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Abstract. We show that, under certain conditions, Birkhoff’s theorem
on doubly stochastic matrices remains valid for countable families of dis-
crete probability spaces which have nonempty intersections. Using this
result, we study the relation between the spectrum of a self-adjoint oper-
ator A and its multidimensional numerical range. It turns out that the
multidimensional numerical range is a convex set whose extreme points
are sequences of eigenvalues of the operator A . Every collection of eigen-
values which can be obtained by the Rayleigh–Ritz formula generates an
extreme point of the multidimensional numerical range. However, it may
also have other extreme points.

Recall that a (possibly infinite) matrix is said to be doubly stochastic if
all its entries are non-negative and the sum of entries in every row and every
column is equal to one. Birkhoff’s theorem [B] says that

(i) the extreme points of the convex set of doubly stochastic matrices are
permutation matrices and

(ii) the set of doubly stochastic matrices coincides with the closed convex
hull of the set of permutation matrices.

The first aim of this paper is to show that, under certain conditions, Birkhoff’s
theorem remains valid for a countable family of discrete probability spaces
which have nonempty intersections (see Remark 2.1). We join every two
points lying in the same probability space by an edge and reformulate the
problem in terms of weighted graphs. It turns out that (i) and (ii) hold true
whenever the underlying graph satisfies the conditions (g1)–(g3) introduced
in Section 2. The conditions (g1) and (g3) are purely technical and can
probably be removed or weakened. The geometric condition (g2) is necessary
(see Remark 2.5).

The second aim of the paper is to study the relation between the spec-
trum of a self-adjoint operator A and its m-dimensional numerical range
Σ(m,A) . The latter is defined as the set of all m-dimensional vectors of the
form {QA[u1], QA[u2], . . .} , where QA is the corresponding quadratic form,
{u1, u2, . . .} ⊂ D(QA) is an arbitrary orthonormal set containing m elements
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and m = 1, 2, . . . ,∞ . Using an infinite dimensional version of Birkhoff’s the-
orem, we prove that

(1) the m-dimensional numerical range Σ(m,A) is a convex set,
(2) the extreme points of Σ(m,A) belong to the corresponding m-dimen-

sional point spectrum σp(m,A) ,
(3) every collection of m lowest or highest eigenvalues which can be found

with the use of the Rayleigh–Ritz formula generates an extreme point
of Σ(m,A) ,

(4) the extreme points of the closure Σ(m,A) belong to the m-dimen-
sional spectrum σ(m,A) ,

(5) the closed convex hull of σ(m,A) coincides with Σ(m,A)

(see Section 4 for precise statements and definitions). The item (3) can be
regarded as a geometric version of the variational principle. The set Σ(m,A)
may also have other extreme points (see Remark 4.12). Therefore one can
obtain more information about the point spectrum by studying the extreme
points of Σ(m,A) than by applying the standard variational formulae.

The paper is organised as follows. For the sake of convenience, in Section 1
we give definitions and results on sequence spaces and locally convex topolo-
gies, which are used throughout other sections. Almost all these results are
well known; most of them can be found in [K], Sections 20.9, 21.2, 30 and
[Ru], Section 2.4.

Section 2 is devoted to Birkhoff’s theorem. Many proofs of this theorem
are known for finite matrices (see, for example, [MO] or [BP]). The problem
of extending (i) and (ii) to infinite matrices is known as Birkhoff’s problem
111. It has been studied in [Gr], [Is], [Ke], [Le], [Mu] and [RP]. However,
their results are not sufficient for our purposes because

(i) in order to deal with unbounded operators, we need (i) not only for
the whole set of stochastic matrices but also for some its subsets which
were not considered in these papers,

(ii) we need (ii) with respect to a finer topology than the topology intro-
duced in [Ke] or [RP], whereas [Is] deals with a too strong topology
such that (ii) does not hold true.

Our proof of (i) and (ii) is based on the well known idea of shifting weights
along edges of the underlying graph. It is almost purely combinatorial and
works equally well for finite and infinite weighted graphs or matrices. For-
mally speaking, in Sections 3 and 4 we consider only infinite matrices. How-
ever, in the proof of Theorem 3.15 we apply results related to more general
weighted graphs. For infinite graphs and matrices (ii) depends upon the
choice of an appropriate topology. We give an explicit description of the
strong and Mackey topologies on the set of (sub)stochastic weights (Corollar-
ies 2.11 and 2.12), and show that (ii) holds true with respect to the Mackey
topology (Theorem 2.15), but not necessarily with respect to the strong topol-
ogy (Example 2.19).
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In Section 3 we consider operators generated by stochastic matrices and
derive a number of corollaries from Birkhoff’s theorem. Many of these results
seem almost obvious. However, our proofs of the key Theorems 3.10 and 3.15
are surprisingly long and complicated. It is not clear whether they can be
essentially simplified.

Section 4 is about multidimensional spectra and numerical ranges. Here
we give precise statements and proofs of (1)–(5) for a self-adjoint operator
A (see Corollaries 4.7, 4.11 and Lemma 4.10). The corresponding results for
finite matrices A are well known and rather elementary (see, for example,
[AU] or [MO]). If A is compact, one can probably obtain (1)–(5) by con-
sidering its finite dimensional approximations (in [Ma1] and [Si] similar ideas
have been used for studying s-numbers of compact operators). However, the
general case is much more complex as the operator A may have continuous
spectrum or (and) several accumulation points of its discrete spectrum, which
makes it impossible to find an effective approximation procedure. In the end
of Section 4 we prove two variational formulae (Corollaries 4.16 and 4.17)
and show that σ(m,A) is a subset of the closed convex hull of

⋃
θ σ(m,Aθ)

whenever the self-adjoint operator A belongs to the closed convex hull of
the family of self-adjoint operators Aθ (Corollary 4.21); all these results are
simple consequences of (1)–(5).

There are many other concepts of multidimensional numerical range [BD],
[H], [LMMT]. We briefly discuss some of them in Subsection 4.1.

Acknowledgements. I would like to thank E.B. Davies, A. Markus, Yu.
Netrusov and M. Solomyak for their valuable comments and constructive
criticism. I am also grateful to L. Landau for his useful remarks on Birkhoff’s
theorem.

1. Sequence spaces

1.1. Notation and definitions. Let

R̂ := [−∞,+∞] ,
R∞ be the linear spaces of all real sequences x = {x1, x2, . . .} ,
R∞0 be the subspace of sequences which converge to zero and
R∞00 be the subspace of sequences with finitely many nonzero entries.

We shall often consider the Euclidean space Rm as a finite dimensional sub-
space of R∞00 , so that the m-dimensional real vector (x1, x2, . . . , xm) is iden-
tified with the sequence (x1, x2, . . . , xm, 0, 0, . . .) . If x ∈ R∞ , let

|x| := {|x1|, |x2|, . . .} ,
x(m) := {x1, x2, . . . , xm, 0, 0, . . .} , m = 1, 2, . . . ,(1.1)

x(∞) := x .

Throughout the paper X denotes a real linear subspace of R∞ endowed
with a locally convex topology T and X∗ is its dual space. We shall always be
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assuming that T is finer (that is, not weaker) than the topology of element-
wise convergence.

If Ω is a subset of X then ex Ω , conv Ω , conv Ω denote the set of extreme
points of Ω , the convex hull of Ω and its T-closure respectively. Recall that
x ∈ Ω is called an extreme point of Ω if x cannot be represented as a convex
linear combination of two other elements of Ω . If the set Ω is T-compact
then, according to the Krein–Milman theorem, conv Ω = conv (ex Ω) . An
element x ∈ Ω is said to be T-exposed if there exists a linear T-continuous
functional x∗ ∈ X∗ such that 〈x,x∗〉 > 〈y,x∗〉 for all y ∈ Ω . Every exposed
point of Ω belongs to ex Ω but an extreme point is not necessarily exposed.

Denote by X ′ the linear space of all real sequences x′ = {x′1, x′2, . . .} ∈ R∞
such that

∑∞
i=1 |xi x′i| < ∞ for all x ∈ X . If X ′′ = X then the space X is

said to be perfect. We have X ⊆ X ′′ and R∞00 ⊆ X ′ = X ′′′ ; in particular,
X ′ is perfect. The intersection of an arbitrary collection of perfect spaces is
perfect. However, the linear span of a collection of perfect spaces may not
be perfect. For example, if X is a one dimensional subspace of R∞0 then
X ′′ ⊂ R∞0 but (R∞0 )′′ = l∞ .

The set of sequences x̃ = {x̃1, x̃2, . . .} such that |x̃j| ≤ |xj| for some x ∈ Ω
is said to be the normal cover of the set Ω . A set (or subspace) of R∞ is
said to be normal if it coincides with its normal cover. We have X ′ = (X̃)′ ,
where X̃ is a normal cover of X . Therefore a perfect space is normal.

1.2. Topologies on sequence spaces. Every sequence x′ ∈ X ′ defines
the linear functional 〈x,x′〉 :=

∑∞
j=1 xj x

′
j on the space X . Further on we

shall always be assuming that R∞00 ⊆ X . Then every nonzero element of
X ′ defines a nonzero functional and therefore we can introduce the weak∗

topology Tw(X ′, X) on X ′ . If S is an arbitrary family of weak∗ bounded
sets Ω′ ∈ X ′ then the family of seminorms

(1.2) pΩ′(x) := sup
x′∈Ω′

|〈x,x′〉| , Ω′ ∈ S ,

defines a locally convex topology on the space X , which is usually called the
S-topology. We shall deal with the following S-topologies on X :

(1) the topology of element-wise convergence T0 , generated by the family
S of all finite subsets of R∞00 ;

(2) the weak topology Tw(X,X ′) , generated by the family S of all finite
subsets of X ′ ;

(3) the Mackey topology Tm(X,X ′) , generated by the family S of all
absolutely convex Tw(X ′, X)-compact subsets of X ′ ;

(4) the strong topology Tb(X,X ′) , generated by the family S of all
Tw(X ′, X)-bounded subsets of X ′ .

Every next topology in this list is finer than the previous one. Each of
them is equivalent to the usual Euclidean topology whenever dimX < ∞ .
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The strong topology Tb(X,X ′) is generated by all lower Tw(X,X ′)-semi-
continuous seminorms on X and the Mackey topology Tm(X,X ′) is defined
by all lower Tw(X,X ′)-semicontinuous seminorms p on X such that

(1.3) p(x− x(m)) →
m→∞

0 , ∀x ∈ X .

The perfect space X ′′ is obtained from X by adding all T0-limits of
Tw(X,X ′)-Cauchy sequences in X . A perfect space X is Tb(X,X ′)-comp-
lete, Tm(X,X ′)-complete and sequentially Tw(X,X ′)-complete but is not
necessarily Tw(X,X ′)-complete. By the Mackey–Arens theorem, Tm(X,X ′)
is the finest locally convex topology on the space X such that its topolog-
ical dual X∗ coincides with X ′ . If X ′ is Tw(X ′, X)-complete then the
Tb(X,X ′)-dual of X also coincides with X ′ .

By Mackey’s theorem, a subset of a locally convex space is weakly bounded
if and only if it is bounded in any topology generating the same dual space.
For a sequence space X , we have the following stronger result which implies
that Ω ⊂ X is Tw(X,X ′)-bounded if and only if it is Tb(X,X ′)-bounded.

Theorem 1.1. Assume that Ω ⊂ X is Tw(X,X ′)-bounded and Ω′ ⊂ X ′

is Tw(X ′, X)-bounded. Then the set of sequences {x1 x
′
1 , x2 x

′
2 , . . .} , where

x = {x1, x2, . . .} ∈ Ω and x′ = {x′1, x′2, . . .} ∈ Ω′ , is bounded in l1 .

Proof. See [Ru], Chapter 2, Proposition 1.4. �

The following theorem can be proved in the same way as Theorem 2.4 in
[Ru], Chapter 2, where the author assumed that X is perfect.

Theorem 1.2. If X is a normal space and Ω′ ⊂ X ′ then the following two
conditions are equivalent:

(1) Ω′ is Tw(X ′, X)-compact,

(2) Ω′ is T0-compact and lim
n→∞

sup
x′∈Ω′

∞∑
i=n

|xi x′i| = 0 for each x ∈ X .

Remark 1.3. If {xn} ⊂ X is a Tw(X,X ′)-Cauchy sequence which converges
to x ∈ X ′′ in the topology T0 , then by Fatou’s lemma

sup
x′∈Ω′

|〈x,x′〉| ≤ sup
x′∈Ω′
〈|x|, |x′|〉 ≤ sup

x′∈Ω′
sup
n
〈|xn|, |x′|〉 .

Since the Cauchy sequence {xn} is Tw(X,X ′)-bounded, Theorem 1.1 and the
above inequality imply that the set Ω′ ⊂ X ′ is Tw(X ′, X ′′)-bounded if and
only if it is Tw(X ′, X)-bounded. Therefore the strong topology Tb(X,X ′)
coincides with the restriction of Tb(X ′′, X ′) to X . However, this is not
necessarily the case with the Mackey topologies.

Example 1.4. If X = R∞0 then X ′ = l1 , X ′′ = l∞ and Tb(l∞, l1) is the
l∞-topology. Theorem 1.2 implies that the closed unit ball in the space l1

is Tw(l1,R∞0 )-compact. Therefore Tm(R∞0 , l1) = Tb(l∞, l1)|R∞0 . The Mackey

topology Tm(l∞, l1) on R∞0 is strictly coarser than Tm(R∞0 , l1) . Indeed, if
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x = {1, 1, . . .} and x̃m := x(m+1) − x(m) then x̃m ∈ R∞0 , ‖x̃m‖l∞ = 1 but,
by Theorem 1.2, x̃m → 0 as m→∞ in the topology Tm(l∞, l1) .

