
CM322A COMPLEX ANALYSIS NOTES ON WEEK 1

SET THEORY

We use some notions from set theory, which can be found in the online lecture
notes http://www.mth.kcl.ac.uk/∼ysafarov/Lectures/CM221/jhanotes.pdf
on pages 1–4. In particular,

N is the set of positive integer numbers, N = {1, 2, . . .};

Z is the set of integer numbers, Z = {. . . ,−2,−1, 0, 1, 2, . . .};

Q is the set of rational numbers, Q = {m
n

: m,n ∈ Z};

R is the set of real numbers;

C is the set of complex numbers.

The symbol ∞ is a shorthand for “infinity”. It is not a proper number.

COMPLEX NUMBERS

We define C as the set of ordered pairs z = (x, y) with x, y ∈ R and the algebraic
operations

z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
z1 × z2 = (x1, y1)× (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1) .

The numbers x and y are said to be the real and imaginary parts of z and are
denoted by Re z and Im z.

The set C can be identified with R2. We have (x1, 0) + (x2, 0) = (x1 + x2, 0)
and (x1, 0) × (x2, 0) = (x1 x2, 0). Therefore the above defined addition and mul-
tiplication in C become the usual addition and multiplication in the space or real
numbers, if we restrict them to the set of complex numbers with zero imaginary
parts. Thus, we can consider R as a subset (and a subalgebra) of C. Further of we
write x instead of (x, 0).

Denote i = (0, 1). From the definition of multiplication it follows that i2 = −1.
Thus, i can be thought of as a square root of one.

A complex number z = (x, y) can be written as x+ i y, where x and y are the usual
(Euclidean) coordinates of the corresponding point on the plane R2. In the polar

coordinates, every nonzero z ∈ C is defined by a pair (r, θ) where r =
√
x2 + y2

and θ is defined by cos θ = r−1x. The numbers r and θ are called, respectively, the
modules and the argument of the complex number z, and are denoted by |z| and
arg z.

The argument is not uniquely defined: one can take θ+2πk with any k ∈ Z instead
of θ. We can choose k ∈ Z in such a way that −π < θ + 2πk 6 π. This number
θ + 2πk is said to be the principal value of the argument and is denoted by Arg z.
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Define eiθ = cos θ + i sin θ. Then every nonzero complex number z can be written
in the form |z| ei arg z. We have z1 z2 = |z1| |z2| ei(arg z1+arg z2) which implies, in
particular, that |z1 z2| = |z1| |z2|.

By definition, |z1 − z2| is the Euclidean distance between z1 and z2. In particular,
|z| is the distance from z to the origin. The standard triangle inequality (proved
in Euclidean geometry) implies that |z1 + z2| 6 |z1|+ |z2|.

The complex number z̄ = x − iy is called the (complex) conjugate to z. We
have z̄ = |z| e−i arg z and, consequently, z z̄ = |z|2. A direct calculation shows that

z1 z2 = z̄1 z̄2, z−1 = (z̄)−1 and (z1 + z2) = z̄1 + z̄2, z+ z̄ = 2Re z and z− z̄ = 2i Im z.

TOPOLOGICAL PROPERTIES OF THE COMPLEX PLANE

All the topological definitions and results mentioned in this section remain valid
for a general space Ω equipped with a nonnegative symmetric “distance function”
ρ(u, v), such that ρ(u, v) = 0 if and only if u = v and ρ(u, v) 6 ρ(u,w) + ρ(w, v),
where u, v, w ∈ Ω, The only difference is that, in all definitions, one has to replace
|u− v| with ρ(u, v). Proofs and detailed discussions can be found in
http://www.mth.kcl.ac.uk/∼ysafarov/Lectures/Past/321.pdf

Definition. Let z0 be a fixed point of C and r > 0. The set of points z ∈ C such
that |z − z0| < r is said to be the open disc of radius r centred at z0.

We denote this open disc by D(z0, r), that is, D(z0, r) = {z ∈ C : |z− z0| < r}. A
closed disc is the set D(z0, r) = {z ∈ C : |z − z0| 6 r}.

Definition. A set Ω ⊆ C is said to be bounded if it is a subset of a disc D(z0, r).

Definition. A set Ω ⊆ C is said to be open if for each z0 ∈ A there exists r > 0
such that D(z0, r) ⊆ A. A set Ω ⊆ C is said to be closed if its complement in C is
open.

One can easily see that an open disc is open and a closed disc is closed.

Theorem. A set Ω ⊆ C is closed if and only if the limit of every convergent
sequence of points zn ∈ Ω also belongs to Ω.

Recall that a sequence {z1, z2, z3, . . .} converges to a limit z if |z − zn| →
n→∞

0.

Definition. A set A ⊆ C is said to be disconnected if there exists a pair of disjoint
open sets Ω1,Ω2 ⊆ C such that A ⊆ Ω1

⋃
Ω2 and each of these set contains at least

one element of A. A set is connected if it is not disconnected.

Definition. Let z0, z1 ∈ C. A path from z0 to z1 is a continuous map γ : [0, 1] 7→ C
such that γ(0) = z0 and γ(1) = z1.

Here continuity means that |γ(t1) − γ(t2)| → 0 as |t1 − t2| → 0. The continuous
path γ can be thought of as a continuous line joining z0 and z1.

Definition. A set A ⊆ C is said to be path-connected if every two points z0, z1 ∈ A
can be joined by a continuous path with values in A.

Theorem. Every path-connected set is connected. An open connected set is
path-connected. A general (not open) connected set may not be path-connected.
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THE RIEMANN SPHERE

We wish to add the point ∞ to the complex plane C. It can be done formally, by
saying that the extended plane Ĉ = C

⋃
∞. We then provide the set Ĉ with a

topological structure as follows.

Let S2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1} be the unit sphere in R3 centred at

the origin. Let us identify the complex plane with the horizontal plane {x3 = 0}
in R3, and assume that {x2 = x3 = 0} is the real line. Then, for any point z ∈ C,
the straight line going from the “north pole” (0, 0, 1) through this point cuts the
sphere S2 in a unique point. Denote the coordinates of this point by xk(z). Clearly,
the point (x1(z), x2(z), x3(z)) uniquely determines z. If z = x+ iy then

x1(z) =
2x

|z|2 + 1
, x2(z) =

2y

|z|2 + 1
, x3(z) =

|z|2 − 1

|z|2 + 1

and

x =
x1(z)

1− x3(z)
, y =

x2(z)

1− x3(z)
.

If |z| → ∞ then x1(z) → 0, x2(z) → 0 and x3(z) → 1. Therefore we can assume

that the north pole corresponds to the point ∞ on Ĉ. The map

(x1, x2, x3) 7→
(

x1

1− x3

,
x2

1− x3

)
from S2 onto Ĉ is called the stereographic projection.

The sphere S2 provided with the usual Euclidean distance is a metric space, so we
can speak about open subsets of S2 and convergent sequences in S2.

Definition. We shall say that a subset of Ĉ is open if its inverse image under the
stereographic projection is open. We shall say that a sequence of points zn ∈ Ĉ
converges to z ∈ Ĉ if the inverse images of zn converge to the inverse image of z
in S2.

Another possible way to define the topological structure on Ĉ is to consider sets
{z ∈ C : |z| > R} as open discs centred at ∞ and to use the formal definitions of
open and closed sets given in the previous section. This approach is equivalent to
the one described above.

MÖBIUS TRANSFORMATIONS

Definition. Let a, b, c, d ∈ C and ad 6= bc. The map

z 7→ T (z) =
az + b

cz + d

is called the Möbius transformation.

Remark. If a 6= 0, c 6= 0 and ad = bc then the image of T is a one point set
because

T (z) =
az + b

cz + d
=

ac(az + b)

ac(cz + d)
=

a(acz + bc)

c(acz + ad)
=

a

c
for all z ∈ C.
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Exercise. What happens if ad = bc, and a = 0 or c = 0?

Exercise. Show that the composition of two Möbius transformations is again a
Möbius transformation.

Lemma. The Möbius transformation T (z) = az+b
cz+d

is invertible. It’s inverse is

given by T−1(z) = −dz+b
cz−a .

Proof is by direct calculation.

Theorem. Every Möbius transformation T (z) = az+b
cz+d

can be represented as the
composition of the following four basic transformations:

(1) translation z 7→ z + z0 with a ∈ C,

(2) dilatation z 7→ rz with r ∈ R and r > 0,

(3) rotation z 7→ eiθz with θ ∈ R,

(4) inversion z 7→ z−1.

Proof. First of all, let us note that the multiplication by a complex number z0 is
the composition of a dilation and a rotation because z0 = r eiθ with r, θ ∈ R and
r > 0.

Let c = 0. Then the condition ad 6= bc implies that a 6= 0 and d 6= 0. Thus we
have T (z) = a

d
z + b

d
. Since d 6= 0, the addition of the factor b

d
is a translation and

the multiplication by a
d

is the composition of a dilation and a rotation.

Let c 6= 0. Denote k = (bc− ad)/c. Then az + b = c−1 [a(cz + d) + ck] and

T (z) =
a

c
+

k

cz + d
.

This is the composition of

(1) the combination of dilation and rotation z 7→ c z,

(2) the translation cz 7→ cz + d,

(3) the inversion cz + d 7→ (cz + d)−1,

(4) the combination of of dilation and rotation (cz + d)−1 7→ k (cz + d)−1,

(5) k (cz + d)−1 7→ a
c

+ k (cz + d)−1.

Corollary. The Möbius transformation preserves the set of circles and straight
lines.

Proof. Clearly, translations, dilations and rotations map lines into lines and circles
into circles. Therefore it is sufficient to prove the corollary for the inversion. It
can be done using Cartesian form of equations defining the lines and circles (see in
books or lecture notes).
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CM322A COMPLEX ANALYSIS NOTES ON WEEK 2

COMPLEX SEQUENCES

A sequence is a collection of complex numbers w0, w1, w2, . . . “labelled” by nonneg-
ative integers. We shall denote such a sequence by {wn}, where n = 1, 2, . . . and
wn are the elements of the sequence. Traditionally, one assumes that a sequence
has infinitely many members (a finite collection is sometimes called a “finite se-
quence”). There is no requirement for the members of a sequence to be distinct
numbers, some of them may coincide. If all wn coincide with the same complex
number, the sequence is called constant.

Definition. We say that the sequence of complex numbers wn converges to a limit
w ∈ C if |w − wn| → 0 as n → ∞. We say that {wn} is a Cauchy sequence if
|wm − wn| → 0 as m,n→∞.

One can easily show that, for any pair of convergent sequences {wn}, {vn} and all
a, b ∈ C, we have limn→∞(awn + bvn) = a limn→∞wn + b limn→∞ vn.

Theorem. A sequence of complex numbers converges if and only if it is a Cauchy
sequence.

This is a consequence of the fact that the space of complex numbers is complete
which follows from the completeness axiom for real numbers, see
http://www.mth.kcl.ac.uk/∼ysafarov/Lectures/Past/321.pdf

COMPLEX SERIES

Let w0, w1, w2, . . . be a sequence of complex numbers. We say that the (formal)
infinite series

∑∞
n=0wn converges if the sequence of its partial sums Sm =

∑m
n=0 wn

converges to a limit w ∈ C as m → ∞. Then we write w =
∑∞

n=0wn and call w
the sum of the series.

Remark. If the series
∑∞

n=0wn converges then |wn| → 0 as n → ∞. Indeed, by
the above Sm is a Cauchy sequence. Therefore |wm| = |Sm−Sm−1| → 0 as m→∞.

There are divergent (not convergent) series satisfying the condition limn→∞ |wn| =
0. Even if all partial sums SN lie in a bounded set, the series may well diverge.

Remark. Let
∑∞

n=0wn and
∑∞

n=0 vn be convergent series. Then, for all a, b ∈ C,
the series

∑∞
n=0(awn + bvn) converges and

∞∑
n=0

(awn + bvn) = a

∞∑
n=0

wn + b

∞∑
n=0

vn

(this follows from the definition and the corresponding result for sequences).

Definition. If
∑∞

n=0 |wn| < ∞, the series
∑∞

n=0wn is said to be absolutely con-
vergent.

The following result is less obvious.
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Theorem. Every absolutely convergent series converges.

Proof. Assume that the sum
∑∞

n=0 |wn| is finite. Let m > k. Applying the triangle
inequality, we obtain

|Sm − Sk| = |
m∑
k+1

wn | 6
m∑
k+1

|wn| 6
∞∑
k+1

|wn| .

Since
∑∞

n=0 |wn| < ∞, the sum in the right hand side goes to 0 as k → ∞. This
implies that the partial sums Sm form a Cauchy sequence.

Recall that the upper limit of is a sequence of real numbers tn is lim sup tn =
limk→∞ (supn>k tn). The limit exists as sk = supn>k tn form a nonincreasing se-
quence. The upper limit coincides with the largest accumulation point of the
sequence {tn}.

Theorem (nth-Root Test). Let lim sup |wn|1/n = L. Then the series
∑∞

n=0 wn
converges absolutely if L < 1 and diverges if L > 1.

Proof. Let sk = supn>k |wn|1/n.

Assume first that L < 1 and choose an arbitrary r such that L < r < 1. Since
sk → L as k → ∞, we have sk < r for all sufficiently large k. This means that
|wn| < rn for all sufficiently large n. It follows that the sum

∑∞
n=0 |wn| is finite by

comparison with the convergent geometric series
∑∞

n=0 r
n.

