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1. Metrics, norms and inner products

Definition 1.1. Let X be a non-empty set. A function ρ : X ×X → R is called a
metric on X if it satisfies

(1) ρ(x, y) > 0 if x 6= y and ρ(x, x) = 0,
(2) ρ(x, y) = ρ(y, x),
(3) ρ(x, z) 6 ρ(x, y) + ρ(y, z) (this is called the triangle inequality),

where x, y and z are arbitrary elements of X.

The pair (X, ρ) is said to be a metric space. If X0 ⊂ X then ρ is also a metric on
X0. The metric space (X0, ρ) is called a subspace of (X, ρ). The function ρ(x, y)
can (and should) be interpreted as the distance between the elements x and y in
the space (X, ρ).

If the X is a linear space, it is often possible to express the metric ρ in terms
of a function of one variable that can be thought of as the length of each element
(i.e., its distance from 0).

Definition 1.2. Let X be a complex or real linear space, that is, a vector space
over C or R. A function ‖ · ‖ : X → R is called a norm on X if it satisfies

(1) ‖x‖ > 0 if x 6= 0 and ‖0‖ = 0,
(2) ‖λx‖ = |λ| ‖x‖ for all x ∈ X and λ ∈ C (or λ ∈ R),
(3) ‖x+ y‖ 6 ‖x‖+ ‖y‖ for all x, y ∈ X (this is a particular case of the triangle

inequality).

A linear space provided with a norm is called a normed space.

Given a norm on X, the function ρ(x, y) = ‖x − y‖ is a metric on X (one can
easily check that each property of the norm ‖ ·‖ implies the corresponding property
of the metric ρ(x, y) = ‖x− y‖). However, not every metric arises in this way (see
Example 1.6 below).

Definition 1.3. Let X be a complex or real linear space. A function
(·, ·) : X ×X → C or, respectively, (·, ·) : X ×X → C is called an inner product on
X if it satisfies

(1) (x, x) > 0 for all x ∈ X and (x, x) = 0 if and only if x = 0;
(2) (x, y) = (y, x) for all x, y ∈ X, where the bar denotes the complex conjuga-

tion, in the real case we have (x, y) = (y, x);
(3) (αx1 + βx2, y) = α(x1, y) + β(x2, y) for all x1, x2, y ∈ X and all α, β ∈ C

or, if X is a real space, for all α, β ∈ R.

The inner product generates the norm ‖ · ‖ := (·, ·). Therefore an inner product
space is a normed space (and is therefore a metric space).
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Example 1.4. Rn and Cn are inner product spaces. The standard (Euclidean)
inner product and metric are defined by the equalities (x, y) =

∑n
i=1 xi ȳi and

ρ(x, y) =
(∑n

i=1 |xi − yi|2
)1/2 , where xi and yi are coordinates of x and y.

Example 1.5. Rn and Cn can also be provided with the norm ‖x‖ =
∑n

i=1 |xi|.
This norm generates the metric ρ(x, y) =

∑n
i=1 |xi − yi| but is not associated with

an inner product.

Example 1.6 (discrete metric). For any set X, define the metric ρ by
{

ρ(x, y) = 1 , if x 6= y,

ρ(x, x) = 0 .

The discrete metric is not generated by a norm even if X is a linear space. Indeed,
the function d(x, 0) on X does not satisfy conditions of Definition 1.2.

Example 1.7. Let X be the linear space of all infinite complex sequences x =
(x1, x2, . . . ) such that

∑∞
i=1 |xi|p < ∞ where q is a positive number from the interval

[1,∞). Then ‖x‖p := (
∑∞

i=1 |xi|p)1/p is a norm on X (in this particular case the
triangle inequality is called the Minkowski inequality). The space X provided with
the norm ‖ · ‖p is usually denoted lp.

Example 1.8. Let l∞ be the linear space of all infinite complex sequences x =
(x1, x2, . . . ) such that supi |xi| < ∞. Then ‖x‖∞ = supi |xi| is a norm on l∞.

Example 1.9. The norm ‖ · |2 on l2 is generated by the inner product (x, y) =∑∞
i=1 xi ȳi. However, if p 6= 2 then ‖·‖p cannot be associated with an inner product.

Example 1.10. C[a, b] usually denotes the linear space of all continuous (real or
complex-valued) functions on the interval [a, b]. The standard norm on C[a, b] is
defined by the equality ‖f‖ = supx∈[a,b] |f(x)|. It is not generated by an inner
product. The corresponding metric is ρ(f, g) = supx∈[a,b] |f(x)− g(x)|.
Example 1.11. The linear space B(S) of all bounded (real or complex-valued)
functions on a nonempty set S can be provided with the norm ‖f‖ = supx∈S |f(x)|.

If S = [a, b] then C[a, b] ⊂ B[a, b] and the metric introduced in Example 1.11
is the same as in Example 1.10. However, the space C[a, b] is strictly smaller
than B[a, b] (every continuous function on [a, b] is bounded but there are bounded
functions which are not continuous). Note that Example 1.8 is a particular case of
Example 1.11 where the set S is countable.

Example 1.12. Let L2[a, b] be the linear space of integrable functions f on the
interval [a, b] such that

∫ b

a
|f(t)|2 dt < ∞. The standard inner product on L2[a, b]

is (f, g) =
∫ b

a
f(t) ḡ(t) dt, and the corresponding norm is ‖f‖ =

(∫ b

a
|f(t)|2 dt

)1/2

.

Note that the notion “an integrable function” depends on our definition of in-
tegration. In order to define the space L2 rigorously, one has to explain for which
functions the integral is well defined.

2. Convergence in metric spaces

Definition 2.1. A sequence xn of elements of a metric space (X, ρ) is said to
converge to x ∈ X if for any ε > 0 there exists an integer nε such that ρ(xn, x) < ε
for all n > nε.
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Lemma 2.2 (another definition of convergence). xn → x in (X, ρ) if and
only if ρ(xn, x) → 0 in R.

Proof. By definition, the sequence of non-negative numbers ρ(xn, x) converges to
zero if and only if for any ε > 0 there exists an integer nε such that ρ(xn, x) 6 ε
for all n > nε. ¤

Definition 2.3. We say that the metrics ρ1 and ρ2 defined on the same set X are
equivalent if xn → x in (X, ρ1) if and only if xn → x in (X, ρ2). Two norms on the
same linear space X are said to be equivalent when the corresponding metrics are
equivalent.

One can easily check the metric introduced in Example 1.5 is equivalent to the
Euclidean metric (Example 1.4), whereas the discrete metric is not.

Definition 2.4. Convergence in the metric space B(S) (or any subspace of B(S) )
is called uniform convergence on S. Convergence with respect to the norm intro-
duced in Example 1.12 is called mean square convergence.

Remark 2.5. The standard norm on C[a, b] (see Example 1.10) is not equivalent to
the norm introduced in Example 1.12.

Definition 2.6. A sequence of functions fn ∈ B(S) converges to f ∈ B(S)
pointwise if for any x ∈ S and ε > 0 there exists an integer nε,x such that
|f(x)− fn(x)| 6 ε for all n > nε,x.

In Definition 2.6 the integer nε,x may depend on x. If for any ε the set {nε,x}x∈S

is bounded from above, that is nε,x 6 nε for all x ∈ S, then fn → f uniformly.
Note that pointwise convergence is not defined in terms of a metric. We shall see
later that this convergence cannot be associated with any metric unless the set S
is countable.

3. Open Sets and Closed Sets

Let (X, ρ) be a metric space and r be a strictly positive number.

Definition 3.1. If α ∈ X then the set Br(α) = {x ∈ X : ρ(x, α) < r} is called the
open ball, and the set Br[α] = {x ∈ X : ρ(x, α) 6 r} is called the closed ball centre
α radius r.

If there is a need to emphasize the metric, we write Bρ
r (α) and Bρ

r [α]. Clearly,

α ∈ Br−ε(α) ⊂ Br(α) ⊂ Br[α] ⊂ Br+ε(α) , ∀r > ε > 0 . (3.1)

Definition 3.2. A set A ⊂ X is said to be a neighbourhood of α ∈ X if A contains
an open ball Br(α).

In view of (3.1) the balls Br(α) and Br[α] are neighbourhoods of the point α.
Now we can rephrase Definition 2.1 as follows.

Definition 2.1’. A sequence xn in a metric space converges to x if for any ball
Br(x) (or any neighbourhood A of x) there exists an integer n′ such that for all
n > n′ we have xn ∈ Br(x) (or xn ∈ A).
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Exercise 3.3. Prove that two metrics ρ and σ are equivalent if and only if every
open ball Bρ

r (x) contains an open ball Bσ
s (x) and every open ball Bσ

s (x) contains
an open ball Bρ

r (x).

By the above, if A is a neighbourhood of x in (X, ρ) then it is a neighbourhood
of x with respect to every metric which is equivalent to ρ.

Definition 3.4. A set is open if if it contains a ball about each of its points.
(Equivalently, a set is open if it contains a neighbourhood of each of its points.)

Exercise 3.5. Prove that an open ball in a metric space (X, ρ) is open.

Theorem 3.6. If (X, ρ) is a metric space then
(1) the whole space X and the empty set ∅ are both open,
(2) the union of any collection of open subsets of X is open,
(3) the intersection of any finite collection of open subsets of X is open.

Proof.
(1) The whole space is open because it contains all open balls and the empty set

is open because it does not contain any points.
(2) If x belongs to the union of open sets Aν then x belongs to at least one of

the sets Aν . Since this set is open, it also contains an open ball about x. This ball
lies in the union of Aν , so the union is an open set.

(3) If A1, A2, . . . , Ak are open sets and x ∈ ∩k
n=1An then x ∈ An for every

n = 1, . . . , k. Since An are open, for each n there exists rn such that Brn(x) ⊂ An.
Let r = min{r1, r2, . . . , rk}. Then, in view of (3.1), Br(x) ⊂ Brn(x) ⊂ An for all
n = 1, . . . , k, so Br(x) ⊂ (∩k

n=1An

)
. ¤

Exercise 3.5. Show that the intersection of an infinite collection open sets is not
necessarily open.

Lemma 3.8. A set is open if and only if it coincides with the union of a collection
of open balls.

Proof. According to Theorem 3.6 the union of any collection of open balls is open.
On the other hand, if A is open then for every point x ∈ A there exists a ball B(x)
about x lying in A. We have A = ∪x∈AB(x). Indeed, the union ∪x∈AB(x) is a
subset of A because every ball B(x) is a subset of A, and the union contains every
point x ∈ A because x ∈ B(x). ¤
Definition 3.9. A point x ∈ A is said to be an interior point of the set A if there
exists an open ball Br(x) lying in A. The interior of a set A is the union of all open
sets contained in A, that is, the maximal open set contained in A. The interior of
A is denoted by int(A).

