
CHAPTER VI

MECHANICAL APPLICATIONS

6.1. Membranes and acoustic resonators

In this section we consider the situation when M is a region in Rn and A = −∆ ,
where ∆ = ∂2/∂y2

1 + ∂2/∂y2
2 + . . . + ∂2/∂y2

n is the Laplacian in Cartesian
coordinates. The boundary condition is either Dirichlet v|∂M = 0 , or Neumann
(∂v/∂xn)|∂M = 0 , where xn is the distance to ∂M .

The cases n = 2 and n = 3 are, of course, the ones which have a physical
meaning.

1. Membrane. In the case n = 2 the eigenvalue problem (1.1.1), (1.1.2)
describes the vibrations of an isotropic membrane. Here λ = ω

√
ρ
T , where ω is

the vibration frequency, and ρ and T are the surface density and tension of the
membrane respectively. Throughout this chapter by “frequency” we mean “circular
frequency”; consequently, the number of cycles per second is ω

2π .
The function v(y) is the deflection (normal displacement) of the membrane.

The Dirichlet boundary condition describes a membrane fixed along its edge, and
the Neumann boundary condition a membrane whose edge is free (i.e., there are no
forces in the direction normal to the unperturbed surface of the membrane acting
on its edge).

Let λk be an eigenvalue of (1.1.1), (1.1.2). Then the number ωk = λk

√
T
ρ

is called eigenfrequency or natural frequency . An eigenfrequency corresponds to a
vibration of the type u(t, y) = e−itωkvk(y) occurring without any external forces.

According to Examples 1.2.3, 1.6.14 and 1.6.15 we have

N(λ) =
S

4π
λ2 ∓ L

4π
λ + o(λ) , λ→ +∞ ,

where S is the surface area of M , L is the length of ∂M , and the signs “mi-
nus” and “plus” correspond to the Dirichlet and Neumann boundary conditions
respectively.

2. Acoustic resonator. In the case n = 3 the eigenvalue problem (1.1.1),
(1.1.2) describes the vibrations of an acoustic medium occupying a resonator (ves-
sel). Here λ = ω

c , where ω is the vibration frequency and c is the speed of sound
in the medium.

The function v(y) is the potential of displacements of the acoustic medium. The
Dirichlet boundary condition describes a resonator with soft walls (zero pressure
on ∂M ), and the Neumann boundary condition a resonator with rigid walls (zero
normal displacement on ∂M ).
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6.2. ELASTIC PLATES 241

In this case according to Examples 1.2.3 and 1.6.16 we have

N(λ) =
V

6π2
λ3 ∓ S

16π
λ2 + o(λ2) , λ→ +∞ ,

where V is the volume of M , S is the surface area of ∂M , and the signs “mi-
nus” and “plus” correspond to the Dirichlet and Neumann boundary conditions
respectively.

6.2. Elastic plates

1. Statement of result. In this section we consider the situation when M is
a region in R2 and A = ∆2 , where ∆ = ∂2/∂y2

1 + ∂2/∂y2
2 is the Laplacian in

Cartesian coordinates. The partial differential equation (1.1.1) in this case describes

the flexural vibrations of an isotropic thin elastic plate. Here λ =
(

12(1−σ2)ρω2

Eh2

)1/4

,
where ω is the vibration frequency, h is the thickness of the plate, and ρ , E , and
0 < σ < 1

2 are the volume density, Young’s modulus, and Poisson’s ratio of the plate
material respectively. The function v(y) is the deflection (normal displacement) of
the middle surface of the plate.

In order to describe the boundary conditions we use the local coordinates x =
(x1, x2) from Example 1.6.14. We denote by k(x1) the curvature of ∂M ; the sign
of the curvature is chosen in such a way that k > 0 when the tangent to ∂M

remains outside
◦
M in a small neighbourhood of the point of tangency. By k′ we

denote the derivative of k with respect to x1 . Let us introduce the operators

F0 = 1 , F1 =
∂

∂x2
, F2 =

∂2

∂x2
2

+ σ
∂2

∂x2
1

− σ k
∂

∂x2
,

F3 =
∂3

∂x3
2

+ (2−σ)
∂3

∂x2
1∂x2

+ 3k
∂2

∂x2
1

+ (2−σ)k′
∂

∂x1
− (1+σ)k2 ∂

∂x2
− kF2 .

We shall consider three types of boundary conditions, corresponding to the fol-
lowing choices of “boundary” operators in (1.1.2).

(1) Clamped edge: B(1) = F0 , B(2) = F1 .
(2) Hinge supported edge: B(1) = F0 , B(2) = F2 .
(3) Free edge: B(1) = F2 , B(2) = F3 .
The clamped edge is what a pure mathematician would call Dirichlet boundary

conditions (see Example 1.1.10). The other two types of boundary conditions may
appear to be exotic to a pure mathematician, and thus require an explanation.
Consider the quadratic form

E(v) :=
∫∫

M

(
|∆v|2 + 2(1− σ)(|vy1y2 |

2 − Re (vy1y1vy2y2))
)
dy1 dy2 .

The functional E is, up to a constant factor, the potential energy of the plate; see,
e.g., [GolLidTo], p. 79, formula (1.9). Perturbing v by δv and integrating by parts
we get

δE = 2 Re
(∫∫

M

(∆2v) δv dy1 dy2 +
∫
∂M

(
(F3v) δv − (F2v)

∂δv

∂x2

)
dx1

)
.
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Thus, when we vary E(v) without any constraints on v we obtain the free boundary
conditions, and when we vary E(v) under the constraint v|∂M = 0 we obtain the
hinge supported boundary conditions. Conversely, for any function v satisfying any
of the three types of boundary conditions described above we have (∆2v, v) = E(v) .

Weyl’s formula for the biharmonic operator has the form

(6.2.1) N(λ) =
S

4π
λ2 +

βL

4π
λ + o(λ) , λ→ +∞ ,

where S is the surface area of M , L is the length of ∂M , and β is a dimensionless
coefficient the value of which is

(6.2.2) β = − 1 − Γ(3/4)√
π Γ(5/4)

≈ −1.763 ,

(6.2.3) β = −1 ,

(6.2.4) β = 4
(
−1 + 4σ − 3σ2 + 2(1− σ)

√
1− 2σ + 2σ2

)−1/4

− 1 − 4
π

1∫
0

tan−1

[(
1 + (1− σ)ξ2

1− (1− σ)ξ2

)2√1− ξ2

1 + ξ2

]
dξ

for the cases of clamped, hinge supported, and free edge respectively; here Γ is
the Gamma function and tan−1 is the inverse tan . For the case of a free edge the
graph of β as a function of Poisson’s ratio σ is shown on Figure 13.