Assume now that L > 1. Then sk > 1 for all sufficiently large k. It follows from
the definition of supremum that there exists mk > k such that |wmk |1/mk > 1
and, consequently |wmk | > 1. Since mk go to infinity as k → ∞, we see that the
sequence {|wn|} does not converge to zero. By the above, this implies that the
series does not converge.

Theorem (Ratio Test). Assume that wn 6= 0 and that the sequence |wn+1|/|wn|
converges. Let lim |wn+1|/|wn| = L. Then the series

∑∞
n=0wn converges absolutely

if L < 1 and diverges if L > 1.

Proof. Assume first that L < 1 and choose an arbitrary r such that L < r < 1.
Since |wn+1|/|wn| → L as n→∞, we have |wm+1| < r |wm| for all sufficiently large
m. It follows that

∞∑
n=m

|wn| =
∞∑
n=0

|wn+m| 6
∞∑
n=0

rn |wm| = (1− r)−1 |wm|

provided that m is large enough. This implies that the series is absolutely conver-
gent.

Assume now that L > 1. Then |wn+1| > |wn| for all sufficiently large n. It follows
that |wn| 6→ 0 and, consequently, the series diverges.
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POWER SERIES

A complex power series is a series of the form
∑∞

n=0 an (z−z0)n where an, z, z0 ∈ C.
The absolute convergence of such a power series is determined by the convergence
of the real series

∑∞
n=0 |an| rn where r denotes |z − z0|. In particular, the power

series absolutely converges for z = z0 (then w = 0).

Comparison test. If 0 6 tn 6 sn and
∑∞

n=0 sn <∞ then
∑∞

n=0 tn <∞ .

Let us denote by Ω the set of all nonnegative numbers r such that the sequence
{a0, a1r, a2r

2, a3r
3 . . .} is bounded. This set Ω is not empty as it contains r = 0.

Denote by R̂ its supremum (the least upper bound). Note that R̂ may be equal to
zero (if the above sequence is unbounded for all r > 0). If the set Ω is unbounded

(or, in other words, if the sequence is bounded for all r > 0) then we define R̂ =∞.

Main Lemma. If R̂ > 0 and |z − z0| < R̂ then the series
∑∞

n=0 an (z − z0)n is

absolutely convergent. If |z − z0| > R̂ then the series diverges.

Proof. Assume first that |z−z0| < R̂. By the definition of R̂, there exists a positive

number r, lying arbitrarily close to R̂, such that the set {a0, a1r, a2r
2, a3r

3 . . .} is
bounded. Let us choose r in such a way that r > |z − z0|. Then there exists r1

satisfying |z − z0| < r1 < r. Now we estimate

| an (z − z0)n | < |an| rn1 = |an| rn (r1/r)
n .

Since the set {a0, a1r, a2r
2, a3r

3 . . .} is bounded, there is a constant L such that
|an| rn 6 L for all n (in other words, this set lies in a disc of radius L centred at
zero). The above inequality implies that | an (z − z0)n | < L (r1/r)

n. Therefore the
series

∑∞
n=0 | an (z−z0)n | converges by comparison with the geometric progression.

Assume now that |z − z0| > R̂. Since R̂ is the supremum of the set Ω, the set

{a0, a1r, a2r
2, a3r

3 . . .} is unbounded for each r > R̂. In particular, this is true for
r = |z−z0|. This means that the set of numbers | an (z−z0)n | is unbounded, which
implies that | an (z − z0)n | do not converge to zero. As we have shown before, in
this case the series

∑∞
n=0 an (z − z0)n diverges. The proof is complete.

Definition. The number R̂ is called the radius of convergence of the power series∑∞
n=0 an (z − z0)n.

Remark. The lemma says nothing about the behaviour of the series for |z− z0| =
R̂. This depends on finer properties of the coefficients an; the series may diverge
or converge at those points.

Example. The series
∑∞

n=0 z
n is absolutely convergent for |z| < 1. It diverges for

|z| > 1 because then zn 6→ 0.

Example. The series
∑∞

n=0 n
−2zn is absolutely convergent for |z| 6 1 and is

divergent for |z| > 1.

Example. The series
∑∞

n=0 n
−1zn is absolutely convergent for |z| < 1 and is

divergent for |z| > 1. It converges at all points z such that |z| = 1 with the
exception of z = 1.
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Corollary. R̂ =
(
lim sup |an|1/n

)−1
.

Proof. Denote C = lim sup |an|1/n.

Let wn = an(z − z0)n. Then L := lim sup |wn|1/n = C |z − z0|. Clearly, L < 1 if
and only |z − z0| < C−1, and L > 1 if and only |z − z0| > C−1. Therefore, in view

of the n-th Root Test and the Main Lemma, R̂ = C−1.

Corollary. Assume that an 6= 0. If the sequence |an|/|an+1| converges then

R̂ = lim |an|/|an+1|.

Proof. Denote C = lim |an+1|/|an|.

Let wn = an(z − z0)n. Then L := |wn+1|/|wn| = C |z − z0| We have L < 1 if and
only |z − z0| < C−1, and L > 1 if and only |z − z0| > C−1. Therefore, in view of

the Ratio Test and the Main Lemma, R̂ = C−1 = lim |an|/|an+1|.

COMPLEX-VALUED FUNCTIONS

A complex-valued function of complex variable is a mapping from C or a subset
of C into C. The function f may not be defined on the whole plane; for example,
f(z) = 1

z
is not defined at z = 0 (unless it is regarded as a mapping from C into

Ĉ). The function f is real-valued if its range lies in R, considered as a subset of C.

Definition. A function f is said to be continuous at z0 if for every ε > 0 there
exists δ > 0 such that |f(z0)− f(z)| < ε whenever |z − z0| < δ. The function f is
said to be continuous on a set Ω if it is continuous at every point z0 ∈ Ω.

The function f is continuous at z0 if and only if |f(zn) − f(z)| → 0 as zn → z
for all sequences {zn} and all points z lying in the domain of definition of f . A
detailed discussion of various definitions of continuity can be found in
http://www.mth.kcl.ac.uk/∼ysafarov/Lectures/Past/321.pdf .

Example. Re z, Im z and |z| are continuous real-valued functions on C. The
function z̄ is a continuous complex-valued function.

Example. A polynomial P (z) =
∑m

n=0 an(z − z0)n, where an and z0 are fixed
complex numbers, is a continuous function on C.

Example. The series
∑∞

n=0 an(z − z0)n defines a function on the disc D(z0, R̂)

where R̂ is the radius of convergence.
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CM322A COMPLEX ANALYSIS NOTES ON WEEK 3

UNIFORM CONVERGENCE

Let
∑∞

n=0 an (z − z0)n = f(z) and fm(z) =
∑m

n=0 an (z − z0)n. Then fm(z)→ f(z)

for each z ∈ D(z0, R̂) where R̂ is the radius of convergence (see Week 2).

Definition. We say that a sequence of functions fm converges to f uniformly on
a set Ω ⊂ C if supz∈Ω |f(z)− fm(z)| → 0 as m→∞. The series

∑∞
n=0 an (z− z0)n

converges uniformly to its sum f(z) if the sequence of partial sum fm converges to
f uniformly.

In other words, uniform convergence on a set Ω means that

|f(z)− fm(z)| 6 Cm , ∀z ∈ Ω ,

where Cm are some constants such that Cm → 0 as m→∞.

Theorem. The series
∑∞

n=0 an (z − z0)n is uniformly convergent on any disc

D(z0, r) with r < R̂, where R̂ is the radius of convergence.

Proof of the above theorem uses some notions of the theory of metric spaces.
In short, one defines the distance dist(f, g) = supz |f(z) − g(z)| on the space of
functions and then applies the triangle inequality for this distance instead of the
triangle inequality for the modules. See
http://www.mth.kcl.ac.uk/∼ysafarov/Lectures/Past/321.pdf
for details.

Theorem. The function f(z) =
∑∞

n=0 an(z − z0)n is continuous function on the

disc D(z0, R̂) where R̂ is the radius of convergence.

Proof. The partial sums fm are polynomials and, therefore, are continuous func-
tions. If zn → z then, for all sufficiently large values of n, the point zn lies in the
disc D(z, r) on which the series is uniformly convergent. For these n, we have

|f(z)− f(zn)| 6 |f(z)− fm(z)|+ |fm(z)− fm(zn)|+ |f(zn)− fm(zn)|
6 2Cm + |fm(z)− fm(zn)| ,

where Cm are some constants converging to 0 as m → ∞. Given a positive ε,
we can find a positive integer m such that Cm < ε/3. Then we can choose nε in
such a way that |fm(z) − fm(zn)| < ε/3 for all n > nε. Thus, for all n > nε we
have |f(z) − f(zn)| < ε. Since ε is an arbitrary positive number, this shows that
|f(z)− f(zn)| → 0 as zn → z. The proof is complete.

Identity theorem for power series. Suppose that the power series f(z) =∑∞
n=0 an(z − z0)n and g(z) =

∑∞
n=0 bn(z − z0)n both converge absolutely on the

disc D(z0, R̂). Suppose, further, that there is a sequence {ζk} in D(z0, R̂) such that
ζk → z0 as k → ∞ and f(ζk) = g(ζk) for all k. Then an = bn for all n, that is,
f = g.
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Proof. Let cn = an − bn, so that f(z) − g(z) =
∑∞

n=0 cn(z − z0)n. Since the
both series converge absolutely, so does the series with the coefficients cn. Suppose
that there are nonzero coefficients in this series, and let cm be the first nonzero
coefficient. Then f(z)− g(z) = (z − z0)m h(z) where h(z) =

∑∞
n=m cn(z − z0)n−m.

By the above, the function h is continuous. Since h(ζk) = 0 and ζk → z0, we have
h(z0) = 0. This implies that cm = 0, which is a contradiction.

COMPLEX DIFFERENTIATION

Let f(z) be a complex-valued function defined on an open set Ω ⊆ C.

Definition. We say that a function f(z) is differentiable at z0 there exists a
complex number ζ0 such that for each ε > there exists δ > 0 such that∣∣∣∣ f(z)− f(z0)

z − z0

− ζ0

∣∣∣∣ < ε whenever |z − z0| < δ .

The number ζ0 is said to be the derivative of f at the point z0 and is denoted by
f ′(z0). The function f is said to be differentiable if it is differentiable at each point
of the set Ω. Then its derivative f ′ is a complex-valued function on Ω.

Remark. In other words, the functions is differentiable if f(z)−f(z0)
z−z0 → ζ0 as

z → z0. This is equivalent to the statement that f(zn)−f(z0)
zn−z0 → ζ0 for each

sequence {zn} such that zn → z0 and zn 6= z0.

Example. The polynomial f(z) =
∑m

n=0 an(z − z0)n is a differentiable function
on the whole complex plane. Its derivative is f ′(z) =

∑m
n=1 nan(z − z0)n−1. In

particular, the constant function is differentiable and its derivative is identically
equal to zero.

Theorem. If f is differentiable at each point z ∈ Ω then f is continuous on Ω.

Proof. From the definition of the derivative it follows that, for every ε1 > 0 there
exists δ > 0 such that

|f(z)− f(z0)| < (|f ′(z0)|+ ε1) |z − z0| whenever |z − z0| < δ.

If ε is another positive number, we can choose ε1 and the corresponding δ in
such a way that (|f ′(z0)| + ε1) δ < ε. Then the above condition implies that
|f(z)− f(z0)| < ε whenever |z − z0| < δ. Therefore the function f is continuous.

There exist continuous functions which are nowhere differentiable.

Example. The functions Re z, Im z, z̄ and |z| are nowhere differentiable. For
instance, if θ = arg(z − z0) then

Re z − Re z0

z − z0

=
|z − z0| cos θ

|z − z0| (cos θ + i sin θ)
= (1 + i tan θ)−1 .

We have z → z0 if and only if |z − z0| → 0. The above formula shows that the
limit does not exist, as the right hand side depends on the argument of z − z0.
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Theorem. Let f and g be differentiable functions on an open set Ω ⊂ C. Then

(1) (αf + βg)′ = αf ′ + βg′,

(2) (fg)′ = f ′g + fg′,

(3)
(
f
g

)′
= f ′g−fg′

g2
at the points z where g(z) 6= 0 (Quotient Rule).

Proof is the same as for functions of one real variable.

Theorem (Chain Rule). Let f and g be differentiable functions such that f is
defined on an open set Ω and g is defined on an open set containing the image f(Ω).
Then the composition g ◦ f(z) = g(f(z)) is also differentiable and (g ◦ f)′(z0) =
g′(f(z0)) f ′(z0).

Proof. We have

g(f(z))− g(f(z0))

z − z0

=
g(f(z))− g(f(z0))

f(z)− f(z0)

f(z)− f(z0)

z − z0

.

Let z → z0. Then the second ration in the right hand side converges to f ′(z0).
Also, in the denominator of the first fraction f(z)→ f(z0) because the function f
is continuous. Now, by the definition of the derivative, the first ration converges
to g′(f(z0)). This proves the theorem.

CAUCHY–RIEMANN EQUATIONS

Let f be a complex-valued function on an open set Ω ⊆ C. Denote u(z) = Re f(z)
and v(z) = Im f(z), so that f = u + iv. We shall consider u and v as real-
valued functions of two real variables x = Re z and y = Im z, so that f(z) =
u(x, y) + iv(x, y).