Remark 1.5. Let Ω̃′ be the normal cover of the set Ω′ ⊂ X ′ . Theorem 1.1
implies that Ω̃′ is Tw(X ′, X)-bounded whenever Ω′ is Tw(X ′, X)-bounded.
If X is normal then, by Theorem 1.2, Ω̃′ is Tw(X ′, X)-compact whenever
Ω′ is Tw(X ′, X)-compact. Obviously,

pΩ′(x) = sup
x′∈Ω′

|〈x,x′〉| ≤ sup
x′∈Ω̃′

|〈x,x′〉| = sup
x′∈Ω̃′

∞∑
j=1

|xj| |x′j| = pΩ̃′(x)

and the seminorms pΩ̃′ are lower T0-semicontinuous. Therefore the strong
topology Tb(X,X ′) on an arbitrary space X is generated by all lower T0-
semicontinuous seminorms and the Mackey topology Tm(X,X ′) on a normal
space X is generated by all lower T0-semicontinuous seminorms satisfying
(1.3).

1.3. Symmetric sequence spaces. Our choice of notation in the following
definition will become clear in Section 3.

Definition 1.6. If x ∈ R∞ , let

Px be the set of all sequences y ∈ R∞ obtained from the sequence x
by permutations of its entries,
P r
x be the set of all sequences ỹ ∈ R∞ whose entries form a subse-

quence of a sequence y ∈ Px and
P ∅x be the set of all sequences obtained from sequences ỹ ∈ P r

x by
adding an arbitrary collection of zero entries.

We shall say that a sequence space X is symmetric if Px ⊂ X for every
x ∈ X . A seminorm p on a symmetric space X is said to be symmetric if
p(y) = p(x) whenever y ∈ Px .

If X is symmetric then P ∅x′ ⊂ X ′ for every x′ ∈ X ′ . The seminorm pΩ′

defined by (1.2) is symmetric if and only if Ω′ =
⋃

x′∈Ω′ Px′ . The following
result is a consequence of Theorems 1.1 and 1.2 (see Remark 3.2).

Corollary 1.7. Let X be a symmetric space such that X 6⊂ R∞00 , Ω′ be a
subset of X ′ and Ω′sym :=

⋃
x′∈Ω′ P

∅
x′ . If X ⊆ l∞ then Ω′sym is Tw(X ′, X)-

bounded whenever Ω′ is Tw(X ′, X)-bounded. If X ⊆ R∞0 and X is normal
then Ω′sym is Tw(X ′, X)-compact whenever Ω′ is Tw(X ′, X)-compact.

By Corollary 1.7, if X is a symmetric subspace of l∞ and X 6⊂ R∞00

then the strong topology Tb(X,X ′) is generated by a family of symmetric
T0-semicontinuous seminorms p such that

(1.4) p(y) ≤ p(x) , ∀y ∈ X
⋂

P ∅x , ∀x ∈ X .

If X is a normal symmetric subspace of R∞0 and X 6⊂ R∞00 then the Mackey
topology Tm(X,X ′) is generated by a family of symmetric T0-semicontinuous
seminorms p satisfying (1.3) and (1.4).
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Example 1.8. If X = R∞ then X ′ = R∞00 and T0 = Tm(R∞,R∞00) =
Tb(R∞,R∞00) . This topology cannot be defined with the use of symmetric
seminorms. If X = lp with 1 ≤ p ≤ ∞ then X ′ = lp

′
and Tb(lp, lp

′
)

is the usual lp-topology. If p < ∞ then Tb(lp, lp
′
) = Tm(lp, lp

′
) , but the

Mackey topology Tm(l∞, l1) is strictly coarser than the l∞-topology and is
not generated by a family of symmetric seminorms.

Example 1.9. Let Φ be a symmetric lower T0-semicontinuous Schatten

norm on R∞0 and s
(0)
Φ ⊆ sΦ ⊆ l∞ be the corresponding linear subspaces of

sequences (see, for example, [Si] or [Ma1]; in the latter paper Φ is called a
symmetric gauge function and the corresponding subspaces are denoted by

lΦ and l
(0)
Φ ). Then the norm topology on a subspace X ⊂ sΦ is always

coarser than Tb(X,X ′) and is coarser than Tm(X,X ′) whenever X ⊂ s
(0)
Φ .

Example 1.10. Let x ∈ R∞0 , x 6∈ l1 and X be the subspace spanned by the
normal cover P̃x of the set Px . Then X ′ consists of all sequences x′ ∈ R∞0
such that

(1.5) ‖x′‖L := sup
y∈P̃x

|〈y,x′〉| < ∞ .

The space X ′ provided with the norm (1.5) is called the Lorentz space asso-
ciated with the weight sequence x (see, for example, [LT], Section 4.e). We
have

(1.6)
∞∑
k=1

|yj| |x′j|∗ =
∞∑
m=1

(|x′m|∗ − |x′m+1|∗)
m∑
j=1

|yj| , ∀x′,y ∈ R∞0 ,

where {|z1|∗, |z2|∗ . . .} denotes either the non-increasing rearrangement of
the sequence |z| or (if |z| contains infinitely many nonzero entries and at
least one zero entry) the non-increasing rearrangement of its nonzero entries.
Using this identity, one can easily show that y ∈ X ′′ if and only if

(1.7) ‖y‖M := sup
m≥1

Rm(|y|) (Rm(|x|))−1 = sup
‖x′‖L<1

|〈y,x′〉| < ∞ ,

where Rm(|z|) :=
∑m

j=1 |zj|∗ . The space X ′′ provided with the norm (1.7)

is called the Marcinkiewicz space associated with x . Since the set P̃x is
Tw(X,X ′)-bounded, Theorem 1.1 implies that the Tw(X ′, X)-bounded set
{x′ ∈ X ′ : ‖x′‖L < 1} absorbs any other Tw(X ′, X)-bounded subset of
X ′ . Therefore, in view of Remark 1.3, the strong topology Tb(X ′′, X ′) is
generated by the norm ‖ · ‖M . The Mackey topology Tm(X ′′, X ′) is strictly
coarser than Tb(X ′′, X ′) as ‖y− y(m)‖M may be equal to ‖y‖M for all m .

Remark 1.11. Let XPx be the linear space spanned by Px . Then X ′′Px
is the

minimal symmetric perfect space which contains x . Obviously,

(1) if x is unbounded then X ′Px
= R∞00 and X ′′Px

= R∞ ;
(2) if x ∈ l∞ but x 6∈ R∞0 then X ′Px

= l1 and X ′′Px
= l∞ ;
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(3) if x ∈ R∞0 but x 6∈ l1 then X ′Px
is the Lorentz space and X ′′Px

is the
Marcinkiewicz space associated with x (see Example 1.10);

(4) if x ∈ l1 but x 6∈ R∞00 then X ′Px
= l∞ and X ′′Px

= l1 ;
(5) if x ∈ R∞00 then X ′Px

= R∞ and X ′′Px
= R∞00 .

Remark 1.12. If x 6∈ R∞00 and Px ⊂ X then X ′ ⊆ l∞ and l1 ⊆ X ′′ .
Therefore for every Tb(X,X ′)-continuous seminorm p on X there exists a
constant Cp such that p(x) ≤ Cp ‖x‖l1 for all x ∈ X

⋂
l1 .

2. Birkhoff’s theorem

2.1. Notation and definitions. Let G = {G1, G2, . . .} be a family of
countable sets Gk which may have non-empty intersections. Define a simple
graph G as follows: the set of vertices of G coincides with

⋃
kGk and two

vertices are joined by an edge in G if and only if they belong to the same set
Gk. Then Gk become complete subgraphs of G. Throughout this section we
denote by g (with or without indices) the vertices of G or, in other words,
the elements of

⋃
kGk. Let

W be the linear space of real-valued functions w on G ,
W+ be the cone of non-negative functions w ∈ W and
W0 be the set of functions w ∈ W which take only finitely many
non-zero values.

We shall call w ∈ W+ weights over G and denote by w(g) the weight
assigned to g ∈ G (that is, the value of w at g). If w ∈ W , let

Gw be the subgraph of G which includes all vertices g ∈ G such that
w(g) 6= 0 and all edges joining these vertices.

Let G1 be an arbitrary subset of G. We shall say that a weight w ∈ W+ is
G1-stochastic if

∑
g∈Gk w(g) ≤ 1 for every Gk ∈ G and

∑
g∈Gk w(g) = 1 for

every Gk ∈ G1 . Denote by SG1 the convex set of all G1-stochastic weights
and let PG1 be the set of G1-stochastic weights taking only the values 0
and 1. Clearly, w ∈ PG1 if and only if the restriction of w to every subset
Gk takes at most one value 1, all other values being 0, and w does take the
value 1 at some vertex g ∈ Gk whenever Gk ∈ G1. If G1 ⊆ G′1 ⊆ G then
PG′1 ⊆ PG1 ⊆ SG1 and SG′1 ⊆ SG1 .

Remark 2.1. The weights w ∈ SG and w ∈ S∅ are said to be stochastic
and, respectively, sub-stochastic. A stochastic weight w can be considered
as a family of probability measures w(k) := w|Gk on the sets Gk such that
w(k) = w(j) on Gk

⋂
Gj.

Since the set of vertices is countable, W can be identified with the sequence
space R∞ (or with its subspace if G is finite). Further on we use definitions
and notation introduced in Section 1.
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2.2. Extreme points. We shall say that a path g0 → g1 → · · · → gl in G is

admissible if no three adjacent vertices in this path belong to the same
set Gk ∈ G ;
a cycle if g0 = gl and the number of distinct vertices gj is not smaller
than 3 (that is, g0 → g1 → g2 = g0 is not a cycle).

Proposition 2.2. Every two vertices lying in the same connected component
of G can be joined by an admissible path. If there are no admissible cycles
and, in addition,

(c1) the intersection Gk

⋂
Gl of two distinct sets Gk, Gl ∈ G contains at

most one vertex of G

then this admissible path is unique.

Proof. Let g0 and gm belong to the same connected component of G . Then
a path g0 → g1 → · · · → gm with the minimal possible number of vertices is
admissible (otherwise we could obtain a shorter path from g0 to gm replacing
gj → gj+1 → · · · → gj+i with gj → gj+i). This proves the first statement.

Let g1 → g1 → · · · → gm and g1 → gn+m → · · · → gm+1 → gm be two
distinct admissible paths from g1 to gm . Without loss of generality we may
assume that these paths have only two common vertices g1 and gm . Then
the vertices g1, . . . , gm+n are distinct and do not belong to the same set Gk .
Consider the graph G formed by all these vertices and all joining them edges.
Let g̃1 → g̃2 → · · · → g̃l+1 = g̃1 be a cycle in G with the minimal possible
number of vertices which do not belong to the same set Gk (since G contains
at least one cycle g1 → g2 → · · · → gm+n with this property, such a ‘minimal’
cycle exists). The condition (c1) implies that this cycle is admissible. Indeed,
if two non-adjacent vertices g̃i and g̃i+j in this path are joined by an edge
then all vertices of the cycle g̃i → g̃i+1 → · · · → g̃i+j → g̃i belong to some
set Gk ∈ G and all vertices of the cycle g̃i+j → g̃i+j+1 → · · · → g̃l → g̃1 →
· · · → g̃i → g̃i+j belong to a distinct set Gl , in which case the intersection
Gk

⋂
Gl contains at least two elements g̃i and g̃i+j . This proves the second

statement. �

Further on we shall be assuming that

(g1) every vertex of G belongs to at most two sets Gk,
(g2) every admissible cycle in G has an even number of vertices.

If the conditions (g1) and (g2) are fulfilled then G can be split into two
groups G+ = {G+

1 , G
+
2 , . . .} and G− = {G−1 , G−2 , . . .} in such a way that any

two sets from the same group do not have common elements (two sets Gk

and Gj belong to the same group if every admissible path Gk 3 g0 → g1 →
· · · → gl−1 → gl ∈ Gj in G with g1 6∈ Gk and gl−1 6∈ Gj has an even number
of vertices). The intersection G+

k

⋂
G−j may consist of several elements or be

empty, and every set G±k may contain a ‘tail’ subset G̃±k which does not have
common elements with any other set Gj.



10 YU. SAFAROV

In view of the following example, all results of this section are valid for
finite and infinite matrices which we shall discuss in more detail in Section 3.

Example 2.3. Let G satisfy (g1) and (g2) and G± be defined as above.
Denote by m± the number of sets G±k lying in G± ; we allow m+ = ∞ and
(or) m− =∞ . If every intersection G+

k

⋂
G−j consists of one element and all

the tail subsets G̃±k are empty then W is isomorphic to the linear space of
m+ ×m−-matrices. Indeed, the value of w ∈ W at the vertex g ∈ G+

k

⋂
G−j

can be considered as the entry of an m+ ×m−-matrix at the intersection of
its jth row and kth column. In this case SG , S∅ and PG are the sets of
doubly stochastic, sub-stochastic and permutation matrices respectively.

If G is a general family of sets satisfying (g1) and (g2) then one can think
of W as a space of matrices which may have ‘multiple’ or ‘forbidden’ entries
and ‘tails’ G̃±k attached to their rows and columns.

Theorem 2.4. Let the conditions (g1) and (g2) be fulfilled and let V be a
normal conic subset of W. Then ex (SG1

⋂
V) = PG1

⋂
V .