Figure 13. The coefficient β in the case of a free edge.

The first asymptotic coefficient of (6.2.1) was evaluated in accordance with Ex-
ample 1.2.3, whereas the second asymptotic coefficient will be evaluated in the next
subsection. Note that the one-term asymptotic formula for the biharmonic operator
was first obtained by R. Courant [Cou].

As an example let us consider a circular plate, i.e. M = {y ∈ R2 : y2
1 + y2

2 ≤ 1} .
Figures 14–16 show numerical results for the cases of clamped, hinge supported,
and free edge respectively.

Figure 14. Eigenvalue distribution for a circular plate with a clamped edge.
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Figure 15. Eigenvalue distribution for a circular plate with hinge supported
edge.

Figure 16. Eigenvalue distribution for a circular plate with a free edge.

The independent variable, plotted along the horizontal axis, is λ2 ; using λ2

instead of λ is more natural from the mechanical point of view because λ2 is
proportional to the frequency ω . Each plot contains three lines: the stepwise line
is the actual counting function N(λ) , and the two smooth lines are the graphs
of the functions S

4π λ
2 (line 1) and S

4π λ
2 + βL

4π λ (line 2). The actual N(λ)
was plotted using the numerical results from the handbook [Gon], and, for higher
eigenvalues, the numerical results of the authors. Figures 14–16 demonstrate the
remarkable effectiveness of the two-term asymptotic formula. On all three graphs
Courant’s one-term asymptotics S

4π λ
2 lies well away from the actual N(λ) , giving

only a very rough approximation which does not feel the boundary conditions. On
the other hand the two-term asymptotics S

4π λ
2 + βL

4π λ goes right through the
actual N(λ) . The two-term asymptotics feels the boundary conditions through
the coefficient β .

Note that the use of the two-term asymptotic formula (6.2.1) in the case of a
circular plate is justified because M is convex and ∂M analytic, see subsection
1.3.5.

2. Evaluation of the second asymptotic coefficient. In this subsection
we demonstrate that for our problem (biharmonic operator) the second asymptotic
coefficient is indeed

(6.2.5) c1 =
βL

4π
,

with β defined in accordance with (6.2.2)–(6.2.4). We do our calculations using
the algorithm described in Section 1.6; the centrepiece of this algorithm is formula
(1.6.23). The arguments go along the same lines as in Examples 1.6.14, 1.6.15. By
producing explicit calculations for the case of the biharmonic operator we want to
show that our algorithm for the calculation of the second asymptotic coefficient is
a powerful tool in the analysis of concrete boundary value problems of mechanics
and mathematical physics.

Clamped edge. The auxiliary one-dimensional spectral problem in this case is

(6.2.6) d4v/dx4
2 − 2ξ21d

2v/dx2
2 + ξ41v = νv ,
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(6.2.7) v|x2=0 = dv/dx2|x2=0 = 0 ,

with v ≡ v(x2) , x2 ∈ R+ . As in Example 1.6.14, further on in this section we
assume ξ1 6= 0 .

The problem (6.2.6), (6.2.7) has no eigenvalues, so

(6.2.8) N+(ν;x1, ξ1) ≡ 0 .

The problem (6.2.6), (6.2.7) has only one threshold νst
1 = ξ41 , and the con-

tinuous spectrum is the semi-infinite interval [ξ41 ,+∞) . The points ν > ξ41 of
the continuous spectrum have multiplicity one, and the corresponding generalized
eigenfunctions have the form

v(x2) = sin
(
x2

√√
ν − ξ21 − ψ

)
+ (sinψ) e−x2

√√
ν+ξ21

=
a−1 e

ix2ζ
−
1 (ν)√

−2πA′(ζ−1 (ν))
+

a+
1 e

ix2ζ
+
1 (ν)√

2πA′(ζ+
1 (ν))

+
a+
2 e

ix2ζ
+
2 (ν)√

2πA′(ζ+
2 (ν))

(cf. (1.4.7)), where

(6.2.9) ψ = ψ(ν; ξ1) = tan−1

(√√
ν − ξ21√√
ν + ξ21

)
∈ (0, π/4) ,

ζ±1 (ν) = ±
√√

ν − ξ21 , ζ+
2 (ν) = i

√√
ν + ξ21 , and

(6.2.10) a±1 = ∓ i
√

2π
√
ν
√√

ν − ξ21 e
∓iψ .

As the strong simple reflection condition is satisfied, we can use formulae (1.6.15),
(1.6.16). Substituting (6.2.10) into (1.6.15) we obtain for ν > ξ41

(6.2.11) arg0 det
(
i R(ν;x1, ξ1)

)
= −π/2− 2ψ(ν; ξ1) + 2πk

with an unknown integer k . Substituting (6.2.11), (6.2.9) into (1.6.16) we establish
that k = 0 . Thus,

(6.2.12) arg0 det
(
i R(ν;x1, ξ1)

)
=
{

0 , if ν ≤ ξ41 ,

−π/2− 2ψ(ν; ξ1) , if ν > ξ41 .

According to (1.6.19)

(6.2.13) c1 =

L∫
0

+∞∫
−∞

(
N+(1;x1, ξ1) +

arg0 det
(
i R(1;x1, ξ1)

)
2π

)
d̄ξ1 dx1 .

Substituting (6.2.8), (6.2.12), (6.2.9) into (6.2.13) and evaluating the integral we
arrive at (6.2.5), (6.2.2).
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Hinge supported edge. The auxiliary one-dimensional spectral problem in
this case is described by the equation (6.2.6) with boundary conditions

(6.2.14) v|x2=0 = d2v/dx2
2

∣∣
x2=0

= 0 .

The operator associated with the spectral problem (6.2.6), (6.2.14) is the square of
the operator associated with the spectral problem (1.6.22), (1.6.23). Consequently
our coefficient c1 is the same as in Example 1.6.14, which proves (6.2.5), (6.2.3).

Free edge. The auxiliary one-dimensional spectral problem in this case is de-
scribed by the equation (6.2.6) with boundary conditions

(6.2.15)
(
d2v/dx2

2 − σξ21v
)∣∣
x2=0

=
(
d3v/dx3

2 − (2− σ)ξ21dv/dx2

)∣∣
x2=0

= 0 .

In the following analysis we assume σ 6= 0 . The fact that our formula (6.2.5),
(6.2.4) remains valid for σ = 0 would follow by continuity, see Lemma A.4.1.

