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1. Series expansions

One of the fundamental methods of solving various problems in applied mathe-
matics, such as solving differential equations or partial differential equations, is to
express the required function as a series

f(x) =
∑

k

ck ϕk(x)

where ϕk(x) are suitable elementary functions, and then to determine the coeffi-
cients either exactly or approximately. This procedure is also of value when writing
the programmes for pocket calculators where one has very limited storage space.
Thus for a function such as sin x the calculator may just store ten coefficients
c1, . . . c10 of an expansion of sin x using Chebyshef polynomials. Other special
functions then just correspond to different coefficients c1, . . . c10. The best values
of c1, . . . c10 may have been determined by a large computer.

Power series.
The first way of writing down such an expansion is to try

f(x) =
∑

k

ck xk , −R < x < R .

This has two bad features.

(1) Even when possible its rate of convergence can be very slow so it is not
useful for numerical purposes.

(2) If there is such an expansion then f must be infinitely differentiable on
(−R, R) with

f ′(x) =
∑

k

ck k xk−1 , f ′′(x) =
∑

k

ck k(k − 1)xk−2 , . . .

Thus the expansion only exists for rather special functions, which are called
the analytic functions.
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Definition of Fourier series.
Fourier analysis consists of the theory and applications of another type of expansion,
the simplest example of which is

f(x) =
∞∑

k=−∞
ck eikx , x ∈ R1 , (1.1)

where eikx = cos kx + i sin kx. It is clear that such an expansion can only work for
2π-periodic functions

f(x) = f(x + 2π) , ∀x ∈ R1 .

But apart from this condition it turns out that the expansion exists, is useful, and
has a rich theory for a very large class of functions f . Periodic functions are often
restricted to (−π, π] or [0, 2π), and we shall choose the former, in which case one
has no limitations on f (yet).

We shall have to assume that f is well enough behaved for various integrals such
as ∫ π

−π

|f(x)|2 dx ,

∫ π

−π

e−ijx f(x) dx , etc

to exist and be finite. For the time being we assume that f is piecewise continuous,
i.e.,

−π = y0 < y1 < y2 < · · · < yn−1 < yn = π

and f is continuous in each interval (yi, yi+1) with left and right hand limits
at the end points.

The actual values f(yi) are arbitrary apart from the periodicity condition f(y0) =
f(yn).

We need a method of calculating the coefficients ck in the hypothetical expansion
(1.1). Assuming that we can integrate the series term by term we get

∫ π

−π

e−imx f(x) dx =
∞∑

k=−∞
ck

∫ π

−π

ei(k−m)x dx = 2πcm , (1.2)

so

cm = (2π)−1

∫ π

−π

e−imx f(x) dx . (1.3)

We shall rigorously prove that cm must be of this form later. But for the time being
we shall just call cm defined by (1.2) the Fourier coefficients of f and ask whether
the series

∑∞
k=−∞ ck eikx does indeed converge to f(x).
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Sine and cosine expansions.
Since

cos kx =
eikx + e−ikx

2
, sin kx =

eikx − e−ikx

2i
, (1.4)

we have

ck eikx + c−k e−ikx

= (2π)−1

∫ π

−π

(
eik(x−y) + e−ik(x−y)

)
f(y) dy = π−1

∫ π

−π

f(y) cos k(x− y) dy

= π−1

∫ π

−π

f(y) (cos kx cos ky + sin kx sin ky) dy = ak cos kx + bk sin kx

for all k > 0 . Here

ak = π−1

∫ π

−π

f(x) cos kx dx , bk = π−1

∫ π

−π

f(x) sin kx dx ,

in particular, b0 = 0. Clearly, if the function f is real then the coefficients ak and
bk are real as well.

Now we obtain

∞∑

k=−∞
ck eikx =

a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx) .

If f is even, that is
f(x) = f(−x) , ∀x ∈ (−π, π] ,

then bk = 0 for all k. So we expect

f(x) =
a0

2
+

∞∑

k=1

ak cos kx (the cosine series)

If f is odd , that is
f(x) = −f(−x) , ∀x ∈ (−π, π] ,

then ak = 0 for all k. So we expect

f(x) =
∞∑

k=1

bk sin kx (the sine series)

The actual convergence of these series is dependent upon the convergence of
the Fourier exponential series (1.1), which is much more convenient for theoretical
purposes. Once we have proved the convergence we will be able to turn to a variety
of applications.

Remark. Let a be an arbitrary positive number. If f is a 2π-periodic, then the
function g(x) = f(2πa−1x) is a-periodic, that is

g(x) = g(x + a) , ∀x ∈ R1 .
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Therefore changing the variable x we can reformulate all the results for a-periodic
functions. In particular, (1.1) implies

g(x) =
∞∑

k=−∞
ck e2πika−1x ,

and by (1.3)

ck = (2π)−1

∫ π

−π

e−ikx f(x) dx = (2π)−1

∫ π

−π

e−ikx g
(ax

2π

)
dx

= a−1

∫ a/2

−a/2

e−2πika−1x g(x) dx .
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2. Convergence of Fourier series

We first need the following lemma.

Lemma 2.1 (Bessel’s inequality). If ck are the Fourier coefficients of f and∫ π

−π
|f(x)|2 dx < ∞ then

∞∑

k=−∞
|ck|2 6 (2π)−1

∫ π

−π

|f(x)|2 dx (2.1)

Proof. We calculate

|f(x)−
N∑

k=−N

ck eikx| 2 =

(
f(x)−

N∑

k=−N

ck eikx

) (
f(x)−

N∑

k=−N

ck eikx

)

= |f(x)|2 −
N∑

k=−N

ck f(x)e−ikx −
N∑

k=−N

ck f(x)eikx +
N∑

k,m=−N

ck cm ei(k−m)x ,

so

∫ π

−π

|f(x)−
N∑

k=−N

ck eikx| 2 dx =
∫ π

−π

|f(x)|2 dx −
N∑

k=−N

ck

∫ π

−π

e−ikx f(x) dx

−
N∑

k=−N

ck

∫ π

−π

eikx f(x) dx +
N∑

k,m=−N

ck cm

∫ π

−π

ei(k−m)x dx

=
∫ π

−π

|f(x)|2 dx − 2π

N∑

k=−N

ck ck − 2π

N∑

k=−N

ck ck + 2π

N∑

k=−N

ck ck

=
∫ π

−π

|f(x)|2 − 2π

N∑

k=−N

|ck|2 .

This implies that

N∑

k=−N

|ck|2 6 (2π)−1

∫ π

−π

|f(x)|2 dx , ∀N = 1, 2, . . .

Since we have the required inequality for all finite N , the same holds for the infinite
series. ¤

Remark. Later we shall actually show that (2.1) is an equality .

Corollary 2.2 (Riemann–Lebesgue lemma). Let −∞ < a < b < ∞ and let∫ b

a
|f(x)|2 dx < ∞. Then

∫ b

a

eikx f(x) dx → 0 , k → ±∞ . (2.2)
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Proof. For sufficiently large N we have −2Nπ−π < a < b < 2Nπ+π. If we extend
f by zero to the interval (−2Nπ − π, 2Nπ + π) then

∫ b

a

eikx f(x) dx =
∫ 2Nπ+π

−2Nπ−π

eikx f(x) dx

=
j=N∑

j=−N

∫ 2jπ+π

2jπ−π

eikx f(x) dx =
j=N∑

j=−N

∫ π

−π

eikx f(x + 2jπ) dx .

The functions f(x + 2jπ) are square integrable on the interval (−π, π), so it is
sufficient to prove (2.2) assuming that a = −π and b = π.

In this case
∫ π

−π
eikx f(x) dx are the Fourier coefficients ck of the function f .

In view of Bessel’s inequality the series
∑ |ck|2 is convergent. This implies that

|ck|2 → 0 and, consequently, ck → 0.

Remark. In view of (1.4) we also have
∫ b

a

f(x) sin kx dx → 0 , k → ±∞ , (2.3)

∫ b

a

f(x) cos kx dx → 0 , k → ±∞ . (2.4)

Moreover, if f is square integrable then for any real c the function eicxf(x) is also
square integrable. Therefore

∫ b

a

ei(k+c)x f(x) dx → 0 , k → ±∞

for all real c. This implies that
∫ b

a

f(x) sin(k + c)x dx → 0 , k → ±∞ , (2.5)

∫ b

a

f(x) cos(k + c)x dx → 0 , k → ±∞ .

Pointwise convergence of the Fourier series.
We want to evaluate as N →∞ the sum

N∑

k=−N

ck eikx = (2π)−1
N∑

k=−N

eikx

∫ π

−π

e−iky f(y) dy

= (2π)−1
N∑

k=−N

∫ π−x

−π−x

e−iky f(x + y) dy = (2π)−1
N∑

k=−N

∫ π

−π

e−iky f(x + y) dy .

Since

e−iNy + e−i(N−1)y + · · ·+ 1 + eiy + · · ·+ eiNy

= e−iNy
(
1 + eiy + (eiy)2 + · · ·+ (eiy)2N

)

= e−iNy (eiy)2N+1 − 1
eiy − 1

=
ei(N+1/2)y − e−i(N+1/2)y

eiy/2 − e−iy/2
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we obtain
N∑

k=−N

ck eikx = (2π)−1

∫ π

−π

f(x + y)
sin(N + 1/2)y

sin y/2
dy

= π−1

∫ π

0

f(x + y) + f(x− y)
2

sin(N + 1/2)y
sin y/2

dy . (2.6)

Now the particular case f ≡ 1 has c0 = 1 and ck = 0 for all other k. Therefore

1 = (2π)−1

∫ π

−π

sin(N + 1/2)y
sin y/2

dy = π−1

∫ π

0

sin(N + 1/2)y
sin y/2

dy . (2.7)

Let

h(y) =
1

π sin y/2

(
f(x + y) + f(x− y)

2
− f(x + 0) + f(x− 0)

2

)

=
y

2π sin y/2

(
f(x + y)− f(x + 0)

y
+

f(x− y)− f(x− 0)
y

)
.