Proof. Obviously, PG1
⋂
V ⊂ ex (SG1

⋂
V) . In order to prove the converse,

let us consider a weight w ∈ SG1
⋂
V such that w(g′) ∈ (0, 1) for some g′ ∈

G and show that w 6∈ ex (SG1
⋂
V) . Let G′ be the connected component of

Gw containing the vertex g′ . Then w(g) ∈ (0, 1) at every vertex g ∈ G′ .
(1) Assume that, for some k 6= l , the intersection G′

⋂
Gk

⋂
Gl contains

two distinct vertices g1 and g2 . Let w±ε (gj) = w(gj)± (−1)jε and w±ε (g) =
w(g) whenever g 6= gj , j = 1, 2 . Then w = 1

2
(w+

ε + w−ε ) and, in view of
(g1), w±ε ∈ SG1

⋂
V provided that ε > 0 is sufficiently small. Therefore

without loss of generality we can assume that G′ satisfies (c1).

(2) Similarly, if G′ contains an admissible cycle G = g0 → g2 → · · · →
gn = g0 , let w±ε (gj) = w(gj)± (−1)jε and w±ε (g) = w(g) whenever g 6∈ G .
The condition (g2) implies that w+

ε and w−ε are correctly defined weights
over G . We have w = 1

2
(w+

ε + w−ε ) and w±ε ∈ W+

⋂
V provided that ε

is sufficiently small. In view of (g1), if gj ∈ Gk then one of the adjacent
vertices gj−1, gj+1 belongs to Gk and the other does not. This implies that∑

g∈Gk w±ε (g) =
∑

g∈Gk w(g) for every k . Therefore w±ε ∈ SG1
⋂
V .

(3) Finally, let us assume that G′ does not contain admissible cycles and
satisfies (c1). Then, by Proposition 2.2, every two vertices g0, gl ∈ G′ are
joined by a unique admissible path. Let us fix g0 ∈ G′ and denote by Gn the
set of vertices in G′ obtained from g0 by moving along all admissible paths
with n edges. Then for each k = 1, 2, . . . there exists n ≥ 0 such that Gk ⊆
Gn
⋃
Gn+1 . Moreover, if Gk ⊆ Gn

⋃
Gn+1 then the intersection Gk

⋂
Gn

consists of one element gk,n . Indeed, if there are two distinct admissible paths
g0 → g1 → · · · → gk,n and g0 → g′1 → · · · → g′k,n ∈ Gk

⋂
Gn then g0 and

gk,n can be joined by the two distinct admissible paths g0 → g1 → · · · → gk,n
and g0 → g′1 → · · · → g′k,n → gk,n .
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If g0 ∈ Gk then Gk ⊆ G0

⋃
G1 and gk,0 = g0 . Let us denote

(2.1) εk,0 := min

{
1

2
,

1−w(g0)

2 w(g0)

}
, εk,n+1 :=

εk,n w(gk,n)

1−w(gk,n)
,

where n = 0, 1, 2, . . . and k is such that Gk ⊆ Gn
⋃
Gn+1 . Since w ∈ SG1 ,

we have w(gk,n) + w(gk,n+1) ≤ 1 and, consequently,

w(gk,n)

1−w(gk,n)
≤ 1−w(gk,n+1)

w(gk,n+1)
.

Using these inequalities, one can easily prove by induction in n that

(2.2) εk,n ≤ min

{
1

2
,

1−w(gk,n)

2 w(gk,n)

}
.

Consider two sequences of weights w+
ε,n and w−ε,n such that

w±ε,0(g0) := (1± εk,0) w(g0) and w±ε,0(g) := w(g) for all g 6= g0 ,

w±ε,n+1(g) := w±ε,n(g) for all g ∈
⋃
j≤n Gj ,

w±ε,n+1(g) := w(g) whenever g 6∈
⋃
j≤n+1 Gj ,

if Gk ⊆ Gn
⋃
Gn+1 then w±ε,n(gk,n) := (1± εk,n) w(gk,n) and

w±ε,n+1(g) := (1∓εk,n+1)w(g) whenever g ∈ Gk

⋂
Gn+1 and g 6= gk,n .

Obviously, w(g) = 1
2
(w+

ε,n(g) + w−ε,n(g)) . The estimates (2.2) imply that
w±ε,n ∈ W+

⋂
V . Finally, if Gk ⊆ Gn

⋃
Gn+1 and

∑
g∈Gk w(g) = t then∑

g∈Gk

w±ε,n(g) = (1±εk,n) w(gk,n) + (1∓εk,n+1) (t−w(gk,n)) = t∓εk,n+1(t−1) .

This identity and the estimates εk,n, εk,n+1 ≤ 1/2 imply that

(2.3)
t+ 1

2
− 1− t

2 (1− w(gk,n))
≤
∑
g∈Gk

w±ε,n(g) ≤ t+ 1

2
.

Let w±ε (g) := limn→∞w±ε,n(g). Then w0 = 1
2
(w+

ε + w−ε ) and, in view of (2.2)

and (2.3), w±ε (g) ∈ SG1
⋂
V .

Thus, under conditions of the theorem, a weight w ∈ (SG1 \ PG1)
⋂
V

can always be represented as a convex combination of two other weights from
SG1

⋂
V and therefore is not an extreme point. �

Remark 2.5. If the condition (g2) is not fulfilled then an extreme point of SG1

does not necessarily belong to PG1 . The simplest example is G1 = {g1, g2} ,
G2 = {g2, g3} , G3 = {g3, g1} and G = {G1, G2, G3} . In this case SG

consists of one weight which takes the value 1
2

at each vertex.

Remark 2.6. The sets SG1 and PG1 may well be very poor or even empty.
However, even in this situation Theorem 2.4 may be useful. In particular, by
the Krein–Milman theorem, under conditions of Theorem 2.4 we have

SG1

⋂
W0 = convPG1

⋂
W0 .
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Therefore SG1
⋂
W0 = ∅ whenever PG1

⋂
W0 = ∅.

Remark 2.7. If the conditions (g1) and (g2) are fulfilled and V is a normal
linear subspace of W then every extreme point w ∈ ex (SG1

⋂
V) = PG1

⋂
V

is Tm(V ,V ′)-exposed. Indeed, if w′(g) > 0 whenever w(g) = 1 , w′(g) < 0
whenever w(g) = 0 and w′ ∈ V ′ then we have 〈w,w′〉 > 〈w̃,w′〉 for all
w̃ ∈ SG1

⋂
V .

2.3. Topologies on the space of stochastic weights. The aim of this
subsection is to describe locally convex topologies T on a linear subspace
V ⊃ PG1 such that the T-closure of convPG1 coincides with SG1

⋂
V .

By Fatou’s lemma we always have convP∅ ⊂ S∅ (as T is finer than T0 ).
Tychonoff’s theorem and Fatou’s lemma also imply that the set S∅ is T0-
compact. Therefore, in view of Theorem 2.4 and the Krein–Milman theorem,
under the conditions (g1) and (g2) we have S∅ = convP∅ , where the clo-
sure is taken in the topology of element-wise convergence T0 . However, if
G1 contains an infinite set Gk then the set SG1 is not T0-closed and, by
Theorem 1.2, is not T-compact whenever the functional w →

∑
g∈Gk w(g)

is T-continuous. In this case (ii) does not directly follow from (i) and the
Krein–Milman theorem.

Definition 2.8. Denote by VP and VS the normal covers of the subspaces
spanned by P∅ and S∅ respectively. If w ∈ VS , let w(k) be the restriction
of w to Gk and pk(w) := ‖w(k)‖l1 .

Lemma 2.9. Let us enumerate the sets Gk in an arbitrary way and define
Fn :=

⋃n
k=1 Gk . If D′ is a Tw(V ′P ,VP)-compact subset of V ′P then

(2.4) sup
w∈P∅,w′∈D′

∑
g∈G\Fn

|w(g) w′(g)| → 0 , n→∞ ,

whenever G satisfies (g1) and

(2.5) sup
w∈S∅,w′∈D′

∑
g∈G\Fn

|w(g) w′(g)| → 0 , n→∞ ,

whenever G satisfies (g1) and (g2).

Proof. If the conditions (g1) and (g2) are fulfilled then S∅ coincides with the
T0-closure of convP∅ . Therefore, in view of Fatou’s lemma, it is sufficient
to prove only the first statement.

If (2.4) is not true then there exists δ > 0 and two sequences of weights
{wn} ⊂ P∅ and {w′n} ⊂ D′ such that

∑
g∈G\Fn |wn(g) w′n(g)| ≥ δ > 0 for

all n = 1, 2, . . . Let n? be the minimal positive integer satisfying the estimate∑
g∈Fn?\Fn

|wn(g) w′n(g)| ≥ δ/2 and w?
n ∈ W0

⋂
P∅ be the weight which takes

the same values as wn on Fn? \ Fn and vanishes outside Fn? \ Fn . In view
of (g1), there exists a positive integer n? > n? such that w?

n|Gk ≡ 0 for all
k ≥ n?. Let us take an arbitrary n1 and define nj+1 := n?j , where j = 1, 2, . . .
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Then for each g ∈ G the sum w?(g) :=
∑

j w?
nj

(g) is equal either to 0 or to

1 and
∑

g∈Gk w?(g) ≤ 1 , ∀k = 1, 2, . . . Therefore the corresponding weight

w? belongs to P∅ . On the other hand, nj →∞ and∑
g∈Fn?

j
\Fnj

|w?(g) w′nj(g)| =
∑

g∈Fn?
j
\Fnj

|wnj(g) w′nj(g)| ≥ δ/2 ,

which contradicts to Theorem 1.2. �

We do not assume in Lemma 2.9 that D′ ⊂ VS . Therefore, for each fixed
n , the supremum in (2.5) may well be +∞ . However, under conditions (g1)
and (g2), it eventually becomes finite and converges to zero as n→∞ .

Lemma 2.10. If the condition (g1) is fulfilled and D′ is a Tw(V ′S ,VS)-
bounded Tw(V ′P ,VP)-compact subset of V ′S then the weights w′ ∈ D′ are
uniformly bounded.

Proof. Let Fn be defined as in Lemma 2.9. If the restrictions of weights
w′ ∈ D′ to Fn are not uniformly bounded then, for some k ≤ n , their
restrictions to Gk form an unbounded subset of l∞ . This implies that the
set D′ is not Tw(V ′S ,VS)-bounded.

Assume that there exist sequences {gj}j=1,2,... ∈ G and {w′j}j=1,2,... ∈ D′
such that w′j(gj) → ∞ as j → ∞ and {gj} 6⊂ Fn for any finite n . Since
(g1) holds true, every vertex g belongs only to finitely many sets Gk and
we can find a subsequence {gji}i=1,2,... with at most one entry at each set
Gk . If w(gji) = 1 and w(g) = 0 whenever g 6∈ {gji} then w ∈ P∅ and∑

i |w(gji) w′ji(gji)| = ∞ . Therefore, by Theorem 1.2, the set D′ is not
Tw(V ′P ,VP)-compact. �

Corollary 2.11. If the conditions (g1) and (g2) are fulfilled then the strong
topology Tb(VS ,V ′S) is generated by the norm

(2.6) ‖w‖S := sup
k
pk(w)

Proof. Since the norm (2.6) is lower T0-semicontinuous, it is Tb(VS ,V ′S)-
continuous (see Remark 1.5). The set

S∅ = {w ∈ VS : ‖w‖S < 1}

is absorbing and, in view of (2.5) and Lemma 2.10, is Tm(VS ,V ′S)-bounded.
By Theorem 1.1, this set is Tb(VS ,V ′S)-bounded, which implies that every
Tb(VS ,V ′S)-continuous seminorm is continuous in the norm topology. �

Corollary 2.12. Let T be the locally convex topology on VS generated by
the seminorms pk , k = 1, 2, . . . If the conditions (g1) and (g2) are fulfilled
then the Mackey topology Tm(VS ,V ′S) is finer than T and coincides with T
on every Tb(VS ,V ′S)-bounded subset of VS .
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Proof. The seminorms pk are lower T0-semicontinuous and satisfy (1.3).
Therefore, by Remark 1.5, Tm(VS ,V ′S) is finer than T . On the other hand,
if Ω is a bounded subset of VS then, in view of (2.5) and Lemma 2.10, for
every Mackey seminorm p on VS , every x ∈ Ω and every ε > 0 there exist
a positive integer m and δ > 0 such that

{y ∈ Ω : pk(x− y) < δ ,∀k = 1, 2, . . . ,m} ⊆ {y ∈ Ω : p(x− y) < ε} .
This implies that every Tm(VS ,V ′S)-neighbourhood of x in Ω contains a
T-neighbourhood. �

Remark 2.13. If the conditions (g1), (g2) are fulfilled and G does not coincide
with the union of a finite collection of the sets Gk then the topology T
generated by the seminorms pk is strictly coarser than Tm(VS ,V ′S) . Indeed,
in this case there exists a sequence of weights wn ∈ VP such that pk(wn) = 0
for all k < n and pn(wn) → ∞ as n → ∞ . This sequences converges
to the zero weight in the topology T but is not Tb(VS ,V ′S) -bounded and,
consequently, is not Tm(VS ,V ′S) -convergent.

In the rest of this section we shall be assuming that

(g3) one can enumerate the sets Gj in such a way that either G = Fn or
Gn+1 6⊂ Fn for all sufficiently large n , where Fn :=

⋃
k≤nGk .

Every finite collection G = {G1, G2, . . . , Gn} satisfies (g3). More generally,
the condition (g3) is fulfilled whenever the number of finite sets Gk is finite
and the intersections of every two sets Gj, Gk ∈ G is finite. In particular,
(g3) is fulfilled for finite and infinite matrices (see Example 2.3).

Lemma 2.14. Let the conditions (g1) and (g3) be fulfilled, Gk be enumerated
as in (g3), Fn :=

⋃
k≤nGk and G1,n be the collection of all sets Gk ∈ G1

with k ≤ n . Then there exists a positive integer n0 such that for every
n ≥ n0 and every weight w ∈ P∅ satisfying

(2.7)
∑
g∈Gk

w(g) = 1 , ∀Gk ∈ G1,n ,

one can find a weight w̃ ∈ PG1 whose restriction to Fn coincides with w|Fn .