The problem (6.2.6), (6.2.15) has one eigenvalue

(6.2.16) ν1 = ν1(ξ1) =
(
−1 + 4σ − 3σ2 + 2(1− σ)

√
1− 2σ + 2σ2

)
ξ41 .

We have ν1 < ξ41 , so this eigenvalue lies below the continuous spectrum. If we look
at the dependence of the right-hand side of (6.2.16) on Poisson’s ratio σ , we get
Taylor’s expansion

(6.2.17) ν1 = (1− σ4/2 +O(σ5)) ξ41 as σ → 0 .

It is remarkable that (6.2.17) contains no quadratic term. This suggests that for
realistic values of σ the eigenvalue ν1 is very close to the threshold ξ41 . Say, for

σ = 1
3 we get ν1 =

√
80
81 ξ

4
1 .

The existence of one eigenvalue (6.2.16) implies

(6.2.18) N+(ν;x1, ξ1) =

{
0 for ν ≤ ν1(ξ1) ,

1 for ν > ν1(ξ1) .

The generalized eigenfunctions now have the form

v(x2) = sin
(
x2

√√
ν − ξ21 − ψ

)
+

√
ν − (1− σ)ξ21√
ν + (1− σ)ξ21

(sinψ) e−x2

√√
ν+ξ21

=
a−1 e

ix2ζ
−
1 (ν)√

−2πA′(ζ−1 (ν))
+

a+
1 e

ix2ζ
+
1 (ν)√

2πA′(ζ+
1 (ν))

+
a+
2 e

ix2ζ
+
2 (ν)√

2πA′(ζ+
2 (ν))

,

where

(6.2.19) ψ = ψ(ν; ξ1) = tan−1

[(√
ν + (1− σ)ξ2√
ν − (1− σ)ξ2

)2√√
ν − ξ2√
ν + ξ2

]
∈ (0, π/2) ,

and the a±1 are given by formula (6.2.10) with our new ψ . Repeating the arguments
done in the case of a clamped edge, we conclude that (6.2.12) holds with our new ψ .
Substituting (6.2.18), (6.2.16), (6.2.12), (6.2.19) into (6.2.13) we arrive at (6.2.5),
(6.2.4).
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6.3. Two- and three-dimensional elasticity

1. Statement of result. Let M be a region in Rn , y Cartesian coordinates
in Rn , and v an n-component vector-function. We consider the spectral problem
for the system of equations

(6.3.1) − c2t ∆v − (c2l − c2t ) grad div v = λ2 v

subject to the Dirichlet boundary conditions v|∂M = 0 (fixed boundary) or the
conditions of free boundary. The latter are the variational boundary conditions
generated by the quadratic functional

E(v) :=
∫
M

(
(c2l − 2c2t )|div v|2 +

c2t
2

∑
i,j

|∂yjvi + ∂yivj |2
)
dy .

The system (6.3.1) describes the vibrations of an isotropic elastic body, see [Lan-
Lif, Sect. 22]. Here λ = ω is the vibration frequency, and the constants cl , ct are
the velocities of longitudinal and transverse waves respectively. They are assumed
to satisfy the inequality cl/ct >

√
2 . Further we denote α = c2t c

−2
l .

By considering (6.3.1) we are breaking the promise made in the Preface not to
discuss systems in the book. However, we feel it necessary to outline the result
for the system of elasticity because this system has played a special role in the
development of the subject, see next subsection.

The cases n = 2 and n = 3 are those of physical interest.
Note that problems in two-dimensional elasticity may arise in two ways: as a

result of separation of variables in a infinite three-dimensional elastic cylinder, or
in the study of tangential vibrations of a thin elastic plate. The expressions for
the velocities cl , ct through Young’s modulus, volume density and Poisson’s ratio
σ in these two physical models are different, but α = 1/2 always corresponds to
σ = 0 .

Weyl’s formula for two-dimensional elasticity has the form

N(λ) =
(c−2
l + c−2

t )S
4π

λ2 +
βL

4πct
λ + o(λ) , λ→ +∞ ,

where S is the surface area of M , L is the length of ∂M , and β is a dimensionless
coefficient. The value of the coefficient β for fixed boundary is

β = − 1 −
√
α − 4

π

1∫
√
α

tan−1
√

(1− αξ−2)(ξ−2 − 1) dξ .

For free boundary

β = 4γ−1 − 3 +
√
α +

4
π

1∫
√
α

tan−1 (2− ξ−2)2

4
√

(1− αξ−2)(ξ−2 − 1)
dξ ,

where 0 < γ < 1 is the root of the algebraic equation

γ6 − 8γ4 + 8(3− 2α)γ2 − 16(1− α) = 0 .



6.3. TWO- AND THREE-DIMENSIONAL ELASTICITY 247

The quantity cR = γct has the physical meaning of the velocity of the Rayleigh
wave, see [LanLif, Sect. 24]. The graph of β as a function of α for the cases of
fixed and free boundary is shown on Figures 17 and 18 respectively.

Figure 17. The coefficient β in the case of a fixed boundary.

Figure 18. The coefficient β in the case of a free boundary.

Weyl’s formula for three-dimensional elasticity has the form

N(λ) =
(c−3
l + 2c−3

t )V
6π2

λ3 +
bS

16π
λ2 + o(λ2) , λ→ +∞ ,

where V is the volume of M , S is the surface area of ∂M , and

(6.3.2) b = − 3c4l + c2l c
2
t + 2c4t

c2l c
2
t (c2l + c2t )

, b =
3c4l − 3c2l c

2
t + 2c4t

c2l c
2
t (c2l − c2t )

for the cases of fixed and free boundary, respectively.
Rigorous statements concerning classical two-term asymptotics for systems can

be found in [Va4, Sect. 6], [Va6], [SaVa1]. These results deal with the case when the
eigenvalues of the principal symbol (which is now a matrix-function) have constant
multiplicity. The latter is true for (6.3.1).

Without going into details let us note that the second asymptotic coefficient for
systems can be evaluated by the algorithm from Section 1.6 with small modifica-
tions described in [Va4, Sect. 6]. Choosing normal coordinates and applying this
algorithm to the elasticity system with free boundary it is easy to establish the
existence of one eigenvalue ν1(ξ′) = c2R|ξ′|2 corresponding to the Rayleigh wave.
In the three-dimensional case this eigenvalue does not appear explicitly in our final
expression for the coefficient b only because a contour integration was carried out
to simplify the result.