Theorem. If f is differentiable at z0 = x0 + iy0 then u and v satisfy the following
Cauchy–Riemann equations

ux(x0, y0) = vy(x0, y0) , uy(x0, y0) = −vx(x0, y0) ,

where ux , vx and uy , vy are the derivatives with respect to the first and second
variable respectively.

Proof. Assume that f is differentiable at z0. Then f(z)−f(z0)
z−z0 converges to the limit

f ′(z0) as z → z0. In particular, this is true if we take z = z0 + ε, where ε ∈ R and
ε→ 0. Since

f(z0 + ε)− f(z0)

(z0 + ε)− z0

=
u(x0 + ε, y0)− u(x0, y0)

ε
+ i

v(x0 + ε, y0)− v(x0, y0)

ε
,

letting ε→ 0, we see that f ′(z0) = ux(x0, y0) + i vx(x0, y0) , Similarly, taking z =
z0 + iε with ε ∈ R and letting ε→ 0, we obtain f ′(z0) = vy(x0, y0)− i uy(x0, y0) .
Thus we have ux(x0, y0) + i vx(x0, y0) = vy(x0, y0)− i uy(x0, y0), which is equivalent
to the Cauchy–Riemann equations.
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It is convenient to denote

∂f

∂z
:=

1

2

(
∂f

∂x
− i ∂f

∂y

)
,

∂f

∂z̄
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

The notation is motivated by the equalities x = (z + z̄)/2 and y = (z − z̄)/2i. If
we consider x and y as functions of z and z̄, then the formal differentiation of the
identity f(x, y) = f

(
z+z̄

2
, z−z̄

2i

)
leads to the above equalities.

Note that the Cauchy–Riemann equations are equivalent to each of the following
equations

∂f

∂z̄
= 0 ,

∂f

∂z
=

∂f

∂x
,

∂f

∂z
=

∂f

∂(iy)
.

Remark. Generally speaking, the Cauchy–Riemann equations at a fixed point z0

do not imply that the function is differentiable at the point z0. For example, the
function f(x + iy) = |xy|1/2 satisfies the Cauchy–Riemann equations at the point
z0 = 0. However, if s ∈ R and s > 0 then

lim
s→0

f(s+ is)− f(0)

s+ is
=

1

1 + i
6= 1

1− i
= lim

s→0

f(s− is)− f(0)

s− is
.

ANALYTIC FUNCTIONS

Definition. A complex-valued function f defined on an open set Ω ⊆ C is said to
be analytic (or holomorphic) in Ω if it is differentiable at every point z0 ∈ Ω. We
shall denote the linear space of analytic in Ω functions by H(Ω).

Functions from H(C) are called entire functions.

Example. A polynomial is an entire function.

Example. The function f(z) = az+b
cz+d

is an analytic function in the punctured

complex plane C \ {z = −d
c
}.

12



CM322A COMPLEX ANALYSIS NOTES ON WEEK 4

PROPERTIES OF ANALYTIC FUNCTIONS

Theorem. Let Ω be an open set. If f is continuously differentiable and satisfies
the Cauchy–Riemann equations at every point z ∈ Ω then f ∈ H(Ω).

Proof. Let us fix z0 ∈ Ω. We need to show that f ′(z) = limz→z0
f(z)−f(z0)

z−z0 exists.

Since Ω is open, we have z ∈ Ω whenever z is sufficiently close to z0, so that f(z)
in the right hand side is well defined.

Let z − z0 = s+ it. Then, by the mean value theorem,

f(z)− f(z0)

z − z0

=
f(x+ s, y + t)− f(x, y)

s+ it

=
f(x+ s, y + t)− f(x, y + t)

s

s

s+ it
+

f(x, y + t)− f(x, y)

t

t

s+ it

=
s

s+ it
fx(x+ s∗, y + t) +

t

s+ it
fy(x, y + t∗) ,

where |s∗| 6 s and |t∗| 6 t. Since the partial derivatives of f are continuous,

fx(x+ s∗, y + t)→ fx(x, y) and fy(x, y + t∗)→ fy(x, y)

as z → z0. On the other hand,
∣∣ s
s+it

∣∣ 6 1 and
∣∣ t
s+it

∣∣ 6 1. Therefore

f(z)− f(z0)

z − z0

=
s

s+ it
fx(x, y) +

t

s+ it
fy(x, y) + R(z) ,

where R(z) is a function such that R(z) → 0 as z → z0. Now, by the Cauchy–
Riemann equations, fy = ifx, which implies that the right hand side coincides
with

s

s+ it
fx(x, y) +

t

s+ it
ifx(x, y) + R(z) = fx(x, y) + R(z)

and converges to fx(x, y) as z → z0.

Theorem. Let Ω be an open connected set, and let f ∈ H(Ω). If f ′(z) = 0 for all
z ∈ Ω then the function f is constant.

Proof. The Cauchy–Riemann equations imply that all the partial derivatives of
f are equal to zero. It follows that f is constant on every horizontal and every
vertical line segment lying in Ω. Since every two points in an open disc can be
joined by a path consisting of one horizontal and one vertical line segment, we see
that the function f is constant on every open disc D(z, r) lying in Ω.

Let us fix a point z0 ∈ Ω and denote f(z0) = a. Consider all open discs D ⊂ Ω
such that f = a on D. Let Ω1 be the union of all these discs. Clearly, Ω1 is a
subset of Ω. This subset is open because for every point z′ ∈ D there is a smaller
disc D(z′, r′) lying in D.

Assume that f(z1) 6= a at some point z1 ∈ Ω. Since the differentiable function f
is continuous (see Week 3), we have f(z) 6= a for all z lying in a sufficiently small
disc about z1. Let us consider all open discs D ⊂ Ω such that f(z) 6= a for each
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z ∈ D. Denote the union of these discs by Ω2. For the same reasons as above, Ω2

is an open subset of Ω. Clearly, Ω1

⋂
Ω2 = ∅ and Ω1

⋃
Ω2 = Ω. Since the set Ω is

connected, one of these sets must be empty (otherwise we would have obtained a
disconnection of Ω. The set Ω1 is not empty because it contains z0. Thus, Ω2 = ∅
and Ω1 = Ω, which implies that f = a on the whole set Ω.

Lemma. If a real-valued function f is differentiable at z0 then f ′(z0) = 0.

Proof. Assume that f(z)−f(z0)
z−z0 → ζ0 as z → z0, and denote Re (z − z0) = t,

Im (z − z0) = s, so that z − z0 = t + is. Taking s = 0 and letting t → 0, we see

that f(z)−f(z0)
t

→ ζ0 as t → 0. Since f is real-valued, this implies that Im ζ0 = 0.

Taking t = 0 and letting s→ 0, we see that f(z)−f(z0)
is

→ ζ0 as s→ 0, which implies
that Re ζ0 = 0.

Combining the above results, we immediately obtain

Theorem. If Ω is a connected set then every real-valued analytic in Ω function is
identically equal to constant.

Corollary. Let Ω be a connected set and f be an analytic in Ω function such that
|f(z)| is a constant function on Ω. Then f is identically equal to a constant.

Proof. If |f | = 0 then f = 0. Assume that |f | = a 6= 0. Then |f |2 = ff̄ = a2 and,

consequently, f̄ = a2

f
is an analytic function in Ω. This implies that the real-valued

functions Re f = 1
2
(f + f̄) and Im f = 1

2i
(f − f̄) are also analytic. By the above,

both these functions are constant.

FUNCTIONS DEFINED BY POWER SERIES

Let R̂ be the radius of convergence of the series
∑∞

n=0 an (z − z0)n. We know that

f(z) =
∑∞

n=0 an (z − z0)n is a continuous function on D(z0, R̂).

Theorem. If R̂ > 0 then f(z) =
∑∞

n=0 an (z − z0)n is analytic in the open

disc D(z0, R̂). Its derivative is given by f ′(z) =
∑∞

n=1 n an (z − z0)n−1, where

the “derived” series
∑∞

n=1 n an (z − z0)n−1 has the same radius of convergence R̂.

Proof. The proof proceeds in several steps.

Step 1. In view of the chain rule, it is sufficient to prove the theorem assuming
that z0 = 0, that is, for the function g(z) = f(z + z0) =

∑∞
n=0 an z

n defined on

D(0, R̂).

Step 2. The series
∑∞

n=0 bn z
n and

∑∞
n=0 bn+k z

n have the same radius of conver-
gence (here k is a fixed positive integer).

Indeed, the radius of convergence R̂ of the series
∑∞

n=0 bn z
n is the supremum of

the set of positive numbers r such that the sequence {b0, b1r, b2r
2, . . .} is bounded

(see Week 2). The sequence {bk, bk+1r, bk+2r
2 . . .} is obtained by removing a fi-

nite number of terms and multiplying the remaining terms by r−k. Therefore it is
bounded if and only if {b0, b1r, b2r

2, . . .} is bounded. Finally, the supremum of the
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set of r > 0 for which {bk, bk+1r, bk+2r
2 . . .} is bounded is the radius of convergence

of
∑∞

n=0 bn+k z
n.

Step 3. The series
∑∞

n=0 bn z
n and

∑∞
n=0 n

k bn z
n have the same radius of conver-

gence (here k is a fixed positive integer).

Let Ω′ be the set of positive integers r such that the sequence {nk bnrn}n=0,1,2,...

is bounded, and let Ω be the set of positive integers r such that the sequence
{bnrn}n=0,1,2,... is bounded. Then sup Ω′ (the least upper bound of Ω′) is the ra-
dius of convergence of

∑∞
n=0 n

k bn z
n, and sup Ω is the radius of convergence of∑∞

n=0 bn z
n. Clearly, sup Ω′ 6 sup Ω. On the other hand, nk(r0/r)

n → 0 as n→∞
for each r0 < r. Therefore nk bnr

n
0 6 bnr

n for all sufficiently large n. This implies
that Ω′ contains all positive integers r0 which are strictly smaller that any r ∈ Ω.
Thus, sup Ω′ = sup Ω.

Step 4. In view of the previous two results, the derived series
∑∞

n=1 n an z
n−1 =∑∞

n=0(n + 1) an+1 z
n has the same radius of convergence R̂. In particular, this

implies that the series
∑∞

n=1 n an z
n−1 is absolutely convergent whenever |z| < R̂

(see Week 2), that is,
∑∞

n=1 n |an| rn−1 <∞ for all r < R̂.

Step 5. Let us denote gk(z) =
∑k−1

n=1 an zn and g̃k(z) =
∑∞

n=k an zn , so that

g = gk + g̃k. Define also h(z) =
∑∞

n=1 n an z
n−1 , hk(z) =

∑k−1
n=1 n an z

n−1 and

h̃k(z) =
∑∞

n=k n an z
n−1 . Then, obviously, h = hk + h̃k and hk = g′k.

We are going to show that the derivative g′(ζ) exists for every ζ ∈ D(0, R̂) and

coincides with h(ζ). By definition, this means that
∣∣∣g(z)−g(ζ)z−ζ − h(ζ)

∣∣∣→ 0 as z → ζ.

Let us estimate∣∣∣∣g(z)− g(ζ)

z − ζ
− h(ζ)

∣∣∣∣ 6

∣∣∣∣gk(z)− gk(ζ)

z − ζ
− hk(ζ)

∣∣∣∣+

∣∣∣∣ g̃k(z)− g̃k(ζ)

z − ζ

∣∣∣∣+
∣∣∣h̃k(ζ)

∣∣∣ .
Since hk = g′k, the first term in the right hand side converges to zero as z → ζ for
each fixed k. Thus it is sufficient to show that the other two terms can be made
arbitrarily small by choosing large k.

Step 6. Since ζ does not lie on the boundary of the disc D(0, R̂), we can find

r < R̂ such that |ζ| < r. Also, |z| < r provided that z is sufficiently close to ζ.
Further on we shall always be assuming that |ζ| < r and |z| < r. Recall that the
series

∑∞
n=1 n |an| rn−1 converges. From the definition of convergence of a series,

it follows that
∑∞

n=k n |an| rn−1 → 0 as k →∞.

Step 7. In order to estimate the second term in the right hand side, let us note

that g̃k(z)−g̃k(ζ)
z−ζ =

∑∞
n=k an

zn−ζn
z−ζ . By direct calculation,

zn − ζn

z − ζ
= zn−1 + zn−2ζ + zn−3ζ2 + . . . zζn−2 + ζn−1

and, consequently,
∣∣∣ zn−ζnz−ζ

∣∣∣ 6 n r. Therefore∣∣∣∣ g̃k(z)− g̃k(ζ)

z − ζ

∣∣∣∣ 6
∞∑
n=k

|an|
∣∣∣∣zn − ζnz − ζ

∣∣∣∣ 6 r

∞∑
n=k

n |an| rn−1 →
k→∞

0 .
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For the third term in the right hand side, we have

|h̃k(ζ)| 6
∞∑
n=k

|n an zn−1| 6
∞∑
n=k

n |an| rn−1 →
k→∞

0 .

Thus we can make
∣∣∣ g̃k(z)−g̃k(ζ)

z−ζ

∣∣∣ + |h̃k(ζ)| smaller than any given positive number

by choosing a sufficiently large k. As was explained in Step 5, this proves that
g′(ζ) = h(ζ).

Remark. Steps 2 and 3 could be slightly simplified by using a suitable formula
for R̂ (see Week 2).

