
PREFACE

Spectral asymptotics for partial differential operators have been the subject of
extensive research for over a century. It has attracted the attention of many out-
standing mathematicians and physicists.

As a characteristic example let us consider the following spectral problem

(0.0.1) −∆v = λ2v in M , v|∂M = 0 ,

where M is a bounded domain in R3 , and ∆ is the Laplace operator. The problem
(0.0.1) has nontrivial solutions v only for a discrete set of λ = λk , which are called
eigenvalues. Let us enumerate the eigenvalues in increasing order: 0 < λ1 < λ2 ≤
λ3 ≤ . . . In the general case the eigenvalues λk can not be evaluated explicitly.
Moreover, for large k it is difficult to evaluate them numerically. So it is natural
to look for asymptotic formulae for λk as k →∞ .

However, for a number of reasons it is traditional in such problems to deal with
the matter the other way round, i.e., to study the sequential number k as a function
of λ . Namely, let us introduce the counting function N(λ) defined as the number of
eigenvalues λk less than a given λ . Then our asymptotic problem is reformulated
as the study of the asymptotic behaviour of N(λ) as λ → +∞ . The derivation of
asymptotic formulae for N(λ) is the main subject of this book.

It is well known that for the problem (0.0.1)

(0.0.2) N(λ) =
V

6π2
λ3 + o(λ3) , λ → +∞ ,

where V is the volume of M . The asymptotic formula (0.0.2) has been known
for a long time, it appeared already in the works of Rayleigh. Written in a slightly
different form it is known in theoretical physics as the Rayleigh–Jeans law.

Rayleigh [Ra] arrived at (0.0.2) by considering the case when the domain M is
a cube of side a . Then, solving the problem (0.0.1) by separation of variables one
obtains

N(λ) = #{~q ∈ N3 : |~q | < R} ,

where R = aλ/π . In other words, N(λ) is the number of integer lattice points in
an octant of a ball of radius R . Clearly, for large R we have

N(λ) ≈ 1
8

(4πR3/3) =
a3

6π2
λ3 =

V

6π2
λ3 .

Now physical arguments suggest that the same formula should hold for a domain
of arbitrary shape.
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Formula (0.0.2) is remarkable not only for its role in the development of theo-
retical physics, but also for the fact that Rayleigh made a mistake by writing it
without the coefficient 1/8 . This mistake was corrected by J.H. Jeans. As pointed
out in [Ja], Jeans’s contribution to the “Rayleigh–Jeans” law was only the state-
ment: “It seems to me that Lord Rayleigh has introduced an unnecessary factor 8
by counting negative as well as positive values of his integers”, [Je, p. 98].

The first rigorous proof of (0.0.2) was given by H. Weyl [We1]. Later R. Courant
and D. Hilbert included a proof of (0.0.2) in their classical textbook [CouHilb],
which stimulated the study of asymptotic formulae of this type. The list of math-
ematicians who have contributed to this field includes S. Agmon, V.M. Babich,
P.H. Bérard, M.S. Birman, T. Carleman, Y. Colin de Verdiére, J. Duistermaat,
B.V. Fedosov, L. G̊arding, V.W. Guillemin, L. Hörmander, V.Ya. Ivrii, M. Kac,
B.M. Levitan, R.B. Melrose, G. Métivier, Å. Pleijel, R.T. Seeley, M.A. Shubin,
M.Z. Solomyak, A. Weinstein, and many others. An extensive bibliographical re-
view can be found in [RoSoSh]. Physicists also worked on spectral asymptotics and
have made essential contributions. Being less familiar with the physical literature
we shall only mention the names of M.V. Berry, P. Debye, L. Onsager; see also
[BaHilf] for further bibliography.

The asymptotic formula (0.0.2) is remarkably simple: the asymptotic coefficient
is determined only by the volume of the domain and is independent of its shape.
Moreover, a similar one-term asymptotic formula has been established in a very
general setting, namely, for an elliptic self-adjoint partial differential operator with
variable coefficients acting on a manifold subject to reasonably good boundary
conditions.