2. Historical background. The one-term asymptotic formula for N(λ) in
the case of the three-dimensional elasticity operator was obtained by P. Debye [De]
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in 1912. Debye arrived at this formula by considering the situation when M is
a ball, and then extended the result to arbitrary shapes by physical arguments.
Debye’s analysis involved delicate manipulations with Bessel functions. Note that
Debye could not use a cube for his calculations (as Rayleigh did for the Laplacian)
because the elasticity problem in a cube does not admit a separation of variables.
The difficulty is with the boundary conditions: both the fixed and the free boundary
conditions prevent one from separating variables. Later M. Born pointed out that
Debye could have simplified matters by dealing with periodic boundary conditions,
as in this case the problem in a cube admits a separation variables. One can guess
that Debye did not adopt such an approach because periodic boundary conditions
do not have a physical meaning for a finite solid body.

Debye’s work provided motivation for Weyl’s research. Having started with the
Laplacian, Weyl eventually produced [We3] in 1915 a rigorous proof of the one-term
asymptotics for elasticity.

Debye derived his one-term asymptotic formula for N(λ) in order to evaluate
the specific heat C of a (three-dimensional) body at low temperatures T :

(6.3.3) C ≈ c0V T
3 ,

where c0 is a constant expressed through the first asymptotic coefficient of N(λ)
and some physical constants, including Planck’s constant. Formula (6.3.3) is known
in theoretical physics as Debye’s law .

Naturally, a two-term asymptotic formula for N(λ) would lead to a correction
in Debye’s law:

(6.3.4) C ≈ c0V T
3 + c1ST

2 .

The correction term c1ST
2 becomes noticeable in (6.3.4) if the temperature is

sufficiently low and the surface area S is sufficiently large (say, if we are measuring
the specific heat of a fine powder). This explains the interest of theoretical physicists
in deriving the second asymptotic coefficient of N(λ) for the elasticity operator.
After a number of publications by different authors producing incorrect formulae
for the second asymptotic coefficient, the correct formulae (6.3.2) were obtained
by M. Dupuis, R. Mazo and L. Onsager [DupMazOn] in 1960. The argumentation
in [DupMazOn] is carried out on a physical level of rigour and the mathematical
technique is different from that of Section 1.6.

6.4. Elastic shells

The notation in this and next sections is different from the rest of the book
because we had to conform with traditions of shell theory. In particular h is not
the Hamiltonian, but the shell thickness.

1. Statement of the problem. Let M be a smooth two-dimensional sur-
face embedded in R3 . Let x = (x1, x2) be local coordinates on M , and let the
surface be locally given by a three-component radius-vector r(x) . We choose the
coordinates x to be orthogonal, so that the first quadratic form of the surface is
dr2 = A2

1dx
2
1 + A2

2dx
2
2 , where Ai = Ai(x) > 0 , i = 1, 2 . We set ei = ei(x) =

A−1
i rxi

(the subscript xi
indicates a partial derivative), and n = n(x) = e1 × e2 .

Clearly, ei is the unit vector in the direction of the coordinate line xi , n is the
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unit normal to M , and the vectors {e1, e2,n} form a right triple. We shall assume
for simplicity that our coordinate lines coincide with the curvature lines, so that
the second quadratic form of the surface is −n · d2r = R−1

1 A2
1dx

2
1 + R−1

2 A2
2dx

2
2 ,

where d2r =
∑
i,j rxixj

dxidxj , and R−1
i = R−1

i (x) , i = 1, 2 , are the principal cur-
vatures. Our surface M may, of course, have a boundary ∂M which is a smooth
one-dimensional curve.

A shell is an elastic body occupying the three-dimensional region

{y ∈ R3 : y = r(x) + x3n, x ∈M, |x3| ≤ h/2} ,

where y = (y1, y2, y3) are Cartesian coordinates, and 0 < h � 1 is a parameter
called the shell thickness. We shall assume the faces {x3 = ±h/2} to be free, and
the edge ∂M × [−h/2, h/2] to be fixed. The problem of free vibrations of such
an elastic body is the one considered in the previous section. However, applying
the results of the previous section does not make much sense when h is small:
one would get asymptotic formulae which start working only at extremely high
frequencies, namely, frequencies ω � h−1 .

The proper way of telling whether the thickness is small or not is to introduce
a characteristic length (or characteristic radius of curvature) R associated with
the surface M , and to deal with the relative thickness h/R . In most technical
applications the relative thickness is very small. It is quite usual to have h/R ∼
10−3 , whereas a shell with h/R ∼ 10−2 may be viewed as a rather thick one (this
roughly corresponds to the hull of a submarine).

Therefore we shall fix our frequency range and study the behaviour of natural
frequencies as h→ 0 . In this case the elasticity equations (6.3.1) are reduced to the
following system of three partial differential equations on M called shell equations:

(6.4.1)
3∑
j=1

Lijuj = λui , i = 1, 2, 3 .

The Lij are the linear differential operators of shell theory which have the form

(6.4.2) Lij =
h2

12
nij + `ij , i, j = 1, 2, 3 .

Here nij and `ij are the moment and membrane operators, respectively.
We recall explicit expressions for `ij , nij from [GolLidTo, pp. 77, 78]:

`ii =− 1
1− σ2

1
Ai

∂

∂xi

1
AiAj

∂

∂xi
Aj −

1
2(1 + σ)

1
Aj

∂

∂xj

1
AiAj

∂

∂xj
Ai −

1
1 + σ

Ri
−1Rj

−1,

`ij =− 1
1− σ2

1
Ai

∂

∂xi

1
AiAj

∂

∂xj
Ai +

1
2(1 + σ)

1
Aj

∂

∂xj

1
AjAi

∂

∂xi
Aj ,

`i3 =− 1
1− σ2

1
Ai

∂

∂xi

(
Ri
−1 +Rj

−1
)

+
1

1 + σ

1
AiRj

∂

∂xi
,

`3i =
1

1− σ2

1
AiAj

(
Ri
−1 +Rj

−1
) ∂

∂xi
Aj −

1
1 + σ

1
AiAj

∂

∂xi

Aj
Rj

,

`33 =
1

1− σ2

(
R1
−2 + 2σR1

−1R2
−1 +R2

−2
)
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(in the above formulae i, j ≤ 2 , i 6= j),

nij = 0 for i+ j < 6 ,

n33 =
1

1− σ2
∆2
M +

1
A1A2

(
∂

∂x1
R−1

1 R−1
2

A2

A1

∂

∂x1
+

∂

∂x2
R−1

1 R−1
2

A1

A2

∂

∂x2

)
,

where 0 < σ < 1
2 is Poisson’s ratio and

∆M =
1

A1A2

(
∂

∂x1

A2

A1

∂

∂x1
+

∂

∂x2

A1

A2

∂

∂x2

)
is the surface Laplacian acting on functions. It can be checked that the matrix
differential operators

(
`ij
)3
i,j=1

and
(
nij
)3
i,j=1

are formally self-adjoint and nonneg-
ative with respect to the standard L2(M)-inner product on vector-functions

(6.4.3) (u, v) =
∫∫

M

(u1v1 + u2v2 + u3v3) dS ,

dS = A1A2 dx1dx2 .
In (6.4.1) λ = ρsω

2

E , where ω is the vibration frequency, and ρs and E are the
volume density and Young’s modulus of the shell material respectively. The vector-
function u(x) = (u1(x), u2(x), u3(x) is the displacement of the shell middle surface;
its representation in the Cartesian coordinates in R3 is u(x) = u1e1 +u2e2 +u3n .
It is important to note that u3 is the displacement in the normal direction.