Corollary. The function f(z) =
∑∞

n=0 an (z − z0)n is infinitely differentiable in

D(z0, R̂) and its mth derivative is given by

f (m)(z) =
∞∑
n=m

n(n− 1) . . . (n− (m− 1)) an (z − z0)n−m .

Proof is by induction in m.
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CM322A COMPLEX ANALYSIS NOTES ON WEEK 5

PRODUCT OF POWER SERIES

Theorem. Let f(z) =
∑∞

n=0 an (z − z0)n and g(z) =
∑∞

n=0 bn (z − z0)n, and

assume that both series converge on an open disc D(z0, R̂). Then f(z) g(z) =∑∞
n=0 cn (z − z0)n, where cn =

∑n
k=0 ak bn−k and the series converges on the same

disc D(z0, R̂).

Proof. Since f(z) = lim
m→∞

∑m
n=0 an (z − z0)n and g(z) = lim

m→∞

∑m
n=0 bn (z − z0)n,

we have

f(z) g(z) = lim
m→∞

(
m∑
n=0

an (z − z0)n

)(
m∑
n=0

bn (z − z0)n

)
The product in the right hand side coincides with the finite sum

∑2m
n=0 cn,m(z−z0)n

where cn,m =
∑

j,k aj bk and the sum is taken over all j, k such that j + k = n,
j 6 m and k 6 m. Note that for n 6 m the first condition implies the other two.
Therefore, cn,m = cn whenever n 6 m.

By the above f(z) g(z) = limm→∞
∑2m

n=0 cn,m (z − z0)n, but we need to prove that

f(z) g(z) =
∞∑
n=0

cn (z − z0)n = lim
m→∞

2m∑
n=0

cn (z − z0)n .

Clearly, the latter is true if the difference

2m∑
n=0

cn,m (z − z0)n −
2m∑
n=0

cn (z − z0)n =
2m∑

n=m+1

(cn,m − cn) (z − z0)n

tends to zero as m→∞.

Define dn =
∑n

k=0 |ak| |bn−k|. We have |cn| = |
∑n

k=0 akbn−k| 6 dn and, similarly,

|cn,m| =

∣∣∣∣∣∑
j,k

ajbk

∣∣∣∣∣ 6∑
j,k

|aj| |bk| 6
∑
j+k=n

|aj| |bk| = dn ,

where the first two sums are taken over j, k such that j+k = n, j 6 m and k 6 m.
Also, since the series are absolutely convergent of every closed disc of radius r < R̂
centred at z0, we have for all r < R̂

∞∑
n=0

|dn| rn 6
∞∑
n=0

n∑
k=0

|ak| |bn−k| rn 6

(
∞∑
k=0

|ak| rk
)(

∞∑
j=0

|bj| rj
)
<∞

This inequality shows that the series
∑∞

n=0 |dn| rn converges, which implies that∑∞
n=m+1 |dn| rn → 0 as m→∞. If z ∈ D(z0, R̂) then |z − z0| 6 r for some r < R̂

and we have

|
2m∑

n=m+1

(cn,m − cn) (z − z0)n| 6
2m∑

n=m+1

|cn,m − cn)| |z − z0|n 6 2
∞∑

n=m+1

dn r
n →
m→∞

0 .
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THE EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS

By definition,

exp z =
∞∑
n=0

zn

n!
= 1 + z +

z2

2
+
z3

6
+ . . . ,

sin z =
∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
= z − z3

3!
+
z5

5!
− z7

7!
+ . . .

cos z =
∞∑
n=0

(−1)n z2n

(2n)!
= 1− z2

2!
+
z4

5!
− z6

6!
+ . . .

All the above series have radius of convergence R̂ = +∞ because the sequence
{rn(n!)−1} converges to zero as n → ∞ and is therefore bounded for each r ∈ R.
Thus, exp, sin and cos are entire functions.

The following identities are evident:
exp 0 = cos 0 = 1 , sin 0 = 0 , sin(−z) = − sin z , cos(−z) = cos z ,

exp z = exp z̄ , sin z = sin z̄ , cos z = cos z̄ (because zk = (z̄)k),

exp(iz) = cos z + i sin z , cos z = exp(iz)+exp(−iz)
2

, sin z = exp(iz)−exp(−iz)
2i

.
Since we can differentiate power series term by term, exp′ z = exp z, sin′ z = cos z
and cos′ z = − sin z.

The following results are less obvious.

Lemma.
(1) exp(z + w) = exp z expw;

(2) exp(−z) = 1
exp z

(and, consequently, exp z 6= 0 for all z ∈ C);

(3) exp(x + iy) = expx (cos y + i sin y) for all x, y ∈ C (and, in particular, for all
x, y ∈ R).

Proofs.
(1) Let w ∈ C be a fixed number and f(z) = exp(z + w) exp(−z). Differentiating
f and applying the formulae for the derivative of the product and the chain rule,
we see that f ′(z) = 0 for all z ∈ C. Thus f is identically equal to a constant. To
find this constant, we can take z = 0 which yields f(z) = f(w). Now, putting
a = z + w and b = −z, we obtain exp a exp b = exp(a + b) (where a and b can be
arbitrary complex numbers).
(2) Taking w = −z in (1), we obtain exp z exp(−z) = 1, which means that
exp(−z) = 1

exp z
.

(3) By (1), exp(x + iy) = expx exp(iy) . The identity exp(iy) = (cosx + i sin y)
is obvious from the series expansions.

Remark. Let e = exp 1, that is, e =
∑∞

n=0
1
n!

= 1 + 1 + 1
2

+ 1
6

+ . . . Then
expn = en for all n ∈ Z. One often writes ez for exp z.
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TRIGONOMETRIC FORMULAE

If x then, by the above, cosx = Re exp(ix) and sinx = Im exp(ix). Using these
identities and the elementary properties of the exponential function, one can eas-
ily prove all standard trigonometric formulae for functions of real variable. For
example, if x, y ∈ R then cos(x+ y) = Re eix+iy = Re (eixeiy) and

Re (eixeiy) = Re (eix) Re (eiy)− Im (eix) Im (eiy) = cos x cos y − sinx sin y .

On the other hand, the theorem on the product of power series together with the
identity theorem for power series (Week 3) imply that any equality involving linear
combinations of the functions (sin z)k (cos z)m with some nonnegative integers k
and m holds for all z ∈ C whenever it is true for all z ∈ R. In particular, the
standard trigonometric formulae (including the famous identity sin2 z+cos2 z = 1)
remain valid for z ∈ C.

THE ARGUMENT REVISITED

We have declared that any complex number z can be written in the form z = r eiθ

where θ = arg z and, by definition, eiθ = cos θ + i sin θ. Now we see that this
definition is justified if eiθ, sin θ and cos θ are given by the corresponding power
series. From the properties of the exponential function it follows that eiθ = e−iθ =
(eiθ)−1. Therefore |eiθ| = 1. Also, the standard results from the theory of functions
of real variable imply that eiθ = 1 if and only if sin θ = 0 and cos θ = 1, that is, if
θ = 2πk with k ∈ Z.

THE COMPLEX LOGARITHM

For real positive z, we define ln z by the formula eln z = z. Let us set

ln z = ln |z|+ i arg z for all z 6= 0.

Then the same identity holds for complex z 6= 0.

Recall that arg z is defined modulo 2πk where k ∈ Z. Therefore ln z is defined
modulo 2iπk. The value of arg z lying in (−π, π] is called the principal value and
is denoted by Arg z. Similarly, ln |z| + iArg z is called the principal value of the
logarithm and is denoted by Ln z.

The function Ln z is continuous at every point lying outside the negative half-line
{z ∈ C : Im z = 0 ,Re z 6 0}. However, it is not defined at the origin and
has a jump at the open negative half-line {z ∈ C : Im z = 0 ,Re z < 0}. The
former is inevitable, but one can try to fix the latter problem by putting arg z =
Arg z+ 2πk(z/|z|) where k is an integer-valued function on the unit circle S about
the origin, which jumps by −1 when we pass through the point −1 in the clockwise
direction. Then arg z is continuous at the negative half-line. However, such an
integer-valued function inevitably has other jumps, and so does the logarithm
defined by the above formula. This shows that it is impossible to define logarithm
as a continuous function on the punctured complex plane C \ {0}.

Remark. One can think of Ln z as a smooth multi-valued function on C, or
as a proper function defined on a more complicated underlying set (the union of
infinitely many copies of C without the negative real half-line).
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Definition. Let θ be an arbitrary point on the unit circle S, and let k(z/|z|) be
the function which takes an integer value m on the arc going from θ to −1 in the
clockwise direction and is identically equal to m − 1 on the remaining part of S.
Then the function ln |z| + iArg z + 2iπk(z/|z|) is called a branch of the complex
logarithm.

Usually, a branch of the complex logarithm is also denoted by ln z. In has a jump
on the half-line originating from the origin and passing through the point θ, and
is continuous outside this half-line.

Remark. The function ln |z|+ iArg z + 2iπm with m ∈ Z is also called a branch
of the complex logarithm.

Theorem.

(1) eln z = z.

(2) ln(ez) = z + 2iπn with some n ∈ Z.

(3) ln(z0z) = ln(z0) + ln z + 2iπn with some n ∈ Z.

(4) ln(z−1) = − ln z + 2iπn with some n ∈ Z.

(5) Let ln z be a branch of the logarithm which is continuous on an open set Ω ⊂ C.
Then ln z is analytic in Ω and (ln z)′ = z−1.

Proof.

(1) immediately follows from the definition.

(2) eln(ez) = ez, that is, z − ln(ez) = 2iπn.

(3) eln(z0z) = zz0 = eln(z0) eln(z0) = eln(z0)+ln(z0). Therefore ln(z0z) = ln(z0) + ln(z0)
modulo 2iπn.

(4) eln(z−1) = z−1 = (eln z)−1 = e− ln z, that is, ln(z−1) = − ln z + 2iπn.

(5) We have

ln z − ln z0

z − z0

=
ln z − ln z0

eln z − eln z0
=

(
eln z − eln z0

ln z − ln z0

)−1

.

Since ln z is a continuous branch, z → z0 implies that ln z → ln z0. Since the

exponential function is continuous, e
ln z−eln z0
ln z−ln z0

converges to its derivative at the point
ln z0 as ln z → ln z0. Thus,

lim
z→z0

ln z − ln z0

z − z0

= (exp′(ln z0))
−1

= (exp(ln z0))−1 = z−1
0 .

This completes the proof.

Remark. A continuous branch of logarithm on an open set Ω exists if and only if
there is a closed half-line originating from the origin which does not intersect Ω.

20



CM322A COMPLEX ANALYSIS NOTES ON WEEK 6

COMPLEX POWERS

Definition. If z, w ∈ C, we define zw = exp(w ln z).

Clearly, zw depends on the choice of the branch of the logarithm and may, generally
speaking, take infinitely many values. However, if w = p/q is a real rational number
then there are only finitely many values of zw, corresponding to argw = Argw+2πk
with k = 1, 2, . . . , q.

Note that our definition is consistent with the traditional one when w = m ∈ Z.
Indeed, the product of m copies of z = eln z coincides with z = em ln z, and z−m =
(em ln z)−1 = e−m ln z.

Finally, there is no logical contradiction with the notation ez for the exponential
function. Indeed, if we take the principal branch ln z = Ln z then Ln e = 1 and
exp(zLn e) = ez.

COMPLEX INTEGRATION I

In complex analysis, it is sometimes more convenient to define a path as a contin-
uous map from a nondegenerate interval [a, b] into C (rather than from the unit
interval [0, 1]). From now on, we shall be using this definition.

The convention is to take anticlockwise direction as positive (because the polar
angle is increasing). The image of the map γ is said to be the trace of γ and is
denoted by tr γ.

Example. γ1(t) = e2iπt and γ2(t) = e−4iπt with t = [0, 1] have the same trace, the
unit circle around the origin. But γ1 runs once anticlockwise around the origin,
and γ2 goes round twice clockwise.

Definition. A path is said to be simple if it does not cross itself (that is, γ(t1) 6=
γ(t2) for distinct values t1, t2 ∈ (a, b). The possibility γ(a) = γ(b) is not excluded;
if this is the case, the path is called closed.

Definition. If γ : [a, b] → C is a path, then the map γ̃ : [a, b] → C given by
γ̃(t) = γ(a+ b− t) is called the reverse path.

Obviously, γ̃ is “γ in the opposite direction”, in particular, tr γ̃ = tr γ.

Definition. A path is said to be smooth (or continuously differentiable) if the
derivative γ′(t) = x′(t) + iy′(t) exists and is continuous, with the left and right
derivatives, respectively, at the points b and a.

Definition. A contour is a piecewise smooth path; that is, a path γ : [a, b]→ C for
which there exists a finite collection of numbers a = a1 < a2 < · · · < an−1 < an = b
such that γ : [ak, ak+1]→ C are smooth paths.

Remark. The trace of a smooth path may not look like a smooth curve.For
example, the path γ(t) = cos3(2πt) + i sin3(2πt), t ∈ [0, 1], is smooth. However, its
trace has sharp angles at the points ±1 and ±i.