Clearly, the interior of A coincides with set of interior points of A. Indeed,
if x is an interior point then there exists an open ball Br(x) lying in A. This
ball is an open set lying in A and therefore is a subset of the maximal open set
int(A) ⊂ A. Conversely, if x ∈ int(A) then (since int(A) is open) there exists a
ball Br(x) ⊂ int(A) ⊂ A, so x is an interior point of A.

Definition 3.10. A point x ∈ X is called a limit point of a set A if every ball
about x contains a point of A distinct from x. Other terms for “limit point” are
point of accumulation or cluster point. The set of limit points of A is denoted A′.
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Lemma 3.11. A point x is a limit point of a set A if and only if there is a sequence
xn of elements of A distinct from x which converges to x.

Proof. If xn → x then every ball about x contains a point xn (see Definition 2.1’). If
every ball about x contains a point of A distinct from x then there exists a sequence
of points xn ∈ A distinct from x and lying in the balls B1/n(x). Obviously, this
sequence converges to x. ¤
Definition 3.12. A set is closed if it contains all its limit points.

Lemma 3.13 (another definition of closed sets). A set A is closed if and only
if the limit of any convergent sequence of elements of A lies in A.

Proof. If a sequence of elements of A has a limit then either this limit coincides
with one of the elements of the sequence (and then it lies in A) or it is a limit
point of A. Therefore a closed set A contains the limits of all convergent sequences
{xn} ⊂ A .

Conversely, every limit point is a limit of some sequence {xn} ⊂ A . Therefore
A contains all its limit points, provided that the limit of any convergent sequence
of elements of A lies in A. ¤
Exercise 3.14. Prove that a closed ball in a metric space (X, ρ) is closed.

Definition 3.15. If A ⊂ X then C(A) denotes the complement of the set A in X,
that is, the set of all points x ∈ X which do not belong to A.

Theorem 3.16. If A is open then C(A) is closed. If A is closed then C(A) is open.

Proof. If A is open then for every point of A there exists a ball about this point
lying in A. Clearly, such a ball does not contain any points from C(A). This means
that every point of A is not a limit point of C(A), that is, C(A) contains all its limit
points.

If A is closed then it contains all its limit points, so any point x ∈ C(A) is not a
limit point of A. This means that there exists a ball Br(x) which lies in C(A), that
is, C(A) is open. ¤
Exercise 3.17. Prove that, in a metric space (X, ρ),

(1) the whole space X and the empty set ∅ are both closed,
(2) the intersection of any collection of closed sets is closed,
(3) the union of any finite collection of closed sets is closed.

Hint. This follows from Theorems 3.6 and Theorem 3.16.

Definition 3.18. The closure of a set A is the intersection of all closed sets con-
taining A, that is, the minimal closed set containing A. The closure is denoted by
cl(A) or Ā.

Theorem 3.19. x ∈ Ā if and only if there exists a sequence {xn} ⊂ A which
converges to x.

Proof. Denote by Ã the set of limits of all convergent sequences {xn} ⊂ A. Note
that A ⊂ Ã because for every x ∈ A the sequence {x, x, x, . . . } ⊂ A converges to x.
We have to prove that Ã = Ā.

Let x 6∈ Ã. If for every ε > 0 we can find y(ε) ∈ A satisfying ρ(x, y) 6 ε then,
taking ε = 1/n, we obtain a sequence yn = y(1/n) which converges to x. Thus,
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there exists a positive ε such that ρ(x, y) > ε for all y ∈ A or, in other words,
there exists a ball Bε(x) ∈ C(Ã). Therefore the complement C(Ã) is open and,
consequently, Ã is closed.

It remains to prove that Ã is the minimal closed set which contains A. Let
K ⊂ Ã and K 6= Ã. Then K does not contain at least one limit x of a convergent
sequence {xn} ⊂ A. If x = xn for some n then x ∈ A and therefore A 6⊂ K. If
x 6= xn all n then x is a limit point. Therefore K is not the closure of A. ¤
Example 3.20. Let (X, ρ) be a metric space with the discrete metric

ρ(x, y) =
{

1, if x 6= y,

0, if x = y.

Then

Br[a] =
{

a, if r < 1,

X, if r > 1.
Br(a) =

{
a, if r 6 1,

X, if r > 1,

Since the open ball is open, this implies that any point is an open set. Since any
set coincides with the union of its elements, Theorem 3.6 implies that any subset
of X is open. Therefore, by Theorem 3.16, any subset of X is closed.

The closure of the open ball Br(a) does not necessarily coincide with the closed
ball Br[a]. In particular, in the Example 3.21 B1(a) = B1(a) = a (since B1(a) is
closed) but B1[a] = X.

Exercise 3.21. Proved that in a normed linear space Br(α) = Br[α].

4. Completeness

Definition 4.1. A sequence xn of elements of a metric space (X, ρ) is called a
Cauchy sequence if, given any ε > 0, there exists nε such that ρ(xn, xm) < ε for all
n,m > nε.

Exercise 4.2. Show that every convergent sequence is a Cauchy sequence.

Exercise 4.3. Prove the following statement: if a Cauchy sequence has a conver-
gent subsequence then it is convergent with the same limit.

Definition 4.4. A metric space (X, ρ) is said to be complete if any Cauchy se-
quence {xn} ⊂ X converges to a limit x ∈ X.

There are incomplete metric spaces. If a metric space (X, ρ) is not complete
then it has Cauchy sequences which do not converge. This means, in a sense, that
there are gaps (or missing elements) in X. Every incomplete metric space can be
made complete by adding new elements, which can be thought of as the missing
limits of non-convergent Cauchy sequences. More precisely, we have the following
theorem.

Theorem 4.5. Let (X, ρ) be an arbitrary metric space. Then there exists a com-
plete metric space (X̃, ρ̃) such that

(1) X ⊂ X̃ and ρ̃(x, y) = ρ(x, y) whenever x, y ∈ X;
(2) for every x̃ ∈ X̃ there exists a sequence of elements xn ∈ X such that

xn → x̃ as n →∞ in the space (X̃, ρ̃).

The metric space (X̃, ρ̃) is said to be the completion of (X, ρ). If (X, ρ) is already
complete then necessarily X = X̃ and ρ = ρ̃.
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Theorem 4.6. Let (A, ρ) be a subspace of a complete metric space (X, ρ) and Ā
be the closure of A in (X, ρ). Then (Ā, ρ) is the completion of (A, ρ).

Proof. Let {xn} be a Cauchy sequence in Ā. Since (X, ρ) is complete and Ā ⊂ X,
this sequence converges to some element x ∈ X. Since Ā is closed, by Lemma 3.13,
we have x ∈ Ā. Therefore the space (Ā, ρ) is complete. Now the theorem follows
from Theorem 3.19. ¤
Example 4.7. Let X be the set of rational numbers with the standard metric
ρ(x, y) = |x−y|. This metric space is not complete because any sequence xn which
converges to an irrational number is a Cauchy sequence but does not have a limit
in X. The completion of this space is the set of all real numbers R with the same
metric ρ(x, y) = |x−y|. Any irrational number can be written as an infinite decimal
fraction 0.a1a2 . . . or, in other words, can be identified with the Cauchy sequence
0, 0.a1, 0.a1a2, ... of rational numbers which does not converge to a rational limit.

The space of real numbers R is defined as the completion of the space of rational
numbers and therefore, by definition, is complete.

Example 4.8. Since R is complete, the space of complex numbers C with the
standard metric ρ(x, y) = |x− y| is also complete. Indeed, if {cn} is a sequence of
complex numbers and cn = an + ibn, where an = Re cn and bn = Im cn, then

{cn} is a Cauchy sequnce if and only if {an} and {bn} are Cauchy sequnces
of real numbers;
the sequence {cn} converges if and only if the sequences {an} and {bn}
converge.

Theorem 4.9. B(S) is complete.

Proof. Let f1, f2, . . . be a Cauchy sequence in B(S). Then for any ε > 0 there
exists nε such that

sup
x∈S

|fn(x)− fm(x)| 6 ε/2 , ∀n,m > nε .

This implies that for each fixed x ∈ S the numbers fn(x) form a Cauchy sequence
of real (or complex, if fn are complex-valued functions) numbers. Since the space
of real (or complex) numbers is complete, this sequence has a limit. Let us denote
this limit by f(x). Then fn(x) → f(x) for each fixed x ∈ S, that is, for any ε > 0
there exists an integer nε,x (which may depend on x) such that

|fn(x)− f(x)| 6 ε/2 , ∀n > nε,x .

We have
|fn(x)− f(x)| 6 |fn(x)− fm(x)|+ |fm(x)− f(x)|

If n,m > nε and m > nε,x then the right hand side is estimated by ε. Therefore
the left hand side is estimated by ε for all x ∈ S (indeed, given x we can always
choose m in the right hand side to be greater than nε and nε,x). This implies that
supx∈S |fn(x)− f(x)| 6 ε for all n > nε, which means that fn → f uniformly.

It remains to prove that f is bounded. Choosing n > nε we obtain

sup
x∈S

|f(x)| 6 sup
x∈S

|fn(x)− fn(x) + f(x)| 6 sup
x∈S

(|fn(x)|+ |fn(x)− f(x)|)

6 sup
x∈S

|fn(x)|+ sup
x∈S

|fn(x)− f(x)| 6 sup
x∈S

|fn(x)|+ ε .

Since fn is bounded, this estimate implies that f is also bounded. ¤
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Corollary 4.10. C[a, b] is complete.

Proof. Since continuous functions on [a, b] are bounded, Theorem 4.9 implies that
any Cauchy sequence of continuous functions fk uniformly converges to a bounded
function f on [a, b], and we only need to prove that the function f is continuous.

In order to prove that we have to show that for any ε > 0 there exists δ > 0 such
that |f(x)− f(y)| 6 ε whenever |x− y| 6 δ. We have

|f(x)− f(y)| = |f(x)− fn(x) + fn(x)− fn(y) + fn(y)− f(y)|
6 |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| .

Since fn → f in B(S), we can choose n such that |f(x) − fn(x)| 6 ε/3 and
|f(y) − fn(y)| 6 ε/3. Since the function fn is continuous, there exists δ > 0 such
that |fn(x)− fn(y)| 6 ε/3 whenever |x− y| 6 δ. Therefore

|f(x)− f(y)| 6 ε/3 + ε/3 + ε/3 = ε

whenever |x− y| 6 δ. ¤
Definition 4.11. A complete normed linear space is called a Banach space.

Example 4.12. In view of Theorem 4.9 and Corollary 4.10, B(S) and C[a, b] are
Banach spaces.

Let xn be a sequence of elements of a normed linear space X.