In view of (2.6) and (2.7) we have

N∑

k=−N

ck eikx − f(x + 0) + f(x− 0)
2

= π−1

∫ π

0

f(x + y) + f(x− y)
2

sin(N + 1/2)y
sin y/2

dy

− π−1

∫ π

0

f(x + 0) + f(x− 0)
2

sin(N + 1/2)y
sin y/2

dy

=
∫ π

0

h(y) sin(N + 1/2)y dy .

We say that f has finite right and left derivatives at x if the limits

f ′(x + 0) = lim
y↓0

f(x + y)− f(x + 0)
y

, f ′(x− 0) = lim
y↓0

f(x− y)− f(x− 0)
y

exist. These hypotheses imply that h(y) is continuous on (0, π] apart from the finite
number of jump discontinuities caused by those of f . Indeed, the only troublesome
point is y = 0 where sin y/2 = 0. But since

lim
y→0

y

sin y/2
= 2 ,

lim
y↓0

h(y) exists with

lim
y↓0

h(y) = π−1
(
f ′(x + 0) + f ′(x− 0)

)
.

Therefore the Riemann–Lebesgue lemma is applicable to h, and by (2.5)

N∑

k=−N

ck eikx − f(x + 0) + f(x− 0)
2

→ 0 , N →∞ .

We have proved the following result.
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Theorem 2.3. If f is piecewise continuous on (−π, π] with finite left and right
derivatives at the point x then

lim
N→∞

N∑

k=−N

ck eikx =
f(x + 0) + f(x− 0)

2
.

Remark. Since f is periodic, the relevant limit of the series at x = ±π is

1
2

(
lim
x↑π

f(x) + lim
x↓−π

f(x)
)

.

Corollary 2.4. If f is differentiable (and hence also continuous) at x then

lim
N→∞

N∑

k=−N

ck eikx = f(x) .

Uniform convergence.
The above criteria for pointwise convergence are applicable to a wide variety

of functions f . Uniform convergence of the series is another matter. It is an
elementary consequence of a uniform convergence theorem that if the Fourier series
of f converges uniformly to f then f must be continuous on [−π, π] with f(−π) =
f(π). However, this is not quite sufficient.

The following lemma will be important.

Lemma 2.5. Let f be periodic and continuously differentiable with derivative g.
Then f is continuous and the Fourier coefficients ck of f and dk of g are related by

dk = ik ck .

Proof. Integrating by parts we obtain

dk = (2π)−1

∫ π

−π

e−ikx f ′(x) dx

(2π)−1 e−ikx f(x)
∣∣π
−π

− (2π)−1

∫ π

−π

(−ik e−ikx) f(x) dx = ik ck .

¤
Theorem 2.6. If f is periodic and continuously differentiable then the Fourier
series of f converges to f uniformly on [−π, π].

Proof. We know that f(x) =
∑∞

k=−∞ ck eikx for each x, so it is sufficient to prove
that the series converges uniformly and for this it is enough to prove that

∞∑

k=−∞
|ck| < ∞ .



CM418Z FOURIER ANALYSIS 9

By Bessel’s inequality

∞∑

k=−∞
|ck|2 < ∞ ,

∞∑

k=−∞
k2 |ck|2 =

∞∑

k=−∞
|dk|2 < ∞ ,

where dk are the Fourier coefficients of f ′. Therefore

∞∑

k=−∞
(1 + k2) |ck|2 = γ < ∞ .

Now for any N < ∞ Schwarz’s inequality yields

N∑

k=−N

|ck| =
N∑

k=−N

(1 + k2)−1/2 (1 + k2)1/2 |ck|

6
(

N∑

k=−N

(1 + k2)−1

)1/2 (
N∑

k=−N

(1 + k2)|ck|2
)1/2

6 γ1/2

(
1 + 2

N∑

k=1

1/k2

)1/2

6 γ1/2

(
1 + 2

∞∑

k=1

1/k2

)1/2

,

so the series
∑∞

k=−∞ |ck| does converge. ¤

Convergence of sine and cosine series.
If f is even then

N∑

k=−N

ck eikx =
a0

2
+

N∑

k=1

ak cos kx .

if f is odd then
N∑

k=−N

ck eikx =
N∑

k=1

bk sin kx .

Therefore under conditions of Theorem 2.3 the sine and cosine series converge at
the point x to (f(x + 0) + f(x− 0)) /2, and under conditions of Theorem 2.6 they
converge uniformly to f .
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3. Some applications

Periodic solutions of differential equations.
Let g be a periodic continuous function on R1. We show how to solve the differential
equation

f(x) − f ′′(x) = g(x)

using the theory of Fourier series.
Let

bk = (2π)−1

∫ π

−π

e−ikx g(x) dx

be the Fourier coefficients of g, and let us assume that f has Fourier coefficients
ck. Then f ′ has Fourier coefficients ik ck and f ′′ has Fourier coefficients −k2 ck.
Equating the Fourier coefficients of the two sides yields (1 + k2) ck = bk , so

ck = (1 + k2)−1 bk

and we obtain the solution

f(x) =
∞∑

k=−∞
(1 + k2)−1 bk eikx .

Corollary 2.4 implies that it is the only possible solution which is periodic and
twice continuously differentiable. However, there are two gaps.

(1) Is there any solution to the problem at all? Well, the given series is an
obvious candidate, and we have to check that it can be differentiated term
by term, twice, with the desired result.

(2) Are there any non-periodic solutions? The answer is “yes”. If f is a solution
then for all constants α and β the functions

f(x) + α ex + β e−x

also solve the equation.
Both of these points are generally not bothered with in applications.

Remark. It is clear that the same approach can be applied to much more general
differential equations. However, it is more common to solve these problems using
the sine–cosine expansion, and just differentiating it formally term by term.

Convolution equations.
A convolution equation is one of the form

f(x) +
∫ π

−π

h(x− y) f(y) dy = g(x) ,

where g and h are given periodic functions, and we wish to find a solution f . We
rewrite this in the form

f + h ∗ f = g

where the convolution h ∗ f of f and h is given by

h ∗ f (x) =
∫ π

−π

h(x− y) f(y) dy .
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Lemma 3.1. If h and f are piecewise continuous and periodic then h ∗ f is con-
tinuous and periodic with h ∗ f = f ∗ h.

Proof. The integral is certainly well-defined for each x and is a periodic function
of x. Moreover, by a change of variables

h ∗ f (x) =
∫ π

−π

h(−y) f(y + x) dy =
∫ π

−π

h(y) f(−y + x) dy = f ∗ h (x) ,

so we are left with proving continuity.
We have

|h ∗ f (x1)− h ∗ f (x2) | = |
∫ π

−π

(h(x1 − y)− h(x2 − y)) f(y) dy |

6 c

∫ π

−π

|h(x1 − y)− h(x2 − y)| dy = c

∫ π

−π

|h(y)− h(y − δ)| dy

where δ = x1 − x2 and c = sup
−π6y6π

|f(y)|. The problem is therefore to show that

this integral vanishes as δ → 0. That is obviously true when h is a step function.
But then it is true in the general case because any piecewise continuous function
can be uniformly approximated by step functions. ¤

We now compute the Fourier coefficients of the convolution.

Lemma 3.2. If the k-th Fourier coefficients of f and h are ck and dk then the
k-th Fourier coefficient of h ∗ f is 2π ck dk .

Proof. We calculate

(2π)−1

∫ π

−π

∫ π

−π

h(x− y) f(y) dy e−ikx dx

= (2π)−1

∫ π

−π

∫ π

−π

h(x) f(y) e−ik(x+y) dy dx = 2π ck dk .

¤
We now show how to solve the convolution equations. We assume that g and h are

given piecewise continuous periodic functions and compute their Fourier coefficients
bk and dk respectively. We also assume that there is a solution f which is piecewise
continuous and periodic with Fourier coefficients ck. Then, by Lemma 3.2,
f + h ∗ f = g implies ck + 2π ck dk = bk, so

ck = (1 + 2π dk)−1 bk

and we get the solution

f(x) =
∞∑

k=−∞
(1 + 2π dk)−1 bk eikx .

There are three problems in justifying this procedure.
(1) If one of the Fourier coefficients dk = −(2π)−1 then the denominator van-

ishes. The convolution equation may indeed have no solutions in this case.
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(2) Even if this does not happen one does not know that the equation is soluble.
However if

∑ |bk| < ∞, as happens if g is periodic and piecewise contin-
uously differentiable, then since dk → 0 we see that

∑ |ck| < ∞. Thus,
the series for f does converge uniformly, so f is defined by the series as a
continuous periodic function and can then check it is indeed a solution.

(3) There may be non-periodic solutions not given by the above procedure.
Problem (2) is always and problem (3) is nearly always forgotten about, but

problem (1) is an important difficulty.

The vibrating string.
We are concerned with solving the wave equation for ϕ = ϕ(x, t)

∂2ϕ

∂t2
= c2 ∂2ϕ

∂x2
, 0 6 x 6 a ,

subject to the conditions

ϕ(0, t) = ϕ(a, t) = 0 for all t,

ϕ(x, 0) = f(x) ,
∂ϕ

∂t
(x, 0) = g(x) .

This equation describes the oscillating string; the conditions ϕ(0, t) = ϕ(a, t) = 0
mean that its ends are fixed, and f and g determine the initial position of the string.