Proof. If for some positive integer n1 there are no weights w ∈ P∅ satisfying
(2.7) with n = n1 then the lemma automatically holds true for n0 = n1 .
Therefore we can assume without loss of generality that for each n = 1, 2, . . .
there exists a weight wn ∈ P∅ satisfying (2.7).

If G = Fn for all n ≥ n1 then, in view of (g1),
∑

k

∑
g∈Gk wn(g) ≤

2n1 . This estimate and (2.7) imply that the set G1,n contains at most 2n1

elements for each n = 1, 2, . . . . Therefore there exists a positive integer n0

such that G1,n = G1,n0 for all n ≥ n0 . In this case the inclusion w ∈ P∅
and (2.7) with n ≥ n0 imply that w ∈ PG1 .

If Gn+1 6⊂ Fn for all n ≥ n1 then we take n0 = n1 . Given n ≥ n0

and a weight w ∈ P∅ satisfying (2.7), we choose arbitrary vertices gn+j ∈
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Gn+j \ Fn+j−1 and define w̃ as follows: w̃(g) := w(g) whenever g ∈ Fn ,
w̃(gn+j) := 1 for all j = 1, 2, . . . and w̃(g) := 0 otherwise. Then w = w̃ on
Fn and w̃ ∈ PG1 because

∑
g∈Gk w̃(g) = 1 for all k > n . �

Theorem 2.15. Let the conditions (g1)–(g3) be fulfilled and V be a normal
subspace of W such that VP ⊆ V ⊆ VS . Then

(2.8) SG1

⋂
V = convPG1 , ∀G1 ⊆ G ,

where the closure is taken in the Mackey topology Tm(V ,V ′) .

Proof. Since V ⊆ VS , the functionals w →
∑

g∈Gk w(g) are Tw(V ,V ′)-
continuous and, consequently, convPG1 ⊆ SG1

⋂
V . If w 6∈ convPG1 then,

by the separation theorem (see, for example, [K], Section 20.7), there exist
w′ ∈ V ′ and ε > 0 such that 〈w,w′〉 − 〈w̃,w′〉 > ε for all w̃ ∈ convPG1 .
Therefore, in order to prove (2.8), it is sufficient to show that for each fixed
w ∈ SG1

⋂
V , w′ ∈ V ′ and ε > 0 one can find w̃ ∈ convPG1 such that

〈w,w′〉 − 〈w̃,w′〉 ≤ ε .
Assume that the intersection Gk

⋂
Gl

⋂
Gw contains more than one vertex

so that Gk

⋂
Gl

⋂
Gw = {g1, g2, . . .} . Since

∑
j |w(gj) w′(gj)| ≤ ∞ and∑

j w(gj) ≤ 1 , we have w′(gi) ≥
∑

j w(gj) w′(gj) for some positive integer

i . If w?(g) := w(g) whenever g 6∈ Gk

⋂
Gl

⋂
Gw , w?(gi) :=

∑
j w(gj) and

w?(g) := 0 whenever g ∈ Gk

⋂
Gl

⋂
Gw but g 6= gi then w? ∈ SG1

⋂
V

and 〈w?,w′〉 ≥ 〈w,w′〉 . Therefore we can assume without loss of generality
that Gw satisfies the condition (c1) of Proposition 2.2.

Let us enumerate the sets Gk and define Fn and n0 as in Lemma 2.14.
Let n ≥ n0 and Gk

⋂
Gw = {gk1 , gk2 , ...} , where k = 1, 2, . . . , n . By (g1), for

every gkj there exists at most one positive integer l 6= k such that gkj ∈ Gl .
Denote

vn(gkj ) :=

{
w(gkj ) , if gkj 6∈

⋃∞
l=n+1Gl ,∑

g∈Gl
⋂
Fn

w(g) , if gkj ∈ Gl for some l > n .

In view of (g1) and (c1), we have
∑

j vn(gkj ) ≤ n . Therefore vn(gkj ) → 0 as

j → ∞ whenever the set Gk

⋂
Gw is infinite. If Gk

⋂
Gw is finite, denote

by jk the number of elements of Gk

⋂
Gw . If Gk

⋂
Gw is infinite, denote

by jk the minimal positive integer such that

(2.9) vn(gkjk) +
∑
j>jk

w(gkj ) ≤ 1 and gkj 6∈ Fn \Gk , ∀j ≥ jk

(since vn(gkj ) → 0 ,
∑

j w(gkj ) ≤ 1 and Gw satisfies (c1), such a minimal

integer exists).
Let wn(g) := 0 whenever g 6∈ Fn and wn(g) := w(g) for all g ∈ Fn .

Then 〈w −wn,w
′〉 → 0 as n → ∞ because the series

∑
g∈G w(g) w′(g) is

absolutely convergent. Let m ≥ max{j1, j2, . . . , jn} , wn,m(g) := 0 whenever
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wn(g) = 0 and

wn,m(gkj ) :=


0 if j > m,

w(gkjk) +
∑

j>m w(gkj ) if j = jk ≤ m,

w(g) if j ≤ m and j 6= jk .

Then 〈wn − wn,m,w
′〉 → 0 as m → ∞ for each fixed n because the series∑

j w(gkj ) w′(gkj ) are absolutely convergent and
∑

j>m w(gkj )→ 0 .
The weight wn,m vanishes outside a finite subset of G and, in view of

(2.9), belongs to S∅ and satisfies the condition (2.7). Applying Theorem
2.4 to the family of sets {G1

⋂
Gwn,m , . . . , Gn

⋂
Gwn,m} and then the Krein–

Milman theorem, we see that wn,m can be represented as a finite convex

combination
∑

i αi w
(i)
n,m of some weights w

(i)
n,m ∈ P∅ . Obviously, each

weight w
(i)
n,m also satisfies (2.7). By Lemma 2.14, we can find w̃

(i)
n,m ∈ PG1

such that w̃
(i)
n,m = w̃

(i)
n,m on the set Fn . If w̃n,m :=

∑
i αi w̃

(i)
n,m then

w̃n,m ∈ convPG1 and, in view of (2.4), we have 〈wn,m − w̃n,m,w
′〉 < ε/3

for all m ≥ max{j1, j2, . . . , jn} provided that n is sufficiently large. There-
fore, choosing a sufficiently large n ≥ n0 and then a sufficiently large m ≥
max{j1, j2, . . . , jn} , we can make the right hand side of the identity

〈w,w′〉 − 〈w̃n,m,w
′〉 = 〈w−wn,w

′〉+ 〈wn−wn,m,w
′〉+ 〈wn,m− w̃n,m,w

′〉
smaller than ε . �

Remark 2.16. Theorem 2.15 implies that PG1 6= ∅ whenever SG1 6= ∅ and
G satisfies (g1)–(g3). If Gn+1 6⊂

⋃n
k=1 Gj for all n = 1, 2, . . . then, using the

same procedure as in the proof of Lemma 2.14, one can show that PG 6= ∅ .

Remark 2.17. If V is a proper normal subspace of V1 then V ′1 is a proper
subspace of V ′ and the Mackey topology Tm(V ,V ′) is strictly finer than
Tm(V1,V ′1) . Therefore choosing a smaller space V in Theorem 2.15 we obtain
a stronger result which is valid for a narrower class of G1-stochastic weights.

Remark 2.18. Taking V = VS in Theorem 2.15 and applying Corollary 2.12,
we obtain SG1 = convPG1 , where the closure is taken in the topology gen-
erated by the seminorms pk . This topology is metrizable. Therefore, under
conditions (g1)–(g3), for every w ∈ SG1 there exists a sequence of weights
wn ∈ convPG1 such that pk(w −wn)→ 0 as n→∞ for all k = 1, 2, . . .

The following simple example shows that, generally speaking, convP∅ does
not contain SG

⋂
V if we take the closure in the strong topology Tb(V ,V ′).

Example 2.19. Let G be an infinite collection of mutually disjoint sets
Gk such that Gk contains k elements. Then the weight w which takes
the values k−1 on Gk belongs to SG . On the other hand, for every weight
w̃ ∈ convP∅ there exists a positive integer n such that the number of nonzero
entries in w̃|Gk does not exceed n for every k . Therefore ‖w − w̃‖S = 1

for all w̃ ∈ convP∅ , where ‖ · ‖S is defined by (2.6).
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The strong closure of the convex hull of the set of permutation matrices is
also strictly smaller then the set of doubly stochastic matrices [Is].

3. Operators generated by stochastic matrices

3.1. Notation and definitions. In the rest of the paper (with the exception
of the proof of Theorem 3.15) we shall be assuming that W is the space of real
matrices w = {wij}i,j=1,2,... and the sets Gk are the rows and columns (see
Example 2.3). Recall that in this case G satisfies the conditions (g1)–(g3),
SG and S∅ are the sets of doubly stochastic and sub-stochastic matrices
respectively, PG is the set of permutation matrices and P∅ is the set of
sub-stochastic matrices whose entries are equal either to 0 or to 1. For the
sake of definiteness we shall consider only infinite matrices; the corresponding
results for finite matrices are much simpler and can be proved in a similar
manner.

Every matrix w ∈ W generates the linear operator

(3.1) R∞ 3 x → {
∞∑
j=1

w1j xj ,

∞∑
j=1

w2j xj , . . .} ∈ R∞

with domain D(w) = {x ∈ R∞ :
∑∞

j=1 | wij xj | < ∞ , ∀i = 1, 2, . . .} . We

shall denote this operator by the same letter w . Obviously, l∞ ⊆ D(w) for
all w ∈ S∅ and D(w) = R∞ for all w ∈ P∅ , but D(w) 6= R∞ whenever w
has a row with infinitely many nonzero entries.

Lemma 3.1. If X ⊆ l∞ is a symmetric perfect space and X 6= R∞00 then the
operator generated by a matrix w ∈ S∅ maps X into X and is continuous
in the topologies Tw(X,X ′) , Tm(X,X ′) and Tb(X,X ′) .

Proof. Since X 6= R∞00 , by Remark 1.11 we have X ′ ⊆ l∞ . The inclusions
X ⊆ l∞ , X ′ ⊆ l∞ and (2.5) imply that x′ ⊗ x ∈ V ′S for all x ∈ X
and x′ ∈ X ′ , which means that w maps the perfect space X into itself.
Similarly, the transposed operator wT maps the perfect space X ′ into itself.
Therefore |〈wx,x′〉| = |〈x,wTx′〉| is a Tw(X,X ′)-continuous seminorm on
X for each x′ ∈ X ′ and is a Tw(X ′, X)-continuous seminorm on X ′ for
each x ∈ X . This implies that w is Tw(X,X ′)-continuous and wT is
Tw(X ′, X)-continuous. Since the continuous operator wT maps compact
sets into compact sets and bounded sets into bounded sets, the operator w
is Tm(X,X ′)-continuous and Tb(X,X ′)-continuous. �

Remark 3.2. Let X ⊆ l∞ be a symmetric space, X 6⊂ R∞00 and {x′ ⊗ x}
be the set which contains one element x′ ⊗ x , where x ∈ X and x′ ∈ X ′ .
Applying (2.4) to D′ = {x′ ⊗ x} , we see that the set P ∅x is Tw(X,X ′)-
bounded. Therefore Theorem 1.1 implies the first statement of Corollary 1.7.
If Ω′ is a Tw(X ′, X)-compact subset of X ′ then, by Theorem 1.2, the set
D′ :=

⋃
x′∈Ω′{x′ ⊗ x} is Tw(V ′P ,VP)-compact. Therefore Theorem 1.2 and

(2.4) imply the second statement of Corollary 1.7.
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Definition 3.3. Let Gr be the set of all rows, Sr := SGr and USr be the
set of matrices w = {wij}i,j=1,2,... ∈ Sr such that wij = |(ui, ej)H |2 , where
{e1, e2, . . .} is a complete orthonormal subset of a separable complex Hilbert
space H , {u1, u2, . . .} is an orthonormal subset of the same Hilbert space
H and (·, ·)H is the inner product in H .

If the set {u1, u2, . . .} is also complete then the inner products (ui, ej)H
coincide with entries of a unitary matrix. In this case the corresponding
matrix w ∈ USr is doubly stochastic and is said to be unistochastic. In the
finite dimensional case every matrix w ∈ USr is unistochastic.

Definition 3.4. If x = {x1, x2, . . .} ∈ R∞ , let

(3.2) R+
m(x) := sup

{xj1 ,...,xjm}

m∑
n=1

xjn and R−m(x) := inf
{xj1 ,...,xjm}

m∑
n=1

xjn ,

where m = 1, 2, . . . and the supremum and infimum are taken over all subsets
of x containing m elements. Denote by Qx the set of all sequences y =
{y1, y2, . . .} ∈ R∞ such that

(3.3) R−m(x) ≤
m∑
n=1

yin ≤ R+
m(x)

for each m = 1, 2, . . . , p and each collection of m distinct positive integers
i1, . . . , im . Finally, let XQx be the subspace of R∞ spanned by Qx .

By Remark 1.11, XQx is the minimal symmetric perfect space containing
x whenever x 6∈ R∞00 and XQx = l1 whenever x ∈ l1 \ {0} .

Definition 3.5. If x = {x1, x2, . . .} ∈ R∞ , let

Vx be the linear space of matrices w such that x ∈ D(w) ;
PG1
x , SG1

x and USrx be the sets of all sequences y ∈ R∞ such that
y = wx for some w ∈ PG1 , w ∈ SG1

⋂
Vx and w ∈ USr

⋂
Vx

respectively and Srx := SGr
x .

