CONTENTS

Preface	\mathbf{v}
Chapter I. Main Results	1
1. Statement of the spectral problem	1
2. One-term asymptotic formula for $N(\lambda)$	9
3. Hamiltonian billiards I: basic definitions and results	12
4. Hamiltonian billiards II: reflection matrix	27
5. Hamiltonian billiards III: Maslov index	32
6. Classical two-term asymptotic formula for $N(\lambda)$	38
7. Nonclassical two-term asymptotic formulae for $N(\lambda)$	51
8. Two-term asymptotic formulae for the spectral function	57
Chapter II. Oscillatory Integrals	65
1. Local oscillatory integrals and pseudodifferential operator	s 65
2. Global oscillatory integrals	73
3. Homogeneous canonical transformations	76
4. Phase functions associated with homogeneous canonical tra	
formations	81
5. Restriction of phase functions to the boundary	93
6. Extension of phase functions from the boundary	95
7. Standard oscillatory integrals associated with homogeneo canonical transformations	ous 104
8. Boundary layer oscillatory integrals associated with homo neous canonical transformations	oge- 118
9. Boundary oscillatory integrals associated with homogeneous	ous
canonical transformations	121
10. Parameter-dependent oscillatory integrals	125
Chapter III. Construction of the Wave Group	136
1. Characteristic properties of distributions associated with	
wave group	. 137
2. Representation of the wave group by means of oscillatory tegrals: sufficient conditions	ın- 149
3. Representation of the wave group by means of oscillatory in	
grals: effective construction for manifolds without bounds	ary 150
4. Representation of the wave group by means of oscillatory tegrals: effective construction for manifolds with bounds	in-
ogras. enective construction for manifolds with bounda	157 157

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}\mathrm{T}_{\!E} \! \mathrm{X}$

5.	Construction of the wave group when the source is close to	
	the boundary	171
Ch	apter IV. Singularities of the Wave Group	175
	Singularities of Lagrangian distributions	176
	Singularity of the wave group at $t = 0$	184
	Singularities of the wave group at $t \neq 0$ for admissible pseu-	
	dodifferential cut-offs	187
4.	Singularities of the wave group at $t \neq 0$ for non-admissible	
	pseudodifferential cut-offs	191
5.	Singularity of the wave group at $t = 0$ when the source is	
	close to the boundary	198
Ch	apter V. Proof of main results	201
	Partition of the manifold M into three zones	201
	Asymptotics of the trace of the spectral projection in the	
	interior zone	206
3.	Asymptotics of the trace of the spectral projection in the	
	intermediate zone	210
4.	Asymptotics of the trace of the spectral projection in the	
	boundary zone	214
5.	Asymptotics of the spectral function	235
Ch	apter VI. Mechanical applications	240
	Membranes and acoustic resonators	240
	Elastic plates	241
	Two- and three-dimensional elasticity	246
4.	Elastic shells	248
5.	Hydroelasticity	256
Ap	pendix A. Spectral problem on the half-line	
-	BY A. HOLST	260
1.	Basic facts	260
2.	The reflection matrix	272
3.	Trace formulae	287
4.	Dependence on parameters	305
Ap	pendix B. Fourier Tauberian theorems	
-	BY M. LEVITIN	309
1.	Introductory remarks	309
2.	Basic theorem	310
3.	Rough estimate for the nonzero singularities	313
4.	General refined theorem	313
5.	Special version of the general refined theorem	316
Ap	pendix C. Stationary phase formula	318
Ap	pendix D. Hamiltonian billiards: proofs	324
-	Measure of "awkward" starting points	324
	Dead-end trajectories	329
3.	Convexity and concavity	332
4.	Measurability of sets and functions	335
	Lengths of loops and periodic trajectories	337
6.	Maslov index	339

CONTENTS

Appendix E. Factorization of smooth functions and Taylor-		
type formulae	346	
References	353	
Principal notation	358	