Definition 4.13. The series
∑∞

n=1 xn is said to be convergent if the sequence σk

defined by σk =
∑k

n=1 xn is convergent in X. If σk → x ∈ X as k → ∞ then we
write

∑∞
n=1 xn = x.

Definition 4.14. The series
∑∞

n=1 xn is said to be absolutely convergent if∑∞
n=1 ‖xn‖ < ∞.

Theorem 4.15. In a Banach space every absolutely convergent series is conver-
gent.

Proof. Let sk =
∑k

n=1 ‖xn‖ . Since the series
∑∞

n=1 ‖xn‖ is convergent, the se-
quence of positive numbers {sk} converges and therefore it is a Cauchy sequence.
If m > k, σm =

∑m
n=1 xn and σk =

∑k
n=1 xn then

ρ(σm, σk) = ‖σm − σk‖ = ‖
m∑

n=k+1

xn ‖ 6
m∑

n=k+1

‖xn‖ = |sm − sk| .

This implies that {σn}n=1,2,... is a Cauchy sequence in our Banach space, and
therefore it converges. ¤
Corollary 4.16. Let fn be bounded functions defined on a set S. If
∞∑

n=1
sup
x∈S

|fn(x)| < ∞ then there exists a bounded function f on S such that

sup
x∈S

|f(x)−
k∑

n=1

fn(x) | →
k→∞

0 .

If S = [a, b] is a bounded interval and the functions fn are continuous on [a, b] then
f is also continuous.

Proof. The corollary immediately follows from Theorem 4.15 and the fact that B(S)
and C[a, b] are Banach spaces (see Theorem 4.9 and Corollary 4.10). ¤
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5. Baire Category Theorem

Definition 5.1. A subset A of a metric space (X, ρ) is said to be dense if its closure
Ā coincides with X.

Definition 5.2. A subset A of a metric space is said to be nowhere dense if its
closure Ā has empty interior.

The following results is called the Baire category theorem.

Theorem 5.3. The complement of any countable union of nowhere dense subsets
of a complete metric space (X, ρ) is dense in X.

Proof. Suppose that An, n = 1, 2, . . . , is a countable collection of nowhere dense
subsets of X. Set X0 := X\⋃∞

n=1 An. We wish to show that X0 is dense in X. Now,
X \⋃∞

n=1 Ān ⊂ X0, and a set is nowhere dense if and only if its closure is. Hence,
by taking closures if necessary, we may assume that each An is closed. Suppose
then, by way of contradiction, that X0 is not dense in X. Then X \ X̄0 6= ∅.
Since X \ X̄0 is open, and non-empty, there exists x0 ∈ X \ X̄0 and r0 such that
Br0(x0) ⊂ X \ X̄0 ⊂

⋃∞
n=1 An. The idea of the proof is to construct a sequence

of points in X with a limit x ∈ Br0(x0) which does not belong to any of the sets
A1, A2, . . . , which will contradict to the inclusion Br0(x0) ⊂

⋃∞
n=1 An.

We start by noticing that, since A1 is nowhere dense, the open ball Br0(x0) is not
contained in A1. This means that there is some point x1 ∈ Br0(x0) \A1. Further-
more, the set Br0(x0) \A1 coincides with the intersection of open sets Br0(x0) and
C(A1) (see Theorem 3.16). Therefore it is open and contains a closed ball Br1 [x1]
with r1 < 1. We have Br1 [x1] ⊂ Br0(x0) and Br1 [x1]

⋂
A1 = ∅.

Now, since A2 is nowhere dense, the open ball Br1(x1) is not contained in A2.
Thus, there is some point x1 ∈ Br1(x1)\A2. The set Br1(x1)\A2 is open because it
coincides with the intersection of open sets Br1(x1) and C(A2). Therefore Br1(x1)\
A2 contains a closed ball Br2 [x2] with r1 < 1/2. We have Br2 [x2] ⊂ Br1(x1) and
Br2 [x2]

⋂
A2 = ∅.

Recursively, we obtain a sequence x0, x1, x2, . . . in X and positive real num-
bers r0, r1, r2, . . . satisfying rn < 1/n, such that Brn [xn] ⊂ Brn−1(xn−1) and
Brn [xn]

⋂
An = ∅. If m,n > N then both points xm and xn belong to BrN

[xN ]
and

ρ(xm, xn) 6 ρ(xm, xN ) + ρ(xN , xm) 6 2/N.

Hence ρ(xm, xn) → 0 as n,m →∞, which means that xn form a Cauchy sequence.
Therefore there is some x ∈ X such that xn → x. Since xn ∈ Brn [xn] ⊂ BrN [xN ]
for all n > N , it follows that x ∈ BrN [xN ] for all N = 1, 2, . . . . However, by our
construction, BrN+1 [xN+1] ⊂ BrN (xN ) and BrN (xN )

⋂
AN = ∅. Hence x 6∈ AN

for any N . This is our required contradiction and the result follows. ¤

The Baire category theorem implies, in particular, that a complete metric space
cannot be given as a countable union of nowhere dense sets. In other words, if a
complete metric space is equal to a countable union of sets, then not all of these
can be nowhere dense; that is, at least one of them has a closure with non-empty
interior. Another corollary to the theorem is that if a metric space can be expressed
as a countable union of nowhere dense sets, then it is not complete.
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6. Linear operators in normed spaces

1. Continuity.
Given a map T : X → Y and a subset A ⊂ Y , the set {x ∈ X : Tx ∈ A} is

denoted T−1(A) and called the inverse image of A. Note that T−1(A) is a well-
defined set irrespective of whether T has any inverse.

Definition 6.1. Let (X, ρ) and (Y, d) be metric spaces. A map T : X → Y is said
to be continuous at α ∈ X if for any open ball Bε(Tα) about Tα there exists a ball
Bδ(α) about α such that Bδ(α) ⊂ T−1 (Bε(Tα)).

This definition can be reformulated as follows: the map T : (X, ρ) → (Y, d) is
continuous at α ∈ X if for any ε > 0 there exists δ > 0 such that d(Tx, Tα) < ε
whenever ρ(x, α) < δ.

Exercise 6.2. Show that the map T : (X, ρ) → (Y, d) is continuous at α ∈ X
if and only if for every sequence xn converging to α in (X, ρ), the sequence Txn

converges to Tα in (Y, d).

Theorem 6.3. Let (X, ρ) and (Y, σ) be metric space and T : X → Y be a map
from X to Y . Then the following statements are equivalent:

(1) T is continuous,
(2) the inverse image of every open subset of Y is an open subset of X,
(3) the inverse image of every closed subset of Y is a closed subset of X.

Proof. The inverse image of the complement of a set A coincides with the com-
plement of the inverse image T−1(A). Therefore Theorem 3.16 implies that (2) is
equivalent to (3). Let us prove that (2) is equivalent to (1).

Assume first that T is continuous. Let A be an open subset of Y and x ∈
T−1(A) ⊂ X. Since A is open, there exists a ball Bε(Tx) about the point Tx such
that Bε(Tx) ⊂ A. Since T is continuous, there exists a ball Bδ(x) about x such
that Bδ(x) ⊂ T−1(Bε(Tx)) ⊂ T−1(A) (Definition 6.1′). Therefore for every point
x ∈ T−1(A) there exists a ball Bδ(x) lying in T−1(A), which means that T−1(A)
is open.

Assume now that the inverse image of any open set is open. Let x ∈ X and
Bε(Tx) is a ball about Tx ∈ Y . The inverse image T−1(Bε(Tx)) is an open set
which contains the point x. Therefore there exists a ball Bδ(x) about x such that
Bδ(x) ⊂ T−1(Bε(Tx)). This implies that T is continuous. ¤

In the rest of this section we shall be assuming that X and Y are normed linear
spaces and denote by ‖ · ‖X , ‖ · ‖Y the the corresponding norms.

Recall that a map T : X → Y is called a linear operator if T (x + y) = Tx + Ty
and T (λx) = λTx for all x, y ∈ X and λ ∈ R (or λ ∈ C). In particular, if T is a
linear operator then T0 = 0. Linear operators form a linear space which is usually
denoted B(X, Y ) (we define (T1 + T2)x = T1x + T2x and (λT )x = λTx).

Definition 6.4. A linear map T : X → Y is said to be bounded if there exists a
positive constant C such that ‖Tx‖Y 6 C‖x‖X for all x ∈ X.

Theorem 6.5. Let X and Y be normed linear spaces and T : X → Y be a linear
map. Then T is continuous if and only if it is bounded.

Proof. Let ρ(x1, x2) = ‖x1− x2‖X and d(y1, y2) = ‖y1− y2‖Y be the metrics on X
and Y generated by the norms ‖ · ‖X and ‖ · ‖Y .
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Assume first that T is bounded, that is, ‖Tx‖Y 6 C‖x‖X . Let α ∈ X and ε > 0.
Take δ = C−1ε. Then, for all x ∈ X satisfying ρ(x, α) = ‖x− α‖X 6 δ, we have

d(Tx, Tα) = ‖Tx− Tα‖Y = ‖T (x− α)‖Y 6 C‖x− α‖X 6 ε.

This implies that T is continuous.
Assume now that T is continuous. Then T is continuous at 0, and therefore

there exists δ > 0 such that

d(0, Tx0) = ‖Tx0‖Y 6 1 whenever ρ(0, x0) = ‖x0‖X 6 δ . (6.1)

If x ∈ X, let us denote c = δ‖x‖−1
X and x0 = c x. Then ‖x0‖X = δ. Since T is

a linear map, (6.1) implies ‖Tx‖Y = c−1‖Tx0‖Y 6 c−1 = δ−1‖x‖X , which means
that T is bounded. ¤

If T is bounded, then there is the minimal constant C such that ‖Tx‖y 6 C ‖x‖X ,
which is denoted ‖T‖.
Exercise 6.6. Prove that the function ‖T‖ defined on B(X, Y ) satisfies conditions
of Definition 1.2 and is therefore a norm on the linear space B(X,Y ).

2. The Banach-Steinhaus theorem.
The following result is called the Banach-Steinhaus theorem or the Principle of

Uniform Boundedness (for obvious reasons).

Theorem 6.7. Let X be a Banach space and let F be a family of bounded linear
operators from X into a normed space Y such that the set {Tx : T ∈ F} is bounded
for each x ∈ X. Then the set of norms {‖T‖ : T ∈ F} is bounded.

Proof. Let An be the set of all x ∈ X such that ‖Tx‖Y 6 n for all T ∈ F , where
n = 1, 2, . . . . Then each set An coincides with the intersection

⋂
T∈F T−1(Bn[0])

of inverse images T−1(Bn[0]) of the closed balls Bn[0] ⊂ Y . Since the maps T are
continuous, these inverse images are closed, and so is their intersection. Thus, An

are closed subsets of X. Moreover, by hypothesis, each x ∈ X lies in some An.
Thus, we may write X =

⋃∞
n=1 An.