Obviously, the sets SG1
x , PG1

x Qx do not depend on the order of entries
in the sequence x . We have SG

x ⊂ Srx ⊂ S∅x , PGr
x = P r

x ⊂ USrx ⊆ Srx and
PG
x = Px for all x ∈ R∞ (see Definition 1.6).

Lemma 3.6. Let x := {x1, x2, . . .} ∈ R∞ , {e1, e2, . . .} be a complete or-
thonormal subset of a separable complex Hilbert space H and A be the self-
adjoint operator in H such that Aej = xj ej . Then y ∈ USrx if and only if
there exists an orthonormal set {ui} ⊂ D(|A|1/2) such that yi := (Aui, ui)H .

Proof. A sequence y belongs to USrx if and only if yi =
∑

j |(ui, ej)H |2xj ,

where {ui} is an orthonormal set such that
∑

j |(ui, ej)H |2|xj| <∞ for each

i = 1, 2, . . . These estimates are equivalent to the inclusion {ui} ⊂ D(|A|1/2) .
Since ui =

∑
j(ui, ej)H ej , we have yi =

∑
j |(ui, ej)H |2xj = (Aui, ui) . �
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3.2. The sets P r
x USrx , Srx and Qx . The main result of this subsection is

Theorem 3.10 which clarifies the relation between these sets. Given a sequence
x and a set Λ ⊂ R̂ , we shall denote by x

⋂
Λ the sequence obtained from

x by removing all its entries lying outside Λ .

Lemma 3.7. Assume that the sequence x ∈ R∞ has one accumulation point
λ ∈ R̂ , y ∈ Qx and y

⋂
(−∞, λ) = ∅ . Then y ∈ USrx provided that

(a) either x
⋂

[λ,+∞) is infinite and ]{i : yi = λ} ≤ ]{j : xj = λ}
(b) or x

⋂
[λ,+∞) is finite and

∑
j(xj − λ)+ −

∑
i(yi − λ)+ = ε > 0 .

Proof. Let A be defined as in Lemma 3.6. In order to prove the inclusion
y ∈ USrx , we have to find an orthonormal set {u1, u2, . . .} ⊂ D(|A|1/2) such
that yi := (Aui, ui)H .

Assume first that (a) holds true. Then there are two entries xj1 , xk1 ∈
x
⋂

[λ,+∞) such that y1 ∈ [xj1 , xk1 ] and x
⋂

(xj1 , xk1) = ∅ . If y1 = αxi1 +
(1 − α)xk1 and u1 := α1/2ej1 + (1 − α)1/2ek1 then ‖u1‖H = 1 and y1 =
(Au1, u1)H . Let x(1) be the sequence obtained from x by replacing the two
entries xi1 and xk1 with one entry xi1 + xk1 − y1 and y(1) be the sequence
obtained from y by removing the entry y1 . The entries of x(1) coincide with
the eigenvalues of the self-adjoint operator A1 := Π1A|H1

in the Hilbert space
H1 := Π1H , where Π1 is the orthogonal projection onto the annihilator of
u1 .

If y1 = λ then at least one of the entries xj1 , xk1 coincides with λ , which
implies that x(1) and y(1) are obtained from x and y by removing one
entry λ . Therefore the sequences x(1) and y(1) satisfy the condition (a).
We also have y(1) ∈ Qx(1) . Indeed, if the number of entries in x lying
in the interval (xk1 ,+∞) is equal to p then R+

m(x(1)) = R+
m(x) whenever

m < p . If m ≥ p then R+
m(x(1)) = R+

m+1(x)− y1 ≥
∑m

k=1 ylk for each subset

{yl1 , . . . , ylm} ⊂ y(1) .
Applying the same procedure to x(i−1), y(i−1) and Ai−1 with i = 2, 3, . . . ,

we can find xji , xki ∈ x(i−1) , ui ∈ H and x(i) such that yi ∈ [xji , xki ] ,
x(i−1)

⋂
(xji , xki) = ∅ , Πi−1ui = 0 , ‖ui‖H = 1 , yi = (Ai−1ui, ui)H and

R+
m(y(i)) ≤ R+

m(x(i)) . The entries of x(i) coincide with the eigenvalues of
Ai := ΠiAi−1|ΠiH , where Πi is the orthogonal projection onto the annihilator
Hi of the set {u1, . . . , ui} . The set {u1, u2, . . .} , obtained by induction in i ,
is orthonormal and every its element ui is a finite linear combination of the
eigenvectors e1, e2, . . . The latter implies that ui ∈ D(A) ⊂ D(|A|1/2) and
yi = (Ai−1ui, ui)H = (Aui, ui)H for all i = 1, 2, 3, . . .

If (b) holds true then λ is an accumulation point of x
⋂

(−∞, λ) . Without
loss of generality we may assume that the sequence x

⋂
(−∞, λ) converges

to λ and that
∑

j(λ−xj)+ < ε/2 (this can always be achieved by removing

a collection of entries from x ). Let us denote x(0) := x , y(0) := y and apply
the same procedure as above with xji , xki defined as follows:

xki is the smallest entry of x(i−1) lying in the interval [yi,+∞) ,
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xji is either the largest entry of x(i−1) lying in (λ, yi) or, if such an
entry does not exists, xji is an arbitrary entry of x

⋂
(−∞, λ) .

The inequality
∑

j(λ − xj)+ < ε/2 implies that R+
m(y(i)) < R+

m(x(i)) − ε/2
for all i,m = 1, 2, . . . . Therefore, by induction in i , we can find the required
representation for all entries yi . �

Lemma 3.8. Assume that the sequence x ∈ R∞ has two accumulation points
λ, µ ∈ R̂ and λ < µ . If y = y

⋂
[λ, µ] , ]{i : yi = λ} ≤ ]{j : xj ≤ λ} and

]{i : yi = µ} ≤ ]{j : xj ≥ µ} then y ∈ USrx .

Proof. Under the conditions of the lemma, there exists a set of distinct posi-
tive integers {j1, j2, . . . , k1, k2, . . .} such that yi ∈ [xji , xki ] for all i = 1, 2, . . .
If yi = αixji + (1 − αi)xki and A is defined as in Lemma 3.6 then yi =

(Aui, ui)H , where ui := α
1/2
i eji + (1− αi)1/2eki . �

Definition 3.9. If x = {x1, x2, . . .} ∈ R∞ , let x− := lim infj→∞ xj ∈ R̂ ,

x+ := lim supj→∞ xj ∈ R̂ and x̂ be the sequence obtained from x by adding
infinitely many entries x− whenever x− > −∞ and infinitely many entries
x+ whenever x+ < +∞ .

Theorem 3.10. For every x = {x1, x2, . . .} ∈ R∞ we have

(3.4) USrx = Srx ⊆ Qx = Qx̂ = USrx̂ .

Proof. The equality Qx = Qx̂ immediately follows from the definition of Qx .
If y ∈ Srx then for every collection of m distinct positive integers i1, . . . , im
we have

∑m
k=1 yik =

∑
j αjxj , where αj ∈ [0, 1] and

∑
j αj = m . This

implies (3.3). Therefore Srx ⊆ Qx .
It remains to prove that y ∈ USrx provided that either y ∈ Srx or x = x̂

and y ∈ Qx . We are going to show that there exist countable families of
disjoint subsequences xn ⊂ x and yn ⊂ y such that

⋃
n xn = x ,

⋃
n yn = y

and yn ∈ USrxn . Obviously, this implies that y ∈ USrx . Given a sequence
z , in the rest of the proof we shall denote z+ := z

⋂
(x+,+∞) , z− :=

z
⋂

(−∞, x−) , z+ := z
⋂

[x+,+∞) and z− := z
⋂

(−∞, x−] .
Assume first that x = x̂ . Then we can split x into the union of three

disjoint subsequences x1,x2,x3 such that x1 = x̂+ , x2 = x̂− , x3 does not
have any entries lying outside [x−, x+] and x3 has infinitely many entries x±

whenever x± is finite. If y1 := y+ , y2 := y− and y0 := y
⋂

(x−, x+) then,
by Lemmas 3.7 and 3.8, we have yn ∈ Qxn whenever y ∈ Qx . Therefore
Qx̂ ⊂ USrx̂ .

Assume that y ∈ Srx . We have to consider the following possibilities:

(1+) y+ 6= ∅ , x+ is infinite and

(3.5) lim inf
m→∞

(
R+
m(x+)−R+

m(y+)
)

= 0 ;

(2+) y+ 6= ∅ , x+ is finite and (3.5) holds true;
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(3+) y+ 6= ∅ , x+ is infinite and

(3.6) R+
m(x+)−R+

m(y+) ≥ ε > 0 , ∀m = 1, 2, . . . ;

(4+) x+ 6= ∅ is finite and (3.6) holds true;
(5+) y+ = ∅ and x+ is infinite;
(6′+) y+ = ∅ and x+ = ∅ .

Note that (6′+) and the inclusion y ∈ Srx imply

(6+) y+ = ∅ , x+ = ∅ and ]{i : yi = x+} ≤ ]{j : xj = x+} .

We shall say that x and y satisfy (n−) if the corresponding condition (n+)
is fulfilled for −x and −y .

Assume first that (1+) holds true. By Lemma 3.7, we have y+ ∈ SU r
x+ .

Let ỹ := y \ y+ and x̃ := x \ x+ be the sequences obtained from y and x
by removing all the entries yi ∈ y+ and xj ∈ x+ respectively. If y = wx
and w ∈ Sr then, in view of (3.5), the entry wij of the matrix w is equal
to zero whenever xj > x+ and yi ≤ x+ . Therefore ỹ = w̃x̃ , where w̃ ∈ Sr
is the matrix obtained from w by crossing out all the ith rows correspond-
ing to yi ∈ y+ . If lim supj x̃j = x̃+ < x+ and x̃, ỹ satisfy (1+) then,
in a similar manner, we remove the subsequences x̃+ := x̃

⋂
(x̃+,+∞) and

ỹ+ := ỹ
⋂

(x̃+,+∞) . After sufficiently (possibly, infinitely) many iterations
we either obtain two required families of disjoint subsequences xn and yn or
end up with two remaining sequences satisfying one of the conditions (2+)–
(6+). If (1−) holds true then we can apply the same procedure to the se-
quences −x and −y . Therefore it is sufficient to consider the sequences x
and y such that y ∈ Srx and one of the conditions (2±)–(6±) is fulfilled.

Assume that (2+) is fulfilled and y = wx , where w ∈ Sr . If x has
finitely many entries x+ , we define x? := x+ . The condition (3.5) imply
that the entry wij of the matrix w is equal to zero whenever xj < x+ and
yi ≥ x+ . Therefore the number of entries in y+ does not exceed the number
of entries in x? and y+ = w?x? for some finite matrix w? ∈ Sr . In the
same way as in the proof of Lemma 3.7 one can show that y+ ∈ Srx? . If
x has infinitely many entries x+ then we represent x as the union of two
disjoint subsequences x̃ and x? such that x? = x̂+ , x̃

⋂
(x+,+∞) = ∅ and

x̃ contains infinitely many entries x+ . By Lemma 3.7, we have y+ ∈ USrx? .
In both cases the sequences x \ x? and y \ y+ satisfy (6+). If (2−) holds

true then, in a similar way, we can remove all the entries lying below x− .
Therefore it is sufficient to prove the inclusion y ∈ USrx assuming that x
and y satisfy (3.3) and one of the conditions (3±)–(6±).

If (3+) is fulfilled then we choose a subsequence x? of the sequence x+

in such a way that the remaining sequence x+ \ x? contains infinitely many
entries and R+

m(y+) ≤ R+
m(x?) for all m = 1, 2, . . . By Lemma 3.7, y+ ∈

USrx? If we remove all entries xj ∈ x? and yi ∈ y+ then the remaining
sequences x \ x? and y \ y+ satisfy (5+). Similarly, if (3−) holds true then,
after applying this procedure to −x and −y , we arrive at (5−). Therefore
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we can assume without loss of generality that x and y satisfy (3.3) and one
of the conditions (4±)–(6±).

Let (4+) be fulfilled. If y+ = ∅ then we simply remove all the entries
x+
j ≥ x+ and arrive at (6+). Otherwise we choose a subsequence x? of the

sequence x in such a way that x+ ⊂ x? and x+ is an accumulation point
of both sequences x? and x \ x? . Lemma 3.7 implies that y+ ∈ USrx? .
Removing the subsequences y+ , x? and all remaining entries xj > x+ , we
arrive at (6+). If (4−) is fulfilled then, in a similar manner, we can remove
the entries xj ∈ (−∞, x−) and the entries yi ∈ (−∞, x−] so that (6−) holds
true.

Finally, under conditions (5±) or (6±) the inclusion y ∈ USrx follows from
Lemma 3.8. �

Theorem 3.10 implies, in particular, that the set USrx is convex. Note that
the set of matrices USr is not convex even in the finite dimensional case (see
Example 4.3). Since the set Qx is T0-closed, Theorem 3.10 also implies that

(3.7) convP r
x ⊆ Srx ⊆ Qx , ∀x ∈ R∞ ,

where the closure is taken in any topology which is finer than T0 .

Corollary 3.11. Let T be an arbitrary topology on XQx , which is finer than
T0 and coarser than the Mackey topology Tm(XQx , X

′
Qx

) . Then

(3.8) convP r
x = Srx = Qx , ∀x ∈ R∞ ,

where convP r
x and Srx are the sequential T-closures of the sets convP r

x and
Srx respectively.

Proof. In view of (3.7), it is sufficient to prove (3.8) for T = Tm(XQx , X
′
Qx

) .

In the rest of the prove Ω̄ denotes the sequential Tm(XQx , X
′
Qx

)-closure of
the set Ω ∈ XQx and conv Ω is the sequential Tm(XQx , X

′
Qx

)-closure of its
convex hull.