The method is to suppose that there is a sine expansion for each instant t > 0,

ϕ(x, t) =
∞∑

k=1

bk(t) sin
πkx

a

and then to determine the functions b(t) without any regard for rigour. We formally
obtain ∞∑

k=1

b′′k(t) sin
πkx

a
= −

∞∑

k=1

bk(t) c2π2k2a−2 sin
πkx

a

so b′′k = − c2π2k2a−2 bk . The solutions of this equation have the form

bk(t) = αk sin
cπkt

a
+ βk cos

cπkt

a
where αk and βk are some constants, so

ϕ(x, t) =
∞∑

k=1

(
αk sin

cπkt

a
+ βk cos

cπkt

a

)
sin

πkx

a
.

This implies

f(x) =
∞∑

k=1

βk sin
πkx

a
,

g(x) =
∞∑

k=1

cπk

a
αk sin

πkx

a
,

which enables us to determine αk and βk.
In practise this method is extremely successful. The prospects of justifying all

the steps rigorously are non-existent. The best that is ever done is to obtain the
answer and try to prove rigorously that the series converge uniformly, may be
differentiated term by term, and that the various conditions are indeed satisfied.
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4. The space L2(−π, π)

Mean square convergence.
While our series on pointwise convergence and uniform convergence are very useful,
they apply only to restricted classes of functions and it turns out to be advantageous
to use a weaker form of convergence.

Definition 4.1. We say the sequence of functions fk defined on [−π, π] is mean
square convergent to f if

∫ π

−π
|f(x)− fk(x)|2 dx → 0 as k →∞.

Note that if |f(x)−g(x)| 6 ε for all x then
∫ π

−π
|f(x)−fk(x)|2 dx 6 2π ε2. Hence

uniform convergence implies mean square convergence.

Remark. Mean convergence does not imply uniform convergence. For example, if

fk(x) =
{

1, |x| 6 k−1

0, k−1 6 |x| 6 π,

then fk(x) → 0 for all x 6= 0 and ‖fk‖ → 0 as k →∞, but sup
x
|fk(x)| = 1 for all k.

In order to study the notion of mean square convergence it is helpful to introduce
the notion of an abstract Hilbert space.

Definition of a Hilbert space.
We say that a complex vector space H has an inner product (·, ·) if we are given a
map (·, ·) : H ×H → C1 such that

(αf + βg, h) = α(f, h) + β(g, h) , ∀α, β ∈ C1 , (4.1)

(f, g) = (g, f) , (4.2)

(f, f) > 0 , (4.3)

if (f, f) = 0 then f = 0 . (4.4)

We then define the norm of an element f ∈ H by

‖f‖ =
√

(f, f) .

Taking in (4.1) α = β = 0 and h = 0, we obtain that ‖f‖ = 0 for f = 0. The
equalities (4.1) and (4.2) also imply that

(f, αg + βh) = ᾱ(f, g) + β̄(f, h) , ∀α, β ∈ C1 . (4.5)

Definition 4.2. We say that f and g are orthogonal if (f, g) = 0.

Obviously, if f and g are orthogonal then

‖f + g‖2 = ‖f‖2 + ‖g‖2 . (4.6)

Definition 4.3. We say that e1, e2, . . . is an orthonormal set in an inner product
space H if

(ej , ek) =
{

1, j = k,

0, j 6= k.
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Lemma 4.3 (Bessel’s inequality). Let e1, e2, . . . , eN be an orthonormal set.
Then for all f ∈ H

‖f‖2 >
N∑

k=1

|(f, ek)|2 . (4.7)

Proof. Using the properties of inner product, we obtain

0 6 ‖f −
N∑

k=1

(f, ek) ek‖ 2 =
(
f −

N∑

k=1

(f, ek) ek , f −
N∑

k=1

(f, ek) ek

)

= ‖f‖2 −
N∑

k=−N

(
f, (f, ek) ek

) −
N∑

k=−N

(
(f, ek) ek, f

)

+
N∑

k,m=−N

(
(f, ek) ek, (f, em) em

)
= ‖f‖2 −

N∑

k=−N

|(f, ek)|2 .

This implies (4.7). ¤

Remark. One can also prove that
∑N

k=1 (f, ek) ek and f −∑N
k=1 (f, ek) ek are or-

thogonal, and then (4.7) follows from (4.6).

Theorem 4.4. We have

|(f, g)| 6 ‖f‖ ‖g‖ (Cauchy–Schwarz inequality)

and
‖f + g‖ 6 ‖f‖ + ‖g‖ (triangle inequality).

Proof. The case g = 0 is trivial, so suppose g 6= 0. Then the vector g/‖g‖ by itself
form an orthonormal set. Applying Bessel’s inequality we obtain

‖f‖2 > |(f, g/‖g‖)|2 = ‖g‖−2 |(f, g)|2

which implies the Cauchy–Schwarz inequality follows.
By the Cauchy–Schwarz inequality

‖f + g‖2 = ‖f‖2 + (f, g) + (g, f) + ‖g‖2 = ‖f‖2 + 2 Re(f, g) + ‖g‖2
6 ‖f‖2 + 2 |(f, g)| + ‖g‖2 6 ‖f‖2 + 2 ‖f‖ ‖g‖ + ‖g‖2 .

Thus, ‖f + g‖2 6 (‖f‖+ ‖g‖)2 which implies the triangle inequality.

Having proved the triangle inequality we can introduce

Definition 4.5. The distance between f and g in an inner product space H is
given by ‖f − g‖.

As usual, we say that fk is a Cauchy sequence if ‖fk − fm‖ → 0 as k,m → ∞.
An inner product space H is said to be a Hilbert space if it is complete, that is
every Cauchy sequence has a limit in H.
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Example. The standard example of a Hilbert space is H = Cn with (f, g) =∑n
k=1 fk ḡk .

The space L2.
We are here concerned with a space of functions f : (−π, π) → C1 with

(f, g) =
∫ π

−π

f(x) ḡ(x) dx . (4.8)

We define H = L2(−π, π) as a set of functions f such that

∫ π

−π

|f(x)|2 dx < ∞

when the integral is interpreted in the most general possible sense (which actually
means a Lebesgue integral, but we will need almost nothing from the general theory,
provided we assume a few sensible looking properties and one density theorem).

The space L2(−π, π) includes all piecewise continuous functions on [−π, π]. It
includes all uniform limits of such functions. It also includes functions like f(x) =
|x− α|−β , β < 1/2, or f(x) = sin(x−1).

If f and g are continuous, then the integral in (4.8) can be understood in the usual
sense. It is easy to see that for such functions the inner product (4.8) possesses all
the necessary properties. Analogous results remain valid for the Lebesgue integral,
and they imply (4.1)–(4.3) in the general case.

However, there are two problems in showing that L2(−π, π) is a Hilbert space.
(1) The condition that ‖f‖2 =

∫ π

−π
|f(x)|2 dx = 0 implies f = 0 is not literally

true. For example if f vanishes except for a finite number of points then
‖f‖ = 0. It turns out that ‖f‖ = 0 implies f(x) = 0 almost everywhere,
i.e., except for x in a small set called a null set. All finite or countable sets
are null sets, and we shall identify two functions whenever they differ only
in a null set. This problem rarely causes difficulties.

(2) It can be shown that L2(−π, π) is indeed complete if we use an appropriate
general definition of integration — Lebesgue integration, but the proof is
hard and we shall take this result in faith.

A density result.
Our final result we cannot prove rigorously concerns the space C∞ of infinitely

differentiable (smooth) periodic functions on [−π, π].

Definition 4.6. A subset H0 ⊂ H is said to be dense in H if for any f ∈ H and
any ε > 0 there exists g ∈ H0 such that ‖f − g‖ 6 ε.

Theorem 4.7. The set C∞ is dense in L2(−π, π).

While this cannot be proved for an arbitrary f ∈ L2(−π, π) without a proper
justification of the Lebesgue integral, we can prove it for a large number of more
elementary functions f , enough to make it very plausible.
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Indeed, any step function f can be uniformly approximated by smooth func-
tions, which coincide with f outside a finite number of arbitrarily small intervals
containing all the points of jumps and the points −π and π. From here it follows
that any step function can be approximated by the smooth functions in L2(−π, π).
Since piecewise continuous functions are uniformly approximated by step functions,
these functions can also be approximated in L2(−π, π) by the smooth functions.
Moreover, any function which is uniformly approximated by step functions is ap-
proximated by smooth functions in L2(−π, π).
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5. Complete orthonormal sets in L2

Properties of complete orthonormal sets.
Let H be an abstract Hilbert space.

Definition 5.1. We say that an orthonormal set {ek}∞k=−∞ ⊂ H is complete if for
any f ∈ H there are constants αk such that

lim
N→∞

‖f −
N∑

k=−N

αk ek‖ = 0 . (5.1)

Lemma 5.2. If {ek}∞k=−∞ is a complete orthonormal set then (5.1) implies αk =
(f, ek) for all k.

Proof. For large enough N we have

ε > ‖f −
N∑

k=−N

αk ek‖ ‖em‖ > | (f −
N∑

k=−N

αk ek , em) |

= | (f, em) −
N∑

k=−N

αk (ek, em) | = | (f, em) − αm |

where ε → 0 as N →∞. Hence αm = (f, em). ¤
Thus, if {ek} is complete then f =

∑∞
k=−∞ (f, ek) ek is a norm convergent series

for all f ∈ H.

Definition 5.3. We call αk = (f, ek) the Fourier coefficients of f with respect to
the complete orthonormal set {ek}.
Theorem 5.4. The following statements about the orthonormal set {ek} are equiv-
alent:

(1) {ek} is complete;
(2) ‖f‖2 =

∑∞
k=−∞ |(f, ek)|2 for all f ∈ H;

(3) if (f, ek) = 0 for all k then f = 0;
(4) the set of finite linear combinations of ek is dense in H.

Proof. The implication (1)⇒ (4) is obvious.