By the Baire Theorem, together with the fact that the sets An are closed, it
follows that there is some positive integer m such that Am has non-empty interior.
If x0 is an interior point of Am then Am contains a closed ball Br[x0]. By the
definition of Am, this means that ‖Tx‖Y 6 m whenever ‖x−x0‖X 6 r and T ∈ F .
But then for any x ∈ X with ‖x‖X 6 r we have ‖(x+x0)−x0‖X 6 r and therefore

‖Tx‖Y = ‖T (x + x0)− Tx0‖Y 6 ‖T (x + x0)‖Y + ‖Tx0‖Y 6 2m

for all T ∈ F . If x ∈ X, x 6= 0 and cr = r/‖x‖X then the norm of the vector
crx is equal to r. Therefore 2m > ‖T (crx)‖Y = cr ‖Tx‖Y , which implies that
‖Tx‖Y 6 2mr−1‖x‖X and, consequently, ‖T‖ 6 2mr−1. ¤

3. The Open Mapping Theorem.

Definition 6.8. A map T : X → Y is said to be open if, for every open set A ∈ X,
its image T (A) is open in Y .
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Definition 6.9. A subset A of a linear space X is said to be symmetric if −x ∈ A
whenever x ∈ A. The subset A is said to be convex if tx1 +(1− t)x2 ∈ A whenever
x1, x2 ∈ A and t ∈ [0, 1] (in other words, A is convex if any line segment joining
two points from A lies in A).

Exercise 6.10. Prove that, in a normed linear space X, the closure of a symmetric
set is symmetric and the closure of a convex set is convex.

If A ∈ X and δ > 0, we shall denote by δA the set of points x such that δ−1x ∈ A.

Exercise 6.11. Let X be a normed linear space. Prove that δA0 ⊂ δA whenever
A0 ⊂ A, and that δA = δĀ.

The following result, called the Open Mapping Theorem, is also a consequence
of Theorem 5.3.

Theorem 6.12. Let X and Y be Banach spaces and T : X → Y be a bounded
linear operator mapping X onto Y . Then T is an open map.

In order to prove the theorem, we shall need the following auxiliary results.

Lemma 6.13. Let X be a Banach space, Y be a normed space and T : X → Y be a
bounded linear operator. Assume that Br(0) ⊂ T (BR(0)). Then Br(0) ⊂ T (BR(0)).

Proof. Let ε ∈ (0, 1
2 ), and let y ∈ Br(0). Then y ∈ T (BR(0)) which implies that

there is y1 ∈ T (BR(0)) such that ‖y − y1‖Y < εr. That is, there exists x1 ∈ BR(0)
such that y1 = Tx1 satisfies ‖y − Tx1‖ < εr. In other words, y − Tx1 ∈ Bεr(0).
The inclusion Br(0) ⊂ T (BR(0)) implies that Bεr(0) ⊂ T (BεR(0)) (see Exercise
6.11), that is, y − Tx1 belongs to Bεr(0) ⊂ T (BεR(0)).

Similarly, we can find a point x2 ∈ Bεr(0) such that ‖(y − Tx1)− Tx2‖Y < ε2r.
Continuing in this way (i.e., by recursion) we obtain a sequence x1, x2, x3, . . . such
that xn ∈ Bεn−1R(0) and

y − Tx1 − Tx2 − · · · − Txn ∈ Bεnr(0) ⊂ T (BεnR(0)) .

The above inclusion implies that y =
∑∞

n=1 Txn. On the other hand, ‖xn‖X <
εn−1R and, consequently,

∑
n ‖xn‖X < ∞. By Theorem 4.15, the series

∑
n xn

converges to some vector x ∈ X. Since T is continuous, we have
∑k

n=1 Txn =
T

∑n
n=1 xk → Tx as k →∞. Therefore y = Tx. Furthermore,

‖
k∑

n=1

xn‖X 6
k∑

n=1

‖xn‖X 6
k∑

n=1

εk−1R < R/(1− ε),

so that ‖x‖X 6 R/(1−ε) < R/(1−2ε). Hence x ∈ BRε(0) and y = Tx ∈ T (BRε(0)),
where Rε := R/(1− 2ε).

Thus we have proved that Br(0) ⊂ T (BRε(0)) for all ε ∈ (0, 1
2 ). Therefore

Bd(0) ⊂ T (BdRε/r(0)) for all d > 0 (Exercise 6.11). Let y ∈ Br(0) and d > 0 be
such that ‖y‖Y < d < r. Then y ∈ Bd(0) ⊂ T (BdRε/r(0)). Since d/r < 1 and
rε → R as ε → 0, for all sufficiently small ε we have dRε/r < R. It follows that
y ∈ T (BR(0)). Hence Br(0) ⊂ T (BR(0)). ¤
Proof of Theorem 6.11. Let G be an open subset of X. We want to prove that
T (G) is open. If G = ∅ then T (G) = ∅ and is open. Assume that G 6= ∅ and take
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y0 ∈ T (G). Then there exists a vector x0 ∈ G such that Tx0 = y0. Since G is open,
we can find a ball Br(x0) ⊂ G. In order to show that T (G) is open, it is sufficient
to construct a ball Br′(y0) ⊂ T (Br(x0)). Note that Br′(y0) coincides with the set
of vectors y ∈ Y such that y − y0 ∈ Br′(0), and Br(x0) is the set of vectors x ∈ X
such that x − x0 ∈ Br(0). Since Tx0 = y0, we have Br′(y0) ⊂ T (Br(x0)) if and
only if Br′(0) ⊂ T (Br(0)). Thus, we need to show that for every r > 0 there exists
r′ > 0 such that Br′(0) ⊂ T (Br(0)).

The collection of balls {Bn(0)}n=1,2,... covers X. Since T (X) = Y , it follows
that Y =

⋃∞
n=1 T (Bn(0)). By Baire Theorem, there is a positive integer m such

that the closure T (Bm(0)) has a nonempty interior. Thus there exists y ∈ Y and
ε > 0 such that Bε(y) ⊂ T (Bm(0)).

Since the ball Bm(0) is symmetric and convex, so is its image T (Bm(0)). There-
fore the closure T (Bm(0)) is also symmetric and convex. The former implies
that Bε(−y) ⊂ T (Bm(0)). If ‖z‖Y < ε then z + y ∈ Bε(y) ⊂ T (Bm(0)) and
z − y ∈ Bε(−y) = −Bε(y) ⊂ T (Bm(0)). Since T (Bm(0)) is convex, we see that

z =
1
2

(z + y) +
1
2

(z − y) ∈ T (Bm(0)) .

Thus we have z ∈ T (Bm(0)) whenever ‖z‖Y < ε or, in other words, Bε(0) ⊂
T (Bm(0)). But then Bε(0) ⊂ T (Bm(0)) (Lemma 6.13). Multiplying ε and m by
r/m, we see that Br′(0) ⊂ T (Br(0)) for r′ = rε/m. ¤

The following corollary of the Open Mapping Theorem is known as the Inverse
Mapping Theorem.

Theorem 6.14. Any one-to-one and onto bounded linear mapping between Banach
spaces has a bounded inverse.

Proof. Any one-to-one map T from X onto Y has an inverse T−1 : Y → X. The
inverse image of a set A ∈ X by the map T−1 coincides with T (A). Therefore
Theorem 6.14 is an immediate consequence of the Open Mapping Theorem and
Theorem 6.3. ¤
4. The Closed Graph Theorem.

The direct product X ×Y of two normed linear spaces x and Y is a linear space
(by definition, (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and (x, y) = (λx, λy)). Given
(x, y) ∈ X × Y , we define ‖(x, y)‖ :=

√
‖x‖2X + ‖y‖2Y .

Exercise 6.15. Check that ‖(x, y)‖ defined on X × Y satisfies conditions of Defi-
nition 1.2 and is therefore a norm on the linear space X × Y . Show that X × Y is
complete with respect to this norm if and only if both spaces x and Y are complete.

Definition 6.16. The graph of a map T : X → Y , denoted Γ(T ), is the linear
subspace of X × Y given by Γ(T ) = {(x, y) ∈ X × Y : y = Tx}. In other words,
Γ(T ) = {(x, Tx) : x ∈ X}.
Theorem 6.17. Let X and Y be Banach spaces and T : X → Y be a linear
operator. Then T is bounded if and only if its graph Γ(T ) is closed in X × Y .

Proof. Assume first that T is bounded and consider a sequence (xn, yn) ∈ G(T )
such that (xn, yn) → (x, y) as n → ∞ in the Banach space X × Y . Then xn → x
in X and yn → y in Y . Since T is continuous, we also have Txn → Tx in Y .
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However, Txn = yn. Therefore y = Tx which means that (x, y) ∈ G(T ). Thus,
G(T ) is closed.

Conversely, suppose that G(T ) is closed in the Banach space X × Y . Then,
by Theorem 4.6, G(T ) is itself a Banach space with respect to the norm inherited
from X × Y . Consider the maps π1 : G(T ) → X and π2 : G(T ) → Y defined by
π1(x, Tx) = x and π2(x, Tx) = Tx. Evidently, both π1 and π2 are norm decreasing,
and so are bounded linear operators. Moreover, it is clear that π1 is both injective
and surjective. It follows, by the Inverse Mapping Theorem, that π−1

1 : X → G(T )
is bounded. But then

x
π−1
17→ (x, Tx) π27→ Tx ,

that is, T = π2 ◦ π−1
1 . Since π−1

1 and π2 are continuous, T is also continuous. ¤

Exercise 6.18. Let (Xk, ρk) be metric spaces and T1 : X1 → X2, T2 : X2 → X3

be continuous maps. Prove that the composition T2 ◦ T1 is a continuous map from
X1 to X3.

The closed graph theorem can be a great help in establishing the boundedness
of linear operators between Banach spaces. Indeed, in order to show that a linear
operator T : X → Y is bounded, one must establish essentially two things: firstly,
that if xn → x in X, then Txn converges in Y and, secondly, that this limit is
Tx. The closed graph theorem says that to prove that T is bounded it is enough
to prove that its graph is closed (provided, of course, that X and Y are Banach
spaces). This means that we may assume that xn → x and Txn → y, for some
y ∈ Y , and then need only show that y = Tx. In other words, thanks to the closed
graph theorem, the convergence of Txn can be taken as part of the hypothesis
rather than forming part of the proof itself.

Definition 6.19. A complete inner product space is called a Hilbert space.

The following corollary of Theorem 6.17 is known as Hellinger-Toeplitz theorem.

Corollary 6.20. Let A : H → H be a linear operator on a real or complex Hilbert
space H (defined on the whole space H) such that (Ax, y) = (x,Ay) for all x, y ∈ H.
Then A is bounded.

