operators Bλ generated by
the restrictions of the same sesquilinear form to different subspaces Gλ ⊂ H1 . The
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identity (*) is proved with the use of special isomorphisms between the subspaces
Gλ with different values of λ .

This approach is close in spirit to Birman’s paper [B1] on selfadjoint extensions
of symmetric operators. In particular, it removes technical problems related to
nonsmooth boundaries and allows one to extend Payne’s conjecture to all operators
generated by differential quadratic forms with constant coefficients on an arbitrary
domain Ω ⊂ R

n with n ≥ 2 (see Corollary 1.13). Another advantage of our scheme
is that, unlike the classical Dirichlet-to-Neumann map, the operators Bλ do not
blow up as λ passes through isolated eigenvalues. This enables one to perform
a more detailed analysis of the relation between their properties and the spectral
characteristics of the Dirichlet and Neumann problems.

The paper is constructed as follows. In Section 1 we introduce some necessary
notation and state the main results. Note that the notation is deliberately chosen
as if A is a second-order elliptic differential operator acting in the Sobolev spaces on
a domain, subject to the Dirichlet or Neumann boundary condition (even though
H does not have to be a function space and the ellipticity is irrelevant). In Section
2 we prove some simple auxiliary lemmas on abstract selfadjoint operators. Section
3 is devoted to the proof of the main statements. Finally, Section 4 contains some
remarks and by-product results, which are not needed in our proofs but may be of
interest in themselves.

1. Basic notation and main results

1.1. Notation. We shall always be assuming that λ, µ ∈ R and z ∈ C .
Let H be an infinite-dimensional separable complex Hilbert space. As usual,

(·, ·) and ‖ · ‖ are the inner product and norm in H, and � denotes a direct sum
in H . Let

• H1 be a dense subspace of H;
• a[·] be a closed positive quadratic form on H1 and a[·, ·] be the corre-

sponding sesquilinear form;
• AN be the selfadjoint operator in H generated by the form a[·].

We shall consider H1 as a Hilbert space provided with the inner product a[·, ·]. Let

• H1
0 be a closed subspace of H1 which is dense in H;

• AD be the selfadjoint operator in H generated by the restriction of the
form a[·] to H1

0 .

Further on we shall write B instead of N or D in the case where the corre-
sponding statement holds or the definition refers to both operators AN and AD. In
particular, we shall be using the following notation.

• σ(AB) and σess(AB) denote the spectrum and the essential spectrum of
the operator AB.

• λB,∞ := inf σess(AB).
• λB,1 � λB,2 � λB,3 . . . are the eigenvalues of the operator AB lying in the

interval (−∞, λB,∞) and counted with their multiplicities.
• χΛ denotes the characteristic function of the Borel set Λ ⊂ R, so that
• χΛ(AB) is the spectral projection of AB corresponding to Λ.
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• EB(z) is the orthogonal projection onto ker(AB − zI) and
E′

B(z) := I − EB(z).
• NB(λ) := dim χ(−∞,λ)(AB) H is the left continuous counting function of

the operator AB .
The Rayleigh–Ritz variational formula implies that ND(λ) � NN(λ) or, in other
words, 0 < λN,j � λD,j for all j = 1, 2, . . . ,∞. We have NB(λ) = #{j : λB,j < λ}
whenever λ � λB,∞ and NB(λ) = ∞ otherwise.

Let
• H1

A be the set of vectors u ∈ H1 such that the functionals v → a[u, v] on
H1

0 are H-continuous;
• A be the operator acting from H1

A to H such that (Au, v) = a[u, v] for all
v ∈ H1

0 ;
• Gz := {u ∈ H1

A : Au = zu} , where z ∈ C;
• b[u, v] := a[u, v] − (Au, v) and b[u] := b[u, u] , where u ∈ H1

A and
v ∈ H1 .

Since the operator A is H1-closed, Gz are closed subspaces of H1. Denote
• Bλ := (I − λΠ′

λA−1
N )

∣∣
Gλ

, where
• Π′

λ is the H1-orthogonal projection onto Gλ

(an explicit formula for Π′
λ is given in Subsection 2.3). We shall consider Bλ as an

operator in Gλ . Obviously,

(1.1) a[Bλu, v] = a[u, v] − λ (u, v) = b[u, v] , ∀u, v ∈ Gλ .

Therefore Bλ is a bounded selfadjoint operator in the Hilbert space Gλ provided
with the inner product a[·, ·] .

Let
• σ(Bλ) and σess(Bλ) be the spectrum and essential spectrum of Bλ ,
• G0

λ := kerBλ , G−
λ := χ(−∞,0)(Bλ)Gλ and G+

λ := χ(0,+∞)(Bλ)Gλ ,
where χ(−∞,0)(Bλ) and χ(0,+∞)(Bλ) are the corresponding spectral projections of
the operator Bλ .

Finally, let
• H0 be the subspace of H spanned by all common eigenvectors of the

operators AN and AD ;
• H be the H-orthogonal complement of H0;
• nB(λ) := dimEB(λ)H and nN,D(λ) := dimEB(λ)H0 , so that

nB(λ) = dim EB(λ)H − nN,D(λ) .
Clearly, H and H0 are invariant subspaces of the operators AN and AD , whose
intersections with H1 are H1-orthogonal. Similarly, Gλ ∩ H and Gλ ∩ H0 are
invariant subspaces of Bλ . One can easily see that Gλ∩H0 = G0

λ∩H0 = EB(λ)H0

and Bλ|Gλ∩H0
= 0 . In particular, Gλ∩H0 = {0} whenever λ is not an eigenvalue

corresponding to a common eigenvector of AN and AD .