(4)⇒ (3)
If (4) is fulfilled then for any f ∈ H there exist constants βk such that

‖ f −
N∑

k=−N

βk ek ‖ 6 1
2
‖f‖ .

If (f, ek) = 0 then we obtain

1
4
‖f‖2 > ‖ f −

N∑

k=−N

βk ek ‖2 = ‖f‖2 +
N∑

k=−N

|βk|2
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which implies f = 0 (and βk = 0).

(3)⇒ (2)
By Bessel’s inequality

∑∞
k=−∞ |αk|2 6 ‖f‖2 (where αk are the Fourier coefficients

of f). Let gN =
∑N

k=−N αk ek. Then for 1 6 N < M < ∞

‖gM − gN‖2 = ‖
∑

N+16|k|6M

αk ek ‖2 =
∑

N+16|k|6M

|αk|2 → 0

as M,N →∞, so gN is a Cauchy sequence. Completeness of H implies gN → g for
some g ∈ H. Now

(g, em) = lim
N→∞

(gN , em) = lim
N→∞

(
N∑

k=−N

αk ek , em ) = αm = (f, em) .

Thus (f − g, em) = 0 for all m, and by (3) f = g. Finally,

‖f‖2 = ‖g‖2 = lim
N→∞

‖gN‖2 = lim
N→∞

N∑

k=−N

|αk|2 =
∞∑

k=−∞
|(f, ek)|2 .

(2)⇒ (1) We have already shown that

‖ f −
N∑

k=−N

αk ek ‖2 = ‖f‖2 −
N∑

k=−N

|αk|2

(see the proof of Bessel’s inequality). Now from (2) it follows that the right hand
side vanishes as N →∞. This implies (1). ¤

We see that for a complete orthonormal set {ek} Bessel’s inequality ‖f‖2 >∑∞
k=−∞ |(f, ek)|2 becomes

‖f‖2 =
∞∑

k=−∞
|(f, ek)|2 (5.1)

which is also called Parseval’s formula.
The relationship between the function and its coefficients can be taken even

further. Theorem 5.4 immediately implies

Corollary 5.5. The sequence {αk} is the sequence of Fourier coefficients of some
f ∈ H if and only if

∑ |αk|2 < ∞, and if this holds then f is unique and given
by f =

∑
αk ek. If f and g have Fourier coefficients αk and βk respectively, then

f + g has coefficients αk +βk, c f has coefficients c αk (where c is a constant), and

(f, g) =
∑

k

αk β̄k .



CM418Z FOURIER ANALYSIS 19

Completeness of ek(x) = (2π)−1/2 eikx in L2(−π, π).
We have to prove one of the above criteria for this particular orthonormal set,

and we choose (4).
Let f ∈ L2(−π, π) and ε > 0. By our basic density lemma there exists g ∈ C∞

such that ‖f − g‖ 6 ε/2. We have already proved that the Fourier series of g
converges uniformly to g. So there is a partial sum

N∑

k=−N

ck eikx =
N∑

k=−N

(2π)1/2ck ek(x)

such that

| g(x)−
N∑

k=−N

(2π)1/2ck ek(x) | 6 (2π)−1/2ε/2

for all x. Then

‖ g −
N∑

k=−N

(2π)1/2ck ek ‖ 6 ε/2

and

‖ f −
N∑

k=−N

(2π)1/2ck ek ‖ 6 ε

as required for (4). Thus, we have proved

Theorem 5.6. If f ∈ L2(−π, π) and

ck = (2π)−1/2

∫ π

−π

f(x) ek(x) dx = (2π)−1

∫ π

−π

e−ikx f(x) dx

then the finite sums fN (x) =
∑N

k=−N ck eikx converges to f in the mean square
sense as N →∞, that is

∫ π

−π

|f(x)− fN (x)|2 dx → 0 , N →∞ .

This is not the same as uniform or pointwise convergence, and indeed is rather
a weak sense of convergence, but nevertheless is highly important because of its
extreme generality.

Now, in view of Corollary 5.5, we have a one-to-one correspondence between
functions f ∈ L2(−π, π) and their Fourier coefficients, and we can use this fact to
prove various results.

Convolution in L2(−π, π).
The convolution of two functions f, g ∈ L2(−π, π) is defined by the same formula

f ∗ g(x) =
∫ π

−π

f(x− y) g(y) dy ,

here we assume that f and g are extended to periodic functions on R1.
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Theorem 5.7. If f, g ∈ L2(−π, π) then h = f ∗ g is continuous and periodic with
Fourier coefficients

(h, ek) = (2π)1/2 (f, ek) (g, ek) ,

where ek(x) = (2π)−1/2 eikx.

Proof. Let fN (x) =
∑N

k=−N (f, ek) ek, gN (x) =
∑N

k=−N (g, ek) ek, then fN → f
and gN → g in the mean square sense. Also

fN ∗ gN =
N∑

k=−N

N∑

m=−N

(f, ek) (g, em) ek ∗ em =
N∑

k=−N

γk ek

where γk = (2π)1/2 (f, ek) (g, ek), since

ek ∗ em = (2π)−1 eikx

∫ π

−π

ei(m−k)y dy =
{

(2π)1/2 ek, k = m,

0, k 6= m.

Now
N∑

k=−N

|γk| = (2π)1/2
N∑

k=−N

|(f, ek)| |(g, ek)|

6 (2π)1/2

(
N∑

k=−N

|(f, ek)|2
)1/2 (

N∑

k=−N

|(g, ek)|2
)1/2

6 (2π)1/2 ‖f‖ ‖g‖ .

Thus,
∑∞

k=−∞ |γk| < ∞. This implies that if fN ∗ gN → h pointwise then∑N
k=−N γk ek → h uniformly, and so h is continuous and periodic.
It remains to prove that fN ∗ gN → h pointwise. We denote fx(y) = f(x − y),

fx,N (y) = fN (x− y), and write

f ∗ g(x) =
∫ π

−π

f(x− y) g(y) dy = (fx, ḡ) ,

fN ∗ gN (x) =
∫ π

−π

fN (x− y) gN (y) dy = (fx,N , ḡN ) .

Then

|f ∗ g(x)− fN ∗ gN (x)| = | (fx, ḡ)− (fx,N , ḡN ) |
= | (fx, ḡ)− (fx,N , ḡ) + (fx,N , ḡ)− (fx,N , ḡN ) |

6 | (fx − fx,N , ḡ) | + |(fx,N , ḡ − ḡN ) | 6 ‖fx − fx,N‖ ‖ḡ‖ + ‖fx,N‖ ‖ḡ − ḡN‖ .

By Theorem 5.6 the right hand side vanishes as N →∞, so fN ∗ gN (x) → h(x).

Now let us return to the convolution equation

f + f ∗ h = g ,

where h, g ∈ L2(−π, π) and we are looking for a solution f ∈ L2(−π, π). We can
apply the same method as before (see Section 3). However, even not solving the
equation, we see from above that a solution f is continuous and periodic if and only
if g is continuous and periodic. Further connections between regularity properties
of f and g, h can be obtained by similar methods.



CM418Z FOURIER ANALYSIS 21

Example. Let us try to find all the periodic continuous solutions to the equation

−f ′′ = f ∗ f .

By Theorem 5.7 we have k2 αk = (2π)1/2 α2
k. So either αk = 0 or αk = (2π)−1/2 k2.

Since the Fourier series is convergent, only a finite number of αk can be non-zero.
Therefore each solution is a trigonometrical polynomial.
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6. Fourier transform in L1(R1)

We now start to look at the generalization of all our above results to non-periodic
functions f : R1 → C1. It turns out that the analogue of the set {αk} of Fourier
coefficients

αk = (2π)−1/2

∫ π

−π

e−ikx f(x) dx

is a new function f̂ : R1 → C1 defined by

f̂(ξ) = Fx→ξf = (2π)−1/2

∫ ∞

−∞
e−ixξ f(x) dx. (6.1)

Further on we shall mostly deal with integrals over R1, and then we shall write
∫

instead of
∫∞
−∞.

Some function spaces.
The first problem is to choose a suitable class of functions f , and there are two

choices we shall consider at first:
(1) C∞0 (R1) which consists of all infinitely differentiable functions with compact

supports;
(2) L1(R1) which consists of the functions f such that

∫ |f(x)| dx < ∞.
Later on we shall deal also with the space L2(R1) which consists of the functions f
such that

∫ |f(x)|2 dx < ∞.
The space L2(R1) has the inner product (f, g) =

∫
f(x) ḡ(x) dx and the norm

‖f‖2 =
√

(f, f). The space L1(R1) has the norm ‖f‖1 =
∫ |f(x)| dx. Both norms

satisfy
‖c f‖ = |c| ‖f‖ , ‖f + g‖ 6 ‖f‖+ ‖g‖ , ‖f‖ > 0 .

Moreover, ‖f‖2 = 0 if and only if f = 0 almost everywhere (i.e., outside a null
set), and ‖f‖1 = 0 if and only if f = 0 almost everywhere. In both cases we shall
identify the functions which only differ on a null set.

If f is equal to zero outside some interval (a, b) then the Cauchy-Schwarz in-
equality (Theorem 4.4) with g being the characteristic function of (a, b) implies

‖f‖1 =
∫
|f(x)| dx = (|f |, g) 6 ‖g‖2‖f‖2 =

√
b− a ‖f‖2 .

Therefore every L2-function with compact support belongs to L1(R1).
We can consider L1(R1) and L2(R1) as the metric spaces with dist (f, g) =

‖f − g‖1 and dist (f, g) = ‖f − g‖2 respectively. Both spaces are complete, so we
say that L1(R1) is a Banach space and L2(R1) is a Hilbert space. Completeness
depends upon using Lebesgue integration.