Proof. In view of Theorem 6.17, it is sufficient to show that G(A) is closed. Assume
that xn → x and Txn → y. We need to show that (x, y) ∈ G(A) or, in other words,
that y = Ax. For every z ∈ H,

(z, y) = lim
n→∞

(z, Axn) = lim
n→∞

(Az, xn) = (Az, x) = (z, Ax) .

Therefore (z, y−Ax) = 0 for all z ∈ H. Taking z = y−Ax, we see that y = Ax. ¤

7. Compactness in metric spaces

Intervals which are bounded and closed figure prominently in analysis on the real
line. The appropriate generalization of their essential properties that are relevant
to analysis in more general spaces is compactness. There are two definitions of
compactness in metric spaces which can be shown to be equivalent.
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Definition 7.1. A subset K of a metric space (X, ρ) is said to be (sequentially)
compact if any sequence of elements of K has a subsequence which converges to a
limit in K.

It is clear from the definition that K is compact in (X, ρ) if and only if it is
compact in (X,σ) for any metric σ equivalent to ρ.

The second definition needs a little terminology. If Ŝ is a family of subsets of
X and K ⊆ ∪ŜS then Ŝ is called a cover of K. If each member of Ŝ is open, it is
called an open cover of K. If Ŝ is a cover of K and a subset Ŝ0 of Ŝ also covers K
then Ŝ0 is called a subcover of Ŝ. A cover (or subcover) is said to be finite if it has
a finite number of members.

Definition 7.2. A subset K of a metric space (X, ρ) is said to be compact if any
open cover of K has a finite subcover.

Definition 7.3. A metric space (X, ρ) is said to be (sequentially) compact if the
set X is (sequentially) compact.

Theorem 7.4. A set is compact if and only if it is sequentially compact.

In order to prove this theorem we need the following auxiliary lemmas.

Lemma 7.5. A sequentially compact metric space (X, ρ) is complete.

Proof. Let {xn} ⊂ X be an arbitrary Cauchy sequence. Since X is compact, this
sequence has a subsequence which converges to a limit in X. By Lemma 4.3, the
whole sequence {xn} converges to the same limit. ¤
Lemma 7.6. A closed subset of a sequentially compact set is sequentially compact.

Proof. Let K be compact, K0 be a closed subset of K and {xn} be a sequence
of elements of K0. Since {xn} ⊂ K, this sequence has a convergent subsequence.
Since K0 is closed, the limit of this subsequence lies in K0. Therefore any sequence
of elements of K0 has a subsequence which converges to a limit in K0 which means
that K0 is compact. ¤
Lemma 7.7. If K is sequentially compact then, for any positive r, K can be rep-
resented as the union of a finite collection of closed subsets whose diameters are
not greater than r.

Proof. Let x1 ∈ K and A1 = K ∩ Br/2[x1]. Since A1 ⊂ Br/2[x1], the diameter of
A1 is not greater than r. Indeed, for all x, y ∈ A1 we have

ρ(x, y) 6 ρ(x, x1) + ρ(y, x1) 6 r/2 + r/2 = r .

If A1 coincides with K, we have obtained the required representation of K. If
not, we take x2 ∈ C(A1) ∩K and define A2 = K ∩ Br/2[x2]. If A1 ∪ A2 6= K we
take x3 ∈ C(A1 ∪ A2) ∩K, define A3 = K ∩ Br/2[x3] and so on. If this procedure
stops after finite number of steps then A1 ∪ A2 . . . ∪ Ak = K. If not, we obtain a
sequence xk such that ρ(xk, xj) > r/2 for all j 6= k (because xj lies outside the ball
Br/2[xk]). Clearly, such a sequence does not have any convergent subsequences,
which cannot be true since K is compact. ¤
Proof of Theorem 7.8. Let K be compact and suppose it is not sequentially com-
pact. Then there is a sequence xn of elements of K with no subsequence converging
to an element of K.
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We make the following observation: for any element x, if every open ball with
centre x contains xn for an infinite number of values of n then there is a subsequence
of xn converging to x. (To see this, simply choose an increasing sequence of integers
nk such that xnk

is in the ball centre x radius 1
k .) Hence every element of K must

fail this condition, or in other words, each element x of K is contained in some open
ball Brx

(x) which contains xn for only a finite number (possibly none) of values of
n. Now {Brx

(x) : x ∈ K} is an open cover of K and since K is compact, it has a
finite subcover. But then the union of these sets, and hence K would contain xn for
only a finite number of values of n which contradicts that xn ∈ K for all positive
integers n. Thus no such sequence xn exists and K is sequentially compact.

Let K be sequentially compact and suppose that K is not compact. Then there
exists an open cover Ŝ of K which does not have any finite subcover.

Let us represent K as the union of a finite collection of closed subsets whose
diameters are not greater than 1. At least one of these subsets cannot be covered
by a finite number of open sets S ∈ Ŝ. Denote this subset by A1. By Lemma 7.6
A1 is compact. Now we represent A1 as the union of a finite collection of closed
subsets whose diameters are not greater than 1/2, denote the subset which does
not admit a finite subcover by A2, and so on. Then we obtain a sequence of closed
sets A1 ⊃ A2 ⊃ A3 . . . such that diam Ak 6 k−1.

Let xn ∈ An be arbitrary elements of An. Then {xn} is a Cauchy sequence.
Indeed, since xn ∈ An0 for all n > n0 and diam An0 6 n−1

0 , we have ρ(xn, xk) 6 n−1
0

for all k, n > n0 and n−1
0 can be made arbitrarily small by choosing large n0. By

Lemma 7.5 the sequence xk converges to a limit x ∈ K. Since xn ∈ An0 for all
n > n0 and Ak are closed, the limit belongs to Ak for every k, that is, x ∈ ∩∞k=1Ak.

We have proved that ∩∞k=1Ak is not empty. Now let us note that ∩∞k=1Ak cannot
contain more than one point. Indeed, two points x and y cannot lie in a set whose
diameter is less than ρ(x, y), but diam Ak → 0 as k → 0. Thus the intersection
∩∞k=1Ak consists of one point x.

This point x belongs to at least one open set Sx ∈ Ŝ. Since Sx is open, it also
contains an open ball Br(x) for some positive r. If k−1 < r then

ρ(y, x) 6 diam Ak 6 k−1 < r

for all y ∈ Ak, which means that Ak ⊂ Br(x). Thus Ak is covered by the set Sx ⊃
Br(x) which contradicts to the fact that Ak does not admit a finite subcover. ¤
Definition 7.8. A subset K of a metric space (X, ρ) is bounded if, for some x ∈ X
and r > 0, we have K ⊂ Br(x).

Theorem 7.9. A compact set K is bounded and closed.

Proof. If K is not bounded then, for every x ∈ X, the family of balls Bn(x),
n = 1, 2, . . . , is an open cover of K which does not have a finite subcover.

If K is not closed, it does not contain at least one of its limit points. Consider a
sequence of elements of K which converges to this limit point. Every subsequence
of this sequence converges to the same limit point. Therefore such a sequence does
not have a subsequence which converges to a limit in K. ¤
Lemma 7.10. If K and L are compact subsets of metric spaces (X, ρ) and (Y, σ)
respectively then K × L as a subset of X × Y with the metric

d ((x1, y1), (x2, y2)) =
√

ρ(x1, x2)2 + σ(y1, y2)2 .
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is compact.

Proof. Let (xn, yn) be an arbitrary sequence in K × L. Since K is compact, there
is a subsequence xnk

which converges to a limit x ∈ K as k → ∞. Since L
is compact, the sequence ynk

has a subsequence ynki
which converges to a limit

y ∈ L as i → ∞. Since xnk
→ x as k → ∞, we also have xnki

→ x as i → ∞. By
definition of convergence, ρ(xnki

, x) → 0 and σ(ynki
, y) → 0 as i →∞. This implies

that d
(
(xnki

, ynki
), (x, y)

) → 0 as i → ∞, that is, (xnki
, ynki

) → (x, y) ∈ K × L.
Therefore any sequence (xn, yn) of elements of K × L has a subsequence which
converges to a limit in K × L. ¤

Theorem 7.11. A bounded and closed subset of Rn is compact.

Proof. Since any bounded subset lies in a closed cube Qn, in view of Lemma 7.6
it is sufficient to prove that the closed cube is compact. The closed cube Qn is a
direct product of a one dimensional closed cube Q1 (a closed interval) and a closed
cube Qn−1 ⊂ Rn−1. If Q1 and Qn−1 are compact then, by Lemma 7.10, Qn is also
compact. Therefore it is sufficient to prove that a closed interval is compact (after
that the required result is obtained by induction in n).

Let xn be an arbitrary sequence of numbers lying in a closed interval [a, b]. Let
us split [a, b] into the union of two intervals of length δ/2, where δ = b − a. At
least one of these intervals contains infinitely many elements xn of our sequence.
Let us choose one of these elements and denote it by y1. Now we split the interval
of length δ/2 which contains infinitely many elements xn into the union of two
intervals of length δ/4. Again, at least one of these intervals contains infinitely
many elements xn. We choose one of these elements (distinct from y1) and denote
it by y2. Repeating this procedure, we obtain a subsequence {yk} of the sequence
{xn} such that yk lie in an interval of length 2−k0 for all k > k0. Clearly, {yk}
is a Cauchy sequence. Since R is a complete metric space, {yk} converges to a
limit. Since a closed interval is a closed set, this limit belongs to [a, b] . Thus, any
sequence of elements of [a, b] has a subsequence which converges to a limit in [a, b],
which means that the closed interval is compact. ¤

Theorem 7.12. The image of a compact set by a continuous map is compact.

Proof. Let K be a compact set and T be a continuous map. Let yn be an arbitrary
sequence of elements of T (K). Then yn = Txn where xn ∈ K. Since K is compact,
the sequence {xn} has a subsequence {xnk

} which converges to a limit x ∈ K. Then
by Theorem 4.2 the subsequence ynk

= Txnk
converges to the limit Tx ∈ T (K).

This proves that T (K) is compact. ¤

Theorem 7.13. Let (X, ρ), (Y, σ) be compact metric spaces and T : (X, ρ) →
(Y, σ) be a continuous bijection. Then the inverse mapping T−1 is continuous.

Proof. Applying Theorem 4.8 to T−1, we see that it is sufficient to prove that the
inverse image (T−1)−1(B) = T (B) ⊂ Y is closed whenever the set B ⊂ X is closed.