1.2. Main results. The following lemma implies that the restriction Bλ|H
analytically depends on λ outside the intersection of the essential spectra σess (AN)
and σess (AD) .

Lemma 1.1. The H1-orthogonal projection onto Gλ∩H is an analytic operator-
valued function of λ on the set R \ (σess (AN) ∩ σess (AD)) .
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One can easily show that

(1.2) EN(λ)H + ED(λ)H ⊂ G0
λ , ∀λ ∈ R

(see Subsection 3.3). The next lemma is less obvious.

Lemma 1.2. If λ 	∈ σess(AN) ∩ σess(AD) , then G0
λ = ED(λ)H + EN(λ)H . If

λ 	∈ σess(AN)∪σess(AD) , then the point 0 does not belong to the essential spectrum
of the operator Bλ .

Lemmas 1.1 and 1.2 imply

Theorem 1.3. Let λ 		∈ σess(AN) ∪ σess(AD) . Then for each sufficiently small
ε > 0 there exists δ > 0 such that the intersection (−ε, ε) ∩ σ(Bµ) consists of

(1) nN(µ) + nD(µ) + nN,D(µ) zero eigenvalues if µ = λ ,
(2) nD(λ) negative and nN(λ) positive eigenvalues if µ ∈ (λ − δ, λ) ,
(3) nN(λ) negative and nD(λ) positive eigenvalues if µ ∈ (λ, λ + δ)

(as usual, the eigenvalues are counted according to their multiplicities).

Remark 1.4. By Lemma 1.2, if λ 	∈ σess(AN) ∪ σess(AD) , then we have
[−ε, ε] ∩ σess (Bµ) = ∅ for all sufficiently small ε, δ > 0 and all µ ∈ [λ − δ, λ + δ] .
By Lemma 1.1, the eigenvalues νj(µ) of the restrictions Bµ|Gµ∩H lying in (−ε, ε)
are continuous function of µ ∈ (λ − δ, λ + δ) . Therefore, if ε and δ are small
enough, then νj(µ) ∈ (−ε, ε) for some µ ∈ (λ − δ, λ + δ) if and only if νj(λ) = 0 .
Theorem 1.3 states that nD(µ) eigenvalues νj(µ) change their sign from minus to
plus and nN(µ) eigenvalues νj(µ) change their sign from plus to minus as µ passes
through the eigenvalue λ . At the point λ all these eigenvalues are equal to zero
and, in addition, there are nN,D(λ) zero eigenvalues of the restriction Bλ|Gλ∩H0

.

Remark 1.5. A similar result was obtained in [Fr1] and [M] for differential
operators on domains with smooth boundaries under the additional assumption
that their spectra are discrete. Theorem 1.3 holds in the abstract setting and
remains valid for λ lying in the gaps of the essential spectra.

Corollary 1.6. Let a < b . If [a, b] ∩ σess(AN) = [a, b] ∩ σess(AD) = ∅ , then

(1.3) dimG−
b = dim G−

a + dimχ[a,b)(AN)H − dimχ(a,b](AD)H .

If a < inf σ(AN) , then G−
a = {0} and, according to the next theorem, the

equality (1.3) remains valid for b ∈ [λN,∞, λD,∞) .

Theorem 1.7. NN(λ) = ND(λ) + nD(λ) + dimG−
λ for all λ < λD,∞ .

Remark 1.8. By Theorem 1.7, NN(λ) = dimG−
λ for all λ lying below σ(AD) .

In the case where AN and AD are selfadjoint extensions of the same symmetric
operator defined on D(AN) ∩ D(AD), the above identity was obtained by M.S.
Birman [B1] (see also [B2]). Theorem 1.7 extends Birman’s result to all λ < λD,∞
in a slightly more general setting (see Subsection 4.1).

Remark 1.9. N. Filonov noticed in [Fi] that for the Laplacian on an arbitrary
domain Ω ⊂ Rn we have

(1.4) a[u] � λ ‖u‖2 , ∀u ∈ χ[0,λ](AD)H + EN(λ)H + G0
λ + G−

λ .

Similar arguments show that (1.4) holds for any pair of abstract operators AD and
AN (see Subsection 3.2). The estimate (1.4) immediately implies that

(1.5) NN(λ) � ND(λ) + nD(λ) + dimG−
λ , ∀λ ∈ R .
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The inequality (1.5) is sufficient to prove Payne’s conjecture for the Laplacian on
a bounded domain (see the proof of Corollary 1.13).

Remark 1.10. The equality NN(λ) = ND(λ)+ nD(λ)+ dim G−
λ remains valid

for all λ > λD,∞ because NN(λ) = ND(λ) = ∞. However, as was pointed out by
N. Filonov, it may not be true for λ = λD,∞ .

Remark 1.11. Let λ = λD,k < λN,∞ . Theorem 1.7 implies that the number
of eigenvalues λN,j lying below λD,k is equal to k − 1 + nD(λD,k) + dimG−

λD,k
.

Therefore

(1) λN,k+qk+pk−1 < λD,k , where pk := dim G−
λD,k

and qk := nD(λD,k) .

If nD(λD,k) = 0 , then λN,k+qk+pk
= λN,k+pk

= λD,k ; if nD(λD,k) 	= 0 , then
qk � 1 . Thus we always have

(2) λN,k+pk
� λD,k .

Note that the estimates (1) and (2) are actually consequences of (1.5). These
estimates and Lemma 1.2 imply that

(3) λN,k+1 � λD,k whenever there exists a vector u ∈ GλD,k
, such that b[u] �

0 and u 	∈ D(AD);
(4) λN,k+1 < λD,k whenever nD(λD,k) � 1 and there exist two vectors

u1, u2 ∈ GλD,k
, such that b[u1] � 0, b[u2] � 0 and the linear subspace

spanned by u1 and u2 does not contain Neumann eigenvectors.