One has C∞0 (R1) ⊂ Lp(R1), p = 1, 2, but neither of L1(R1) and L2(R1) contains
the other. This causes some complication compared with the periodic case where
L2(−π, π) ⊂ L1(−π, π) so that we could concentrate exclusively on the former.

We shall need the following (unproved) result.

Lemma 6.1. The space C∞0 (R1) is dense in L1(R1) and L2(R1).
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Fourier transform in L1(R1).
If f ∈ L1(R1) then the integral (6.1) converges and defines a function f̂ : R1 →

C1.

Theorem 6.2. If f ∈ L1(R1) then f̂ is a bounded continuous function.

Proof. We have

|f̂(ξ)| = (2π)−1/2 |
∫

e−ixξ f(x) dx |

6 (2π)−1/2

∫
|e−ixξ f(x)| dx = (2π)−1/2

∫
|f(x)| dx = (2π)−1/2 ‖f‖1

which proves the boundness of f̂(ξ).
Continuity of f̂(ξ) is an elementary corollary of so-called Lebesgue’s dominated

convergence theorem, but we shall adopt a different method.
For all f, g ∈ L1(R1) we have

|f̂(ξ)− ĝ(ξ)| = (2π)−1/2 |
∫

e−ixξ (f(x)− g(x)) dx |

6 (2π)−1/2

∫
|f(x)− g(x)| dx = (2π)−1/2 ‖f − g‖1 . (6.2)

By Lemma 6.1, given ε > 0 we can find g ∈ C∞0 (R1) such that ‖f − g‖1 6
(2π)1/2 ε/3. Then, in view of (6.2), for all ξ

|f̂(ξ)− ĝ(ξ)| 6 ε/3 .

By the mean value theorem

e−ixξ1 − e−ixξ2 = −ix e−ixξ̃ (ξ1 − ξ2)

for some ξ̃ ∈ [ξ1, ξ2]. Therefore

|ĝ(ξ1)− ĝ(ξ2)| = (2π)−1/2 |
∫

(e−ixξ1 − e−ixξ2) g(x) dx |

6 (2π)−1/2

∫
|e−ixξ1 − e−ixξ2 | |g(x)| dx

= (2π)−1/2

∫
|x| |ξ1 − ξ2| |g(x)| dx 6 ε/3

provided |ξ1 − ξ2| 6
√

2π
(∫ |x| |g(x)| dx

)−1
ε/3. Thus, we obtain

|f̂(ξ1)− f̂(ξ2)| 6 |f̂(ξ1)− ĝ(ξ1)| + |f̂(ξ2)− ĝ(ξ2)| + |ĝ(ξ1)− ĝ(ξ2)| 6 ε

for small enough |ξ1 − ξ2|. ¤

Theorem 6.3. If fk ∈ L1(R1), f ∈ L1(R1) and ‖f − fk‖1 → 0 then f̂k → f̂
uniformly.

Proof. By (6.2) |f̂(ξ)− f̂k(ξ)| 6 ‖f − fk‖1 which implies the uniform convergence.
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Theorem 6.4. If f ∈ L1(R1) then lim
ξ→±∞

f̂(ξ) = 0.

Proof. This result does not follow from Lebesgue’s dominated convergence theorem,
but the method adopted above still works.

Let ε > 0 and g ∈ C∞0 (R1) satisfy ‖f−g‖ 6 (2π)1/2 ε/2 so that |f̂(ξ)−ĝ(ξ)| 6 ε/2
for all ξ. Integrating by parts we obtain

ĝ(ξ) = (2π)−1/2

∫
e−ixξ g(x) dx

= − (2π)−1/2

∫
(−iξ)−1 e−ixξ g′(x) dx = (2π)−1/2 (iξ)−1

∫
e−ixξ g′(x) dx .

Therefore
|ĝ(ξ)| 6 (2π)−1/2 |ξ|−1

∫
|g′(x)| dx 6 ε/2

if |ξ| is large enough. Thus,

|f̂(ξ)| 6 |f̂(ξ)− ĝ(ξ)| + |ĝ(ξ)| 6 ε

for sufficiently large |ξ|. ¤

Sine and cosine Fourier transforms.
The functions

∫
sin(xξ) f(x) dx and

∫
cos(xξ) f(x) dx are called the sine and

cosine Fourier transforms of f respectively. Clearly, if f is even then its sine Fourier
transform is equal to zero, and if f is odd then its cosine Fourier transform is equal
to zero.

Theorem 6.4 immediately implies

Corollary 6.5. If f ∈ L1(R1) then its sine and cosine Fourier transforms are
bounded continuous functions which vanish at ±∞.

Convolution in L1(R1).
We define the convolution of two functions f, g ∈ L1(R1) by

f ∗ g(x) =
∫

f(x− y) g(y) dy .

Theorem 6.6. If f, g ∈ L1(R1) then f ∗ g ∈ L1(R1) and f ∗ g = g ∗ f almost
everywhere.

Proof. Obviously, |f ∗ g(x)| 6
∫ |f(x − y) g(y)| dy. Changing variables x = z + y

we obtain∫
|f ∗ g(x)| dx 6

∫∫
|f(x− y) g(y)| dy dx =

∫∫
|f(z) g(y)| dy dz = ‖f‖1 ‖g‖1 ,

so f ∗ g ∈ L1(R1). The equality

f ∗ g(x) =
∫

f(x− y) g(y) dy =
∫

g(x− z) f(z) dz = g ∗ f(x)

is a matter of changing variables y = x− z. ¤
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Theorem 6.7. If f, g ∈ L1(R1) then f̂ ∗ g = (2π)1/2 f̂ ĝ.

Proof. We have

Fx→ξ(f ∗ g) = (2π)−1/2

∫
e−ixξ (f ∗ g)(x) dx

= (2π)−1/2

∫∫
e−ixξ f(x− y) g(y) dy dx

= (2π)−1/2

∫∫
e−i(y+z)ξ f(z) g(y) dy dz = (2π)1/2 f̂(ξ) ĝ(ξ) .

This proves the theorem. ¤
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7. Schwartz space S(R1)

Rapidly decreasing functions.

Definition 7.1. We say that f ∈ S(R1) if f is infinitely differentiable and for all
k, m = 0, 1, 2, . . . , there exist constants ck,m such that

sup
x
|xkf (m)(x)| 6 ck,m , (7.1)

where f (m) = dmf/dxm.

Obviously, S(R1) is a linear space. If f ∈ S(R1) then for all k and m

|f (m)(x)| 6 c̃k,m (1 + |x|)−k

with some constants c̃k,m. The functions from S(R1) are called the rapidly decreas-
ing functions.

Example 7.1. The function f(x) = e−x2
is rapidly decreasing.

Lemma 7.2. If f ∈ S(R1) then f (p) ∈ S(R1) and xpf ∈ S(R1) for all p = 1, 2, . . .

Proof. It is sufficient to prove the lemma for p = 1; then the general result is
obtained by induction in p.

From (7.1) it follows that

|xk dm

dxm
f ′| = |xk dm+1

dxm+1
f | 6 ck,m+1 ,

|xk dm

dxm
(xf)| = |xk+1 dm

dxm
f + mxk dm−1

dxm−1
f | 6 ck+1,m + mck,m−1 .

Therefore f ∈ S(R1) implies f ′ ∈ S(R1) and xf ∈ S(R1). ¤
It is easy to see that

C∞0 (R1) ⊂ S(R1) ⊂ (
L1(R1) ∩ L2(R1)

)
.

Since C∞0 (R1) is dense in L1(R1) and in L2(R1), so is S(R1).

Fourier transform in S(R1).
Since S(R1) ⊂ L1(R1), the Fourier transform f̂ of a function f ∈ S(R1) is well-
defined, and it is a bounded continuous function (Theorem 6.2).

Lemma 7.3. For all f ∈ S(R1)

(f̂)′(ξ) = −iFx→ξ(xf) , ξ f̂(ξ) = −iFx→ξ(f ′) . (7.2)

Proof. We have

(f̂)′(ξ) = (2π)−1/2

∫
d

dξ

(
e−ixξ

)
f(x) dx

= −i (2π)−1/2

∫
e−ixξ xf(x) dx = −iFx→ξ(xf) ,

ξ f̂(ξ) = (2π)−1/2

∫
ξ e−ixξ f(x) dx = (2π)−1/2

∫
i

d

dx

(
e−ixξ

)
f(x) dx

= −i (2π)−1/2

∫
e−ixξ f ′(x) dx = −iFx→ξ(f ′) .

¤
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Corollary 7.4. If f ∈ S(R1) then f̂ ∈ S(R1).

Proof. The equalities (7.2) imply that

dm

dξm
f̂(ξ) = (−i)m Fx→ξ(xmf) , ξk f̂(ξ) = (−i)k Fx→ξ(f (k)) .

Therefore f̂ is infinitely differentiable, and

ξk dm

dξm
f̂(ξ) = (−i)m+k Fx→ξ

(
(xmf)(k)

)
. (7.3)

By Lemma 7.2

(xmf)(k) =
dk

dxk
(xmf) ∈ S(R1) ⊂ L1(R1) ,

and by Theorem 6.2 the functions (7.3) are bounded for all k,m. ¤

Example 7.5. Let us calculate the Fourier transform of the function f(x) =
exp

(−x2/2
)
. This function is a solution of the differential equation

f ′(x) = −x f(x) . (7.4)

In view of (7.2), applying the Fourier transform to (7.4) we obtain

iξ f̂(ξ) = −i (f̂)′(ξ) .