Definition. The length of a contour γ is
∫ b
a
|γ̇(t)| dt, where γ̇ is the derivative.
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This definition is justified by the following observation. If the trace of a path γ :
[a, b]→ C is composed from line segments joining points zj = γ(tj), t1 < t2 < . . . ,
then its length is∑
j

|zj+1 − zj| =
∑
j

∣∣∣∣zj+1 − zj
tj+1 − tj

∣∣∣∣ (tj+1 − tj) =
∑
j

|γ̇(tj)| (tj+1 − tj) =

∫ b

a

|γ̇(t)| dt .

A general contour γ can be approximated by such “piecewise linear” paths with
γ(tj) being the end points of the line segments. If the distance between tj+1 and tj
goes to 0, then

zj+1−zj
tj+1−tj converges to the derivative γ(tj) (or γ(tj+1) which is almost

the same if (tj+1 − tj) is small). Therefore∑
j

|zj+1 − zj| =
∑
j

∣∣∣∣zj+1 − zj
tj+1 − tj

∣∣∣∣ (tj+1 − tj) =
∑
j

|γ̇(tj)| (tj+1 − tj)

converges to
∫ b
a
|γ̇(tj)| dt as (tj+1 − tj)→ 0. Thus this integral should be regarded

as the length of the contour γ.

Let γ : [a, b]→ C be a smooth path and z1, z2, . . . be some points on its trace trγ
such that zj = γ(tj). Consider the sum∑

j

f(zj)(zj+1 − zj) =
∑
j

f(γ(tj))
γ(tj+1)− γ(tj)

tj+1 − tj
(tj+1 − tj) .

If (tj+1 − tj) are small then the right hand side is approximately equal to∑
j

f(γ(tj)) γ̇(tj) (tj+1 − tj) ≈
∫ b

a

f(γ(t)) γ̇(t) dt .

On the other hand, in the right hand side zj+1 − zj is approximately equal to the
length of the part γ joining zj+1 and zj, and f(zj) ≈ f(z) for all z lying on this
part of the path. This suggests the following definition.

Definition. Let γ : [a, b]→ C be a smooth path and f be a continuous complex-

valued function on a neighbourhood of tr γ. Then
∫
γ
f(z) dz :=

∫ b
a
f(γ(t)) γ̇(t) dt.

If γ is a contour composed of smooth paths γk : [ak, ak+1]→ C then
∫
γ
f(z) dz :=∑

k

∫ ak+1

ak
f(γ(t)) γ̇k(t) dt.

If γ̃ is the reverse path then
∫
γ̃
f(z) dz = −

∫
γ
f(z) dz.

Example. Let γ(t) = eit for t ∈ [a, b] and f(z) = z−1. Then∫
γ

f(z) dz =

∫
γ

dz

z
=

∫ b

a

e−it ieit dt = i(b− a) .

In particular, if a = 0 and b = 2π then
∫
γ
f(z) = 2πi.

Example. Let γ be the line segment a+ t(b− a) where t ∈ [0, 1]. Then, changing

variables τ = a+t(b−a), we obtain
∫
γ
f(z) dz =

∫ 1

0
f(a+t(b−a)) dt =

∫ b
a
f(τ) dτ .
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Obviously,
∫
γ
(αf(z) + βg(z)) dz = α

∫
γ
f(z) dz + β

∫
γ
g(z) dz for all continuous

functions f and g.

Lemma. The integral
∫
γ
f(z) dz does not depend on the choice of parametrization

of the contour. More precisely, if γ : [a, b] → C, φ : [α, β] → [a, b] with φ(α) = a
and φ(β) = b then

∫
γφ
f(z) dz =

∫
γ
f(z) dz where γφ(t) = γ(φ(t)).

Proof. Clearly, it is sufficient to prove the lemma assuming that γ is a smooth
path. Let F (t) be a primitive of f(γ(t)) γ̇(t), that is, a function satisfying F ′(t) =
f(γ(t)) γ̇(t). Then, by the fundamental theorem of calculus,∫

γ

f(z) dz =

∫ b

a

f(γ(t)) γ̇(t) dt = F (b)− F (a) .

On the other hand, applying the chain rule, we obtain

F (b)− F (a) = F (φ(β))− F (φ(α)) =

∫ β

α

d

ds
F (φ(s)) ds

=

∫ β

α

F ′(φ(s))φ′(s) ds =

∫ β

α

f(γ(φ(s))) γ̇(φ(s))φ′(s) ds

=

∫ β

α

f(γ(φ(s)))
d

ds
γ(φ(s)) ds =

∫ β

α

f(γφ(s)) γ̇φ(s) ds =

∫
γφ

f(z) dz .

Lemma (the basic estimate for integrals). |
∫
γ
f(z) dz| 6 |γ| sup

z∈tr γ
|f(z)| ,

where |γ| is the length of the contour γ.

Proof. As before, it is sufficient to prove the lemma assuming that γ : [a, b] 7→ C
is a smooth path. If we knew that |

∫ b
a
g(t) dt| 6

∫ b
a
|g(t)| dt for every continuous

complex-valued function g then the required result would be obvious because we
could estimate

|
∫
γ

f(z) dz| = |
∫ b

a

f(γ(t)) γ̇(t) dt| 6
∫ b

a

|f(γ(t)) γ̇(t)| dt 6 sup
z∈tr γ

|f(z)|
∫ b

a

|γ̇(t)| dt

where
∫ b
a
|γ̇(t)| dt = |γ| by definition of the length. Here we have used (and will use

later in the proof) the known from real analysis fact that
∫ b
a
g1(t) dt 6

∫ b
a
g2(t) dt

whenever g1 6 g2.

Thus we only need to prove the estimate |
∫ b
a
g(t) dt| 6

∫ b
a
|g(t)| dt for complex-

valued g. Using the polar decomposition, we see that
∫ b
a
g(t) dt = eiθ|

∫ b
a
g(t) dt|

where θ is an argument of
∫ b
a
g(t) dt. We have

|
∫ b

a

g(t) dt| = e−iθ
∫ b

a

g(t) dt =

∫ b

a

Re
(
e−iθg(t)

)
dt+ i

∫ b

a

Im
(
e−iθg(t)

)
dt .

The second integral in the right hand side is equal to zero because the left hand
side is a real number. Since Rew 6 |w|, the first integral in the right hand side is

not greater than
∫ b
a
|e−iθg(t)|dt =

∫ b
a
|g(t)|dt. Therefore |

∫ b
a
g(t) dt| 6

∫ b
a
|g(t)|dt.
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INTEGRATING UNIFORMLY CONVERGENT SERIES

Recall that a series f(z) =
∑∞

n=0 gn(z) is said to be uniformly convergent on
a set Ω if supz∈Ω |f(z) − fm(z)| → 0 as m → 0 where fm is the partial sum
fm(z) =

∑m
n=0 gn(z). The basic estimate for integrals immediately implies that∫

γ
f dz =

∑∞
n=0

∫
γ
gn dz whenever the series converges uniformly on γ. Indeed, we

have∣∣∣∣∣
∫
γ

f dz −
m∑
n=0

∫
γ

gndz

∣∣∣∣∣ =

∣∣∣∣∫
γ

(f − fm) dz

∣∣∣∣ 6 |γ| (sup
z∈γ
|f(z)− fm(z)|) →

m→∞
0.

In particular, we can integrate a power series
∑∞

n=0 an(z − z0) term by term over
any contour lying in the disc D(z0, r) provided that r is strictly smaller than the
radius of convergence (see Week 3).

PRIMITIVES

The fundamental theorem of calculus for functions of complex variable.
If f is differentiable and its derivative f ′ is continuous in a neighbourhood of the
trace tr γ of a contour γ : [a, b]→ C then

∫
γ
f ′(z) dz = f(γ(b))− f(γ(a)).

Proof. If γ is a smooth path then, by the chain rule, f ′(γ(t)) γ̇(t) = d
dt
f(γ(t)) .

Therefore the theorem follows from the corresponding result for functions of one
real variable.

Remark. Strictly speaking, we have established the chain rule only for the com-
position of two functions of complex variable (Week 3). However, the same proof
works for d

dt
f(γ(t)).

Definition. Let f be a complex function defined on an open set Ω ⊂ C. A
function F defined on the same set Ω is said to be a primitive of f if F is analytic
in Ω and F ′(z) = f(z) for all z ∈ Ω.

The fundamental theorem implies that
∫
γ
f(z) dz = F (γ(b)) − F (γ(a)) for any

contour γ : [a, b]→ C. In particular, if has a primitive then
∫
γ
f(z) dz = 0 for each

closed contour γ.

Example. If f(z) =
∑∞

n=0 an (z−z0)n and R̂ is the radius of convergence then the

primitives of f on the disc D(z0, R̂) are F (z) = C +
∑∞

n=0 an (n+ 1)−1 (z − z0)n+1

where C is an arbitrary complex constant. Indeed, the series defining F can be
differentiated term by term (see Week 4), which implies that F ′ = f on D(z0, R̂).

Example. If Ω is an open set which does not contain the origin then F (z) =
(1− n)−1z1−n is a primitive of f(z) = z−n for all n = 2, 3, . . .
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Remark. Note that the existence of a primitive depends not only on f but also
on the set Ω. For instance, if Ω is an open disc which does not contain the origin
then a continuous on Ω branch of the logarithm ln z is a primitive for f(z) = z−1.
However, the function z−1 does not have a primitive on any open set containing
the unit circle S about the origin because

∫
S1 z

−1 dz 6= 0 (see above).

DIFFERENTIATION UNDER THE INTEGRAL SIGN

We shall need the following theorem (see Theorem 8.22 in the online lecture notes
http://www.mth.kcl.ac.uk/∼ysafarov/Lectures/Past/321.pdf ).

Theorem. Let f(t, τ) be a continuous function of two variables t ∈ [a, b] and

τ ∈ [α, β]. If the derivative ∂
∂τ
f exists and is continuous then

∫ b
a
f(t, τ) dt is a

differentiable function of the variable τ , such that its derivative is continuous and

is given by d
dτ

∫ b
a
f(t, τ) dt =

∫ b
a

∂
∂τ
f(t, τ) dt.

Remark. In particular, the theorem implies a similar result for contour integrals
because, by definition, they can be written as integrals over some bounded intervals.

CAUCHY’S INTEGRAL FORMULA

Lemma. Let γ be the anticlockwise oriented circle about z0. Then
∫
γ

dw
w−z = 2πi

for all z lying in the open disc D bounded by γ.

Proof. If z is inside the open disc D then Arg (w − z) runs from −π to π as w
moves along the path γ, and Arg (w1−z) 6= Arg (w2−z) for any two distinct points
w1, w2 ∈ γ. Let w0 ∈ γ and w±ε ∈ γ be defined by the equalities Arg (w0 − z) = π
and Arg (w±ε − z) = ±(π − ε). Clearly, w0 lies between w+

ε and w−ε , and w±ε → w0

as ε → 0. Denote by γ′ε the part of the path γ starting at w−ε and going to w+
ε .

The principal branch of the logarithm Ln (w − z) is analytic in a neighbourhood
of γ′ε. Therefore it is a primitive of (w− z)−1 in this neighbourhood, which implies
that∫

γ′ε

dw

w − z
= Ln (w+

ε − z)− Ln (w−ε − z)

= ln |w+
ε − z|+ i(π − ε)− ln |w−ε − z|+ i(π − ε) .

Obviously, the length of the arc γ′′ε going from w+
ε to w−ε tends to zero as ε → 0.

By the basic estimate,∣∣∣∣∫
γ

dw

w − z
−
∫
γ′ε

dw

w − z

∣∣∣∣ =

∣∣∣∣∫
γ′′ε

dw

w − z

∣∣∣∣ 6 |γ′′ε | sup
w∈γr

(w − z||−1 →
ε→0

0 .

Therefore, letting ε→ 0, we obtain∫
γ

dw

w − z
= lim

ε→0

∫
γ′ε

dw

w − z
= ln |w0 − z|+ iπ − ln |w0 − z|+ iπ = 2πi .

Remark. Note that, under the conditions of the Lemma, we have
∫
γ
(w−z)n dw =

0 for all integer n 6= −1. Indeed, if n 6= −1 then the function (w − z)n has the
primitive (n+ 1)−1(w − z)n+1 in a neighbourhood of γ.
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Theorem (Cauchy’s integral formula for a disk). Assume that f is analytic

in an open disc D(z0, R̂) and that f ′ is continuous. Let γr be an anticlockwise

oriented circle about z0 of radius r < R̂. Then

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw for all z such that |z − z0| < r.

Proof. Let us fix a point z and define g(τ) =
∫
γ
f(z+τ(w−z))

w−z dw. Differentiating

under the integral sign, we obtain g′(τ) =
∫
γ
f ′(z + τ(w − z)) dw. For each τ 6= 0,

the function f ′(z + τ(w − z)) has the primitive F (w) = τ−1f(z + τ(w − z)) which

is an analytic function in D(z0, R̂) (as a function of the variable w). Therefore
g′(τ) = 0 for all τ 6= 0. Since g′ is continuous, we also have g′(0) = 0. Thus g is
constant on the interval [0, 1]. This implies that∫

γ

f(w)

w − z
dw = g(1) = g(0) = f(z)

∫
γ

1

w − z
dw = 2πi f(z) .

Applying Cauchy’s integral formula to the function f̃(w) = (w−z) f(w), we obtain

Corollary (Cauchy’s theorem for a disk). Under the conditions of the previous
theorem

∫
γ
f(w) dw = 0 .

Remark. It will be shown later that the derivative of any analytic function is
continuous and, therefore, we do not have to assume the continuity of f ′ in the
above and further theorems. However, the proof of this result is rather complicated.