Indeed, if G−
λD,k

� 1, then (3) and (4) follow from (2) and (1) respectively. If
G−

λD,k
= {0} , then u ∈ G0

λD,k
and u1, u2 ∈ G0

λD,k
. The inclusion u ∈ G0

λD,k
implies

that λD,k is also a Neumann eigenvalue and, consequently, λN,k+1 = λD,k . The
inclusions u1, u2 ∈ G0

λD,k
imply that nD(λD,k) � 2 (otherwise a linear combination

of u1 and u2 would belong to EN(λD,k)H ).

Lemma 1.2 and Theorem 1.7 also imply

Corollary 1.12. If λ < λD,∞ and λ 	∈ σ(AN) ∪ σ(AD) , then the number of
negative eigenvalues of the selfadjoint operator R′(λ) := (AN−λI)−1−(AD−λI)−1

in H coincides with NN(λ) − ND(λ) .

Obviously, the number of negative eigenvalues of the operator (AB − λI)−1

jumps by nB(λ0)+nN,D(λ0) as λ passes through an eigenvalue λ0 . Corollary 1.12
shows that the corresponding jump for R′(λ) is equal to nN(λ0) − nD(λ0) , as if
R′(λ) were the orthogonal sum of the operators (AN −λI)−1 and −(AD −λI)−1 .

1.3. The Dirichlet-to-Neumann map. In the theory of boundary value
problems, it is often possible to construct a linear isomorphism W : Gλ → H , where
H is a Hilbert space of functions defined on the boundary. Then one can consider
the operator WBλW−1 : H → H instead of Bλ. Clearly, these two operators have
the same eigenvalues. If H1, H1

0 are the Sobolev spaces and Wv is the restriction of
v to the boundary, then WBλW−1 is usually called the Dirichlet-to-Neumann map.
This scheme works under certain smoothness conditions on the boundary and the
coefficients, whereas our approach does not rely on the existence of an auxiliary
operator W and does not require any additional assumptions.
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1.4. Applications to boundary value problems. Let Ω be an arbitrary
open subset of Rn with n � 2 . Consider a differential operator L acting from
the space of m-vector functions C∞(Ω, Cm) into the space of l-vector functions
C∞(Ω, Cl) and denote by L∗ its formal adjoint. Let us assume that the form∫
Ω
|Lu(x)|2 dx with domain C∞(Ω, Cm) ∩ L2(Ω, Cm) is strictly positive and clos-

able in H = L2(Ω, Cm) , and denote its closure by a[u] . If H1 := D(a) and H1
0

is the H1-closure of C∞
0 (Ω) , then A = L∗L and AB is the differential operator

A with the corresponding boundary condition.

Corollary 1.13. Let L be an operator with constant coefficients. Then we
have λN,k+1 � λD,k for all eigenvalues λD,k ∈ (0, λN,∞) . If at least one Dirich-
let eigenfunction corresponding to λD,k does not satisfy the Neumann boundary
condition, then λN,k+1 < λD,k .

Remark 1.14. Our proof of Corollary 1.13 uses the exponential functions
uξ(x) = eix·ξ and is very similar to the proof of the Payne conjecture given in [Fr1].
The main difference is that L. Friendlander considered the Dirichlet-to-Neumann
map and therefore had to assume that the boundary is smooth enough.

Remark 1.15. If A is the Laplacian on a convex n-dimensional domain with
sufficiently smooth boundary, then λN,k+n < λD,k . This estimate was obtained
in [LW]. Later L. Friedlander found another proof, based on the fact that G0

λ ∪
G−

λ contains all first-order derivatives Dju of the Dirichlet eigenfunctions u ∈
ED(λ)H (the derivatives obviously belong to Gλ, and the estimate b[Dju] � 0 is
a consequence of the convexity). The inclusion Dju ∈ G0

λ ∪ G−
λ also implies that

NN(λ) � ND(λ) + 2nD(λ) (see [Fr2] for details).

2. Further notation and auxiliary results

2.1. The inverse A−1
N is a bounded selfadjoint operator in H1 because (u, v) =

a[A−1
N u, v] for all u, v ∈ H1 . Since a[u, v] = λ (u, v) for all v ∈ EN(λ)H and

v ∈ H1 , its spectral projections EN(λ) are H1-orthogonal.
Let

• Π0 be the orthogonal projection in H1 onto H1
0 .

From the definition of Gz it clear that Π′
0 = I − Π0 (this well-known result can

be found, for example, in [K] or [BS, Chapter 10, Section 3]). Since a[A−1
D u, v] =

(u, v) = a[A−1
N u, v] for all u ∈ H1 and v ∈ H1

0 , we have A−1
D = Π0A

−1
N and

D(AD) = Π0D(AN). The following simple lemma is also well known in the theory
of selfadjoint extensions.

Lemma 2.1. We have H1
A = G0 � D(AB) . If w0 ∈ G0 and wB ∈ D(AB) ,

then A(w0 + wB) = ABwB .

Proof. Obviously, G0 � D(AB) ⊂ H1
A . On the other hand, if v ∈ H1

A, then
there exists ṽ ∈ H such that (u, ṽ) = a[u, v] for all u ∈ H1

0 . Since (u, v) =
a[u, A−1

N v] , this implies that Π0v = Π0A
−1
N ṽ = A−1

D ṽ . Therefore v = Π′
0v + A−1

D ṽ

and v = Π′
0

(
v − A−1

N ṽ
)

+ A−1
N ṽ . These equalities imply the first statement.