If B is closed then, by Lemma 7.6 it is compact. By Theorem 7.12 T (B) is also
compact and therefore is closed (Theorem 7.9). ¤

Example 7.14. Let X be the space of continuously differentiable functions on a
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closed interval [a, b] and ρ, σ be the metrics on X defined as follows:

ρ(f, g) = sup
x∈[a,b]

|f(x)− g(x)|+ sup
x∈[a,b]

|f ′(x)− g′(x)| ,

σ(f, g) = sup
x∈[a,b]

|f(x)− g(x)| .

The identical map (X, ρ) → (X, σ) is a bijection and is continuous because fn
ρ→ f

implies fn
σ→ f . However, the inverse mapping is not continuous. Indeed, the

sequence fn(x) = n−1 sin(n2x) converges to the zero function with respect to the
metric σ but does not converge with respect to the metric ρ.

Definition 7.15. We say that a (real or complex-valued) function f defined on a
metric space f : (X, ρ) is uniformly continuous if for any ε > 0 there exists δ > 0
such that |f(x)− f(y)| 6 ε whenever ρ(x, y) 6 δ.

Obviously, a uniformly continuous function is continuous.

Theorem 7.16. If (X, ρ) is a compact metric space then any continuous function
f on (X, ρ) is uniformly continuous.

Proof. Let ε > 0. Since f is continuous, for every point x ∈ X there exists δx > 0
such that

|f(y)− f(x)| 6 ε/2 whenever ρ(y, x) 6 δx. (7.1)

Let Jx = Bδx/2(x). Since x ∈ Jx, the collection of open balls {Jx}x∈X , is an
open cover of X. Since X is compact, it has a finite subcover, that is, there
exists a finite collection of points x1, x2, . . . , xk such that X = ∪k

n=1Jxk
. Denote

δ = 1
2 min{δx1 , . . . δxk

}. Since the number of points xn is finite, we have δ > 0.
Let x, y ∈ X and ρ(x, y) 6 δ. Since X = ∪k

n=1Jxk
, there exists n such that

x ∈ Jxn , that is, ρ(x, xn) 6 δxn/2. By the triangle inequality

ρ(y, xn) 6 ρ(x, xn) + ρ(x, y) 6 δxn/2 + δ 6 δxn

and, in view of (7.1), |f(y)−f(x)| 6 |f(y)−f(xn)|+ |f(xn)−f(x)| 6 ε/2+ε/2 = ε.
Thus we have proved that for any ε > 0 there exists δ > 0 such that |f(x)−f(y)| 6 ε
whenever ρ(x, y) 6 δ. ¤

Further on in this section, for the sake of simplicity, we shall deal only with real-
valued functions. Theorems 7.18 and 7.20 can be easily generalized to complex-
valued functions by considering their real and imaginary parts separately.

Definition 7.17. If (K, ρ) is a metric space then C(K) denotes the linear space
of continuous functions f : K → R provided with the norm ‖f‖ = sup

x∈K
|f(x)| .

Theorem 7.18 (Weierstrass’ approximation theorem). Let P be the set of
polynomials in C[a, b], where [a, b] is a finite closed interval. Then P = C[a, b].

Proof. The theorem follows from Theorem 7.20 (see below).

There are many equivalent ways to state the above theorem. For example:
(1) Any continuous function on a closed bounded interval can be uniformly

approximated by polynomials.
(2) Let f be continuous on [a, b]. Given any ε > 0 there exists a polynomial p

such that |p(x)− f(x)| < ε for all x ∈ [a, b].
(3) The polynomials are dense in C[a, b].
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Clearly, if f, g ∈ C(K) then fg ∈ C(K). A linear space with this property is
called an algebra.

Definition 7.19. A set of functions P ∈ C(K) is said to be a subalgebra of C(K)
if P is a linear space and fg ∈ P whenever f, g ∈ P.

Theorem 7.20 (Stone–Weierstrass). Let K be a compact metric space and P
be a subalgebra of C(K). If

(1) P contains the constant functions and
(2) for every pair of points x, y ∈ K there exists a function f ∈ P such that

f(x) 6= f(y) (in other words, P separates the points of K)

then P = C(K).

Example 7.21. Finite sums of the form

c +
k∑

i=1

ai sin(ix) +
l∑

j=1

bj cos(jx) ,

where c, ai, bj are some constants, are called trigonometric polynomials. The Stone–
Weierstrass theorem implies that the trigonometric polynomials are dense in C[a, b]
for any closed interval [a, b], provided that b− a < 2π. Indeed,

(1) from the equalities

2 sin(nx) cos(mx) = sin((n + m)x) + sin((n−m)x) ,

2 sin(nx) sin(mx) = cos((n−m)x)− cos((n + m)x) ,

2 cos(nx) cos(mx) = cos((n−m)x) + cos((n + m)x)

it follows that the set of trigonometric polynomials is a subalgebra;
(2) if sin(nx) = sin(ny) and cos(nx) = cos(ny) for all n then the equalities

0 = sin(nx)− sin(ny) = 2 cos
n(x + y)

2
sin

n(x− y)
2

,

0 = cos(ny)− cos(nx) = 2 sin
n(x + y)

2
sin

n(x− y)
2

imply that sin n(x−y)
2 = 0 for all n. This is only possible if (x−y)

2 = kπ for
some integer k, which implies that x = y (since b− a < 2π).

Proof of Theorem 7.20. The proof of Theorem 7.20 proceeds in a number of steps.

Step 1. If b > 0 and ε > 0 then the function f(y) =
√

y + ε can be uniformly
approximated by polynomials on the interval [0, b].

Proof 1. The function
√

z is analytic on the open half-line (0, +∞). Therefore its
Taylor series

∑∞
k=1 ck (z − c)k converges to

√
z uniformly on every closed interval

[c−L, c+L] ⊂ (0,+∞) (it is a standard result from complex analysis). Taking c =
b
2 +ε, L = b

2 and z = y+ε we see that the sequence of polynomials
∑n

k=1 ck (y− b
2 )k

converges to
√

y + ε uniformly on [0, b] as n →∞.
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Step 2. Given a > 0 there exists a sequence of polynomials Pn(t) converging
uniformly to the function f(t) = |t| on [−a, a].

Proof 2. Let fn(t) =
√

t2 + n−1. Then

sup
t∈[−a,a]

|f(t)− fn(t)| = sup
t∈[−a,a]

(√
t2 + n−1 − |t|

)
6 n−1/2 .

By the above, the function
√

y + n−1 can be uniformly approximated by polyno-
mials on the interval [0, a2]. Let us choose a polynomial Qn(y) such that

sup
y∈[0,a2]

|Qn(y)−
√

y + n−1 | 6 n−1 .

Then

sup
t∈[−a,a]

|f(t)−Qn(t2)| 6 sup
t∈[−a,a]

|f(t)− fn(t)|+ sup
t∈[−a,a]

|fn(t)−Qn(t2)|

= sup
t∈[−a,a]

|f(t)− fn(t)|+ sup
y∈[0,a2]

|Qn(y)−
√

y + n−1| 6 n−1 + n−1/2 → 0

as n →∞ . Thus, we can take Pn(t) := Qn(t2). ¤
Step 3. If ϕ ∈ P then |ϕ| ∈ P.

Proof 3. First note that P is an algebra. For this we need to show that sums,
products and scalar multiples of elements of P are in P. If f, g ∈ P then we have
pn, qn ∈ P such that pn → f and qn → g in C(K). But then since P is an algebra,
pnqn ∈ P and from the relation

‖pnqn − fg‖ 6 ‖pn‖ ‖qn − g‖+ ‖pn − f‖ ‖g‖
it is clear that pnqn → fg, showing that fg ∈ P. Similar (even easier) arguments
show that f + g ∈ P and λf ∈ P.

Now suppose ϕ ∈ P and let a = ‖ϕ‖ = sup
x∈K

|ϕ(x)|. For x ∈ K, define Pϕ,n(x) =

Pn[ϕ(x)], where Pn are the same polynomials as in Step 2. Then Pϕ,n ∈ P. Also,
if

|Pn(t)− |t| | < ε , ∀t ∈ [−a, a] ,

then
|Pϕ,n(x)− |ϕ(x)| | < ε , ∀x ∈ K .

Thus it follows from Step 2 that Pϕ,n → |ϕ| in C(K) and so |ϕ| ∈ P. ¤
Step 4. If ϕ, ψ ∈ P then ϕ ∨ ψ and ϕ ∧ ψ defined by

(ϕ ∨ ψ)(x) = max{ϕ(x), ψ(x)} , (ϕ ∧ ψ)(x) = min{ϕ(x), ψ(x)}
are both in P.

Proof 4. This is obvious from Step 3 and the relations

(ϕ ∨ ψ)(x) =
1
2

[ ϕ(x) + ψ(x) + |ϕ(x)− ψ(x)| ]

(ϕ ∧ ψ)(x) =
1
2

[ ϕ(x) + ψ(x)− |ϕ(x)− ψ(x)| ] .

¤
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Step 5. Given any f ∈ C(K) and any y ∈ K, for any ε > 0 there exists ϕy ∈ P
such that f(y) = ϕy(y) and ϕy(x) > f(x)− ε for all x ∈ K.

Proof 5. We first find, for each z ∈ K, an element ψy,z of P such that ψy,z(y) =
f(y) and ψy,z(z) = f(z). This is easy since there is a function p ∈ P such that
p(y) 6= p(z). We now solve

f(z) = λ + µ p(z) ,

f(y) = λ + µ p(y)

for λ and µ and take ψy,z(x) = λ + µ p(x) (using that the constant function λ is in
P).

Since f and ψy,z are continuous, we can find δz such that |ψy,z(x) − f(x)| < ε
whenever x ∈ Bδz (z). Then we have ψy,z(x) > f(x)− ε for all x ∈ Bδz (z).

The family {Bδz (z) : z ∈ K} covers K and, since K is compact, we can find a
finite subcover {Bδi(zi) : 1 6 i 6 n} (we write δi for δzi). Now put

ϕy = ψy,z1 ∨ ψy,z2 ∨ . . . ∨ ψy,zn = max{ψy,z1 , ψy,z2 , . . . , ψy,zn} .

Since ψy,zi(y) = f(y) for each i it is clear that ϕy(y) = f(y). Also, for any x ∈ K
we have x ∈ Bδj (zj) for some j and so

ϕy(x) > ψy,zj (x) > f(x)− ε.

¤
Step 6. Given any f ∈ C(K), for any ε > 0 there exists ϕ ∈ P such that f(x)+ε >
ϕ(x) > f(x)− ε for all x ∈ K.

Proof 6. We use the same idea as in Step 5 but work exclusively with the functions
{ϕy} which all satisfy ϕy(x) > f(x)− ε for all x ∈ K.

Since ϕy is continuous and ϕy(y) = f(y), we can find δy such that |ϕy(x) −
f(x)| < ε whenever x ∈ Bδy (y). Then we have ϕy(x) < f(x) + ε for all x ∈ Bδy (y).