POWER EXPANSION FOR AN ANALYTIC FUNCTION

Theorem. Assume that f is analytic in the disc D(z0, R̂) with continuous deriva-

tive f ′. Let r < R̂ and γr be the anticlockwise oriented circle around z0 of radius

r. Then f(z) =
∑∞

n=0 an (z − z0)n for all z ∈ D(z0, r), where an = 1
2πi

∫
γr

f(w)
(w−z0)n+1

and the series is absolutely and uniformly convergent in the disc D(z0, r).

Proof. If z ∈ D(z0, r) and w ∈ tr γr then |z − z0| < |w − z0| and, by the geometric
progression formula,

∞∑
n=0

(z − z0)n

(w − z0)n+1
=

1

w − z
.

The series in the right hand side is absolutely convergent. The general theorem
about absolutely convergent power series implies that it converges uniformly with
respect to w ∈ tr γr (see the first page of notes on Week 3). Since f(w) is bounded
on tr γr, the same is true for the series

∞∑
n=0

f(w) (z − z0)n

(w − z0)n+1
=

f(w)

w − z
.

Integrating it term by term, we obtain

1

2πi

∫
γr

f(w)

(w − z)
dw =

1

2πi

∫
γr

(
∞∑
n=0

f(w)(z − z0)n

(w − z0)n+1

)
dw =

∞∑
n=0

an (z − z0)n .
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Now the Cauchy’s integral formula implies that f(z) =
∑∞

n=0 an (z− z0)n . By the
basic estimate,

|an| =

∣∣∣∣ 1

2πi

∫
γr

f(w)

(w − z0)n+1

∣∣∣∣ 6 (2π)−1|γr| r−n−1 sup
w∈γr
|f(w)| = r−n sup

w∈γr
|f(w)| .

Therefore the radius of convergence of the series
∑∞

n=0 an (z − z0)n is equal to r,
which implies that it is absolutely and uniformly convergent in the disc D(z0, r

′)
for any r′ < r.

Corollary. Under the conditions of the theorem, the n-th derivative f (n) satisfies

f (n)(z0) = n! an =
n!

2πi

∫
γr

f(w)

(w − z0)n+1
dw , ∀r < R̂ .

Proof is obtained by differentiating the series and putting z = z0.

Corollary (Cauchy’s estimate). Under the conditions of the theorem,

|f (n)(z0)| 6 n! r−n sup
w∈tr γr

|f(w)| for all r < R̂.

Proof. The inequality immediately follows from the previous corollary and the
basic estimate.

The first corollary shows that an do not depend on r and are equal to f (n)(z0)/n!.
Thus we obtain Taylor’s expansion expansion

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n ,

where the series is absolutely and uniformly convergent in the disc D(z0, r) for any

r < R̂.
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SOME COROLLARIES

Liouville’s Theorem. A bounded entire function is constant.
Proof: see solutions to Exercise Sheet 5 or prove it yourselves.
Hint: apply Cauchy’s estimate and let r →∞.

Fundamental Theorem of Algebra. Every nonconstant polynomial has a root
in C (that is, vanishes at some point z ∈ C).
Proof: see solutions to Exercise Sheet 5 or prove it yourselves.
Hint: this follows from Liouville’s Theorem.

Theorem. Let f be analytic in an open connected set Ω with continuous derivative
f ′. If there exists a point z0 ∈ Ω such that f (n)(z0) = 0 for all n = 0, 1, 2, . . . then
f is identically equal to zero.

Proof. Let f (n)(z0) = 0 for all n = 0, 1, 2, . . . Then, by Taylor’s expansion, f = 0 on
an open disc about z0. Let us take an arbitrary point z ∈ Ω and join it with z0 by
a path γ : [a, b] → Ω, such that γ(0) = z0 and γ(1) = z. Let t0 be the supremum
of the set of t ∈ [0, 1] such that f (n)(γ(t)) = 0 for all n. Then, by continuity,
f (n)(γ(t0)) = 0 for all n and f = 0 on a disc about γ(t0). This implies that t0 = 1,
that is, f(z) = 0.

Corollary. Let the conditions of the previous theorem be fulfilled, and let f is not
identically zero. If f(z0) = 0 at some point z0 then there exist a positive integer
m and an analytic in Ω function g such that f(z) = (z − z0)mg(z) and g(z0) 6= 0.

Proof. Let m be the smallest positive integer such that f (m)(z0) 6= 0. Taylor’s
expansion implies that the function g(z) = (z − z0)−mf(z) is analytic in a disc
about z0. Since (z − z0)−m is analytic outside this disc, g is analytic in Ω.

The number p is called the multiplicity of the root z0. In other words, the corollary
says that every root of a complex function has a finite multiplicity.

Corollary. Let the conditions of the previous theorem be fulfilled. Then the roots
of the analytic function f are isolated (that is, the set of roots does not have an
accumulation point) unless f is identically equal to zero.
Proof. Assume that there is a sequence of numbers zk such that f(zk) = 0 and
zk → z0 as k →∞. Expanding f into Taylor’s series at z0 and applying the identity
theorem for series, we see that f = 0 on a disc about z0. Then f (n)(z0) = 0 for all
n and f = 0 everywhere on Ω.

Corollary. If P is an entire function such that |P (z)| 6 C (|z| + 1)n with some
constants C > 0 and n ∈ N then P (z) is a polynomial.
Proof is by induction in n. Assume that the result holds for all n′ < n, and consider
an entire function P satisfying the above estimate. Let P (0) = a. Then P (z)− a
is an entire function which satisfies the estimate |P (z)− a| 6 (C + |a|) (|z| + 1)n.
The point z = 0 is a root of the function P (z)− a. Therefore P (z)− a = zm Pa(z)
where m is the multiplicity of the root and P0 is another entire function. Since
|zm P0(z)| 6 (C + |a|) (|z| + 1)n, we have |P0(z)| 6 C0 (|z| + 1)n−m with some
other constant C0. By the induction assumption, P0 is a polynomial, and thus
P (z) = zm P0(z) + a is also a polynomial.
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Corollary. A polynomial P (z)of degree n can be written as the product

P (z) = c (z − z1)m1(z − z2)m2 . . . (z − zk)mk ,

where zj are the roots of P of multiplicity mj, and is a constant.

Proof. Assume that the result holds for all n′ < n, and consider a polynomial
P of degree n. By Fundamental Theorem of Algebra, it has at least one root z1.
Then P (z) = (z − z1)m1P1(z) where m1 is the multiplicity of the root z1 and P1

is an entire function. Clearly, |P1(z)| 6 C (|z| + 1)n with some constant C and,
consequently, P1 is a polynomial. Applying the induction assumption to P1, we see
that P can also be represented as required.

The maximum modules principle. Let f be analytic in some open connected
set Ω. If |f | attains the maximum value at some point z ∈ Ω then f is constant.
Proof. Assume that |f | attains the maximum value M at some point a ∈ Ω.

If D(a, r) ⊂ Ω then, by Cauchy’s formula, f(a) = 1
2πi

∫
γr

f(z) dz
z−a where γr is the

boundary of D(a, r). Since |
∫
g| 6

∫
|g| (see Week 6) and |z−a| = r for all z ∈ γr,

this implies that

M = |f(a)| 6
1

2π

∫
γr

|f(z)| dz
|z − a|

6
1

2πr

∫
γr

|f(z)| dz .

Note that |γr| = 2πr, so that the right hand side coincides with the average of |f |
over γr.

The above estimate implies that |f(z)| = M for all z ∈ γr. Indeed, if |f(w)| < M
for some w ∈ γr then, by continuity, |f | 6M − ε with some ε > 0 on an open arc
γ′ containing w. If γ′′ is the remaining part of γr then, by the basic estimate,

1

2πr

∫
γr

|f(z)| dz =
1

2πr

(∫
γ′
|f(z)| dz +

∫
γ′′
|f(z)| dz

)
6 (M − ε) |γ

′|
2πr
|+M

|γ′′|
2πr

which is a contradiction because |γ′|+ |γ′′| = |γ| = 2πr and, consequently, the right
hand side is strictly smaller that M .

Thus we see that |f | = M on any circle in Ω about any point a ∈ Ω, at which
|f(a)| = M . Consequently, |f | = M on any disc about a lying in Ω. This implies
that the set of points a ∈ Ω such that |f(a)| = M is open. Denote this set by Ω1.

On the other hand, due to the continuity of the real valued function |f |, if |f(a)| 6=
M then |f(z)| 6= M for all z lying in a sufficiently small disc about a. This implies
that the set Ω2 = {a ∈ Ω : |f(a)| 6= M} is also open. Clearly, Ω1

⋂
Ω2 = ∅ and

Ω1

⋃
Ω2 = Ω. Since Ω is connected, one of these sets must be empty (otherwise

we would obtain a disconnection of Ω). The set Ω1 is not empty because, by our
assumption, |f | attains the maximum value at some point. Thus Ω2 = ∅, that is,
|f(z)| = M for all z ∈ Ω. Therefore, by the corollary from Week 4, the function f
is constant.

HOMOTOPY OF PATHS AND CAUCHY’S THEOREM

Let γ0, γ1 : [0, 1]Ω be two closed paths in an open set Ω ∈ C. We say that the paths
are homotopic in Ω if there exists a continuous function Γ : [0, 1]× [0, 1]→ Ω such

29



that for each Γ(t, s) is a closed path for each fixed s ∈ [0, 1] with Γ(t, 0) = γ0(t) and
Γ(t, 1) = γ1(t). The homotopy G can be thought of as a continuous transformation
γ0 into γ1. If two paths a homotopic in Ω, we write γ0 ∼ γ1.

Theorem. If f is an analytic function in an open set Ω ⊂ C with continu-
ous derivative and γ0 ∼ γ1 are homotopic closed paths in Ω then

∫
γ0
f(z) dz =∫

γ1
f(z) dz.

Proof. Assume that the function Γ is two times continuously differentiable. Let
g(s) =

∫
Γ(s,t)

f(z) dz =
∫ 1

0
f(Γ(s, t)) ∂tΓ(s, t) dt. Then, by the chain rule,

∂s (f(Γ(t, s)) ∂tΓ(t, s)) = ∂t (f(Γ(t, s)) ∂sΓ(t, s))

where ∂t and ∂s denote the partial derivatives. Therefore

g′(s) =
d

ds

∫ 1

0

f(Γ(s, t)) ∂tΓ(s, t) dt =

∫ 1

0

∂s (f(Γ(s, t)) ∂tΓ(s, t)) dt

=

∫ 1

0

∂t (f(Γ(s, t)) ∂sΓ(s, t)) dt = f(Γ(s, 1)) ∂sΓ(s, 1)− f(Γ(s, 0)) ∂sΓ(s, 0) = 0

because the paths Γ(s, t) are closed. Thus g is a constant function.

The proof without assuming differentiability is obtained by approximation argu-
ments.

CAUCHY’S THEOREM

We have proved the following result: If γ0 and γ1 are closed paths which are
homotopic in Ω then

∫
γ0
f(z) dz =

∫
γ1
f(z) dz for every function f analytic in Ω.

In particular, this implies

Cauchy’s theorem. If f is analytic on an open set Ω with continuous derivative
f ′ then

∫
γ
f(z) dz = 0 for every closed contour γ which is homotopic in Ω to one

point.

An open set Ω ∈ C is said to be simply connected if every closed contour in Ω
is homotopic to a point. In particular, a convex domain Ω are simply connected.
Indeed, let γ : [0, 1] → Ω be a closed path in a convex domain Ω and z0 be an
arbitrary point of Ω. Then Γ(t, s) = (1− s)γ0(t) + sz0 is a homotopy in Ω of γ to
the constant path γ(t) ≡ z0.

Example. An annulus is connected but not simply connected not simply con-
nected. The union of two open discs is simply connected but not connected.

The previous corollary immediately implies the following result.

Corollary. If f is analytic on an open simply connected set Ω and f ′ is continuous
then

∫
γ
f(z) dz = 0 for every closed contour γ in Ω.

WINDING NUMBER

Definition. Let γ be a piecewise smooth closed curve in C and a ∈ C \ a. Then
the index of γ with respect to a, or the winding number of γ about a is defined to
be n(γ; a) = 1

2πi

∫
γ

1
z−a dz.
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Intuitive meaning of winding number: if a pole is planted in the plane at a
point a and a closed curve is drawn in the plane not meeting a, if the curve were
made of well-lubricated rubber and were to be contracted as small as possible, if
it contracts to a point other than a its winding number is 0. If it contracts around
the pole planted at a, its winding number is the number of times it circles the pole
(signed by orientation).

Lemma. The index n(γ; a) is an integer for all a ∈ C.

Proof. Let γ be parameterized by [0, 1]. Define g(t) =
∫ t

0
γ̇(s)

γ(s)−a ds. A direct

calculation, using the chain rule and the fundamental theorem of calculus, shows
that

d

dt

(
(γ(t)− a) e−g(t)

)
= 0 .

Therefore (γ(0)− a) = (γ(t)− a) e−g(t) for all t ∈ [0, 1]. Taking t = 1, we obtain

(γ(0)− a) = (γ(1)− a) e−g(1) = (γ(0)− a) e−g(1) = (γ(0)− a) e2πi n(γ;a)

which implies that e2πi n(γ;a) = 1, that is, n(γ; a) is an integer.