If w0 ∈ G0 and wB ∈ D(AB), then a[w0 + wB, v] = a[wB, v] = (ABwB, v) , for
all v ∈ H1

0 . This proves the second statement. �
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2.2. By Lemma 2.1, H1
A is dense in H1. If u, v ∈ H1

A , then

a[A−1
D Au, v] = a[A−1

D Au, Π0v] = (AA−1
D Au, Π0v) = (Au, Π0v) = a[Π0u, v] .

This implies that A−1
D A = Π0|H1

A
and, consequently,

(2.1) Gz := ker(A− zI) = ker A−1
D (A− zI) = ker Π0(I − zA−1

B ) , ∀z ∈ C .

By (2.1), we have (I − zA−1
B ) Gz ⊂ G0 ∩ (I − zA−1

B )H1. On the other hand, if
(I − zA−1

B )u ∈ G0, then u ∈ Gz because (A− zI)u = A(I − zA−1
B )u = 0. Therefore

(2.2) (I − zA−1
B ) Gz = G0 ∩ (I − zA−1

B )H1 , ∀z ∈ C .

Let
• RB(z) := (AB − zI)−1 be the resolvent of AB.

For each z 	∈ σess(AB), the operator RB(z)E′
B(z) is bounded from H to H1 ,

ker (RB(z)E′
B(z)) = ker E′

B(z) = EB(z)H , RB(z)E′
B(z)H ⊂ E′

B(z)D(AB) ⊂ H1
A

and (A − zI)RB(z)E′
B(z) = E′

B(z) . We also have

(2.3) (I − zA−1
B )−1

∣∣
E′

B(z)H
= (I + zRB(z))E′

B(z) , ∀z 	∈ σess(AB) ,

where the operators in the right and left hand sides map E′
B(λ)H1 onto E′

B(λ)H1

and are H1-bounded. This implies that (I − zA−1
B )H1 = E′

B(z)H1 and, by (2.2),

(2.4) (I − zA−1
B ) Gz = G0 ∩ E′

B(z)H1 , ∀z 	∈ σess(AB) .

2.3. Denote Tz := (I − zA−1
N )

∣∣
H1

0∩H and T �
z := Π0(I − zA−1

N )
∣∣
H . Let Σ be

the set of z ∈ C such that the spectrum of the operator T �
z Tz : H1

0 ∩H → H1
0 ∩H

contains the point 0 , and let
• Π(z) := Tz (T �

z Tz)−1 T �
z and Π′(z) := I − Π(z) , where z ∈ C \ Σ .

By (2.1), we have Gz ∩ H = ker T �
z . Since T �

z Π′(z) = 0 and Π′(z)u = u for all
u ∈ ker T �

z , this implies that Π′(z) is a projection onto Gz∩H in H1∩H . Its H1-
adjoint coincides with Π′(z̄) ; in particular, Π′(λ) is the H1-orthogonal projection
onto Gz ∩H in H . Thus we obtain

(2.5) Π′
λ = Π′(λ) ⊕ EB(λ)|H1∩H0

, ∀λ ∈ R \ Σ .

2.4. If z ∈ C \ σess(AB), let
• PB(z) := RB(z)E′

B(z) (A − zI) and P ′
B(z) := I − PB(z) ;

• Gz,B := {v ∈ H1
A : (A − zI)v ∈ EB(z)H} .

The operators PB(z) and P ′
B(z) are projections in H1

A because

P 2
B(z) = RB(z)E′

B(z) (AB − zI)RB(z)E′
B(z) (A − zI)

= E′
B(z)RB(z)E′

B(z) (A − zI) = PB(z) .

One can easily show that PB(z)H1
A = E′

B(z)D(AB) and P ′
B(z)H1

A = Gz,B . The
subspace Gz,B is the inverse image of EB(z)H by the map A − zI , whereas Gz

is the kernel of A − zI . Therefore Gz ⊂ Gz,B and the dimension of the quotient
space Gz,B/Gz does not exceed nB(z)+nN,D(z) . This implies that the subspaces
Gz,B are H1-closed for all z ∈ C \ σess(AB) .

If z 	∈ σ(AB), then PB(z)H1
A = D(AB) and P ′

B(z)H1
A = Gz = Gz,B . In par-

ticular, PD(0)|H1
A

= Π0|H1
A

, P ′
D(0)|H1

A
= Π′

0|H1
A

and H1
A = P ′

B(0)H1
A �PB(0)H1

A
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is the decomposition discussed in Lemma 2.1. By direct calculation, if u, v ∈ H1
A

and λ, µ ∈ R , then

(2.6) b[P ′
N(λ)u, P ′

N(µ)v]

= b[u, v] −
(
u, E′

N(µ)(A − µI)v
)

+
(
(A − µI)u, RN(µ)E′

B(z)(A − µI)v
)
,

(2.7) b[P ′
D(λ)u, P ′

D(µ)v]

= b[u, v] +
(
E′

D(λ)(A − λI)u, v
)
−

(
RD(λ)E′

B(z)(A − λI)u, (A − λI)v
)
.

3. Proofs of main results

3.1. Proof of Lemma 1.1. Since the operator-valued function T �
z Tz is an-

alytic, the inverse operator (T �
z Tz)−1 exists and analytically depends on z in a

sufficiently small neighbourhood of each point z0 	∈ Σ . Thus it is sufficient to show
that Σ ⊂ (σess(AN) ∩ σess(AD)) .