The family {Bδy (y) : y ∈ K} covers K and, since K is compact, we can find a
finite subcover {Bδi(yi) : 1 6 i 6 m} (we write δi for δyi). Now put

ϕ = ϕy1 ∧ ϕy1 ∧ . . . ∧ ϕy1 = min{ϕy1 , ϕy2 , . . . , ϕyn} .

Clearly ϕ(x) > f(x) − ε for all x ∈ K since it is the minimum of a finite set of
functions each having this property. Also for any x ∈ K we have x ∈ Bδj (yj) for
some j and so

ϕ(x) 6 ϕyj (x) < f(x) + ε .

Since ε can be chosen arbitrarily small, this completes the proof of the Stone-
Weierstrass Theorem. ¤

8. Linear continuous functionals and seminorms

1. Locally convex linear spaces.
Let X be a linear space. We shall be assuming, for the sake of definiteness,

that X is a real vector space, in other words, λx ∈ X and x1 + x2 ∈ X whenever
x, x1, x2 ∈ X and λ ∈ R. Similar results remain valid for complex vectors space
(where we take λ ∈ C).
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Definition 8.1. A function p : X → R is said to be a seminorm on X if
(1) p(x) > 0 for all x ∈ X,
(2) p(λx) = |λ| p(x) for all x ∈ X and λ ∈ R,
(3) p(x1 + x2) 6 p(x1) + p(x2) for all x1, x2 ∈ X (it is called the triangle

inequality).

Recall that a norm ‖ · ‖ on X satisfies all the same conditions and, in addition,
vanishes only on the zero vector. If p is a seminorm then, in view of (2), we have
p(0) = 0 but we do NOT assume that p(x) = 0 only if x = 0.

Consider a family of seminorms P = {pθ}θ∈Θ defined on the same space X; here
Θ is an arbitrary non-empty index set. If

(S) for every x 6= 0 there exists pθ ∈ P such that pθ(x) 6= 0
then one can define convergence in the space X as follows.

Definition 8.2. Let the condition (S) be fulfilled. We say that a sequence {xn}
converges to x in X if pθ(x− xn) → 0 as n →∞ for all pθ ∈ P .

Remark. If P includes only one seminorm p and p is a norm then Definition 8.2
coincides with the usual definition of convergence in a normed linear space. If the
condition S is not fulfilled then Definition 8.2 does not make much sense. Indeed,
if x 6= 0 but pθ(x) = 0 for all pθ ∈ P then the sequence xn := nx converges to the
zero vector which is nonsense.

Obviously, the notion of convergence in X does not change if we add to the
family P a new seminorm p such that

p(x) 6 C max{pθ1(x), pθ2(x), . . . , pθm(x)} , ∀x ∈ X , (8.1)

where C is a positive constant and pθ1 , pθ2 , . . . , pθm is a finite family of seminorms
pθj ∈ P . Let Pmax be the family of seminorms which is obtained by adding to P
all possible seminorms p on X satisfying (8.1). Clearly, P ⊂ Pmax and a seminorm
p belongs to Pmax whenever p satisfies (8.1) with some pθj ∈ Pmax .

Example 8.3. Consider the linear space X of real-valued functions f on a non-
empty set Θ. If we define the seminorms pθ by p(f) := |f(θ)| then convergence in
X is equivalent to pointwise convergence. A seminorm p belongs to Pmax if and
only if there exist a constant C > 0 and a finite family of points θ1, θ2, . . . , θn ∈ Θ
such that p(f) 6 C max{|f(θ1)|, |f(θ2)|, . . . , |f(θn)|} for all f ∈ X .

Theorem 8.4. If P satisfies (S) and is countable then there exists a metric on X
such that xn → x if and only if ρ(xn, x) → 0.

Proof. If P = {p1, p2, . . . } then we can take

ρ(x, y) :=
∞∑

k=1

2−k pk(x− y)
1 + pk(x− y)

. (8.2)

Indeed this function is a metric and ρ(xn, x) → 0 if and only if pk(x− xn) → 0 for
all k. ¤

Given a family of seminorms P satisfying (S), one can define open and closed
subsets of X as follows.
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Definition 8.5. Consider the class of subsets of X which consists of
(1) all inverse images p−1(D), where p ∈ Pmax and D is an open subset of R ;
(2) all sets of the form {x0 + p−1(D)} with x0 ∈ X, that is, all sets obtained

from the inverse images introduced in (1) by adding a fixed vector x0 ∈ X
to each element;

(3) all possible unions of the sets introduced in (2).
These sets are said to be open. The closed sets are defined as complements of open
sets.

Definition 8.6. The pair (X,P ), where X is linear space and P is a family of
seminorms satisfying the condition (S), is called a locally convex space. The open
and closed sets and convergence in the locally convex space are defined as above.

Remark. Every normed linear space is a locally convex space. A general metric
space (X, ρ) may not be locally convex even if X is a linear space.

If p ∈ Pmax and x ∈ X, let us denote

Br,p(x) := {y ∈ X : p(x− y) < r} .

Obviously, Br,p(x) = B1,p′(x) where p′(x) := r−1p(x) ∈ Pmax.

Lemma 8.7. A set Ω ⊂ X is open if and only if for every x ∈ Ω there exists a
seminorm p ∈ Pmax such that B1,p(x) ⊂ Ω.

Proof. Assume first that Ω is open and x ∈ Ω. By Definition 8.5 (3), Ω is the union
of a collection of sets of the form {x0 + p−1(D)} . Therefore there exists x0 ∈ X
and an open set D ⊂ R such that

x ∈ {x0 + p−1(D)} ⊂ Ω .

Denote p(x− x0) := a. The inclusion x ∈ {x0 + p−1(D)} means that a ∈ D. Since
D is open, there exists a constant r > 0 such that (a− r, a+ r) ⊂ D. If y ∈ Br,p(x)
then, by the triangle inequality,

|p(y − x0)− a| = |p(y − x0)− p(x− x0)| 6 p(y − x) < r .

Therefore p(y − x0) ∈ (a − r, a + r) ⊂ D, that is, y ∈ {x0 + p−1(D)} ⊂ Ω . This
proves that Br,p(x) ⊂ Ω or, equivalently, B1,p′(x) ⊂ Ω where p′(x) := r−1p(x).

On the other hand, we have x ∈ B1,p(x) = {x + p−1(−1, 1)}. If for every x ∈ Ω
there exists px ∈ Pmax such that {x+p−1

x (−1, 1)} ⊂ Ω then
⋃

x∈Ω{x+p−1
x (−1, 1)} =

Ω and Ω is open by Definition 8.5 (3). ¤
Now we can give another definition of convergence in terms of open sets.

Definition 8.2′. We say that xn → x if for every open set Ω containing x there
exists nΩ such that xn ∈ Ω for all n > nΩ.

One can easily prove that Definition 8.2′ is equivalent to Definition 8.2.

Remark. If there exists a metric on X which generates the same open set as the
collection of seminorms P then the locally convex space (X, P ) is called metrizable.
Lemma 8.7 implies that, under conditions of Theorem 8.4, a set Ω ∈ X is open if
and only if it is open with respect to the metric (8.2), that is, the space (X,P ) is
metrizable. Note that the standard definitions of closed and compact sets, continu-
ous functions and so on, which involve convergent sequences (see CM321A Lecture
Notes) do not work in a locally convex space if it is not metrizable. In particular,
the fact that q(xn) → q(x) whenever xn → x does NOT necessarily imply that the
function q is continuous in the sense of Definition 8.9 (see below).
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Example 8.8. If X is the locally convex space introduced in Example 8.3 and Ω is
a subset of X then the minimal closed set which contains Ω does NOT necessarily
coincide with the set obtained by adding to Ω the limits of all convergent sequences
{fn} ⊂ Ω. Indeed, assume that Θ is not countable and consider the set Ω of all
functions f on Θ each of which takes the value 1 on a finite subset of Ω and is
equal to 0 outside this subset. Let f0 be the function identically equal to 1 on Θ.
Then a sequence {fn} ⊂ Ω cannot converge to f0 because all the function fn vanish
at some point θ ∈ Θ. On the other hand, every open ‘ball’ Br,p(f0) contains at
least one element of Ω. This implies that f0 belongs to the intersection of all closed
subsets which contain Ω.

Definition 8.9. Let (X,P ) and (Y, Q) be locally convex spaces. We say that a
map T : X → Y is continuous if the inverse image of every open subset of Y is open
in X. In particular, a function q : X → R is said to be continuous if the inverse
image of every open subset of R is open in X.

Note that all seminorms p ∈ Pmax are continuous. Indeed, the inverse images
p−1(D) of open sets D ∈ R are open by Definition 8.5 (1).

Theorem 8.10. A linear map T : (X, P ) → (Y, Q) is continuous if and only if for
every q ∈ Qmax there exists p ∈ Pmax such that q(Tx) 6 p(x) for all x ∈ X.

Proof. Assume first that T is continuous. Consider the inverse image T−1 (B1,q(0))
of the open set B1,q(0) = q−1(−1, 1) ⊂ Y . By Lemma 8.7 there exists a seminorm
p ∈ Pmax such that B1,p(0) ⊂ T−1 (B1,q(0)), that is, q(Tx) < 1 whenever p(x) < 1.
This implies that q(Tx) 6 2p(x) for all x ∈ X such that p(x) = 1/2. Since
q(Tλx) = λq(Tx) and p(λx) = λp(x) for all λ > 0, the same estimate holds true
for all x ∈ X. Therefore we have q(Tx) 6 p′(x) for p′(x) := 2p(x) ∈ Pmax.

Assume now that for every q ∈ Qmax there exists p ∈ Pmax such that q(Tx) 6
p(x). Let Ω ⊂ Y be an open set and x ∈ T−1(Ω) be an arbitrary element of
T−1(Ω). Then Tx ∈ Ω and, by Lemma 8.7, there exists a seminorm q ∈ Qmax such
that B1,q(Tx) ⊂ Ω. Let p be the corresponding seminorm on X. If y ∈ B1,p(x)
then q(Ty − Tx) 6 p(y − x) < 1 . This implies that Ty ∈ B1,q(Tx) ⊂ Ω and,
consequently, y ∈ T−1(Ω) . Therefore B1,p(x) ⊂ T−1(Ω) and, by Lemma 8.7, the
set T−1(Ω) is open. ¤

Definition 8.11. A linear map q : X → R is said to be a linear functional on X.

Let X∗ be the space of linear continuous functionals on X. We shall denote
elements of X∗ by x∗ and the value of the functional x∗ ∈ X∗ on the vector
x ∈ X by 〈x, x∗〉. If x∗ is a linear functional on X then the function px∗ defined
by px∗(x) := |〈x, x∗〉| is a seminorm on X as it satisfies the conditions (1)–(3) of
Definition 8.1. By Theorem 8.10, a linear functional x∗ is continuous if and only if
px∗ ∈ Pmax . This immediately implies that X∗ is a linear space.