Remark. The function n(γ; a) is obviously continuous with respect to a and,
being integer, it is constant on connected components of C \ γ. Clearly also, it
tends to 0 as a→∞, so it is identically 0 on the unbounded component.

Theorem (Cauchy’s Integral Formula). Let f be analytic in an open set
Ω ∈ C, and let γ ⊂ Ω be a contour homotopic to a point in Ω. Then

n(γ; a) f(a) =
1

2πi

∫
γ

f(z)

z − a
dz

for each a ∈ Ω such that a 6∈ γ.

Proof. Let

g(z) =

{
f(z)−f(a)

z−a , z 6= a ,

f ′(z) , z = a .

It is clear from Taylor’s expansion that g is an analytic function in Ω. By Cauchy’s
theorem,

∫
γ
g(z) dz = 0. This implies the theorem.
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ZEROS OF ANALYTIC FUNCTIONS

Zero counting theorem. Let γ be a contour homotopic to a point in Ω, and let f
be an analytic function in Ω with zeros a1, a2, . . . , ap of multiplicitiesm1,m2, . . . ,mp.
Then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

p∑
k=1

mk n(γ, ak) .

Remark. The sum in the right hand side is usually referred to as “the number of
zeros of the function f”. In other words, when counting zeroes, one assumes that
a zero of multiplicity m is counted m times.

Proof of the zero counting theorem. We have

f(z) = (z − a1)m1(z − a2)m2 . . . (z − ap)mp g(z)

where g is an analytic function which does not vanish on Ω. Then

f ′(z)

f(z)
=

m1

z − a1

+
m2

z − a1

+ · · ·+ mp

z − ap
+
g′(z)

g(z)

and the theorem follows from Cauchy’s integral formula.

Rouché Theorem. Let Ω be a simply connected set, and let γ be a simple closed
contour in Ω. If f and g are analytic on Ω and |f(z)| > |g(z)| for all z ∈ γ then f
and f + g have the same number of zeroes in the domain bounded by γ.
Proof. The inequality |f | > |g| implies that f 6= 0 on γ and that the quotient
h = f+g

f
does not take real nonpositive values on γ. It follows that the principal

branch of logarithm Lnh is analytic on a neighbourhood of γ. Since (Lnh)′ = h′

h
,

the fundamental theorem of calculus implies that
∫
γ
h′

h
dz = 0. Substituting

h′

h
=

(f + g)′f − (f + g)f ′

f 2

f

f + g
=

(f + g)′

f + g
− f ′

f
,

we see that ∫
γ

(f + g)′

f + g
dz =

∫
γ

f ′

f
dz .

Now the required result follows from the zero counting theorem.

Remark. If a1, a2, . . . , ap are the roots of the equation f(z) = α andm1,m2, . . . ,mp

are their multiplicities then, applying the previous theorem to the function f(z)−α,
we obtain

1

2πi

∫
γ

f ′(z)

f(z)− α
dz =

p∑
k=1

mk n(γ, an) .

Theorem. Let f be analytic in Ω. If z = z0 is a root of the equation f(z) = ζ0 with
finite multiplicity m > 1, then there exists ε, δ > 0 such that for all ζ ∈ D(ζ0, δ),
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the equation f(z) = ζ has precisely m roots in D(z0, ε) and all the roots are simple.

Proof. That the number of roots is m comes from the continuity of the integral
with respect to ζ, and the fact that it is integer valued. We can insure that the
roots are simple by taking ε small enough to avoid a root of f ′.

Corollary. A nonconstant analytic function maps an open set into an open set.
Proof. Let Ω be an open set and f(Ω) be its image. Let ζ0 be an arbitrary point
of f(Ω) and z0 be a point in Ω such that f(z0) = ζ0. By the above theorem, there
is δ > 0 such that the equation f(z) = ζ has a root for each ζ ∈ D(ζ0, δ). This
implies that D(ζ0, δ) ⊂ f(Ω).

PRIMITIVES AND DERIVATIVES OF ANALYTIC FUNCTIONS

Lemma. If a continuous function f has a primitive on an open set Ω then f is
analytic on Ω with continuous derivative f ′.

Proof. The primitive F is an analytic function with continuous derivative F ′ = f .
Therefore, by a theorem of Week 8, F (z) =

∑∞
n=0 an (z−z0)n on every disc D ⊂ Ω,

where z0 is the centre of D. Since we can differentiate power series term by term
(see Week 4), the functions f ′ is also given by a power series on D. This implies
that f ′ is analytic and, consequently, is continuous (see Week 3).

Morera’s theorem. Let f be a continuous function on an open simply connected
set Ω. If

∫
γ
f(w) dw = 0 for any triangular contour γ in Ω then f has a primitive

on Ω.

Proof. Consider a disc D ⊂ Ω be a disc centred at a, and let γz1,z2(t) = z1+t(z2−z1)
be the line segment joining the points z1, z2 ∈ D. Denote FD(z) =

∫
γa,z

f(w) dw.

If z, z0 ∈ Ω then the line segments γa,z0 , γz0,z, γz,a form a triangular contour γ ⊂ Ω
and, by our assumption,∫

γa,z0

f(w) dw +

∫
γz0,z

f(w) dw = −
∫
γz,a

f(w) dw =

∫
γa,z

f(w) dw .

It follows that

FD(z)− FD(z0)

z − z0

=
1

z − z0

∫
γz0,z

f(w) dw =

∫ 1

0

f(z0 + (1− t) (z − z0)) dt .

Since f is continuous, letting z → z0 we see that FD is analytic on D and F ′D = f .
Thus we see that f has a primitive FD on any open disc D ∈ Ω and, consequently,
f ′ is continuous.

Now let us fixed an arbitrary point zk in each connected component Ωk of the set
Ω and define F (z) =

∫
γ
f(w) dw for all other z ∈ Ωk, where γ is an arbitrary path

joining zk and z. Note that f(z) does not depend on the choice of γ because, by
Cauchy’s theorem, the integral of f over any closed contour in Ω is equal to zero
(see Week 9). Moreover, F (z) − F (a) =

∫
γ′a,z

f(w) dw for all a, z ∈ Ωk where γ′a,z
is an arbitrary path in Ωk joining a and z. On the other hand, if z lie in a disc D
centred at a then

∫
γ′a,z

f(w) dw = FD(z). This implies that F is analytic on Ω and

F ′(z) = f(z) for all z ∈ Ω.
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Goursat’s theorem. Every analytic function f on an open simply connected set
Ω has a primitive.

Proof. By Morera’s theorem, it is sufficient to show that the integral of f over
the anticlockwise oriented boundary γ0 of an arbitrary triangle ∆0 ⊂ Ω is equal to
zero.
Let us fix such a triangle ∆0 and join the middle points of its edges by line seg-
ments. Then we obtain a partition of ∆0 into the union of four triangles ∆′0,k with
anticlockwise oriented boundaries γ′0,k, where k = 1, 2, 3, 4. Since the diameter of

a triangle is equal to the length of its longest edge, we have diam ∆′0,k 6
1
2

diam ∆0

for all k. Also, |γ′0,k| 6 1
2
|γ0| for each k because the length of each edge of ∆′0,k is

half of the length of the parallel edge of ∆0. Finally,∫
γ0

f(z) dz =
4∑

k=1

∫
γ0,k

f(z) dz

because the integral over each added internal edge appears in the above sum twice
with opposite directions. Since∣∣∣∣∫

γ0

f(z) dz

∣∣∣∣ 6
4∑

k=1

∣∣∣∣∣
∫
γ0,k

f(z) dz

∣∣∣∣∣ ,
we have

∣∣∣∫γ0,k f(z) dz
∣∣∣ > 1

4

∣∣∣∫γ0 f(z) dz
∣∣∣ for at least one of the smaller triangles

∆′0,k. Let us denote this triangle by ∆1, and let γ1 be its anticlockwise oriented
boundary.
Now, applying the same procedure to the triangle ∆1, we find a triangle ∆2 ⊂ ∆1

with boundary γ2 such that

diam ∆2 6
1

2
diam ∆1 6

(
1

2

)2

diam ∆0 , |γ2| 6
1

2
|γ1| 6

(
1

2

)2

|γ0|

and ∣∣∣∣∫
γ2

f(z) dz

∣∣∣∣ >
1

4

∣∣∣∣∫
γ1

f(z) dz

∣∣∣∣ >

(
1

4

)2 ∣∣∣∣∫
γ0

f(z) dz

∣∣∣∣ .
Iterating, we obtain a family of embedded triangles ∆n with boundaries γn such
that ∆n+1 ⊂ ∆n , diam ∆n 6 2−ndiam ∆0 , |γn| 6 2−n|γ0| and

4n
∣∣∣∣∫
γn

f(z) dz

∣∣∣∣ >

∣∣∣∣∫
γ0

f(z) dz

∣∣∣∣ .
Denote by z0 their intersection (it exists and is unique, since diam ∆n → 0).

Since f is differentiable, for every ε > 0 we have

|f(z)− f(z0)− (z − z0) f ′(z0)| 6 ε |z − z0|

for all z lying in a sufficiently small disc about z0. This implies that the above
inequality holds for all z ∈ ∆n provided that n is large enough.
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Since polynomials have primitives,
∫
γn

(f(z0) + (z − z0) f ′(z0)) dz = 0 for all closed

contours γn. Now, applying the basic estimate and the above inequalities, we see
that∣∣∣∣∫

γ0

f(z) dz

∣∣∣∣ 6 4n
∣∣∣∣∫
γn

f(z) dz

∣∣∣∣ = 4n
∣∣∣∣∫
γn

(f(z)− f(z0)− (z − z0) f ′(z0)) dz

∣∣∣∣
6 4n |γn| sup

z∈∆n

|f(z)− f(z0)− (z − z0) f ′(z0)| 6 ε 4n |γn| sup
z∈∆n

|z − z0|

6 ε 4n |γn| diam ∆n 6 ε |γ0| diam ∆0

for all sufficiently large n. Since ε can be chosen arbitrarily small, this implies that∫
γ0
f(z) dz = 0.
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PRIMITIVES AND DERIVATIVES: A SUMMARY

Recall that in the last lecture we have proved that

(1) if a continuous function has a primitive then it is analytic with continuous
derivative;

(2) if the integral of a continuous (or an analytic) function f over any triangular
contour in a simply connected domain Ω is equal to zero then f has a primitive
(Morera’s theorem);

(3) if Ω is simply connected and f is analytic on Ω then the integral of f over any
triangular contour in Ω is equal to zero and, consequently, f has a primitive
(Goursat’s theorem).

Putting (1)-(3) together, we obtain the folowing corollaries

Corollary. If f is analytic then f ′ is continuous.

Proof. Since a disc is simply connected, (2) and (3), f has a primitive on every
disc. Now (1) implies that f ′ is continuous.

Corollary. A continuous function f on a simply connected domain is analytic if
and only if

∫
γ
f(z) dz = 0 for every closed contour γ in Ω.

Proof. If f is analytic then, by (1), it has a primitive and, consequently,
∫
γ
f(z) dz =

0 for all closed contours γ in Ω. On the other hand, if
∫
γ
f(z) dz = 0 for all closed

contours then, by (2), f has a primitive and is therefore analytic.

Remark. Another necessary and sufficient condition for a function to be analytic
in an open set Ω is that its Taylor’s series at any point z0 ∈ Ω is absolutely
convergent in an open disc about z0.

Remark. Morera’s and Goursat’s theorem may not be true if Ω is not simply
connected. For instance, the function z−1 is analytic on an open annulus Ω about
the origin and its integrals over all triangular contours in Ω are equal to zero.
However, it does not have a primitive on Ω.

SINGULARITIES OF ANALYTIC FUNCTIONS

We shall say that f(z) has an isolated singularity at the point z = z0 if f is analytic
in a punctured disc D(z0, ε) \ z0 but is not analytic at z0.

Example. If f is an analytic function then (z − z0)−1f(z) has an isolated singu-
larity at z = z0. The Cauchy’s integral formula shows that, in this case,

∫
γ
f(z) dz

may not be equal to zero if γ is a contour going around z0 (it is not surprising as
the sets D(z0, ε) \ z0 are not simply connected for all ε > 0).

Assume that f has an isolated singularity at z = z0. Then there are three possi-
bilities:
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(a) the limit limz→z0 |f(z)| exists as a finite real number,
(b) limz→z0 |f(z)| =∞,
(c) the limit limz→z0 |f(z)| does not exist as a finite number or ∞.

The first case is that of a removable singularity . The second is called a pole, the
third is an essential singularity .

If f has a removable singularity then one can extend f to z0 in such a way that the
new function is analytic in z0. Indeed, let g(z) = (z − z0)f(z). The basic estimate
for contour integrals implies that

∫
γ
g(z) dz → 0 as γ shrinks to z0. Since any closed

contour in D(z0, r) going around z0 is homotopic to a closed contour lying in an
arbitrarily small disc about z0, the Morera’s theorem implies that g(z) is analytic
in some disc D(z0, ε). Therefore g(z) = (z − z0)h(z) with an analytic function
h(z). Clearly, h is the required extension of f . Note that the same arguments
work if f is bounded in a disc about z0. Therefore f has a removable singularity
if and only if it is bounded near z0.