Now we see that

(
f̂(x)
f(x)

)′

=
f̂ ′(x) f(x)− f̂(x) f ′(x)

f2(x)
=

−x f̂(x) f(x) + x f̂(x) f(x)
f2(x)

= 0 ,

which implies f̂(x) = c0 f(x) = c0 exp
(−x2/2

)
with some constant c0 > 0. Finally,

c 2
0 =

(
f̂(0)

)2

= (2π)−1

(∫
e−x2/2 dx

)2

= (2π)−1

∫∫
e−(x2+y2)/2 dx dy

= (2π)−1

∫ ∞

0

∫

S1
e−r2/2 r dθ dr =

∫ ∞

0

e−r2/2 r dr =
1
2

∫ ∞

0

e−s/2 ds = 1 ,

so f̂(x) = f(x) = exp
(−x2/2

)
.

Inverse Fourier transform.
We shall need the following lemma.
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Lemma 7.6. Let T : S(R1) → S(R1) be a linear map commuting with multiplica-
tion by x and differentiation, that is

T (xf) = xTf , (Tf ′) = (Tf)′ , ∀ f(x) ∈ S(R1) .

Then Tf(x) = c f(x) where c is some constant.

Proof. Let f ∈ S(R1) and f(x0) = 0. Then by Taylor’s formula f(x) = (x−x0) g(x)
with some g ∈ C∞(R1). We have g(x) = (x− x0)−1 f(x) for x 6= x0, so g ∈ S(R1).
Now we obtain

Tf(x0) = T ((x− x0) g(x))|x=x0
= (x− x0) Tg(x)|x=x0

= 0 .

Since T is a linear map, this implies that Tf1(x0) = Tf2(x0) if f1(x0) = f2(x0).
Therefore for any function f the value of Tf at x0 depends only on f(x0).

Let f0 ∈ S(R1) be a function such that f0(x0) = 1, and let z0 = Tf(x0). Since
T is a linear map, for an arbitrary function f ∈ S(R1) we have Tf(x0) = z0 f(x0).

Let ϕ be the function defined by ϕ(x0) = z0, ∀x0 ∈ R1. Then by the preceding
Tf(x) = ϕ(x)f(x). Since Tf(x) ∈ S(R1), the function ϕ is differentiable. Now

ϕf ′ = (Tf ′) = (Tf)′ = (ϕf)′ = ϕf ′ + ϕ′f , ∀f ∈ S(R1),

implies ϕ′ ≡ 0, i e., ϕ is identically equal to some constant. ¤
Corollary 7.7. If f ∈ S(R1) then

f(x) = (2π)−1/2

∫
eixξ f̂(ξ) dξ . (7.5)

Proof. Let us define

Tf(x) = (2π)−1/2

∫
eixξ f̂(ξ) dξ.

In view of (7.2) we have

xTf(x) = (2π)−1/2

∫
x eixξ f̂(ξ) dξ

= (2π)−1/2

∫
−i

d

dξ

(
eixξ

)
f̂(ξ) dξ = (2π)−1/2

∫
i eixξ (f̂)′(ξ) dξ = T (xf)(x) ,

(Tf ′)(x) = (2π)−1/2

∫
eixξ f̂ ′(ξ) dξ

= (2π)−1/2

∫
(iξ) eixξ f̂(ξ) dξ = (2π)−1/2

∫
d

dx

(
eixξ

)
f̂(ξ) dξ = (Tf)′(x) .

Therefore T satisfies the conditions of Lemma 7.6 and

c f(x) = (2π)−1/2

∫
eixξ f̂(ξ) dξ

with some constant c. Taking f(x) = exp
(−x2/2

)
we obtain

(2π)−1/2

∫
eixξ f̂(ξ) dξ = (2π)−1/2

∫
eixξ f(ξ) dξ = f̂(−x) = f(x)

which implies c = 1. ¤
The map

F−1
ξ→x : f(ξ) → (2π)−1/2

∫
eixξ f(ξ) dξ

is called the inverse Fourier transform. Clearly, F−1
ξ→xf = f̂(−x), so F−1 maps

S(R1) onto S(R1). Thus, we have proved
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Theorem 7.8. The Fourier transform maps S(R1) one-to-one onto S(R1), and
the inverse transformation is given by (7.5).
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8.1. Pointwise inversion of the L1-Fourier transform

We have proved that for “good” functions f

f(x) = (2π)−1/2

∫
eixξ f̂(ξ) dξ .

The main difficulty with the L1-Fourier transform is that f ∈ L(R1) does not imply
f̂ ∈ L(R1), so the integral does not converge. Even the simple function

f(x) =
{

1, |x| 6 1,

0, |x| > 1

is a counterexample (in this case f̂(ξ) = 2(2π)−1/2(iξ)−1 sin ξ).

Theorem 8.1. Let f ∈ L1(R1) and f be piecewise continuous. If f has finite left
and right derivatives at x then

f(x + 0) + f(x− 0)
2

= (2π)−1/2 lim
R→∞

∫ R

−R

eixξ f̂(ξ) dξ . (8.1)

Proof. Since f̂ is continuous (Theorem 6.2), each integral over a finite interval in
the right hand side of (8.1) certainly makes sense. The structure of the proof is
exactly the same as for the Fourier series.

We put fR(x) for the integral over (−R, R) in the right hand side of (8.1). Then,
by Fubini’s theorem,

fR(x) = (2π)−1

∫ R

−R

∫
e−iyξ f(y) dy eixξ dξ = (2π)−1

∫ R

−R

∫
ei(x−y)ξ f(y) dy dξ

= (2π)−1

∫
ei(x−y)R − e−i(x−y)R

i(x− y)
f(y) dy = π−1

∫
f(x− y)

sin yR

y
dy .

Since the function (sin yR)/y is even, we obtain

π−1

∫
f(x− y)

sin yR

y
dy =

2
π

∫ ∞

0

f(x + y) + f(x− y)
2

sin yR

y
dy

=
2
π

f(x + 0) + f(x− 0)
2

∫ π

0

sin yR

y
dy

+
2
π

∫ π

0

(
f(x + y)− f(x + 0)

2y
+

f(x− y)− f(x− 0)
2y

)
sin yR dy

+
2
π

∫ ∞

π

f(x + y) + f(x− y)
2y

sin yR dy . (8.2)

Since sin yR = (eiyR − e−iyR)/2i and the function

g(y) =
{

(f(x + y) + f(x− y))/2y, y > π,

0, y < π

is from L1(R1), the third term in the right hand side of (8.2) goes to zero by
Theorem 6.4. The second term goes to zero by the Riemann–Lebesgue lemma (see
(2.5)). For the first term we are left with proving that

2
π

∫ π

0

sin yR

y
dy → 1

as R → ∞. This is a standard formula from complex analysis, but it also follows
from the fact that the right hand side of (8.1) goes to (f(x+0)+f(x−0))/2 = f(x)
for all f ∈ S(R1) (Theorem 7.8). ¤
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8.2. L2-Fourier transform

Problems with the L2-Fourier transform.
If f ∈ L2(R1) then the definition

f̂(ξ) = (2π)−1/2

∫
e−ixξ f(x) dx

does not always make sense, and it is not obvious that

(2π)−1/2 lim
R→∞

∫ R

−R

e−ixξ f(x) dx

exists for all f ∈ L2(R1) either. Nevertheless the following theorem suggests that
a good L2-Fourier transform does exist.

Theorem 8.2 (Parseval’s formula). If f, g ∈ S(R1) then

(f, g) = (f̂ , ĝ) . (8.3)

Proof. By Fubini’s theorem for all f, h ∈ S(R1) we have

(f̂ , h) = (2π)−1/2

∫∫
e−ixξ f(x) dx h̄(ξ) dξ

= (2π)−1/2

∫∫
eixξh(ξ) dξ f(x) dx = (f,F−1h) ,

where F−1 is the inverse Fourier transform. Taking h = ĝ we obtain (8.3). ¤
From (8.3) it follows that

‖f̂‖2L2(R1) = ‖f‖2L2(R1) (8.4)

so we can expect that f̂ is well defined as a function from L2(R1) for all f ∈ L2(R1).

Definition of the L2-Fourier transform.
Let f ∈ L2(R1). Then, since the space S(R1) is dense in L2(R1), there exists a
sequence of functions fk ∈ S(R1) such that ‖f − fk‖L2(R1) → 0 as k → ∞. Then
‖fm − fk‖L2(R1) → 0 as k, m → ∞, i.e., {fk} is a Cauchy sequence in L2(R1). By
(8.4) we obtain that ‖f̂m − f̂k‖L2(R1) → 0 as k, m →∞, which means that {f̂k} is
also a Cauchy sequence in L2(R1). Since the space L2(R1) is complete, the sequence
{f̂k} has a limit g ∈ L2(R1). Now we define f̂ = g.

We have to prove, of course, that our definition is correct. The function g ∈
L2(R1) is uniquely determined by f̂k and, consequently, it is determined by fk. The
only problem is that g may be different if we take another sequence hk convergent
to f . However, if fk and hk converge to f then

‖f̂k − ĥk‖L2(R1) = ‖fk − hk‖L2(R1) → 0

as k →∞, so the sequences {f̂k} and {ĥk} have the same limit.
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Properties of the L2-Fourier transform.
It follows directly from the definition that (8.4) remains valid for all f ∈ L2(R1).
This means that the Fourier transform preserves the norm (and so the metric) in
L2(R1). Such transformations of a Hilbert space are said to be isometric. Since the
inner product is continuous, Parceval’s formula holds for all f, g ∈ L2(R1) as well.
This result can also be proved as follows.

Lemma 8.3. If A is a linear isometric transformation of the Hilbert space H then
(Af, Ag) = (f, g) for all f, g ∈ H.

Proof. From the properties of the inner product it follows that

(f, g) =
1
4
‖f + g‖2 − 1

4
‖f − g‖2 +

i

4
‖f + ig‖2 − i

4
‖f − ig‖2 , (8.5)

which immediately implies the lemma. ¤
Remark. The equality (8.5) is very useful and is of interest in itself. It shows, in
particular, that the inner product (·, ·) in the Hilbert space is uniquely determined
by the norm ‖ · ‖.