The following result (given without proof) is the celebrated Hahn–Banach the-
orem.

Theorem 8.12. Let p ∈ Pmax and Y be an arbitrary subspace of X. Then any
linear functional x∗ on Y such that |〈x, x∗〉| 6 p(x) for all x ∈ Y can be extended to
a functional on the whole space X which satisfies the same estimate for all x ∈ X.



CMMS05 BASIC ANALYSIS 25

2. Linear continuous functionals on a Hilbert space. In this subsection we
shall consider a Hilbert space H, that is, a complete inner product space H with
an inner product (·, ·) and the norm defined by ‖x‖ :=

√
(x, x).

The following theorem is easily seen to be false in some normed linear spaces.

Theorem 8.13. Let H be a Hilbert space, H0 be a closed subspace of H and x be
an arbitrary element of H. Then there exists a unique vector y0 ∈ H0 such that
‖x− y0‖ 6 ‖x− y‖ for all y ∈ H0.

Proof. Let δ = inf{‖x− y‖ : y ∈ H0}; we seek y0 ∈ H0 with δ = ‖x− y0‖. Choose
any sequence yn ∈ H0 such that ‖x − yn‖ → δ We wish to replace the distance-
approximating sequence yn by a distance-achieving vector y. We will show that the
sequence yn. converges to a suitable vector y0; to this end it will suffice to show
that yn is a Cauchy sequence. If m and n are large, we know that ‖x − ym‖ and
‖x− yn‖ are near δ; we need to show that ym and yn are near each other.

Consider y, z ∈ H0. We are interested in estimating ‖z − y‖ in terms of ‖x− y‖
and ‖z − x‖. This suggests looking at the equation z − y = (x− y)− (x− z). By
the parallelogram law,

‖(x− y)− (x− z)‖2 + ‖(x− y) + (x− z)‖2 = 2‖x− y‖2 + 2‖z − x‖2,
thus

‖z − y‖2 = 2‖x− y‖2 + 2‖z − x‖2 − ‖2x− y − z‖2.
Since z + y ∈ H0, we have ‖2x− y − z‖2 > 4δ2. Therefore

‖z − y‖2 6 2‖x− y‖2 + 2‖z − x‖2 − 4δ2. (8.3)

In particular,
‖ym − yn‖2 6 2‖x− yn‖2 + 2‖ym − x‖2 − 4δ2.

Since the right side tends to 0 as m,n →∞, we have ‖ym− yn‖ → 0, which means
that yn is a Cauchy sequence. Since H is complete, the sequence yn converges to a
limit y0, for which we have ‖x− y0‖ = δ. This proves existence of the minimizing
vector.

To see that y0, is unique, suppose that z0 ∈ H0 also satisfies ‖x−z0‖ = δ. Then,
by (8.3), ‖z − y‖2 6 0, which implies z0 = y0. ¤

If H0 ⊂ H, denote by H⊥
0 the set of vectors z ∈ H such that (y, z) = 0 for

all y ∈ H0. The set H⊥
0 is called the annihilator of H0. Obviously, H0 is a linear

subspace of H.

Theorem 8.14. Let H0 be a closed linear subspace of a Hilbert space H. Then for
each x ∈ H there exists a unique representation x = y+z with y ∈ H0 and z ∈ H⊥

0 .

Proof. Uniqueness is easy: if x = y1+z1 = y2+z2 with y1, y2 ∈ H0 and z1, z2 ∈ H⊥
0

then the vector y1 − y2 = z2 − z1 belongs both to H0 and to H⊥
0 , which implies

that ‖y1 − y2‖ = 0.
In order to prove existence, let us consider the vector y0 ∈ H0 such that ‖x−y0‖ 6

‖x− ỹ‖ for all ỹ ∈ H0 (Theorem 8.13). Set z = x− y0; it will suffice to show that
z ∈ H⊥

0 . Given y ∈ H0, we must show that (z, y) = 0; we can suppose ‖y‖ = 1.
Direct calculation shows that

‖z − (z, y)y‖2 = ‖z‖2 − |(z, y)|2 .
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Since z − (z, y)y = x − (y0 + (z, y)y) and ỹ := (y0 + (z, y)y) ∈ H0, it follows from
the definition of y0 that

‖z‖2 = ‖x− y0‖2 6 ‖x− ỹ‖2 = ‖z − (z, y)y‖2 = ‖z‖2 − |(z, y)|2.

Thus (z, y) = 0. ¤

Lemma 8.15. If H0 is a closed linear subspace of H then H⊥⊥
0 = H0.

proof. If y ∈ H0 then (z, y) = 0 for all z ∈ H⊥
0 , which implies that y ∈ H⊥⊥

0 . On
the other hand, if x ∈ H⊥⊥

0 then , by Theorem 8.14 we have x = y + z with y ∈ H0

and z ∈ H⊥
0 . Since y ∈ H⊥⊥

0 , we also have z = x− y ∈ H⊥⊥
0 . Therefore (z, z) = 0,

that is, z = 0. This implies that x ∈ H0. ¤

The following result is often called the Riesz representation theorem or Riesz
lemma.

Theorem 8.16. If x′ ∈ H then x → (x, x′) is a linear continuous functional on H.
Conversely, for every linear continuous functional x∗ on a Hilbert space H there
exists a unique vector x′ ∈ H such that 〈x, x∗〉 = (x, x′) for all x ∈ H.

Proof. Since |(x, x′)| 6 c ‖x‖ with c = ‖x′‖, the first statement follows from Theo-
rem 8.10.

Let us consider an arbitrary linear continuous functional x∗ on H. If 〈x, x∗〉 = 0
for all x ∈ H then we can take x′ = 0. If x∗ is not identically equal to zero then
the set H0 = {x ∈ H : 〈x, x∗〉 = 0} is a linear subspace of H and H0 6= H. The
subspace H0 is closed because it is the inverse image of the closed subset of the real
line which consists of one point 0. By Theorem 8.14 there exists a nonzero z ∈ H⊥

0 ;
we can suppose that 〈z, x∗〉 = 1 (otherwise we multiply z by a suitable constant).
Then x − 〈x, x∗〉z ∈ H0 for every x ∈ H. This implies that (x − 〈x, x∗〉z, z) = 0,
that is, (x, z) = 〈x, x∗〉‖z‖2. Thus, we obtain 〈x, x∗〉 = (x, x′) with x′ = ‖z‖−2z. If
〈x, x∗〉 = (x, x̃′) for some other vector x̃′ then (x, x′− x̃′) = 0 for all x ∈ H. Taking
x = x′ − x̃′ we see that x′ = x̃′. This proves the uniqueness of x′. ¤

9. Tempered distributions

Definition 9.1. Denote by S(R) the space of infinitely differentiable functions ϕ
on R such that

pm,n(ϕ) := sup
x∈R1

|xm ϕ(n)(x)| < ∞

for all n,m = 0, 1, . . . , where ϕ(n) denotes the nth derivative of ϕ and ϕ(0) := ϕ.

If P is the family of seminorms {pm,n}m,n=0,1,... then {S(R1), P} is a locally
convex space which is called the space of test functions.

A map f : S(R1) → C is said to be a functional on S(R1). The value of functional
f on the function ϕ ∈ S(R1) is denoted by 〈f, ϕ〉. We say that the functional f is
linear if

〈f, αϕ + βψ〉 = α 〈f, ϕ〉 + β 〈f, ψ〉 , ∀ϕ, ψ ∈ S(R1) , ∀α, β ∈ C .
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Definition 9.2. Linear continuous functionals on S(R1) are said to be the (tem-
pered) distributions.

The distributions form a linear space. If ϕ,ψ ∈ S(R) and α, β ∈ C, we define
the distribution αf + βg by

〈αf + βg, ϕ〉 = α 〈f, ϕ〉 + β 〈g, ϕ〉 , ∀ϕ ∈ S(R) .

The linear space of distributions is denoted by S ′(R).

Example 9.3. If f ∈ S(R) then the functional on S(R) defined by 〈f, ϕ〉 =∫
f ϕ dx is a distribution.

Example 9.4. Let x ∈ R be a fixed point. The distribution δx defined by

〈δx, ϕ〉 = ϕ(x) , ∀ϕ ∈ S(R),

is said to be the δ-function at x. The δ-function is one of the simplest distributions;
its value 〈δx, ϕ〉 depends only on the value of ϕ at one fixed point x.

One can do with the distributions almost all the same things as with the functions
from S(R). The basic idea is as follows. Assume that we are going to extend a
linear operator T in the space S(R) to the space S ′(R). First, we take ψ ∈ S(R)
and write

〈Tψ, ϕ〉 =
∫

Tψ ϕ dx , ∀ϕ ∈ S(R)

(here we consider the function Tψ as a distribution). Then we try to find a linear
operator T ′ in S(R) such that

〈Tψ, ϕ〉 =
∫

ψ T ′ϕdx , ∀ϕ ∈ S(R) .

Finally, for f ∈ S(R1) we define Tf by

〈Tf, ϕ〉 = 〈f, T ′ϕ〉 , ∀ϕ ∈ S(R1) . (9.1)

Obviously, (9.1) defines a linear functional Tf on S(R1). If T ′ is continuous in
S(R1) then ϕk → ϕ implies 〈Tf, ϕk〉 → 〈Tf, ϕ〉. In this case the functional Tf is
continuous, so Tf ∈ S ′(R1).

Definition 9.5. Let h be an infinitely smooth function on R1 such that

|dkh/dxk| 6 ck (1 + x2)mk , ∀ k = 0, 1, . . . ,

with some constants ck > 0 and mk > 0. Then ϕ → hϕ is a continuous operator
in S(R1), and for f ∈ S ′(R1) we define hf by

〈hf, ϕ〉 = 〈f, hϕ〉 , ∀ϕ ∈ S(R) .
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Definition 9.6. Differentiation is a continuous operator in S(R), so for f ∈ S ′(R)
we define f ′ by 〈f ′, ϕ〉 := −〈f, ϕ′〉 , ϕ ∈ S(R) .

Definitions 9.5 and 9.6 allow one to consider differential operators on the space
of distributions. It is very important in applications as many differential equa-
tions do not have classical solutions but have solutions in the class S ′(R) (so-called
generalised solutions).

Example 9.7. Let

f(x) =
{

0, x < 0,

1, x > 0 .

Then for all ϕ ∈ S(R) we have

−〈f, ϕ′〉 = −
∫

f ϕ′ dx = −
∫ ∞

0

ϕ′ dx = ϕ(0) .

Therefore f ′ coincides with the δ-function at x = 0.
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