If f has a pole at z0 then the function 1/f(z) has a removable singularity at z0.
By the above, it can be extended to an analytic function g(z) on a disc about
z0. Clearly, g(z0) = limz→z0 (1/f(z)) = 0, that is, z0 is a root of g. If m is the
multiplicity of this root then 1/f(z) = (z − z0)mg0(z) where g0(z) is an analytic
function such that g0(z0) 6= 0. Thus f(z) = (z − z0)−mh(z), where h(z) = 1/g0(z)
is analytic near z0.

Theorem (Casorati–Weierstrass). If f has an essential singularity at z0, then
the image under f of any punctured disk around z0 is dense in C (in other words,
for every open disc D there is a point z near z0 such that f(z) ∈ D).

Proof. For the sake of simplicity, let us assume that z0 = 0 (otherwise one can
consider the function f0(z) = f(z − z0) instead of f). If the conclusion is false,
there is a punctured disk around 0 in which f(z) stays a fixed positive distance
ε away from some number c ∈ C. Consider the function g(z) = (f(z) − c)/z. It
tends to ∞ as z → 0, so it has a pole at 0. Therefore zm[f(z) − c] → 0 as z → 0
for a sufficiently large m. This implies that zmf(z)→ 0 and, consequently, zmf(z)
has a removable singularity. By the above, in this case f(z) = zkh(z) with analytic
h(z) and k ∈ Z, which is not possible if f has an essential singularity.

Example. The function f(z) = e(z−z0)−1
has an essential singularity at z = z0.

Indeed, if z − z0 ∈ R and z − z0 > 0 then f(z)→∞ as z → z0, if z − z0 ∈ R and
z − z0 < 0 then f(z)→ 0 as z → z0.

LAURENT SERIES

Definition. Let f be an analytic function in the complement of a disc about
the origin. We shall say that f is bounded at infinity if f(1/z) has a removable
singularity at z = 0.

Let f be analytic in an annulus R1 < |z| < R2 and γ2 be the anticlockwise oriented
circle about the origin of radius r2. Consider the function

f2(z) =
1

2πi

∫
γ2

f(w)

w − z
dw

where |z| < r2 < R2. Since we can differentiate under the integral sign, f2 satis-
fies the Cauchy–Riemann equations outside tr γ2 and, therefore, is analytic in the
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complement to the set {|z| = r2}. Thus we have f2(z) =
∑∞

n=0 cn z
n with some

cn ∈ C for all z with |z| < r2.
Let γ1 be the anticlockwise oriented circle about the origin of radius r1 and

f1(z) = − 1

2πi

∫
γ1

f(w)

w − z
dw

where R1 < r1 < |z|. This function is analytic in the set {|z| 6= r1} and is bounded
at infinity. Therefore the function f(1/z) is analytic in the disc {|z| < r1} and has
a removable singularity at z = 0. Expanding f(1/z) into Taylor’s series in the disc
D(0, r1), we see that f1(z) =

∑∞
n=−1 cn z

n for all z with |z| > r1.

Finally, Cauchy’s integral formula implies that f1(z) + f2(z) = f(z) whenever
r1 < |z| < r2. Indeed, f1(z) + f2(z) is the sum of integrals over the anticlockwise
oriented paths γ2 and clockwise oriented path γ1. Let us join these paths by a
path γ+, whose trace is a line segment not passing though z, and denote by γ−
the reverse path. Then

∫
γ+

+
∫
γ−

= 0 and
∫
γ1

+
∫
γ2

+
∫
γ+

+
∫
γ−

is the integral over

a closed contour running about z in the annulus R1 < |z| < R2 whose winding
number is equal to 1.

Thus we have proved the following theorem.

Theorem (Laurent expansion). Let 0 6 R1 < R2 6 ∞ and D(0, R1, R2) be
the open annulus R1 < |z| < R2. If f is analytic in D(0, R1, R2) then there exist
complex numbers cn such that f(z) =

∑∞
n=−∞ cn z

n for all z ∈ D(0, R1, R2),
where the series is absolutely and uniformly convergent on any annulus D(0, r1, r2)
with R1 < r1 < r2 < R2.

Since the functions zk have primitives for all k 6= −1, their integral over any circle
γ is zero. Integrating the Laurent series term by term, we obtain

cm =
1

2πi

∫
γ

cm z
−1 dz =

1

2πi

∫
z−m−1

(
∞∑

n=−∞

cnz
n

)
dz =

1

2πi

∫
f(z)

zm+1
dz ,

where γ is an arbitrary anticlockwise oriented circle in D(0, R1, R2). Thus, the co-
efficients cn are uniquely defined by f . Therefore the Laurent expansion is unique.

MEROMORPHIC FUNCTIONS

If f has an isolated singularity at z = z0 then, applying the Laurent expansion
theorem to f(z − z0), we see that

f(z) =
∞∑

n=−∞

cn (z − z0)n

for all z lying in a punctured open disc D(z0, R) \ {z0}.

If all coefficients with negative indices are equal to zero then f has a removable
singularity at z0. If there are infinitely many nonzero coefficients with negative
indices then it is an essential singularity. Finally, if

f(z) =
∞∑
n=m

cn (z − z0)n ,
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where m is a negative integer and cm 6= 0 then f has a pole at z0. The number m
is called the order of the pole.

Definition. More generally, if z0 is not an essential singularity of f then

f(z) =
∞∑
n=m

cn (z − z0)n ,

where m is an integer number (positive or negative) and cm 6= 0. We shall denote
this number m by ord (f, z0).

If ord (f, z0) > 0 then it is the multiplicity of the zero of f at z0 (see Week 9); if
ord (f, z0) < 0 then it is the order of the corresponding pole. Clearly,

f(z) = (z − z0)mg(z)

where m = ord (f, z0) and g is an analytic function in a disc about z0 such that
g(z0) 6= 0.

Definition. A complex function on an open set Ω is called meromorphic if it is
analytic in Ω except for a set of poles. Note that the pole set of a meromorphic
function is discrete (but may be infinite).
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CM322A COMPLEX ANALYSIS NOTES ON WEEK 12

RESIDUE THEOREM AND ARGUMENT PRINCIPLE

Definition. If f has an isolated singularity at z0 then the coefficient c−1 is called
the residue of f at the point z0 and is denoted Res (f, z0).

Let γ0 be a sufficiently small closed contour about z0 (such that f has only one
singularity inside γ). Integrating its Laurent series term by term, we see that∫
γ0
f(z) dz =

∫
γ0
c−1(z − z0)−1 dz (since the functions (z − z0)n with n 6= −1 have

primitives, their integrals are equal to zero). Now Cauchy’s integral formula implies
that

n(γ, z0) c−1 =
1

2πi

∫
γ0

f(z) dz .

Theorem (residue theorem). Let f be a meromorphic function in Ω with poles
at the points a1, a2 . . . Then for every closed contour γ, which homotopic to a point
in Ω and does not pas through ak, we have

1

2πi

∫
γ

f(z) dz =
∑
k

n(γ, ak) Res (f, ak)

Proof. If a point a lies outside the domain bounded by γ then the winding number
n(γ, ak) is equal to zero. Thus the summation in the above formula is taken
only over the poles ak which belong to this bounded domain. Since all poles are
separated from each other, there are only finitely many such ak (even if the domain
Ω is unbounded and the number of poles in Ω is infinite). Let us enumerate them
a1, a2, . . . , ap.

The easiest way to prove the residue theorem is by induction in p.

If p = 1 then the result follows from the above formula for
∫
γ0
f(z) dz, since

any homotopic to a point contour in Ω can be continuously transformed into an
arbitrarily small circle.

Assume that the formula holds for functions with p − 1 poles. Let f has poles at
some points a1, . . . , ap−1 and, in addition, at the point ap. Consider the Laurent
expansion f(z) =

∑∞
n=mp

cn(z − ap)
n in an annulus about ap (here mp < 0 is

the order of the pole at ap). Define g(z) =
∑−1

n=mp
cn(z − ap)n. Then f − g is a

meromorphic function in Ω, which has poles only at a1, . . . , ap−1. By the induction
assumption, the formula holds for g and f − g. Adding up these two equalities, we
obtain the required formula for f .
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Theorem (argument principle). Let f be a meromorphic function in Ω with
poles at the points a1, a2 . . . Then for every closed contour γ, which homotopic to
a point in Ω and does not pas through ak, we have

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
k

n(γ, ak) ord (f, ak) ,

where the summation is taken over all the poles and zeros ak of the function f
lying in the domain bounded by γ.

Proof. We have f(z) = (z − a1)m1f1(z), where m1 = ord (f, a1) and g1 is a mero-
morphic in Ω function such that f1 is analytic near a1 and g(a1) 6= 0. Similarly,
f1(z) = (z−a2)m2f2(z), where m2 = ord (f, a2) and f2 is a meromorphic in Ω func-
tion such that f2 is analytic near a1 and a2, f1(a1) 6= 0 and f2(a2) 6= 0. Applying
this formula p times, we see that

f(z) = (z − a1)m1(z − a2)m2 . . . (z − ap)mp g(z)

where mk = ord (f, ak) and g is a holomorphic function in Ω which does not have
zeros and poles. The direct calculation shows that

f ′(z)

f(z)
=

m1

z − a1

+
m2

z − a2

+ · · ·+ mp

z − ap
+
g′(z)

g(z)
.

Since the function g′

g
is analytic and, consequently,

∫
γ
g′

g
= 0, now the required

result is obtained by applying the residue theorem to the sum of the first terms in
the above formula.

Remark. If γ(t) : [a, b]→ C then by definition,∫
γ

f ′(z)

f(z)
dz =

∫ b

a

f ′(γ(t))

f(γ(t))
γ̇(t) dt.

Applying the chain rule, we obtain

f ′(γ(t))

f(γ(t))
γ̇(t) =

d

dt
(ln f(γ(t)) =

d

dt

(
ln |f(γ(t))|+ i arg(f(γ(t))

)
.

The Argument Principle implies that the integral
∫
γ
f ′(z)
f(z)

dz is an imaginary num-

ber. Thus we have
∫ b
a

d
dt

ln |f(γ(t))| dt = 0 and

∑
k

n(γ, ak) ord (f, ak) =
1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫ b

a

d

dt

(
i arg(f(γ(t))

)
dt

=
1

2π
(arg(f(γ(b))− arg(f(γ(a))) .

The above formula tells us how the argument changes as we traverse the path γ.
This justifies the name of the theorem.
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APPLICATIONS

Let P (z) be a polynomial which does not have real roots, and let Q(z) be an entire
function on C such that |zQ(z)|/|P (z)| → 0 as |z| → ∞ with Re z > 0 (the case
Re z 6 0 is treated in a similar manner). If γ̃R is the half-circle about the origin
running from R to −R in C then, in view of the basic estimate, the last condition
implies that

∫
γ̃R
Q(z)/P (z) dz → 0 as R→∞ (because |γ̃R| = πR).∫ ∞

−∞

Q(t)

P (t)
dt = lim

R→∞

∫ R

−R

Q(t)

P (t)
dt = lim

R→∞

∫
γR

Q(z)

P (z)
dz ,

where γR is the contour obtained from γ̃R by joining its end points by the line
segment [−R,R]. If R0 is large enough then all poles of Q(z)/P (z) lie inside γR for

all R > R0 and then, by Cauchy’s formula, the integral
∫
γR

Q(z)
P (z)

dz is independent

of R > R0 and coincides with 2πi
∑

k Res (Q/P, ak) where ak are the poles of Q/P
inside γR. These residues can be easily found. Indeed, ak are the roots of P . If
Q(ak) 6= 0 then Res (Q/P, ak) 6= 0 if and only if P has a simple root at ak (that is,
a root of multiplicity one), and

Res (Q/P, ak) = Q(ak) lim
z→ak

z − ak
P (z)

=
Q(ak)

P ′(ak)
.

In this case
∫∞
−∞

Q(t)
P (t)

dt = 2πi
∑

n
Q(an)
P ′(an)

, where an are the simple roots of P .

This amazingly simple formula has proved to be very useful. It can be extended in
various ways (think, for instance, of a more general meromorphic function P or of
choosing a different auxiliary contour γ̃R). If Q(ak) = 0 then one has to consider
Taylor’s expansion of Q at ak and multiple roots of P at ak, generating nonzero
Res (Q/P, ak).

One has to be careful, when applying the above arguments, to make sure that
|zQ(z)|/|P (z)| → 0 as |z| → ∞. To illustrate possible problems, let us consider
the following example.

Example. Let us evaluate the integral
∫∞
−∞

eiax

x2+1
dx, where a is a real constant.

By the above, it coincides with the integral
∫
γ eiz

z2+1
dz over a contour γ composed

of the line segment [−R,R] and a half-circle γ̃R around the origin in C, going from
R to −R, where R is large enough. The question is: shall we take the half-circle
γ̃R in the upper or lower half-plane? Formal calculations via the residue theorem
give different results.

The correct answer is obtained if we choose the contour in the upper half-plane
Im z = y > 0 for a > 0 (because in this case |eia(x+iy)| = e−ay as |x+ iy| → ∞) and
if we choose the contour in the lower half-plane Im z = y < 0 for a < 0 (because
in this case |eia(x+iy)| = e−ay as |x + iy| → ∞). Since z2 + 1 = (z + i)(z − i), the
answer for a > 0 is∫ ∞

−∞

eiax

x2 + 1
dx =

∫
γR

eiaz

z2 + 1
dz = 2πiRes

(
eiax

(z + i)(z − i)
, i

)
= 2πi

(
eiax

z + i

)∣∣∣∣
z=i

= π e−a .
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