It is not obvious that the L2-Fourier transform of f ∈ L1(R1)∩L2(R1) coincides
with the L1-Fourier transform of f . We shall deduce this result from the following
lemma.

Lemma 8.4. Let f ∈ L2(R1). Define

fR(x) =
{

f(x), |x| 6 R,

0, |x| > R,

and let

f̃R = (2π)−1/2

∫
e−ixξ fR(x) dx = (2π)−1/2

∫ R

−R

e−ixξ f(x) dx

be the L1-Fourier transform of fR. Then ‖f̂ − f̃R‖L2(R1) → 0 as R →∞, where f̂
is the L2-Fourier transform of f .

Proof. Let f̂R be the L2-Fourier transforms of the functions fR. From the definition
of integrals over an unbounded interval it follows that ‖f−fR‖L2(R1) → 0 as R →∞.
In view of Parseval’s formula ‖f̂ − f̂R‖L2(R1) → 0, so we only need to prove that
f̂R = f̃R.

Let hk ∈ S(R1) and hk → fR in L2(R1). Obviously, we can choose hk in such a
way that supp hk ⊂ (−R − 1, R + 1) for all k. Let χ be the characteristic function
of the interval (−R− 1, R + 1). Then, by the Cauchy-Schwarz inequality,

‖fR − hk‖1 =
∫
|fR(x)− hk(x)|χ(x) dx 6 ‖χ‖2‖fR − hk‖2 → 0 .

as k →∞. Now Theorem 6.3 implies that ĥk → f̃R uniformly. On the other hand,
the sequence {ĥk} is mean square convergent to f̂R. Since uniform convergence
implies mean square convergence on each bounded set, we obtain that f̂R = f̃R on
each bounded set, so f̂R = f̃R everywhere. ¤
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Corollary 8.5. If f ∈ L1(R1)∩L2(R1) then the L2-Fourier transform f̂ coincides
with the L1-Fourier transform of f .

Proof. Let f̃R be the L1-Fourier transform of fR. Then

| (2π)−1/2

∫
e−ixξ f(x) dx− f̃R(ξ) |

= (2π)−1/2 |
∫

|x|>R

e−ixξ f(x) dx |

6 (2π)−1/2

∫

|x|>R

|f(x)| dx .

Since
∫ |f(x)| dx < ∞, the integral on the right hand side vanishes as R → ∞.

This implies that f̃R is uniformly convergent to the L1-Fourier transform of f as
R → ∞. Now in the same way as in the proof of Lemma 8.4 we obtain that the
L1-Fourier transform of f coincides with f̂ .

For the inverse Fourier transform F−1 in S(R1) we have

F−1
ξ→xf = f̂(−x) .

Therefore all the results we have proved for the L2-Fourier transform F remain
valid for F−1. Namely,

(1) the inverse Fourier transform F−1 in S(R1) can be extended to L2(R1) so
that

(F−1f,F−1g) = (f, g) , ∀ f, g ∈ L2(R1) (Parceval’s formula);

(2) if f ∈ L2(R1) then F−1
ξ→xf coincides with the mean square limit

(2π)−1/2 lim
R→∞

∫ R

−R

eixξ f(ξ) dξ ;

(3) if f ∈ L1(R1) ∩ L2(R1) then the inverse L2-Fourier transform F−1
ξ→xf coin-

cides with
(2π)−1/2

∫
eixξ f(ξ) dξ .

Moreover, we have
F−1f̂ = f

for all f ∈ L2(R1). Indeed, by Parceval’s formula

‖F−1f‖L2(R1) = ‖f‖L2(R1) , ∀ f ∈ L2(R1).

Given f ∈ L2(R1), we choose fk ∈ S(R1) such that ‖f − fk‖L2(R1) → 0. Then

‖F−1f̂ − f‖L2(R1) = lim
k→∞

‖F−1f̂ − fk‖L2(R1)

= lim
k→∞

‖F−1f̂ −F−1f̂k‖L2(R1) = lim
k→∞

‖f̂ − f̂k‖L2(R1) = 0 .
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9. Sobolev spaces Hs

Definition 9.1. We say that f ∈ Hs(R1) with s > 0 if f ∈ L2(R1) and
(1 + ξ2)s/2f̂(ξ) ∈ L2(R1), where f̂ is the Fourier transform of f .

We define the inner product (·, ·)s and the norm ‖ · ‖s in Hs(R1) by

(f, g)s =
∫

(1 + ξ2)s f̂(ξ) ĝ(ξ) dξ (9.1)

and ‖f‖s =
√

(f, f)s respectively. The inner product (9.1) satisfies all the necessary
conditions (it is proved in the same way as for the inner product in L2(R1)). In
view of Parceval’s formula, H0(R1) = L2(R1).

We have
(f, g)s = (f̂s, ĝs)

where
f̂s(ξ) = (1 + ξ2)s/2f̂(ξ) , ĝs(ξ) = (1 + ξ2)s/2ĝ(ξ) ,

and (·, ·) denotes the inner product in L2(R1). From here it follows that the space
Hs(R1) is complete. Indeed, if {fk} is a Cauchy sequence in Hs(R1) then the
functions

(f̂k)s(ξ) = (1 + ξ2)s/2f̂k(ξ) (9.2)

form a Cauchy sequence in L2(R1). Since L2(R1) is complete, the sequence (9.2) has
a limit f̂s ∈ L2(R1). Then {fk} converges in Hs(R1) to the function f ∈ Hs(R1)
defined by

f̂(ξ) = (1 + ξ2)−s/2f̂s(ξ) .

Obviously, S(R1) ⊂ Hs(R1) ⊂ Hs−ε(R1) for all s, ε > 0. Moreover, S(R1) is
dense in Hs(R1) for all s > 0. Indeed, since S(R1) is dense in L2(R1), for any
f ∈ Hs(R1) there exists a sequence of functions (f̂k)s ∈ S(R1) such that

‖f̂s − (f̂k)s‖L2(R1) → 0.

Then ‖f − fk‖s → 0, where fk are the S-functions defined by

f̂k(ξ) = (1 + ξ2)−s/2(f̂k)s .

Derivatives of the functions from Hs.
We shall need the following lemma.

Lemma 9.2. Let f ∈ L2(R1). Assume that f is piecewise continuously differen-
tiable and that f ′ ∈ L2(R1). Then f̂ ′(ξ) = iξ f̂(ξ).

Remark 9.3. The corresponding result for L1(R1) is obvious. Indeed, if f ∈ L1(R1)
is differentiable and f ′ ∈ L1(R1), then

f(−R) =
∫ −R

−∞
f ′(x) dx → 0 , f(R) =

∫ ∞

R

f ′(x) dx → 0
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as R →∞. Therefore

f̂ ′(ξ) = (2π)−1/2

∫
e−ixξ f ′(x) dx = (2π)−1/2 lim

R→∞

∫ R

−R

e−ixξ f ′(x) dx

= (2π)−1/2 lim
R→∞

e−ixξ f(x)
∣∣R
−R

− (2π)−1/2 lim
R→∞

∫
f(x)

d
(
e−ixξ

)

dx
dx = iξ f̂(ξ) .

Proof of Lemma 9.2. If ϕ ∈ S(R1) then the derivative (fϕ)′ lies in L1 and

(fϕ)(−R) =
∫ −R

−∞
(fϕ)′(x) dx → 0 , (fϕ)(R) =

∫ ∞

R

(fϕ)′(x) dx → 0

as R → ∞. Therefore
∫

f ′(x) ϕ(x) dx = − ∫
f(x) ϕ′(x) dx, and from Parceval’s

formula and Lemma 7.3 it follows that

(f̂ ′, ϕ̂) = (f ′, ϕ) = −(f, ϕ′) = −(f̂ , ϕ̂′) = −(f̂ , iξ ϕ̂) = (iξ f̂ , ϕ̂)

for all ϕ ∈ S(R1) . Since S(R1) is dense in L2(R1), the equality

(f̂ ′, ϕ̂) = (iξ f̂ , ϕ̂) (9.3)

holds for all ϕ ∈ L2(R1). In particular, if ϕ̂ = f̂ ′(ξ) − iξ f̂(ξ) then (9.3) takes the
form

( f̂ ′(ξ)− iξ f̂(ξ) , f̂ ′(ξ)− iξ f̂(ξ) ) = ‖f̂ ′(ξ)− iξ f̂(ξ)‖2L2(R1) = 0 ,

so f̂ ′(ξ) = iξ f̂(ξ) . ¤
Proposition 9.4. Let f ∈ L2(R1) and m be a positive integer. Assume that for all
k 6 m the derivatives dkf/dxk exist, are piecewise continuous and lie in L2(R1).
Then f ∈ Hm(R1).

Proof. By Lemma 9.2 (iξ)kf̂(ξ) = Fx→ξ(dkf/dxk) ∈ L2(R1). Therefore

(1 + iξ)mf̂(ξ) ∈ L2(R1)

and

‖(1 + ξ2)m/2f̂‖2L2(R1) =
∫

(1 + ξ2)m|f̂(ξ)|2 dξ = ‖(1 + iξ)mf̂‖2L2(R1) < ∞ .

¤
Proposition 9.5. Let f ∈ Hm+1/2+ε, where ε > 0 and m is a non-negative integer.
Then for all k 6 m the derivatives dkf/dxk exist and are continuous.