The system of equations (6.4.1) has to be supplemented by the appropriate
boundary conditions. As we assumed the original three-dimensional body to be
fixed along the edge ∂M × [−h/2, h/2] these boundary conditions turn out to be

(6.4.4) u1|∂M = u2|∂M = u3|∂M = ∂u3/∂x1|∂M = 0 .

Throughout this section we use near ∂M special local coordinates x = (x1, x2) in
which ∂M = {x1 = 0} . Such a convention is contrary to the rest of the book, but
is traditional for shell theory.

Clearly, apart from (6.4.4) there are many other meaningful boundary conditions
for the shell equations (6.4.1), but we shall not discuss them for the sake of brevity.

In the special case when the surface M is flat (i.e., R−1
1 ≡ R−1

2 ≡ 0 ) the shell
becomes a plate. It is easy to see that in this case the problem (6.4.1), (6.4.4)
separates into two problems which were already considered in Sections 6.2, 6.3.

Further on we use the notation

(6.4.5) |ξ|x =
√
A−2

1 ξ21 +A−2
2 ξ22 , K(x, ξ) = |ξ|−2

x (R−1
1 A−2

2 ξ22 +R−1
2 A−2

1 ξ21) ,

where ξ = (ξ1, ξ2) ∈ T ′xM . Clearly, |ξ|x is the principal symbol of ∆M , and
K(x, ξ) is the curvature of the normal section of the surface M at the point x in
the direction ξ1dx1 + ξ2dx2 = 0 .
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2. Spectral properties of the shell operator. The shell equations (6.4.1)
are simpler than the original elasticity equations (6.3.1) because they contain only
two independent variables instead of three. On the other hand, their structure is
nontrivial in that different equations of the system (6.4.1) have different orders: the
orders are 2, 2, 4, respectively. Such systems should be treated in accordance with
the theory developed by S. Agmon, A. Douglis, and L. Nirenberg [AgmDoNir]. It
can be shown [AsLid], [GolLidTo] that the problem (6.4.1), (6.4.4) is indeed elliptic
in the Agmon–Douglis–Nirenberg sense and generates a self-adjoint operator the
spectrum of which is discrete and accumulates to +∞ . By N(h, λ) we shall denote
the counting function, that is, the number of eigenvalues of (6.4.1), (6.4.4) below
a given λ . Here we wrote h as a variable to remind of the dependence of the
operators (6.4.2) on the small parameter h .

We intend to fix a λ > 0 and study the asymptotic behaviour of the function
N(h, λ) as h→ 0 . Let us stress that fixing h and letting λ tend to infinity would
not make mechanical sense: one would get asymptotic formulae which start working
for λ � h−2 , and this corresponds to frequencies at which one can no longer use
the shell equations (6.4.1) and should switch to three-dimensional elasticity (6.3.1).

In studying the problem (6.4.1), (6.4.4) the first impulse is to put h = 0 . This
leads to the so-called membrane problem

(6.4.6)
3∑
j=1

`ijuj = λui , i = 1, 2, 3 ,

(6.4.7) u1|∂M = u2|∂M = 0

(note that the number of boundary conditions is different compared with (6.4.4)).
The spectral problem (6.4.6), (6.4.7) is associated with a self-adjoint operator which
can be viewed as the limit of the operator associated with (6.4.1), (6.4.4). Namely,
let us denote by Eλ(h) and Eλ the spectral projections of (6.4.1), (6.4.4) and
(6.4.6), (6.4.7), respectively, and let g = (g1(x), g2(x), g3(x)) be an arbitrary
vector-function from L2(M) . Then, as shown in [AsLid], if λ ∈ R is not an
eigenvalue of (6.4.6), (6.4.7) we have lim

h→0
‖(Eλ(h) − Eλ)g‖L2(M) = 0 ; see also

[S.-PaVa].
Despite the convergence of spectral projections the spectra of (6.4.1), (6.4.4)

and (6.4.6), (6.4.7) are completely different. In particular, the membrane problem
(6.4.6), (6.4.7) always has an essential spectrum. This essential spectrum is a union
of two sets: the interval [

min
T ′M

K2(x, ξ) , max
T ′M

K2(x, ξ)
]

which is the set of λ at which the ellipticity of
(
`pq
)3
i,j=1

is violated, and the
set of λ at which the Shapiro–Lopatinskii condition is violated (this set can also
be described explicitly, see [AsLid], [GolLidTo]). Here the ellipticity of `ij and
the Shapiro–Lopatinskii condition are understood in the Agmon–Douglis–Nirenberg
sense.
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3. Spectral asymptotics for the shell operator. Let us fix some λmax > 0 .
Then uniformly over λ ∈ [0, λmax] we have

(6.4.8) N(h, λ) = a(λ)h−1 + O(h−9/10) , h→ 0 ,

where

(6.4.9) a(λ) = κ2

∫
ξ4+K2(x,ξ)<λ

dx d̄ξ

and κ = (12(1−σ2))1/4 . The asymptotics N(h, λ) ∼ a(λ)h−1 with a(λ) given by
(6.4.9) was initially conjectured by A.L. Gol’denveizer in 1970. The mathematical
proof of (6.4.8), (6.4.9) based on a version of Courant’s Dirichlet–Neumann brack-
eting technique is due to A.G. Aslanyan and V.B. Lidskii [AsLid]. Their work was
followed by publications by other mathematicians who applied different methods
and obtained improved remainder estimates under various assumptions on the level
surfaces of K2(x, ξ) = λ .

The following result is from [Va9]. Let us fix a λ > 0 such that this λ is not
in the essential spectrum of the membrane problem (6.4.6), (6.4.7) and satisfies
λ > maxK2(x, ξ) . Then we have

(6.4.10) N(h, λ) = a(λ)h−1 + O(h−1/2) , h→ 0 ,

If, in addition, the billiard system generated by the Hamiltonian

(6.4.11) H(λ;x, ξ) =
(A−2

1 ξ21 +A−2
2 ξ22)1/2

(λ−K2(x, ξ))1/4

satisfies the nonblocking and nonperiodicity conditions, then

(6.4.12) N(h, λ) = a(λ)h−1 + b(λ)h−1/2 + o(h−1/2) , h→ 0 .