Let us fix λ ∈ R , and let u ∈ H . Since T �
λ is the H1-adjoint to Tλ , we have

T �
λ Tλu = 0 if and only if Tλu = 0. The latter means that u ∈ D(AN)∩D(AD) and

ANu = ADu = λu. Since u ∈ H , it is only possible if u = 0. This implies that
ker(T �

λ Tλ) = {0} .
Assume that the essential spectrum of the operator T �

λ Tλ contains 0 . Then, for
any given finite-dimensional subspace L, there exists a sequence of H1-orthogonal
vectors un ∈ H1

0 ∩ H such that un are H-orthogonal to L , a[un] = 1 and
a[T �

λ Tλun, un] = a[Tλun] → 0 as n → ∞. Clearly, Tλun = un − λ A−1
N un → 0

and Π0Tλun = un − λ A−1
D un → 0 in H1. If λ 	∈ σess(AB), then, by (2.3),

we have a
[
u − λ A−1

B u
]

� C a[u] with some positive constant C for all vectors
u ∈ H1 which are H-orthogonal to L = EB(λ)H . Therefore, by the above,
λ ∈ σess(AN) ∩ σess(AD) .

3.2. Proof of the estimate (1.4). We have

a[u, v] = λ (u, v) , ∀u ∈ EN(λ)H , ∀v ∈ H1 ,(3.1)
a[u, v] = λ (u, v) , ∀u ∈ D(AD) , ∀v ∈ Gλ .(3.2)

Let u = u1 + u2 + u3 , where u1 ∈ χ[0,λ](AD)H, u2 ∈ EN(λ) and u3 ∈ G0
λ + G−

λ .
Then (3.1) and (3.2) imply

a[u] − λ ‖u‖2 = a[u1] − λ ‖u1‖2 + a[u3] − λ ‖u3‖2

= ((AD − λI)u1, u1) + a[Bλu3, u3] � 0 .

3.3. Proof of Lemma 1.2. The inclusion (1.2) immediately follows from
(3.1) and (3.2).

Assume that λ 	∈ σess(AN) ∩ σess(AD) and u ∈ G0
λ . Then (I − λA−1

N )u is
H1-orthogonal to Gλ . In view of (2.5), this means that (I − λA−1

N )u = Π(λ)v for
some v ∈ H1∩H . Therefore (I−λA−1

N )u = (I−λA−1
N )w for some w ∈ H1

0 , which
is equivalent to the inclusion u ∈ Gλ ∩

(
EN(λ)H + H1

0

)
= EN(λ)H + ED(λ)H .

Assume now that λ 	∈ σess(AN) ∪ σess(AD) . If the point 0 belongs to the
essential spectrum of the operator Bλ , then there exists a sequence of vectors
un ∈ Gλ �G0

λ such that a[un] = 1 and a[Bλun] → 0 as n → ∞ . Moreover, since
dim EN(λ)H < ∞ , we can choose the sequence {un} in such a way that

un − (T �
λ Tλ)−1 Π0(I − λA−1

N )2un ∈ E′
N(λ) , ∀n = 1, 2, . . . ,
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where Tλ and T �
λ are the operators defined in Subsection 2.3. Then, by (2.5),

Bλun = (I − λA−1
N )un − Πλ(I − λA−1

N )un

=
(
I − λA−1

N

) (
un − (T �

λ Tλ)−1 Π0(I − λA−1
N )2un

)
→ 0

in H1 , and (2.3) implies that

a
[
un − (T �

λ Tλ)−1 Π0(I − λA−1
N )2un

]
= a [Π′

0un] + a
[
Π0un − (T �

λ Tλ)−1 Π0(I − λA−1
N )2un

]
→ 0 .

Therefore a[Π′
0un] = a[(I − A−1

D A)un] = a[(I − λA−1
D )un] → 0 as n → ∞ .

However, this is not possible because λ 	∈ σess(AD) and the un are orthogonal
to ED(λ)H ⊂ G0

λ . The obtained contradiction proves the second statement of the
lemma.

3.4. Proof of Theorem 1.3. If λ 	∈ σ(AN)∪σ(AD) , then the theorem is obvi-
ous because, in view of Lemmas 1.2 and 1.1, we have nN(λ) = nD(λ) = nN,D(λ) = 0
and (−ε, ε)∩σ(Bµ) = ∅ for all sufficiently small ε, δ > 0 and all µ ∈ (λ−ε, λ+ε) .

Suppose that λ is an isolated eigenvalue. The first statement of the theorem
is an immediate consequence of Lemma 1.2, so we only need to prove (2) and (3).
Let us choose ε and δ as explained in Remark 1.4 and assume, in addition, that
δ is so small that λ − δ > 0 and the interval [λ − δ, λ + δ] does not contain any
points from σ(AN) ∪ σ(AD) with the exception of λ .

Let Lµ be the subspace of Gµ ∩ H spanned by the eigenfunction corre-
sponding to the eigenvalues νj(µ) (see Remark 1.4). By Lemma 1.2, we have
Lλ = EN(λ)H�ED(λ)H ⊂ G0

λ . Therefore E′
B(λ)Lλ ⊂ Lλ , dimE′

N(λ)Lλ = nD(λ)
and dimE′

D(λ)Lλ = nN(λ) .
We are going to show that

(3.3)
∣∣a [

BµP ′
N(µ)u, χ(−ε,ε)(Bµ)P ′

N(µ)u
]
− (µ − λ) ‖u‖2

∣∣
� C (λ − µ)2 ‖u‖2 , ∀u ∈ E′

N(λ)Lλ ,

(3.4)
∣∣a [

BµP ′
D(µ)u, χ(−ε,ε)(Bµ)P ′

D(µ)u
]
− (λ − µ) ‖u‖2

∣∣
� C (λ − µ)2 ‖u‖2 , ∀u ∈ E′

D(λ)Lλ ,

where C is a constant independent of u and µ ∈ (λ − ε, λ + ε) . From (3.3) and
(3.4) it follows that

(µ − λ) a[Bµw, w] � 0 , ∀w ∈ χ(−ε,ε)(Bµ)P ′
N(µ)E′

N(λ)Lλ ,(3.5)

(λ − µ) a[Bµw, w] � 0 , ∀w ∈ χ(−ε,ε)(Bµ)P ′
D(µ)E′

D(λ)Lλ ,(3.6)

whenever |λ − µ| is small enough. If µ = λ , then χ(−ε,ε)(Bµ)P ′
B(µ)E′

B(λ)u =
E′

B(λ)u for all u ∈ Lλ . By continuity, we have dim χ(−ε,ε)(Bµ)P ′
B(µ)E′

B(λ)Lλ =
dim E′

B(λ)Lλ = nN(λ)+nD(λ)−nB(λ) for all µ sufficiently close to λ . Therefore
the estimates (3.5) and (3.6) imply the theorem (with another positive δ ).