Let VS,x := VS
⋂
Vx , where VS is the subspace introduced in Definition

2.8. By Lemma 3.1, we have wx ∈ X ′Qx
for all w ∈ VS,x and, conse-

quently, x′ ⊗ x ∈ V ′S,x for all x′ ∈ X ′Qx
. If x 6∈ l∞ then XQx = R∞ and

Tm(XQx , X
′
Qx

) = T0 is a metrizable topology. If x ∈ l∞ then VS,x = VS .

Therefore Theorem 2.15 and Remark 2.18 imply that Srx ⊆ convP r
x = Srx .

Note that

(*) for each ε > 0 there exists xε ∈ P r
x such that x̂ − xε ∈ l1 and

‖x̂− xε‖l1 < ε .

Indeed, if x+ < +∞ then we can always find a subsequence {xjk}k=1,2,... of x
such that the l1-norm of the sequence {x+−xjk}k=1,2,... is smaller than ε/6 .
Similarly, if x− > −∞ then there exists a subsequence {xin}n=1,2,... such
that in 6= jk for all k, n and the l1-norm of the sequence {x−−xin}n=1,2,... is
smaller than ε/6 . The required sequence xε is obtained from x̂ by replacing
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the entries x+ and x− with xj2k−1
and xi2n−1 and changing the entries xjk

and xin of the sequence x̂ to xj2k and xi2n respectively.
In view of Remark 1.12, (*) implies that convP r

x̂ ⊆ convP r
x . Since Qx

is sequentially closed, applying Theorem 3.10 and taking into account the
identity convP r

x = Srx , we obtain Qx = Srx̂ = convP r
x̂ ⊆ convP r

x = Srx ⊆
Qx . �

Remark 3.12. If x′ ∈ X ′ contains a subsequence which converges to zero and
x̃ ∈ P r

x then one can find xn ∈ Px such that 〈x̃ − xn,x
′〉 → 0 as n → ∞ .

This observation and the separation theorem immediately imply that, under
the conditions of Corollary 3.11,

(1) convPx = Qx whenever x 6∈ l1 ,
(2) convPx = Q?

x := {y ∈ Qx : y1 + y2 + . . . = x1 + x2 + . . .} whenever
x ∈ l1 and T is the l1-topology (indeed, if x′ ∈ l∞ separates Px and
x? ∈ Q?

x and c′ is an accumulation point of the sequence x′ then, by
the above, x̃′ := {x′1 − c′, x′2 − c′, . . .} separates P r

x and x? , which
contradicts to Corollary 3.11).

The latter result is well known (see, for example, [Ma1], Theorem 4.2), the
former was proved in [Ma1] for the topology T generated by a symmetric
norm which satisfies (1.3).

Remark 3.13. By Corollary 3.11, (3.8) holds true in the Mackey topology
Tm(l∞, l1) whenever x ∈ l∞ . If, in addition, xj → c 6= 0 as j → ∞ then,
applying Corollary 3.11 to the sequence x̃ := {x1 − c, x2 − c, . . .} , one can
show that (3.8) remains valid with respect to a stronger topology.

3.3. Extreme points. Theorem 2.4 suggests that exSG1
x ⊂ PG1

x . In the
next theorem we prove this inclusion only under some additional conditions.

Definition 3.14. Denote SG1

x,(m) := {y(m) ∈ Rm : y ∈ SG1
x } , PG1

x,(m) :=

{y(m) ∈ Rm : y ∈ PG1
x } , Srx,(m) := SGr

x,(m) and P r
x,(m) := PGr

x,(m) , where y(m)

is defined as in (1.1).

Clearly, SG1

x,(∞) = SG1
x and PG1

x,(∞) = PG1
x .

Theorem 3.15. Let x = {x1, x2, . . .} ∈ R∞ and G1 be a set of rows and
columns. Assume that at least one of the following conditions is fulfilled:

(1) m <∞ ,
(2) m =∞ and either G1 ⊆ Gr or G1 contains all columns,
(3) m =∞ and xj 6= xk whenever j 6= k .

Then exSG1

x,(m) ⊂ PG1

x,(m) . If (3) holds true and x does not contain zero entries

then wx 6∈ exSG1
x whenever w ∈

(
SG1 \ PG1

)⋂
Vx .

Proof. Let w ∈ SG1
⋂
Vx and (wx)(m) ∈ exSG1

x,(m) . The proof consists of

two parts. In the first part we shall construct a special matrix w̃ ∈ SG1
⋂
Vx
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such that (w̃x)(m) = (wx)(m) . Then we shall show that (w̃x)(m) = (w0x)(m)

with some w0 ∈ PG1 and that w = w̃ ∈ PG1 whenever (3) holds true and
x does not have zero entries.

Let Λ be the countable set of all distinct values taken by the entries of x ,
Jλ = {j1, j2, . . .} be the ordered set of all indices j1 < j2 < . . . such that
xjk = λ and vi,λ :=

∑
jk∈Jλ wijk .

If (3) is fulfilled then we take w̃ := w . Otherwise, given m ≤ +∞ and
an ordered set Jλ = {j1, j2, . . .} , we define

(1) w̃
(m;λ)
1j1

:= v1,λ and w̃
(m;λ)
1jk

:= 0 for all k > 1;
(2) if 1 < i ≤ m and jl ∈ Jλ is the maximal positive integer such that

w̃(i−1)jl > 0 , then

w̃
(m;λ)
ijk

:= 0 for all k < l and k > l + 1 ,

w̃
(m;λ)
ijl

:= min{ vi,λ , 1−
∑i−1

n=1 w̃
(m;λ)
njl

} and

w̃
(m;λ)
ijl+1

:= vi,λ − w(m;λ)
ijl

.

Let w̃(m) be the m×∞-matrix whose entries w̃
(m)
ij coincide with w̃

(m;λ)
ijk

for

all j = jk ∈ Jλ . Obviously, we have w̃(m) ∈ Vx and w̃(m)x = (wx)(m) . For
each λ ∈ Λ the matrix w̃(m) has at most two nonzero entries lying at the
intersections of a given ith row and the Jλ-columns. The minimal column-
number of such a nonzero entry in the (i + 1)th row is not smaller than the
maximal column-number of a nonzero entry in the ith row; in other words,
the set of nonzero entries lying in the Jλ-columns is ladder-shaped.

If (2) is fulfilled then we take w̃ := w̃(m) . The matrix w̃(m) has the same

row-sums as w and its column-sums uj :=
∑m

i=1 w̃
(m)
ij are not greater than

1. If all column-sums of w are equal to 1 then each column-sum of w̃(m) is
also equal to 1. Therefore w̃ ∈ SG1 .

If (1) is fulfilled, let us consider the ordered set J = {j1, j2, . . .} of all
indices j1 < j2 < . . . such that ujk < 1 . Note that every set Jλ contains
at most one element of J . Let w̃ = {w̃ij} be the ∞×∞-extension of the
m×∞-matrix w̃(m) defined as follows:

(1) w̃ij = 0 for all j 6∈ J and i > m ;

(2) w̃(m+1)j1 := 1−uj1 and w̃(m+1)jk := min{1−ujk , 1−
∑k−1

n=1 w̃(m+1)jn}
for all jk ∈ J with k = 2, 3, . . .;

(3) if i > m + 1 and jl ∈ J is the maximal positive integer such that
w̃(i−1)jl > 0 then

w̃ijk := 0 for all jk ∈ J with k < l,
w̃ijl := 1− ujl − w̃(i−1)jl and

w̃ijk := min{1− ujk , 1−
∑k−1

n=1 w̃ijn} for all jk ∈ J with k > l .

We have
∑

j∈J uj ≤ m and, consequently,
∑

j∈J (1− uj) = +∞ . Therefore,
for each i > m , the set of nonzero entries in the ith row of the matrix w̃
is finite and non-empty. Since w̃(m) ∈ Vx , this implies that w̃ ∈ Vx . All
column-sums of the matrix w̃ are equal to 1. Its ith row-sum coincides with
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the ith row sum of w whenever i ≤ m and is equal to 1 whenever i > m .
Therefore w̃ ∈ SG1 . The set of nonzero entries w̃ij with i > m is also
ladder-shaped. More precisely, the jth column contains at most two such
nonzero entries (if it does then these entries lie in adjacent rows) and the
minimal column-number of a nonzero entry in the (i+1)th row is not smaller
than the maximal column-number of a nonzero entry in the ith row.

Let G̃ the subgraph of G, which contains all the vertices gij (that is, the
intersections of ith rows and jth columns) such that w̃(gij) := w̃ij ∈ (0, 1) .

Denote G̃λ := {gij ∈ G̃ : j ∈ Jλ} and G̃′ := {gij ∈ G̃ : i > m} .

Assume first that G̃ contains an admissible cycle gi1j1 → gi2j1 → gi2j2 →
· · · → gi1j1 . Replacing gikjk → gik+1jk → gik+1jk+1

→ · · · → gik+ljk+l with
gikjk → gik+ljk+l whenever ik = ik+l , we obtain an admissible cycle gi′1j′1 →
gi′2j′1 → gi′2j′2 → · · · → gi′1j′1 which has at most two vertices in every row. By

our construction, the subgraphs G̃λ and G̃′ are ladder-shaped and, for every
λ ∈ Λ , the intersection G̃λ

⋂
G̃′ contains at most one element. Therefore

this admissible cycle has at least two vertices lying in the same ith row with
i ≤ m but in distinct sets G̃λ . If w±ε are defined as in the part (2) of
the proof of Theorem 2.4 then w±ε ∈ SG1

⋂
Vx , w̃ = 1

2
(w+

ε + w−ε ) and

(w+
ε x)(m) 6= (w−ε x)(m) . Therefore (w̃x)(m) 6∈ exSG1

x,(m) .

Thus, the graph G̃ does not have any admissible cycles. Let us take an
arbitrary vertex gij0 = g0 ∈ G̃ with i ≤ m , define w±ε as in the part
(3) of the proof of Theorem 2.4 and denote w∗ := 1

2
(w+

ε − w−ε ) . Then

w±ε ∈ SG1
⋂
Vx , w̃ = 1

2
(w+

ε + w−ε ) and

w?ij0 = ±ε w̃ij0 , w?ij = ∓ε w̃ij0 (1− w̃ij0)−1 w̃ij , ∀j 6= j0 .

Since (w̃x)(m) ∈ exSG1

x,(m) , we have w? x = 0 which implies that w̃ij0xj0 =

w̃ij0 (1 − w̃ij0)−1
∑

j 6=j0 w̃ijxj and xj0 =
∑∞

j=1 w̃ijxj . The integer j0 can be
chosen in an arbitrary way. Therefore for each i ≤ m we have either w̃ij = 0
or j ∈ Jλi , where λi :=

∑∞
j=1 w̃ijxj ∈ Λ . The first row of w̃ may contain

only one nonzero entry w1j with j ∈ Jλ1 . If it does then xj = w1jxj and,
consequently, either w1j = 1 or xj = λ1 = 0 . By induction in i , the same is
true for all i = 1, 2, . . . ,m ; namely, each of the first m rows either contains
one entry 1 in a Jλi-column corresponding to some λi 6= 0 or has nonzero
entries only in the J0-columns. If J0 = ∅ , this implies that w̃ ∈ PG1 . If
J0 6= ∅ then, by Remark 2.16, there exists a matrix w0 ∈ PG1 whose entries
at the intersections of the first m rows and the Jλi-columns with λi 6= 0
coincide with the corresponding entries of w̃ . Since (wx)(m) = (w̃x)(m) =
(w0x)(m), this completes the proof. �

4. Applications to spectral theory

4.1. Notation and definitions. LetH be a separable complex Hilbert space
with the inner product (·, ·)H and norm ‖ · ‖H . For the sake of definiteness,
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we shall be assuming that dimH =∞; the finite dimensional versions of our
results are either well known or can be proved in a similar manner.

Consider a linear operator A in H and denote by QA[·] its quadratic form
defined on the domain D(QA) := D(|A|1/2) . We shall always be assuming
that the operator A is self-adjoint. Let σ(A) , σc(A) , and σess(A) be its
spectrum, continuous spectrum and essential spectrum respectively and let
σp(A) = {λ1, λ2, . . .} be the set of its eigenvalues. As usual, we enumerate

the eigenvalues λj taking into account their multiplicities. If Λ ∈ R̂ and
R
⋂

Λ is a Borel set, we shall denote by ΠΛ and AΛ the spectral projection
of A corresponding to R

⋂
Λ and the restriction of A to the subspace ΠΛH

respectively.

Definition 4.1. Let σ̂±ess(A) and σ̂ess(A) be the subsets of R̂ such that

λ ∈ σ̂+
ess(A) if and only if dim Π[λ,µ)H =∞ for all µ > λ ,

λ ∈ σ̂−ess(A) if and only if dim Π(µ,λ]H =∞ for all µ < λ ,

and σ̂ess(A) := σ̂−ess(A)
⋃
σ̂+

ess(A)

Obviously, σess(A) = R
⋂
σ̂ess(A) , +∞ 6∈ σ+

ess(A) and −∞ 6∈ σ−ess(A) . We
have ±∞ ∈ σ̂ess(A) if and only if ±A is not bounded from above.

Definition 4.2. If m is a positive integer or m =∞ , let

(1) σ(m,A) be the set of vectors x = (x1, x2, . . .) ∈ Rm such that xj ∈
σ(A) for each j and the number of entries xj = λ 6∈ σess(A) does not
exceed the multiplicity of the eigenvalue λ ;

(2) σp(m,A) be the set of vectors x = (x1, x2, . . .) ∈ Rm such that
xj ∈ σp(A) for each j and the number of entries xj = λ does not
exceed the multiplicity of the eigenvalue λ .