For a clamped edge (6.4.4) the coefficient b(λ) is defined as follows. Assume for
simplicity that ∂M coincides with the curvature lines, so R−1

1 (x2) ≡ R−1
1 (0, x2) is

the curvature of M in the cross section normal to ∂M and R−1
2 (x2) ≡ R−1

2 (0, x2)
is that in the cross section normal to M and tangent to ∂M . Assume also that
on ∂M we have R−1

1 R−1
2 ≥ 0 and |R−1

2 | > |R−1
1 | . Then

b(λ) = − κ
4π

∫
∂M

(λ−R−2
1 (x2))1/4 +

4
π

(λ−R−2
1 (x2))

1/4∫
0

Arg ∆(λ;x2, ξ2) dξ2

 dx2 ,

where 0 ≤ Arg < 2π ,

∆ =
i det

(
apq
)4
p,q=1

(ζ3 − ζ2)(ζ4 − ζ3)(ζ2 − ζ4)
,

ζq, q = 1, 2, 3, 4, are the roots of the algebraic equation

(ζ2 + ξ22)4 + (R−1
2 ζ2 +R−1

1 ξ22)2 = λ(ζ2 + ξ22)2

specified by the conditions Im ζ1 = 0 , Re ζ1 > 0 , and Im ζq > 0 , q = 2, 3, 4, and
the apq , p, q = 1, 2, 3, 4, are defined as(

a1q

a2q

)
=

 ζ2q
1−σ2 + ξ22

2(1+σ)
iζqξ2

2(1−σ)

− iζqξ2
2(1−σ)

ζ2q
2(1+σ) + ξ22

1−σ2

−1

·

(
− i(R−1

1 +σR−1
2 )ζq

1−σ2

− (R−1
2 +σR−1

1 )ξ2
1−σ2

)
,

a3q = 1, a4q = iζq, q = 1, 2, 3, 4.
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4. Sketch of proof. One can not obtain the sharp one-term asymptotic formula
(6.4.10) or the two-term asymptotic formula (6.4.12) by applying the wave equation
method directly to the problem (6.4.1), (6.4.4). The proof is based on the following
ideas.

Let us denote the value of λ at which we are proving (6.4.12) by λfix .
First, one may assume without loss of generality that the eigenvalues of the

operator
(
`pq
)2
i,j=1

(upper left block of our full shell operator
(
Lpq
)3
i,j=1

) subject to
the boundary conditions (6.4.7) are greater than λfix . Moreover, one may assume
that our λfix is not an eigenvalue of the membrane problem (6.4.6), (6.4.7). Both
these conditions can be satisfied by a finite rank perturbation independent of h ,
which may change the counting function only by O(1) .

Second, let us “freeze” the spectral parameter λ in the first two equations (6.4.1),
that is, set in the first two equations λ = λfix and view these two equations with
the boundary conditions (6.4.7) as a differential constraint which determines the
vector-function (u1, u2) given a function u3 . Then we have the “real” spectral
parameter λ (which is allowed to vary) only in the third equation (6.4.1). Denote
the counting function of this new problem by N(h, λfix, λ) . It can be shown by
variational arguments that N(h, λfix) = N(h, λfix, λfix) .

Third, resolving the first two equations (6.4.1) with respect to (u1, u2) and
substituting the result into the third equation we arrive at a scalar spectral problem

(6.4.13)
h2

12
n33u3 + Vλfix

u3 = λu3 ,

(6.4.14) u3|∂M = ∂u3/∂x1|∂M = 0 .

Here Vλfix
is a bounded scalar operator in L2(M) . This operator is, in fact,

a pseudodifferential operator of order 0 with principal symbol K2(x, ξ) , and the
subprincipal symbol of (A1A2)1/2 Vλfix

(A1A2)−1/2 is zero.
Fourth, let us fix the remaining spectral parameter λ in (6.4.13) and declare

ν = 12h−2 to be the new spectral parameter. In other words, consider the spectral
problem

(6.4.15) Au3 = νBλfix
u3 ,

(A = n33 , Bλfix
= λfixI − Vλfix

) subject to the boundary conditions (6.4.14).
Denote by N+(λfix, ν) the number of positive eigenvalues of (6.4.15), (6.4.14) less
than a given ν . Here we had to stress the word “positive” because the operator
Bλfix

is not necessarily semibounded from below. It can be shown by variational
arguments that N(h, λfix, λfix) = N+(λfix, 12h−2) .

Thus, we have reduced the original spectral problem (6.4.1), (6.4.4) to the spec-
tral problem (6.4.15), (6.4.14). The latter is a scalar problem without a small
parameter, and we should be looking for asymptotic formulae for N+(λfix, ν) as
ν → +∞ . The only difference between (1.1.1′), (1.1.2) and (6.4.15), (6.4.14) is
that in the latter problem we have a pseudodifferential weight Bλfix

.
The problem (6.4.15), (6.4.14) can be handled along the same lines as in Chapters

2–5. In particular, in the interior zone one should construct the wave group by
dealing with the “wave” operator D4

tBλfix
−A(x,Dx) .
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Note that Bλfix
is an operator of the Boutet de Monvel type [BdM] and dealing

with such an operator directly is inconvenient. This hitch can be overcome if in the
process of technical realization of our standard scheme (Chapters 2-5) applied to
(6.4.15), (6.4.14) one reintroduces the first two differential equations (6.4.1) (with
λ = λfix ) and writes Bλfix

u3 in terms of (u1, u2, u3) . In this way one has to deal
only with differential operators.

More details can be found in [Va8], [Va9].

5. Discussion. Let us consider two examples. The first example is a cylindrical
shell of radius 1, length 2 and thickness h=0.004. The second is a truncated conical
shell with meridian r = z , 1√

2
≤ z ≤

√
2 (here we use cylindrical coordinates, cf.

Example 1.3.9) and thickness h=0.01. In both cases σ = 0.3 and the edges are
clamped. Figures 19 and 20 show numerical results for these two examples.

Figure 19. Eigenvalue distribution for a cylindrical shell.

Figure 20. Eigenvalue distribution for a truncated conical shell.