To prove (3.3) and (3.4), note that b[u] = 0 for all u ∈ Lλ and, in view of
(2.6) and (2.7),

(3.7) a [BµP ′
N(µ)u, P ′

N(µ)u] = b[P ′
N(µ)u]

= (µ − λ) ‖u‖2 + (λ − µ)2
(
u, RN(µ)u

)
, ∀u ∈ Lλ ,
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(3.8) a [BµP ′
D(µ)u, P ′

D(µ)u] = b[P ′
D(µ)u]

= (λ − µ) ‖u‖2 − (λ − µ)2
(
u, RD(µ)u

)
, ∀u ∈ Lλ .

Therefore, for all µ ∈ (λ − δ, λ + δ) we have

(3.9)
∣∣a [BµP ′

N(µ)u, P ′
N(µ)u] − (µ − λ) ‖u‖2

∣∣
� C−1

1 (λ − µ)2 ‖u‖2 , ∀u ∈ E′
N(λ)Lλ ,

(3.10)
∣∣a [BµP ′

D(µ)u, P ′
D(µ)u] − (λ − µ) ‖u‖2

∣∣
� C−1

1 (λ − µ)2 ‖u‖2 , ∀u ∈ E′
D(λ)Lλ ,

where C1 is the distance from [λ − δ, λ + δ] to (σ(AN ∪ σ(AD)) \ {λ} .
Let SB be the projections onto EB(λ)H in Lλ such that SNED(λ) = 0 and

SDEN(λ) = 0 . Then u = SNu + SDu for all u ∈ Lλ . Since dimLλ < ∞ and
EN(λ)H ∩ ED(λ)H = {0} , the projections SB are well defined and bounded as
operators from H to H1 .

If u ∈ Lλ , then P ′
B(µ)u = P ′

B(µ)(u−SBu) = (I − (λ−µ)RB(µ))(u−SBu) for
all µ 	= λ and, by (1.1),

a [BµP ′
N(µ)u, v] = a [P ′

N(µ)u, v] − µ (P ′
N(µ)u, v) = (µ − λ) (SDu, v) , ∀v ∈ Gµ ,

a [BµP ′
D(µ)u, v] = a [P ′

D(µ)u, v] − µ (P ′
D(µ)u, v) = (λ − µ) (SNu, v) , ∀v ∈ Gµ ,

for all µ ∈ (λ − δ, λ + δ) . Since (SNu, v) = λ−1 a[SNu, v] and (SDu, v) =
µ−1 a[SDu, v] whenever v ∈ Gµ , the above identities imply that

a [BµP ′
N(µ)u, v] = µ−1(µ − λ) a [SDu, v] , ∀u ∈ Lλ , ∀v ∈ Gµ ,(3.11)

a [BµP ′
D(µ)u, v] = λ−1(λ − µ) a [SNu, v] , ∀u ∈ Lλ , ∀v ∈ Gµ .(3.12)

In view of Lemma 1.1, we have that
(
I − χ(−ε,ε)(Bµ)

)
P ′

B(µ)E′
B(λ)

∣∣
Lλ

is an
analytic operator-valued function of µ ∈ (λ − δ, λ + δ) . Since this operator-valued
function vanishes at µ = λ , we have

(3.13) a
[(

I − χ(−ε,ε)(Bµ)
)
P ′

B(µ)E′
B(λ)u

]
� C2 (λ − µ)2 a[u] = C2 (λ − µ)2 λ ‖u‖2 , ∀u ∈ Lλ ,

with some positive constant C2 independent of µ and u . Substituting v =(
I − χ(−ε,ε)(Bµ)

)
P ′

B(µ)u into (3.11), (3.12) and applying (3.13), we obtain

(3.14) a
[
BµP ′

B(µ)u,
(
I − χ(−ε,ε)(Bµ)

)
P ′

B(µ)u
]

� C3 (λ − µ)2 ‖u‖2 , ∀u ∈ E′
B(λ)Lλ ,

with some constant C3 independent of µ and u . Now (3.3) and (3.4) follow from
(3.9), (3.10) and (3.14).

3.5. Proof of Corollary 1.6. Lemma 1.1 and Theorem 1.3 imply that
dim G−

λ is constant on every connected component of the set R \ (σ(AN)∪ σ(AD)).
If λ 	∈ σess(AN) ∪ σess(AD) and λ ∈ Λ is an eigenvalue, then, by Theorem 1.3,

(3.15) dim G−
µ =

{
dim G−

λ + nD(λ) , ∀µ ∈ (λ − δ, λ),
dim G−

λ + nN(λ) , ∀µ ∈ (λ, λ + δ) ,
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provided that δ > 0 is small enough. In other words, the value of dimG−
µ jumps

by nN(λ) − nD(λ) as µ passes through the eigenvalue λ . Summing up these
jumps over all the eigenvalues lying between a and b and taking into account that
dim G−

λ = dimG−
λ−0 − nD(λ) , we obtain (1.3).