If u = {u1, u2, . . .} is an orthonormal subset of D(QA) which contains m
elements uk , denote QA[u] := {QA[u1], QA[u2], . . .} ∈ Rm and define

(3) Σ(m,A) := {y ∈ Rm : y = QA[u] for some u ⊂ D(QA) } .

The sets σ(m,A) , σp(m,A) and Σ(m,A) will be called the m-spectrum,
point m-spectrum, and m-numerical range of A respectively.

The m-spectra and m-numerical range are symmetric with respect to per-
mutations of the coordinates xk. The ∞-spectra and ∞-numerical range are
subsets of R∞, whose projections onto the subspace spanned by any m co-
ordinate vectors coincide with the m-spectra and m-numerical range. In
particular, σ(1, A) = σ(A) , σp(1, A) = σp(A) and Σ(1, A) is the numerical
range of the operator A . Since σ(A) is a closed set, the m-spectrum σ(m,A)
is closed in the topology of element-wise convergence and, consequently, in
any finer topology.

Definition 4.2 can be extended to an arbitrary linear operator A acting
in the separable Hilbert space H . In [BD], Section 36, the authors defined
a matrix m-numerical range as the set of all m × m-matrices of the form
ΠAΠ, where Π is an orthogonal projection of rank m < ∞. Halmos defined
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an m-numerical range as the set of traces of such matrices (see [H], Chapter
17). Our definition lies in between: we consider the sets of diagonal ele-
ments of the matrices ΠAΠ instead of their traces. Yet another concept of
multidimensional numerical range, related to a given block representation of
the operator A , was introduced in [LMMT]. Halmos’ m-numerical range is
always convex (in the self-adjoint case this immediately follows from Corol-
lary 4.7). The m-numerical range Σ(m,A) is convex if A is self-adjoint. The
matrix m-numerical range considered in [BD] and the multidimensional nu-
merical range introduced in [LMMT] are not necessarily convex. The latter
depends on the choice of block representation and is not unitary invariant.

If A 6= A∗ then Σ(m,A) does not have to be convex, even if the operator
A is normal and dimH < ∞ . The following simple example was suggested
by A. Markus [Ma2].

Example 4.3. Let A = {aij} be the diagonal 3 × 3-matrix with a11 = i ,
a22 = 1 and a33 = 0 . Then {i, 1, 0} ∈ Σ(3, A) and {0, i, 1} ∈ Σ(3, A) .
However, the half-sum { i

2
, 1

2
+ i

2
, 1

2
} does not belong to Σ(3, A) . In the same

way as in Lemma 3.6, one can show that Σ(3, A) =
⋃

w w z , where z is the
three dimensional complex vector {0, i, 1} and the union is taken over all
unistochastic 3 × 3-matrices w . This implies that the set of unistochastic
matrices is not convex.

In [FW] the authors proved that conv σp(m,A) = conv Σ(m,A) whenever
A is a normal m×m-matrix. There are also some results on the so-called c-
numerical range of a finite matrix A, which is defined as the image of Σ(m,A)
under the map x → 〈x, c〉 ∈ C where c is a fixed m-dimensional complex
vector (see [GR], [MMF], [MS]).

4.2. Extreme points of the multidimensional numerical range. We
shall need the following simple lemma.

Lemma 4.4. If σ(A) ⊂ [λ−, λ+] and λ± ∈ σ̂ess(A) then Σ(∞, A) coincides
with the set of all sequences z = {z1, z2, . . .} such that zi ∈ [λ−, λ+] for all
i and the number of entries zi = λ± does not exceed the multiplicity of the
eigenvalue λ± (we assume that the multiplicity is zero whenever λ± is not
an eigenvalue).

Proof. The spectral theorem implies that every sequence z ∈ Σ(∞, A) satis-
fies the above two conditions. On the other hand, if z1 ∈ [λ−, λ+] then, using
the spectral theorem, one can easily find u1 ∈ D(A) such that ‖u‖H = 1 and
z1 = QA[u1] . Clearly, u1 is an eigenvector whenever z1 = λ− or z1 = λ+ . If
Π1 is the orthogonal projection onto the annihilator of u1 and A1 := Π1AΠ1

then D(A1) = D(A) and A−A1 is a finite rank operator. Since a finite rank
perturbation does not change the essential spectrum, by induction in i we
can construct an orthonormal set u = {ui} ⊂ D(A) such that zi = QA[ui]
for all i = 1, 2, . . . �
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Definition 4.5. We shall say that x = {x1, x2, . . .} ∈ σ(∞, A) is a generat-
ing sequence of the self-adjoint operator A if

(1) either σc(A) = ∅ , x ⊂ σp(∞, A) and x contains all the eigenvalues
λj of A according to their multiplicities;

(2) or σc(A) 6= ∅ and x can be represented as the union of three disjoint
subsequences, one of which is defined as above and the other two lie
in the open interval (inf σc(A), supσc(A)) and converge to inf σc(A)
and supσc(A) respectively.

Theorem 4.6. If x is a generating sequence of A then Σ(m,A) = Srx,(m) .

Proof. Since Σ(m,A) and Srx,(m) coincide with the projections of Σ(∞, A)
and Srx onto the subspace spanned by the first m coordinate vectors, it is
sufficient to prove that Σ(∞, A) = Srx . If x̃ is another generating sequence
then, by Lemma 3.8, x̃ ∈ Srx . Therefore Srx does not depend on the choice
of generating sequence x .

Let λ− := inf σc(A) , λ+ := supσc(A) , Λ := (inf σc(A), supσc(A)) , λj be
the eigenvalues of A lying outside Λ and {ej} be the orthonormal set of
eigenvectors corresponding to λj .

Assume first that y = QA[u] , where u ⊂ D(QA) is an orthonormal set.
Let di := ‖ΠΛui‖H and {zi} ⊂ Λ be a sequence with two accumulation points
λ± , such that QA[ΠΛui] = d2

i (αi z2i−1 + (1 − αi) z2i) with some αi ∈ [0, 1] .
Then

QA[ui] = QA[ΠΛui] +QA[ΠR\Λui] = d2
i αi z2i−1 + d2

i (1− αi) z2i +
∑
j

wijλj ,

where wij := |(ui, ej)H |2 . Since
∑

j wij = ‖ΠR\Λui‖2
H = 1−d2

i and
∑

iwij ≤
‖ej‖2

H ≤ 1 , this implies that y ∈ Srx , where x is an arbitrary generating
sequence containing all the eigenvalues λj and the subsequence {zi} .

Assume now that y = {y1, y2, . . .} ∈ Srx for some generating sequence x .
By Lemma 4.4, there exists an orthonormal set {vn} ⊂ ΠΛH

⋂
D(QA) such

that xn = QA[vn] for all xn ∈ Λ . Let Ã be the self-adjoint operator in the
space H such that Ãej = λjej and Ãvn = xn vn for all xn ∈ Λ . In view of
Lemma 3.6 and Theorem 3.10, we have QÃ[ũ] = y for some orthonormal set

ũ = {ũ1, ũ2, . . .} ⊂ D(QÃ) . If d̃i := ‖ΠΛũi‖H and z̃i := d̃−2
i QÃ[ΠΛũi] then

the sequence {z̃i} satisfies conditions of Lemma 4.4. Therefore z̃i = QA[u′i]
for some orthonormal set {u′i} ⊂ ΠΛH

⋂
D(QA) . Since AR\Λ = ÃR\Λ , the

orthonormal set u := {diu′i + ΠR\Λũi} satisfies QA[u] = y . �

Corollary 4.7. For each m = 1, 2, . . . ,∞ the set Σ(m,A) is convex and
ex Σ(m,A) ⊂ σp(m,A) . A sequence y ∈ σp(m,A) belongs to ex Σ(m,A) if

and only if there is a (possibly, degenerate) interval [µ−, µ+] ⊂ R̂ such that

(1) σc(A) ⊂ [µ−, µ+] , σ̂+
ess(A)

⋂
[−∞, µ−) = ∅ , σ̂−ess(A)

⋂
(µ+,+∞] = ∅ ;

(2) y
⋂

(µ−, µ+) = ∅ and y contains all the eigenvalues λj 6∈ [µ−, µ+]
according to their multiplicities.
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Proof. Let x be a generating sequence. Theorems 3.15 and 4.6 imply that
the set Σ(m,A) = Srx,(m) is convex and ex Σ(m,A) = exSrx,(m) ⊂ P r

x,(m) .

Let y ∈ σp(m,A) and µ± ∈ R̂ satisfy (1) and (2). Then y
⋂

(−∞, µ−]
either is empty or coincides with the union of disjoint nondecreasing subse-
quences yn such that sup yn ≤ inf yn+1 and sup yn 6∈ yn whenever yn is
infinite (in the latter case A is bounded from below). Using this observation,
one can easily show by induction in n that the sequence y

⋂
(−∞, µ−] can-

not be represented as a convex combination of two distinct sequences from
Srx,(k) . Similarly, y

⋂
[µ+,+∞) is not a convex combination of two distinct

sequences from Srx,(k) . Therefore every sequence y ∈ σp(m,A) satisfying the
conditions of the corollary belongs to exSrx,(m) .

Assume now that y ∈ exSrx,(m) and denote σy := {λ ∈ σ(A) : λ 6∈ y} . If

σ̂−ess(A) 6= ∅ , σ̂+
ess(A) 6= ∅ , inf σ̂+

ess(A) < sup σ̂−ess(A) and

y? := y
⋂

(inf σ̂+
ess(A), sup σ̂−ess(A)) 6= ∅

then y? coincides with a convex combination of two distinct sequences y±?
whose entries lie in the open interval (inf σ̂+

ess(A), sup σ̂−ess(A)) . By Lemma
3.8, we have y±? ∈ Srx?,(k) , where k is the number of entries in y0 and

x? := x
⋂

(inf σ̂+
ess(A), sup σ̂−ess(A)) . Therefore the sequence y ∈ exSrx,(m)

does not have entries which are greater than inf σ̂+
ess(A) and smaller than

sup σ̂−ess(A) . In particular, y
⋂

(inf σc(A), supσc(A)) = ∅ . Since the number
of entries inf σc(A) and supσc(A) in the generating sequence x does not
exceed the multiplicity of the corresponding eigenvalue and y ∈ P r

x,(m) , this

implies that y ∈ σp(m,A) .
Let

µ− = µ+ := inf σ̂+
ess(A) if σy = ∅ and σ̂−ess(A) = ∅ ;

µ− = µ+ := sup σ̂−ess(A) if σy = ∅ and σ̂+
ess(A) = ∅ ;

µ− = µ+ := µ if σy = ∅ and inf σ̂+
ess(A) ≥ sup σ̂−ess(A) , where µ is

an arbitrary number from the closed interval [sup σ̂−ess(A), inf σ̂+
ess(A)] ;

µ− := inf σy and µ+ := supσy if σy 6= ∅ .

Obviously, in the first three cases (1) and (2) hold true. It remains to prove
that y

⋂
(µ−, µ+) = ∅ , σ̂+

ess(A)
⋂

(−∞, µ−) = ∅ and σ̂−ess(A)
⋂

(µ+,+∞) = ∅
in the last case.

Let σy 6= ∅ and µ± be defined as above. If σy contains two distinct
entries λ and µ and y has an entry yi ∈ (λ, µ) then y coincides with
a convex combination of two distinct sequences obtained by replacing yi
with λ and µ respectively. Both these sequences belong to P r

x,(m) for some
generating sequence x . Therefore the inclusion y ∈ exSrx,(m) implies that

y
⋂

(µ−, µ+) = ∅ .
If m <∞ then σ̂+

ess(A)
⋂

(−∞, µ−) = ∅ as the number of eigenvalues lying

below µ− is finite. Assume that m = ∞ and that there exists λ̂ ∈ σ̂+
ess(A)

such that λ < µ− . Let y? be a decreasing subsequence of y
⋂

(−∞, µ−) ,
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which converges to λ , and x? ∈ P r
x be the sequence obtained from y? by

adding an entry µ ∈ σy . By Lemma 3.7, the sequences y?± obtained from
y? by replacing an arbitrary entry yi ∈ y? with yi− ε > λ and yi + ε < µ−

respectively belong to Srx∗ . Therefore y± ∈ Srx , where y± are the sequences
obtained from y by replacing the entry yi with yi±ε . Since y = 1

2
(y−+y+) ,

this contradicts to the inclusion y ∈ exSrx .
In a similar way one can show that σ̂−ess(A)

⋂
(µ+,+∞) = ∅ . �

Remark 4.8. Let Λe(A) ⊂ R̂ be the intersection of all intervals [µ−, µ+]
satisfying the condition (1) of Corollary 4.7. If the number of eigenvalues lying
outside Λe(A) is smaller then m then, by Corollary 4.7, the set Σ(m,A)
does not have any extreme points.

Definition 4.9. If x is a generating sequence of A , let Q(∞, A) := Qx ,
XA := XQx (see Definition 3.5), Q(m,A) be the projection of Q(∞, A) on

the subspace of XA spanned by the first m coordinate vectors and T
(m)
A be

the topology on Q
(m)
A induced by Tm(XA, X

′
A) .

Obviously, the symmetric perfect space XA and its subset Q(∞, A) do
not depend on the choice of generating sequence x . By Theorems 3.10 and
4.6, we have

(4.1) Srx ⊆ Σ(∞, A) ⊆ Q(∞, A)

for each generating sequence x .

Lemma 4.10. For every x ∈ σ(∞, A) and every sequence of strictly positive
numbers εk there exists y ∈ Σ(∞, A) such that |yk − xk| ≤ εk . For every
y ∈ Σ(∞, A) there exists a sequence of vectors yn ∈ conv σ(∞, A) which
converges to y in the Mackey topology Tm(XA, X

′
A) .