However, this simplicity and high degree of generality indicate the weaknesses of
(0.0.2) and its analogues. First, such formulae involve only the most basic geometric
characteristics of M : say, the eigenvalues of the problem (0.0.1) for a cube and
a long narrow parallelepiped of the same volume are obviously quite different, but
(0.0.2) does not feel this difference. Secondly, one-term asymptotic formulae do
not depend on the boundary conditions: say, if we replace in (0.0.1) the Dirichlet
boundary condition by the Neumann one the eigenvalues will change substantially,
which can not be noticed from (0.0.2). These deficiencies motivated the search for
sharper results.

In 1913 H. Weyl put forward [We2] a conjecture concerning the existence of a
second asymptotic term. Namely, he predicted that for the problem (0.0.1)

(0.0.3) N(λ) =
V

6π2
λ3 − S

16π
λ2 + o(λ2) , λ → +∞ ,

where S is the surface area of ∂M . Formula (0.0.3) became known as Weyl’s
conjecture. It was finally justified, under a certain condition on periodic billiard
trajectories, by V.Ya. Ivrii [Iv1] and R.B. Melrose [Me] only in 1980. This revived
interest to such problems. In particular, in subsequent years Ivrii extended his
result on two-term asymptotics to much more general classes of boundary value
problems. As our book does not aim to provide a full bibliographic review and
reflects the research interests of its authors, we refer only to Ivrii’s publications
[Iv2]–[Iv4] where the reader can find further references.

Our contribution to the problem concerns the following aspects.
First, we are interested in deriving two-term asymptotic formulae for higher

order differential operators.
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Secondly, we study the case when the condition on periodic billiard trajectories,
which guarantees the existence of a classical second term in Weyl’s formula, fails.
In this case the second asymptotic term may contain an oscillating function, which
depends on the structure of the set of periodic billiard trajectories.

Thirdly, we obtain two-term asymptotic formulae for the spectral function. In
this case one has to deal with loops instead of periodic billiard trajectories.

The basic idea which we use for the derivation of spectral asymptotics is due
to B.M. Levitan [Ltan]. It involves the study of the singularities of the corre-
sponding evolutionary problem (say, in the case of (0.0.1) this would be the wave
equation), and the subsequent application of Fourier Tauberian theorems. This
approach produces the sharpest possible results. Levitan’s method was developed
by L. Hörmander, J.J. Duistermaat, V.W. Guillemin, and R.B. Melrose (see [Hö1],
[DuiGui], [DuiGuiHö], [Me]). The most advanced version of this method is due to
V.Ya. Ivrii [Iv1]–[Iv4]. Our approach, however, is somewhat different from that of
Ivrii, even in the case of the Laplace operator.

We tried to make the book self-contained and all our constructions explicit. The
main results are collected in Chapter 1. Chapter 2 introduces the reader to the main
technical tools; it can be regarded as a brief introduction to microlocal analysis.
Chapters 3–5 are devoted to the proofs of our main results. Chapter 6 lists the basic
mechanical applications; it is intended mostly for applied mathematicians and does
not require a sophisticated mathematical background. The book also has a number
of appendices. Some of them can be read separately from the main text, others
contain cumbersome proofs. Appendix A was written by A. Holst, and Appendix
B by M. Levitin.

We do not aim at achieving the highest possible degree of generality in our book.
In particular, we do not discuss

(1) systems, see [Sa4], [Sa5], [SaVa1], [Va4], [Va6];
(2) piecewise smooth boundaries, see [Va6];
(3) very non-smooth (fractal) boundaries, see [FlLtinVa1], [FlLtinVa2], [FlVa1],

[FlVa2], [LtinVa1], [LtinVa2], [Va10].
This book was preceded by survey papers [GolVa], [Sa7], [SaVa2] describing our

main results.
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