3.6. Proof of Theorem 1.7. Let L be the subspace of χ(−∞,λ)(AN)H
spanned by all the vectors v ∈ χ(−∞,λ)(AN)H such that

(3.16) χ(−∞,λ](AD) (A − λI)v = 0 .

The inclusion L ⊂ D(AN) implies that dimL � NN(λ) − ND(λ) − nD(λ) and
b[v] = 0 for all v ∈ L . From the latter identity, (3.16) and (2.7) it follows that
b[P ′

D(λ)v] < b[v] for all nonzero v ∈ L . Since ((A − λI)v, v)) < 0 for all nonzero
v ∈ χ(−∞,λ)(AN)H and ((A − λI)v, v) � 0 for all v ∈ D(AD) satisfying (3.16),
we have L ∩ D(AD) = {0} . Therefore ker P ′

D(λ)|L ⊂ L ∩ D(AD) = {0} and,
consequently, dim P ′

D(λ)L � NN(λ) − ND(λ) − nD(λ) . Thus we have dim G−
λ �

dim P ′
D(λ)L � NN(λ) − ND(λ) − nD(λ) . Now the theorem follows from (1.5).

3.7. Proof of Corollary 1.12. We have R′(λ)H ⊂ Gλ and, by (1.1),

(3.17)
a[BλR′(λ)u, v] = a[R′(λ)u, v] − λ(R′(λ)u, v)

= (u, v) = a[A−1
N u, v] , ∀u ∈ H , ∀v ∈ Gλ .

The above identity implies that BλR′(λ)u = Π′
λA−1

N u for all u ∈ H . In view of
Lemma 1.2, the operator Bλ is invertible and, consequently, R′(λ) = B−1

λ Π′
λA−1

N .
Since a[A−1

N u, v] = (u, v), the subspace Π′
λA−1

N H is H1-dense in Gλ . Therefore
R′(λ)H is an H1-dense subspace of Gλ . Finally, by (3.17),

a[BλR′(λ)u, R′(λ)v] = (u, R′(λ)v) , ∀u, v ∈ H .

Thus we have a[Bλu, u] < 0 on a k-dimensional subspace of Gλ if and only if
(R′(λ)u, u) < 0 on a k-dimensional subspace of H . Now the corollary follows from
Theorem 1.7.

3.8. Proof of Corollary 1.13. Let a(ξ) be the full symbol of L∗L and
λ1(ξ), . . . , λm(ξ) be the eigenvalues of a(ξ) . Then λD,k > λ∗ := minj infξ λj(ξ)
for all k because a[u] � λ∗ ‖u‖2 on C∞

0 (Ω) . On the other hand, since λj(ξ) are
continuous functions of ξ , the equation det(a(ξ)− λI) = 0 has infinitely many ξ-
solutions for each fixed λ > λ∗ . Therefore Gλ contains an infinite-dimensional set
formed by functions of the form uξ = eix·ξ �c , where �c ∈ ker(a(ξ) − λI) . For each
of these functions we have a[uξ] = λ ‖uξ‖2 . This implies that either dim G−

λ � 1
or dimG0

λ = ∞ . By Lemma 1.2, the latter is possible only if λ � λN,∞ . There-
fore, by Remark 1.11(2), we have λN,k+1 � λD,k for all eigenvalues lying below
λN,∞ . If at least one Dirichlet eigenfunction corresponding to λD,k does not sat-
isfy the Neumann boundary condition, then nD(λD,k) � 1 and, by Remark 1.11(1),
λN,k+1 < λD,k .

4. Remarks

4.1. AD and AN as selfadjoint extensions. Denote H2
0 := H1

0 ∩ D(AN) .
Since D(AD) = Π0D(AN) (see Subsection 2.1), we have H2

0 = D(AD) ∩ D(AN) .
The H-adjoint A∗ coincides with the restriction of A to H2

0 . Indeed, if (u, Av) =
(ũ, v) for some u, ũ ∈ H and all v ∈ H1

A , then, taking v ∈ D(AN) or v ∈ D(AD),
we obtain u = A−1

N ũ = A−1
D ũ . Therefore D(A∗) ⊂ H2

0 . On the other hand, if
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u ∈ H2
0 , then (u, Av) = a[u, v] because u ∈ H1

0 and a[u, v] = (ANu, v) . Thus
D(A∗) = H2

0 and A∗ = A|H2
0
.

If H2
0 is not dense in H , then the second adjoint A∗∗ does not exist and the

operator A is not closable in H (see, for example, [BS, Section 3.3]).
If H2

0 is dense in H , then AD and AN are selfadjoint extensions of A∗ , and
A∗∗ is the closure of A . Note that D(A) = H1

A may be strictly smaller than
H1 ∩ D(A∗∗) . Also, the H1-closed subspaces Gz may be strictly smaller than
ker(A∗∗ − zI)|H1 and may not be closed in H (see the next subsection).

4.2. An example. Let Ω be a bounded domain with smooth boundary, H =
L2(Ω) and Hs be the Sobolev spaces. If a[u] = ‖∇u‖2 + ‖u‖2 and H1

0 is the
H1-closure of C∞

0 (Ω) , then A = −∆ + I , D(A) = {u ∈ H1 : Au ∈ H} and
G0 = {u ∈ H1 : Au = 0} . The selfadjoint operators AD and AN are obtained
by imposing the Dirichlet and Neumann boundary conditions. The H-adjoint A∗

coincides with the restriction of A to H2
0 := {u ∈ H2 : u|∂Ω = ∂nu|∂Ω = 0} ,

where ∂n is the normal derivative. The second H-adjoint A∗∗ is the extension of
A to D(A∗∗) = {u ∈ H : Au ∈ H} , and D(A) = H1 ∩ D(A∗∗) .