Proof. Let Λk := (xk − εk, xk + εk) . If xj ∈ σess(A) then dimPΛjH = ∞ .
Since a finite dimensional perturbation does not change the essential spec-
trum, by induction in k one can find an orthonormal sequence {u1, u2, . . .}
such that Auk = xkuk whenever xk 6∈ σess(A) and uk ∈ PΛjH otherwise. If
yk = QA[uk] then y ∈ Σ(∞, A) and |yk − xk| ≤ εk .

The second statement of the lemma follows from Corollary 3.11 and the
second inclusion (4.1). �

Lemma 4.10 immediately implies that

(4.2) conv σ(m,A) = Σ(m,A) = Q(m,A) , ∀m = 1, 2, . . . ,∞ ,

where the bar denotes the sequential closure taken in any topology which
is finer than the topology of element-wise convergence T0 and coarser than

T
(m)
A . Since T0 is a metrizable topology, (4.2) remains valid if we take the

usual closure.



BIRKHOFF’S THEOREM 31

Corollary 4.11. For each m = 1, 2, . . . ,∞ the set Q(m,A) is convex and
exQ(m,A) ⊂ σ(m,A) . A sequence y ∈ σ(m,A) belongs to exQ(m,A) if

and only if there is a (possibly, degenerate) interval [µ−, µ+] ⊂ R̂ such that

(1) σ̂ess(A) ⊂ [µ−, µ+] ,
(2) y

⋂
(µ−, µ+) = ∅ and y contains all the eigenvalues λj 6∈ [µ−, µ+]

according to their multiplicities.

Proof. Let x be a generating sequence, x+ = lim sup x and x− = lim inf x .
In view of (3.4), (3.8) and (4.2), we have Q(m,A) = Srx̂,(m) . Therefore the
corollary is obtained by applying Corollary 4.7 to the operator A⊕A+⊕A−
acting in the orthogonal sum H ⊕H+ ⊕H− , where A± is multiplication by
x± in H± , dimH± =∞ whenever |x±| <∞ and H± = ∅ otherwise. �

Remark 4.12. By Corollary 4.11, each sequence y ∈ exQ(m,A) consists of
eigenvalues λj 6∈ conv σess(A) and, possibly, a collection of entries inf σess(A)
and supσess(A) . All these eigenvalues can be found with the use of the
Rayleigh–Ritz variational formula. The interval Λe(A) defined in Remark
4.8 is a subset of σ̂ess(A) and may be strictly smaller. Therefore a sequence
y ∈ ex Σ(∞, A) may contain eigenvalues lying inside conv σess(A) .

Example 4.13. Assume that the continuous spectrum of A is empty and
that the eigenvalues of A form a sequence x which has two accumulation
points λ± such that λ+ > λ− . Then conv σess(A) = [λ−, λ+] . However, if
λ− or λ+ is not an accumulation point of the sequence x

⋂
[λ−, λ+] then

Λe(A) = ∅ and x is an extreme point of Σ(∞, A) .

Example 4.14. If σ̂ess(A) = [−∞,+∞] then Σ(∞, A) = Q(∞, A) = R∞
and ex Σ(∞, A) = ∅ . If σ̂ess(A) = {+∞} then Σ(∞, A) = Q(∞, A) and the
extreme points of Σ(∞, A) are the sequences formed by all the eigenvalues
λj . If σ̂ess(A) = [µ,+∞] , µ ∈ σ̂+

ess(A)
⋂
R and x is the sequence formed by

all the eigenvalues λj < µ then every extreme point of Q(∞, A) is obtained
from x by adding an arbitrary collection of entries µ and every extreme point
of Σ(∞, A) is obtained from x by adding a collection of entries µ whose
number does not exceed the multiplicity of the eigenvalue µ (we assume that
the multiplicity is zero if µ is not an eigenvalue).

Remark 4.15. Let R∞λ be the set of all real sequences with entries in the
interval (−∞, λ] . Theorem 4.6 implies that Σ(∞, A)

⋂
R∞λ = Σ(∞, A(−∞,λ])

whenever rankA(λ,+∞) =∞ . This observation allows one to extend Theorem
4.6 and Corollaries 4.7, 4.11 to the sets Σ(∞, A)

⋂
R∞λ and σ(∞, A)

⋂
R∞λ .

Note that the linear space XAλ−λI may well be smaller than XA . In this case
one can refine Lemma 4.10 and related results by considering the operator
Aλ − λI instead of A .

4.3. Variational formulae and exposed points. Recall that a function
ψ : Ω→ R̂ defined on a convex set Ω is called quasi-concave if

(4.3) ψ(αx + (1− α) y) ≥ min{ψ(x), ψ(y)} , ∀x,y ∈ Ω , ∀α ∈ (0, 1) ,
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and strictly quasi-concave if the left hand side of (4.3) is strictly greater than
the right hand side. The function ψ is quasi-concave if and only if the sets
{x ∈ X : ψ(x) ≥ λ} are convex for all λ ∈ R̂. The function ψ is said to be
sequentially upper T-semicontinuous if these sets are sequentially closed in
the topology T . The identity (4.2) and Corollary 4.7 immediately imply the
following two variational results.

Corollary 4.16. If ψ is a quasi-concave sequentially upper T
(m)
A -semiconti-

nuous function on Q(m,A) then

(4.4) inf
x∈σ(m,A)

ψ(x) = inf
x∈Σ(m,A)

ψ(x) .

For each finite m the functions ψ(x) = x1 + x2 · · · + xm and ψ(x) =
x1 x2 . . . xm = exp(lnx1 + . . . lnxm) defined on the set of positive sequences
are quasi-concave and T0-upper semicontinuous. Therefore the variational
formulae for the sum and product of the first m eigenvalues of a positive
self-adjoint operator are particular cases of (4.4).

Corollary 4.17. Let ψ be a real-valued function defined on Σ(m,A) . If

(a) either ψ is quasi-concave and ψ(y) < ψ(ỹ) for all ỹ 6= y
(b) or ψ is strictly quasi-concave and ψ(y) ≤ ψ(ỹ) for all ỹ

then y ∈ σp(m,A) .

Note that y is a T-exposed point of the set Σ(m,A) if and only if there
exists a linear T-continuous function ψ satisfying the condition (a).

Example 4.18. If m < ∞ then Q(m,A) is a closed convex polytope,
Σ(m,A) is a convex dense subset of Q(m,A) and, by Corollaries 4.7 and
4.11, we have ex Σ(m,A) ⊂ exQ(m,A) . In this case the extreme points of
Σ(m,A) and Q(m,A) are exposed in the standard Euclidean topology.

The sets Σ(∞, A) and Q(∞, A) may contain extreme points which are
not Tm(XA, X

′
A)-exposed.

Example 4.19. If A is not bounded then XA = R∞ and X ′A = R∞00 . For
every y ∈ R∞ and x′ ∈ R∞00 there exists ỹ ∈ Py such that ỹ 6= y and
〈y,x′〉 = 〈ỹ,x′〉 . Therefore the sets Σ(∞, A) and Q(∞, A) do not contain
Tm(XA, X

′
A)-exposed points whenever A is unbounded.

If y ∈ ex Σ(∞, A) or y ∈ exQ(∞, A) , let [µ−, µ+] be the interval intro-
duced in Corollary 4.7 or 4.11 respectively, y(+) := y

⋂
[µ+,+∞) , y(−) :=

y
⋂

(−∞, µ−] and λ± be defined as follows:

λ+
y := lim sup y(+) whenever y(+) is infinite, λ+

y := inf y(+) whenever
y(+) is finite and nonempty, and λ+

y := µ+ whenever y(+) = ∅ ;
λ−y := lim inf y(−) whenever y(−) is infinite, λ−y := sup y(−) whenever
y(−) is finite and nonempty, and λ−y := µ− whenever y(−) = ∅ .
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If λ−y < λ+
y , denote by Λy the interval with end points λ−y and λ+

y such
that λ±y ∈ Λy if and only if λ±y is an accumulation point of the sequence
obtained from y by removing all the entries yj ∈ [λ−y , λ

+
y ] . If λ−y = λ+

y , let
Λy := [λ−y , λ

−
y ] .

Obviously, σess(A) ⊂ Λ̄y and y contains all the eigenvalues lying outside
the closure Λ̄y of the interval Λy . The entries of y lying below and above
Λy form a nondecreasing sequence y(−) and a nonincreasing sequence y(+)

respectively (either of these sequences may be empty).

Theorem 4.20. If A belongs to the trace class then every extreme point
y ∈ exQ(∞, A) or y ∈ ex Σ(∞, A) is Tm(XA, X

′
A)-exposed. If A is bounded

but does not belong to the trace class then

y ∈ exQ(∞, A) is a Tm(XA, X
′
A)-exposed point of Q(∞, A) if and

only if either y
⋂

Λy = ∅ or Λy consists of one point;
y ∈ ex Σ(∞, A) is a Tm(XA, X

′
A)-exposed point of Σ(∞, A) if and

only if either y
⋂

Λy = ∅ or Λy is closed and the spectrum of the
truncation AΛy consists of one point.

Proof. Assume that ỹ ∈ Q(∞, A) or y ∈ ex Σ(∞, A) and ỹ ∈ Σ(∞, A) ⊂
Q(∞, A) . Let yj1 ≤ yj2 ≤ . . . be the entries of y(−) , yk1 ≥ yk2 ≥ . . . be the
entries of y(+) and yn1 , yn2 , . . . be the entries of y lying in Λy . Consider
an arbitrary sequence x′ ∈ X ′A such that

x′j1 < x′j2 < . . . < 0 , x′k1 > x′k2 > . . . > 0 and x′n1
= x′n2

= . . . = 0 .

The identity (1.6) implies that
∑

i yji x
′
ji
≥
∑

i ỹji x
′
ji

and these two sums
coincide only if ỹji = yji for all i . Similarly,

∑
i yki x

′
ji
≥
∑

i ỹki x
′
ki

and the
sums coincide only if ỹki = yki for all i . If Λy satisfies the conditions of the
theorem, ỹji = yji for all i and ỹki = yki for all i then, in view of Theorem
4.6, we have ỹ = y . Therefore the sequence y is Tm(XA, X

′
A)-exposed.

If y ∈ l1 and

x′j1 < x′j2 < . . . < −2 , x′k1 > x′k2 > . . . > 2 , x′n1
= x′n2

= . . . = 1

then the same arguments show that 〈y,x′〉 > 〈ỹ,x′〉 for all ỹ ∈ Q(∞, A) .
This proves the first statement of the theorem.

Assume now that A does not belong to the trace class and that y is
Tm(XA, X

′
A)-exposed. Then there exists a sequence x′ ∈ X ′A ⊂ R∞0 such

that 〈y,x′〉 > 〈ỹ,x′〉 whenever ỹ ∈ Py and ỹ 6= y . If yi > yj but x′i ≤ x′j
then 〈y,x′〉 ≤ 〈ỹ,x′〉 , where ỹ ∈ Py is the sequence obtained from y by
interchanging the entries yi and yj . Therefore

(c2) x′i > x′j whenever yi > yj .

If λ−y = λ+
y then Λy satisfies the conditions of the theorem. Assume that

λ−y < λ+
y . Then λ±y are accumulation points of y and Λ is not closed if and

only if y contains infinitely many entries λ−y or λ+
y . The inclusion x′ ∈ R∞0

and (c2) imply that xi = 0 whenever yi ∈ Λy . If y has two distinct entries
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in Λy then 〈y,x′〉 = 〈ỹ,x′〉 , where ỹ 6= y is the sequence obtained by
interchanging these entries. Therefore either y

⋂
Λy = ∅ or there exists λ

such that yi = λ whenever yi ∈ Λy . If y
⋂

Λy 6= ∅ and σ(AΛy) contains

another point µ 6= λ then we can find u ∈ Π[λ,µ]H such that λ̃ := QA[u] 6= λ

and the sequence ỹ obtained by replacing λ with λ̃ belongs to Σ(∞, A) .
Since 〈y,x′〉 = 〈ỹ,x′〉 , we see that σ(AΛy) = {λ} whenever y

⋂
Λy 6= ∅ .

Finally, if y ∈ Q(∞, A) or Λy is not closed then 〈y,x′〉 = 〈ỹ,x′〉 for the
sequence ỹ obtained by replacing λ with λ−y or λ+

y . Therefore in either
case y

⋂
Λy = ∅ . �

4.4. Family of operators. Finally, let us consider a family of self-adjoint
operators {Aθ}θ∈Θ acting in H , where Θ is an arbitrary index set. The
following corollary implies that

(4.5) σ(∞, A) ⊂ conv
⋃
θ∈Θ

σ(∞, Aθ)

whenever A ∈ conv {Aθ} , provided that the closures are taken in appropriate
topologies.

Corollary 4.21. Let X be a subspace of R∞ and A be a self-adjoint op-
erator in H such that XA ⊂ X and XAθ ⊂ X for all θ ∈ Θ . Assume
that for every orthonormal set u ⊂ D(QA) , every x′ ∈ X ′ and every ε > 0
there exist an operator Aθ and an orthonormal set ũ ⊂ D(QAθ) such that
〈QA[u],x′〉 ≤ 〈QAθ [ũ],x′〉+ε . Then we have (4.5), where the closure is taken
in the Mackey topology Tm(X,X ′) .

Proof. By the separation theorem, under conditions of the corollary we have
Σ(∞, A) ⊂ conv

⋃
θ∈Θ Σ(∞, Aθ) . Therefore (4.5) follows from (4.2). �

In Corollary 4.21 we can always take X = R∞ , in which case X ′ = R∞00

and Tm(X,X ′) coincides with the topology of element-wise convergence T0 .
If A and Aθ satisfy the conditions of Corollary 4.21 and are compact then
we can take X = R∞0 , which implies (4.5) with the closure taken in the
l∞-topology.
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