Each plot contains three lines: the stepwise line is the actual counting function
N(h, λ) , and the two smooth lines are the graphs of the functions a(λ)h−1 (line
1) and a(λ)h−1 + b(λ)h−1/2 (line 2). The actual N(h, λ) was plotted using the
author’s own numerical results (Fig. 19) and numerical results from [AsLid, p.
149] (Fig. 20). As usual, the two-term asymptotic formula shows itself to be very
effective.

Let us comment on whether the use of the two-term asymptotic formula is justi-
fied in these two examples (see precise conditions in subsection 3). As in both these
examples M is a surface of revolution it is not too difficult to analyse the billiard
trajectories and establish that we have nonblocking and nonperiodicity. However,
we are also supposed to check that λ is not in the essential spectrum of the mem-
brane problem (6.4.6), (6.4.7) and satisfies λ > maxK2(x, ξ) . In both examples
maxK2(x, ξ) = 1 and the essential spectrum of the membrane problem (6.4.6),
(6.4.7) is the union of the interval [0, 1] and the point 1.0012 (the latter is the
value of λ at which the Shapiro–Lopatinskii condition for (6.4.6), (6.4.7) fails).
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This means that the whole graph on Fig. 19 and two thirds of the graph on Fig. 20
lie in the zone where we are not supposed to use (6.4.12). One can only conclude
that our conditions on λ are probably too restrictive, and that it may be possible
to give a mathematical proof of (6.4.12) for λ lying on the essential spectrum of
the membrane problem, as long as the level surfaces K2(x, ξ) = λ are not too bad.

Shell theory is interesting in that it provides natural examples of periodic Hamil-
tonian and billiard flows. Indeed, shells in the form of a full sphere or a sufficiently
large spherical cap provide such examples because by formula (6.4.11) our Hamil-
tonian trajectories in this case are geodesics and we have already looked at this
situation, see discussion after Lemma 1.3.19. Thus, for a full spherical shell or
spherical cap which is greater than or equal to a hemisphere one expects to observe
clusters of eigenvalues. Numerical results of F.I. Niordson [Nio] show that this is
exactly the case.

In the case of a hemispherical shell of radius R it is interesting to compare
the numerical results [Nio] with the asymptotic formula from Example 1.7.13. The
problems considered in [Nio] and in Example 1.7.13 are different, but if one replaces
in (6.4.13) the pseudodifferential operator Vλfix

by the operator of multiplication
by R−2 (its principal symbol) then the differential equations coincide up to a
renormalization of the spectral parameter. Elementary calculations show that the
asymptotic formula from Example 1.7.13 correctly predicts the wide gaps and the
very sharp clusters in the spectrum of the hemispherical shell. The positions of these
clusters are, however, slightly shifted as compared with the positions predicted in
Example 1.7.13. This shift is explained by two factors:

(1) the boundary of the hemisphere in [Nio] is assumed to be free, not clamped
as in Example 1.7.13;

(2) Vλfix
is not exactly the operator of multiplication by a constant.

Finally, let us elaborate on the analogy between shell equations and the Schrödin-
ger equation. This analogy becomes evident if one reduces shell equations to the
scalar problem (6.4.13), (6.4.14). Both (6.4.13), (6.4.14) and the spectral problem
for the Schrödinger operator have a small parameter at the higher derivative and
both have a potential V . The differences between the two problems are:

(1) the potential in (6.4.13) is pseudodifferential;
(2) the equation (6.4.13) is a fourth order one;
(3) shells are usually compact and require boundary conditions, whereas in the

Schrödinger case the problem is normally stated in Rn .

The first difference is probably the most crucial one. The fact that the potential is
pseudodifferential leads to an astonishing variety of absolutely different situations,
which can be realized by choosing curvatures of different signs, different absolute
values, and with different dependence on x . Many of these situations are analysed
in [AsLid], [GolLidTo].

6.5. Hydroelasticity

In this section we examine free vibrations of a closed ( ∂M = ∅ ) shell filled with
an ideal compressible fluid.

The surface M divides R3 into two parts: a bounded domain Gi (interior of the
shell) and an unbounded domain Ge (interior of the shell). The spectral problem
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being considered is

3∑
j=1

Lijuj = λui , i = 1, 2 ,(6.5.1)

3∑
j=1

L3juj = λu3 +
ρfλ

ρsh
ψ|M ,(6.5.2)

−
c2f
c2s

∆ψ = λψ in Gi ,(6.5.3)

(6.5.4)
∂ψ

∂n

∣∣∣∣
M

= u3 .

Here
(1) Lij , uj , λ , ρs , E , σ and h are as in the previous section;
(2) ψ = ψ(y) is the potential of displacements of the fluid, i.e., gradψ is the

vector-function of fluid displacements;
(3) y = (y1, y2, y3) are Cartesian coordinates in R3 ;
(4) ∆ = ∂2/∂y2

1 + ∂2/∂y2
2 + ∂2/∂y2

3 ;
(5) ρf and cf are the fluid density and the speed of sound in the fluid, respec-

tively;
(6) cs :=

√
E/ρs (characteristic speed of sound in the shell material);

(7) ∂/∂n is the derivative along the exterior normal to M .

The term ρfλ
ρsh

ψ|M in (6.5.2) describes the dynamical pressure of the fluid acting
on the shell, and (6.5.4) is the so-called non-penetration condition (the fluid can
not go through the shell).

The first difficulty with (6.5.1)–(6.5.4) is that this system contains an “extra”
occurrence of the spectral parameter λ , that is, the one in the term ρfλ

ρsh
ψ|M . So

it is not a priori clear whether (6.5.1)–(6.5.4) is a spectral problem for a self-adjoint
operator in some Hilbert space. In order to overcome this difficulty let us rewrite
(6.5.2) in equivalent form

(6.5.2′)
3∑
j=1

L3juj +
ρfc

2
f

ρsc2sh
(∆ψ)|M = λu3

(here we used (6.5.3)). The system (6.5.1), (6.5.2′), (6.5.3) can be written as

(6.5.5) Af = λf ,

where A is the 4× 4 matrix operator

A =


L11 L12 L13 0
L21 L22 L23 0
L31 L32 L33

ρf c
2
f

ρsc2sh
(∆( · ))|M

0 0 0 − c2f
c2s

∆
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acting on quadruples f =
(
u1(x1, x2), u2(x1, x2), u3(x1, x2), ψ(y1, y2, y3)

)
. It is

easy to see that on quadruples satisfying the non-penetration condition (6.5.4) the
spectral problem (6.5.5) is formally self-adjoint and nonnegative with respect to the
inner product

(6.5.6)
∫∫

M

(u1v1 + u2v2 + u3v3) dS +
ρf
ρsh

∫∫∫
Gi

gradψ · gradϕdV

(cf. (6.4.3)), dV = dy1dy2dy3 . It can be shown [AsLidVa] that the problem (6.5.5),
(6.5.4) generates a self-adjoint operator in the Hilbert space with inner product
(6.5.6), and that the spectrum of this operator is discrete and accumulates to +∞ .
By N(h, λ) we shall denote the counting function, that is, the number of eigenvalues
of (6.5.1)–(6.5.4) below a given λ .