Let us choose a nonzero function v0 ∈ G0 , and define H̃1
0 = H1

0⊕L0 , where L0

is the one-dimensional subspace spanned by v0 and ⊕ denotes the orthogonal sum
in H1 . Then the corresponding operator Ã is the same differential operator −∆+
I but D(Ã) = {u ∈ D(A) : 〈∂nP ′

N(0)u, v0〉∂Ω = 0} , where 〈·, ·〉∂Ω denotes the
sesquilinear pairing between H−1/2(∂Ω) and H1/2(∂Ω) . The Neumann operator
remains the same, and the domain of the new “Dirichlet” operator is D(ÃD) =
D(Ã) ∩ H̃1

0 . Finally, D(Ã∗) = D(AN) ∩ H̃1
0 = {u ∈ H2 ∩ H̃1

0 : ∂nu|∂Ω = 0} . Note
that H2

0 ⊂ D(Ã∗) .
Let v0 	∈ H2 . Then v0|∂Ω 	∈ H3/2(∂Ω) and, consequently, u|∂Ω 	∈ H3/2(∂Ω)

for all u ∈ H̃1
0 \H1

0 . This implies that H2∩H̃1
0 = H2∩H1

0 and D(Ã∗) = D(A∗) =
H2

0 . Thus we have Ã∗∗ = A∗∗ . By the above, in this case, D(Ã) 	= H1 ∩D(Ã∗∗) .
The H1-orthogonal complement G̃0 := H1� H̃1

0 = G0�L0 coincides with the
kernel of the functional u → a[v0, u] = 〈∂nv0, u〉∂Ω defined on the space G0 . If
v0 	∈ H2 , then this functional is not H-continuous and G̃0 is not H-closed. Now
(2.1) implies that G̃z := ker(Ã − zI) are not H-closed for all z ∈ C .

4.3. The projections PB(λ). Note that by the spectral theorem, the right
hand side of (3.7) is a nondecreasing function of µ and the right hand side of (3.8)
is a nonincreasing function of µ . This observation allows one to simplify the proof
of Theorem 1.3 in the case where dim G−

λ < ∞ or dim G+
λ < ∞ . The monotonicity

is an implicit consequence of the following result.

Lemma 4.1. Let Λ be an arbitrary real interval, and let v ∈ H1
A.

(1) If Λ ∩ σess(AN) = ∅ and χΛ(AN)P ′
N(0)v = 0 , then P ′

N(λ)v ∈ Gλ for all
λ ∈ Λ and b[P ′

N(λ)v] is a nondecreasing function on Λ.
(2) If Λ ∩ σess(AD) = ∅ and χΛ(AD)P ′

D(0)v = 0 , then P ′
D(λ)v ∈ Gλ for all

λ ∈ Λ and b[P ′
D(λ)v] is a nonincreasing function on Λ.

If, in addition, v 	∈ D(AB), then the function b[P ′
B(λ)v] is strictly monotone.

Proof. Obviously, (A − λI)P ′
B(λ)v = EB(λ)(A − λI)v . Therefore the con-

dition χΛ(AB)P ′
B(0)v = 0 implies that (A − λI)P ′

B(λ)v = −λEB(λ)P ′
B(0)v = 0

and, consequently, P ′
B(λ)v ∈ Gλ for all λ ∈ Λ .
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If wB ∈ D(AB) , then P ′
B(λ)wB = EB(λ)wB . Using this identity, one can easily

show that

b[P ′
N(λ)(w + wN)] = b[P ′

N(λ)w] − (EN(λ)(A − λI)w, wN) ,(4.1)
b[P ′

D(λ)(w + wD)] = b[P ′
D(λ)w] + (wD, ED(λ)(A − λI)w)(4.2)

for all w ∈ H1
A , wN ∈ D(AN) and wD ∈ D(AD) . Since EB(λ)P ′

B(0)v = 0 and
P ′

B(λ)P ′
B(0) = P ′

B(λ) for all λ ∈ Λ , substituting w = P ′
B(0)v, wB = PB(0)v in

(4.1), (4.2) and applying (2.6), (2.7), we obtain

b[P ′
N(λ)v] = b[P ′

N(0)v] + λ‖P ′
N(0)v‖2 + λ2(RN(λ)P ′

N(0)v, P ′
N(0)v) , ∀λ ∈ Λ,

b[P ′
D(λ)v] = b[P ′

D(0)v] − λ‖P ′
D(0)v‖2 − λ2(RD(λ)P ′

D(0)v, P ′
D(0)v) , ∀λ ∈ Λ.

Now the required monotonicity results follow from the spectral theorem. �

Note that P ′
B(0) = P ′

B(0)P ′
B(µ) = P ′

B(µ) − µA−1
B P ′

B(µ) whenever µ 	∈ σ(AB) .
Therefore we have χΛ(AB)P ′

B(0)v = 0 if and only if χΛ(AB)P ′
B(µ)v = 0 for all

µ 	∈ σ(AB) .

4.4. Analytic properties of Π(z). If the embedding H1
0 ↪→ H is compact,

then the operator-valued functions Π(z) and Π′(z) introduced in Subsection 2.3
are meromorphic in the whole complex plane. Indeed, since a[A−1

D u] = (A−1
D u, u) ,

the compactness of the embedding H1
0 ↪→ H implies that A−1

D is compact as an
operator from H to H1. Consequently,

T �
z Tz − I = z2 Π0A

−2
N

∣∣
H1

0
− 2z Π0A

−1
N

∣∣
H1

0
= z2 A−1

D A−1
N

∣∣
H1

0
− 2z A−1

D

∣∣
H1

0

are compact operators in H1
0 . Now the required result follows from the analytic

Fredholm theorem (see, for example, [Ya, Section 1.8]).
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