Proof. By the Schwarz inequality
∫
| ξk f̂(ξ) | dξ =

∫ (
|ξ|k (1 + ξ2)−(m+1/2+ε)/2

)(
(1 + ξ2)(m+1/2+ε)/2 |f̂(ξ)|

)
dξ

6
(∫

ξ2k (1 + ξ2)−(m+1/2+ε) dξ

)1/2 (∫
(1 + ξ2)m+1/2+ε |f̂(ξ)|2 dξ

)1/2

.
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The second integral in the right hand side coincides with the Hm+1/2+ε-norm of f

and is finite. If k 6 m then the first integral is also finite, so ξkf̂(ξ) ∈ L1(R1).
By the inverse Fourier formula

f(x) = (2π)−1/2

∫
eixξ f̂(ξ) dξ .

As ξkf̂ ∈ L1(R1), we can take k derivatives with respect to x under the integral
sign. This implies that the derivatives

dkf/dxk = (2π)−1/2

∫
eixξ (iξ)k f̂(ξ) dξ (9.4)

exist for all k = 0, 1, . . . ,m. By Theorem 6.2 these derivatives are continuous. ¤

Generalized derivatives.
Propositions 9.4 and 9.5 show that the functions f ∈ Hs(R1) are becoming

smoother and smoother as s → ∞. When s = 0, we can say only that f ∈
L2(R1) = H0(R1). If s > 1/2 then the functions f ∈ Hs(R1) are continuous, if
s > 3/2 then f ∈ Hs(R1) are continuously differentiable, etc.

Proposition 9.4 suggests that all the functions f ∈ H1(R1) are differentiable with
the derivatives f ′ ∈ L2(R1). However, generally speaking that is not true.

Example. Let ϕ ∈ S(R1), f(x) = ϕ(x) as x 6= 0 and f(0) = ϕ(0)+1. Then f̂ = ϕ̂,
so f ∈ Hs(R1) for all s. However, f is not differentiable at x = 0.

In the example above the function f is differentiable everywhere outside {x = 0}.
The value of the function at one fixed point does not affect its Fourier transform, so
f̂ coincides with the Fourier transform of the smooth function. More generally, if f

is differentiable “almost everywhere”(i.e., outside a very small set) then f̂ behaves
like if f is differentiable. From this observation it is clear that the classical definition
of the derivative is too restrictive for our purposes.

Definition 9.6. If f ∈ Hm with non-negative integer m then the functions f (k) ∈
L2(R1) defined by

Fx→ξf
(k) = (iξ)k f̂(ξ) , k = 1, 2, . . . , m,

are said to be the generalized derivatives of f .

In view of Proposition 9.5, if f ∈ Hm then the derivatives dkf/dxk of order
k 6 m− 1 are defined in the classical sense, and by (9.4) these classical derivatives
coincide with the corresponding generalized derivatives. The generalized derivative
of order m is another matter, it is well defined even if the classical derivative does
not exist.

Example 9.7. Let f be a continuous function. Assume that there exist real num-
bers a1 < a2 < · · · < am such that f is continuously differentiable on the intervals

(a1, a2) , (a2, a3) , ... (am−1, am)
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and f(x) = 0 as x 6 a1 or x > am. Then the first generalized derivative of f
coincides with

g(x) =
{

f ′(x), x ∈ (ak, ak+1) , k = 1, . . . , m− 1,

0, x 6 a1 or x > am.

Indeed, integrating by parts we obtain

ĝ(ξ) =
m−1∑

k=1

∫ ak+1

ak

e−ixξ f ′(x) dx

=
m−1∑

k=1

(
e−ixξ f(x)

)∣∣ak+1

ak
+

m−1∑

k=1

∫ ak+1

ak

iξ e−ixξ f(x) dx

=
m−1∑

k=1

(
e−ixξ f(x)

)∣∣ak+1

ak
+ iξ f̂(ξ) .

Since f is continuous and f(a1) = f(am) = 0, we have

(
e−ixξ f(x)

)∣∣ak+1

ak
= 0

and, consequently, ĝ(ξ) = iξ f̂(ξ).

Obviously, (1+ξ2)m/2f̂ ∈ L2(R1) with non-negative integer m if and only if ξkf̂ ∈
L2(R1), k = 0, 1, . . . , m. Therefore, using the notion of generalized derivatives, we
can give another definition of the Sobolev space Hm(R1).

Definition 9.8. If m is a non-negative integer then f ∈ Hm(R1) means that
f ∈ L2(R1) and for all k 6 m there exist the generalized derivatives f (k) ∈ L2(R1).

Differential equations with constant coefficients.
Let us consider the differential equation

m∑

k=0

c̃k
dkf

dxk
= g

on R1, where c̃k are some constants and g ∈ L2(R1) is a given function. We rewrite
this equation in the form

m∑

k=0

ck Dkf = g , (9.5)

where ck = ik c̃k and

Dkf = (−i)k dkf

dxk
.

Of course, the left hand side of (9.5) is well defined only if the derivatives of
f exist. We shall consider Dkf in (9.5) as the generalized derivatives, and then
we have to assume that f ∈ Hm(R1). The solutions from Hm(R1) are called the
generalized solutions of the differential equation (9.5). If a generalized solution f
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appears to be sufficiently smooth, then the generalized derivatives coincide with
the usual ones and f is also a classical solution. However, the equation (9.5) may
not have any classical solutions but only generalized ones.

From the definition of generalized derivatives it follows that D̂kf(ξ) = ξkf̂(ξ).
Applying the Fourier transform, we obtain from (9.5)

P (ξ) f̂(ξ) = ĝ(ξ) , (9.6)

where

P (ξ) =
m∑

k=0

ck ξk .

Therefore f̂(ξ) must coincide with ĝ(ξ)/P (ξ). If P (ξ) is nowhere equal to zero,
then (1 + ξ2)m/2/P (ξ) is uniformly bounded. This implies F−1 (ĝ/P ) ∈ Hm(R1) ,
so

f = F−1 (ĝ/P ) (9.7)

is the required generalized solution.
If P (ξ) = 0 for some ξ ∈ R1 then the equation (9.5) may not have any Hm-

solutions. Indeed, if there exist a solution f ∈ Hm(R1) then, in view of (9.6), g
must be equal to zero at the points where P is equal to zero.

Definition 9.9. The polynomial P is called the symbol of the differential operator∑
ck Dk.

We have seen that the solutions of differential equations can be constructed in
terms of the symbols of corresponding differential operators. It is not always easy
to derive from (9.7) an explicit formula for f . However, we can often obtain some
information about f even not trying to calculate the inverse Fourier transform.

Example. Let D2pf + f = g where g ∈ L2(R1). Then by the preceding

ξk f̂(ξ) = ξk (1 + ξ2p)−1 ĝ(ξ) , k = 0, 1, . . . , 2p . (9.8)

Since ĝ ∈ L2(R1) and | ξk (1 + ξ2p)−1 | 6 1 as k 6 2p, the equality (9.8) implies
that for all k 6 2p the generalized derivatives f (k) exist and

‖f (k)‖L2(R1) 6 ‖g‖L2(R1) .
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Appendix

Definition A.1. A set K is said to be closed if it contains all its limit points, i.e.,
if x1, x2, ... ∈ K and xk → x imply x ∈ K.

Definition A.2. A set K is open if for any point x0 ∈ K there exists δ > 0 such
that |x− x0| < δ implies x ∈ K.

Lemma A.3. The complement of an open set in Rn is closed, and the complement
of a closed set is open.

Definition A.4. A set K is said to be compact if any sequence of points x1, x2, . . .
in K contains a subsequence xi1 , xi2 , . . . which converges to some point x ∈ K.

Lemma A.5. A subset K of the Euclidian space Rn is compact if and only if K
is bounded and closed.

Uniform continuity.

Definition A.6. A function f is called uniformly continuous if for any ε > 0 there
exists δ > 0 such that |x1 − x2| 6 δ implies |f(x1)− f(x2)| 6 ε.

Obviously, a uniformly continuous function is continuous.

Lemma A.7. Any continuous function defined on a compact set is uniformly con-
tinuous.

Convergence of series.

Definition A.8. Let ak be complex numbers. We say that the series
∑∞

k=−∞ ak

converges to a and write
∑∞

k=−∞ ak = a if
∑N

k=−N ak → a as N → ∞. We write∑∞
k=−∞ ak < ∞ if

∑∞
k=−∞ ak = a for some (finite) a.

Lemma A.9. If
∑∞

k=−∞ ak < ∞ then ak → 0 as k → ±∞.

Lemma A.10. If |ak| 6 bk and
∑∞

k=−∞ bk < ∞ then
∑∞

k=−∞ ak < ∞.

Lemma A.11. If |ak+1|
|ak| 6 q < 1 for sufficiently large k then

∑∞
k=−∞ ak < ∞.

Example. Let ak = |k|−α with some real α as k 6= 0. Then
∑∞

k=−∞ ak < ∞ if
and only if α > 1.

Uniform convergence.

Definition A.12. We say that a sequence of functions gN converges uniformly to
a function f as N →∞ if for any ε > 0 there exists Nε such that N > Nε implies
|f(x)− gN (x)| 6 ε for all x.

Definition A.13. We say that a series
∑∞

k=−∞ fk converges uniformly to f if the
sequence gN =

∑N
k=−N fk converges uniformly to f .

Lemma A.14 (Weierstrass test). If a series
∑∞

k=−∞ fk converges to f pointwise
and

∑∞
k=−∞ sup

x
|fk(x)| < ∞ then the series converges to f uniformly.
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Theorem A.15. If a series
∑∞

k=−∞ fk converges to f uniformly and the functions
fk are continuous then f is continuous.

Theorem A.16. A uniformly convergent series can be integrated term by term.

Polar coordinates.
The polar coordinates (r, ϕ) in R2 are defined by

x1 = r sin ϕ , , x2 = r cos ϕ .

The Jacobian of the change of variables (x1, x2) → (r, ϕ) is equal to r, so

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) dx1 dx2 =

∫ ∞

0

∫ 2π

0

f(r, ϕ) r dϕ dr .