The following result is from [AsLidVa], [Va2]. Let is fix some 0 < λmin ≤ λmax .
Then uniformly over λ ∈ [λmin, λmax] we have

(6.5.7) N(h, λ) = a(λ)h−6/5 + b(λ)h−4/5 + O(h−3/5) , h→ 0

(cf. (6.4.10). If, in addition, the geodesic flow on M satisfies the nonperiodicity
condition, then uniformly over λ ∈ [λmin, λmax]

(6.5.8) N(h, λ) = a(λ)h−6/5 + b(λ)h−4/5 + c(λ)h−3/5 + o(h−3/5) , h→ 0

(cf. (6.4.12)). Here

a(λ) =
S

4π

(
12(1− σ2)ρfλ

ρs

)2/5

,

b(λ) =
6(1− σ2)3/5

5π

(
12ρfλ
ρs

)−2/5
(

2π + λS − 3
2

∫∫
M

(
R−1

1 +R−1
2

2

)2

dS

)
,

c(λ) =
1

20π

(
12(1− σ2)ρfλ

ρs

)1/5 ∫∫
M

R−1
1 +R−1

2

2
dS ,

with S being the surface area of M .
The proof of the asymptotic formulae (6.5.7), (6.5.8) is based on the reduction of

the original spectral problem (6.5.1)–(6.5.4) to the scalar pseudodifferential spectral
problem

(6.5.9)
h2

12
n33u3 + Vλfix

u3 = λu3 +
ρfλfix
ρsh

Fλfix
u3

on M (cf. (6.4.13)), where Fλfix
: ∂ψ/∂n|M → ψ|M is the Neumann–Dirichlet

operator for the Helmholtz equation (6.5.3). The latter is a pseudodifferential
operator of order -1 with principal symbol |ξ|−1

x , and the subprincipal symbol
of (A1A2)1/2 Fλfix

(A1A2)−1/2 is |ξ|−2
x K(x, ξ)/2 (see (6.4.5) for notation). The

equation (6.5.9) is simpler than (6.4.13) because now the manifold has no boundary,
but at the same time it is more complicated because the small parameter h comes
into the equation twice and there is no obvious way of excluding it. Note that the
main (according to their contribution to N(h, λ) ) terms in (6.5.9) are h2

12n33u3
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and ρfλfix

ρsh
Fλfix

u3 , so we are dealing with the unusual situation when the lower
order term can not be disregarded. This happens because this lower order term
contains a negative power of the small parameter h .

A special method for dealing with pseudodifferential operators with parameters
was developed in [Va1], [Va5]. The application of this general result to (6.5.9) gives
(6.5.7), (6.5.8). See [AsLidVa], [Va2] for more details.

It may seem strange that we are able to obtain up to three asymptotic terms for
N(h, λ) . The explanation is that the small parameter h comes into our problem in
a complicated way, and the term b(λ)h−4/5 should really be viewed as a correction
to the first asymptotic term. The second term proper is c(λ)h−3/5 . Its appearance
is caused by the fact that that the Neumann–Dirichlet operator has a nontrivial
subprincipal symbol.

Suppose now that the fluid is not inside, but outside the shell. In other words,
suppose that (6.5.2), (6.5.3) have been replaced by

3∑
j=1

L3juj = λu3 −
ρfλ

ρsh
ψ|M ,(6.5.10)

−
c2f
c2s

∆ψ = λψ in Ge .(6.5.11)

In this case one can also associate a self-adjoint operator with the system (6.5.1),
(6.5.10), (6.5.11), (6.5.4), and the spectrum of this self-adjoint operator is R+

(consequence of the unboundedness of Ge ). The fact that the spectrum of the
exterior problem fills the nonnegative half-line (or, in terms of frequency ω , the
whole real line) is not very informative from the mechanical point of view. This
inconvenience can be overcome by modifying our choice of function spaces and
extending the resolvent by analyticity through the (continuous) spectrum onto the
whole complex ω-plane, see [LtinVa3] and [S.-HuS.-Pa., Chap. 9]. The extended
resolvent is meromorphic as a function of ω with poles at some complex ωk which
are called resonances. It turns out that a massive group of resonances lies close
(in terms of the small parameter h ) to the real line, and the real parts of the
corresponding λk are distributed in accordance with (6.5.7), (6.5.8). The only
difference is that in the case of the exterior problem the coefficient c(λ) changes
sign (this happens because the fluid is on the other side of the shell).

A detailed mathematical analysis of both the interior and exterior problems was
carried out in [Va2], [Va8]. See also the review paper [LtinVa3].

Remark 6.5.1. Apart from the relative thickness h/R the hydroelasticity prob-
lem contains two other dimensionless parameters, namely, ρf/ρs and cf/cs . In the
derivation of (6.5.7), (6.5.8) we assumed these two parameters to be fixed. In me-
chanical terms this means that we assumed these parameters to be of the order of 1.
However, in reality this is not exactly the case. Say, for the pair water–Duralumin
we have ρf/ρs ≈ 0.357 and cf/cs ≈ 0.288 , and for water–steel ρf/ρs ≈ 0.127 and
cf/cs ≈ 0.286 . The influence of these two additional parameters is such that they
make the asymptotic convergence in (6.5.7), (6.5.8) not as good as one would have
hoped. Basically, this implies that formula (6.5.8) is sufficiently accurate only in a
relatively narrow frequency range. Things can be improved if one rewrites (6.5.8)
in the form

(6.5.12) N(h, λ) =
∫
dx d̄ξ + o(h−3/5) , h→ 0 ,
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where integration is carried out over all (x, ξ) ∈ T ′M such that

(6.5.13)
h2|ξ|4x

12(1− σ2)
+K2(x, ξ) < λ+

ρfλ

ρsh|ξ|x

(
1± K(x, ξ)

2|ξ|x

)
,

with sign “plus” for the interior problem and “minus” for exterior; note that (6.5.13)
is obtained from (6.5.9) if one replaces equality by inequality and operators by their
principal and subprincipal symbols. From the purely mathematical point of view
(6.5.12), (6.5.13) is equivalent to (6.5.8). However, in reality (6.5.12), (6.5.13) works
in a much wider frequency range because we have avoided additional errors caused
by resolving (6.5.13) in powers of h .


