
CHAPTER I

MAIN RESULTS

1.1. Statement of the spectral problem

The principal objective of this book is the study of the spectral problem

(1.1.1) Av = λ2mv ,

(1.1.2)
(
B(j)v

)∣∣∣
∂M

= 0 , j = 1, 2, . . . ,m,

where λ > 0 is the spectral parameter and A is a positive definite self-adjoint
elliptic linear differential operator of order 2m (m ∈ N ) acting on a compact
n-dimensional (n ≥ 2 ) manifold M with boundary ∂M or without boundary
( ∂M = ∅ ). The B(j) are “boundary” linear differential operators describing
boundary conditions in the case ∂M 6= ∅ .

In this section we discuss the problem (1.1.1), (1.1.2) and introduce basic nota-
tion.

1. Spectral parameter. First of all we must explain the appearance of the
2m th power in the right-hand side of (1.1.1). It seems more natural to write

(1.1.1′) Av = νv

with ν as spectral parameter, but this leads to fractional powers of ν in the result-
ing spectral asymptotics. So for the sake of convenience from the very beginning
we have made a change of spectral parameter

(1.1.3) ν = λ2m .

There is a discrete set of λ = λk , 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . λk ≤ . . . , λk → ∞ ,
called eigenvalues, for which the problem (1.1.1), (1.1.2) has nontrivial solutions
v . The number of linearly independent solutions v corresponding to a given λk is
called the multiplicity of λk . We always enumerate our eigenvalues taking account
of their multiplicities.

2. Coordinates. The compact manifold M and its (n−1)-dimensional bound-
ary ∂M are assumed to be infinitely smooth. Without loss of generality M is
assumed to be connected (otherwise the problem (1.1.1), (1.1.2) decomposes into
separate subproblems). By

◦
M := M \ ∂M we denote the interior of M .
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2 I. MAIN RESULTS

By T ∗M , T ∗
◦
M , T ∗∂M we denote the respective cotangent bundles, and by

T ′M , T ′
◦
M , T ′∂M the cotangent bundles T ∗M , T ∗

◦
M , T ∗∂M with the zero

section ( ξ = 0 or ξ′ = 0 , see below) excluded.
Local coordinates (and points) on M , ∂M are denoted by x = (x1, x2, . . . , xn) ,

x′ = (x1, x2, . . . , xn−1) respectively, their dual coordinates on the fibres T ∗xM ,
T ∗x∂M by ξ = (ξ1, ξ2, . . . , ξn) , ξ′ = (ξ1, ξ2, . . . , ξn−1) . Thus, (x, ξ) , (x′, ξ′) are
local coordinates on (or points of) the cotangent bundles T ∗M , T ∗∂M .

Near ∂M we always use special local coordinates x = (x′, xn) such that ∂M =
{xn = 0} , and xn > 0 for points in

◦
M ; consequently ξ = (ξ′, ξn) . We call x′ the

boundary coordinates (because when xn = 0 the x′ are indeed local coordinates
on ∂M ), ξ′ the coboundary coordinates, xn the “normal” coordinate, and ξn the
conormal coordinate (note that the covector ξ = (0, ξn) is conormal to ∂M ).

Moreover, near ∂M we use only coordinates for which xn is the same on the
intersection of different coordinate patches. We fix once and for all the choice of
the coordinate xn near ∂M . One of the possible ways of defining invariantly such
a coordinate xn is with the help of Hamiltonian trajectories introduced in Section
1.3 : trajectories originating from points (y, η) with y ∈ ∂M , η′ = 0 , can be used
for this purpose, with the value of xn being the time it takes for a trajectory to
reach the point x ∈ M . Here y′ ∈ ∂M has to be chosen in such a way that the
ray goes through x ; this condition defines y′ uniquely for x sufficiently close to
∂M and sufficiently small t .

In spectral problems of the type (1.1.1), (1.1.2) arising from mechanical appli-
cations there is always an obvious choice of the coordinate xn near ∂M , which is
invariant and convenient. Indeed, such problems are always associated with some
natural Riemannian metric, not necessarily directly related to the differential op-
erator A . This metric is either the Euclidean Rn-metric (when M ⊂ Rn ), or an
n-dimensional Riemannian metric generated by the Euclidean metric of the embed-
ding (n + 1)-dimensional space (when M is an n-dimensional surface in Rn+1 ).
Then the standard definition of the “normal” coordinate is xn := dist(x , ∂M) ,
where dist( · , · ) is the geodesic distance.

If the Hamiltonian is associated with the given Riemannian metric (see formula
(1.1.14) and Example 1.2.4 below) then the two definitions of the coordinate xn

given in the two previous paragraphs coincide.

Throughout the book we shall often speak of open sets in
◦
M and in M (in fact

we have already used the notion of an open set in M describing local coordinates in
a neighbourhood of ∂M ). This needs some explanation as the notions of an open set
in

◦
M and in M are different. Local coordinates establish a local diffeomorphism

between points of
◦
M , M and of Rn, Rn

+ respectively. Consequently, the Euclidean
notion of convergence in Rn, Rn

+ (considered as metric spaces) generates the notion

of convergence in
◦
M , M with the subsequent standard definition of an open set.

Note that under this definition a set which is open in M may contain points from
∂M .

An important example of an open set in M is the set Mδ := {x ∈M : xn < δ} ,
with δ > 0 sufficiently small. The set Mδ is called the tubular neighbourhood of
∂M . This name is due to the fact that Mδ is diffeomorphic to the cylinder ∂M ×
[0, δ) . Note, however, that we do not fix this diffeomorphism, because near ∂M we
allow changes of coordinates of the type x̃′ = x̃′(x) , x̃n = xn , and consequently
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x̃′ depends in the general case on xn .
Sometimes it will be technically convenient for us to go outside the original mani-

fold M . So by M̂ we shall denote some compact manifold without boundary which
is a smooth extension of M , i.e., M ⊂ M̂ ; the existence of such an extension is
established by a standard doubling argument (make two copies of M and smoothly
connect their boundaries by cylinders). By Â we shall denote a differential oper-
ator on M̂ which is a smooth extension of A . We shall always assume that Â is
chosen in such a way that it is elliptic and self-adjoint. The coordinates related to
M̂ will also be marked by a “wide hat”.

Running out of symbols we shall use later on (y, η) instead of (x, ξ) as coordi-
nates on T ∗M , and (y′, η′) instead of (x′, ξ′) as coordinates on T ∗∂M .

3. Symbols of differential operators. Throughout the book A and B(j) are
linear differential operators of orders 2m and mj respectively (m ≥ 1 , mj ≥ 0
are integers) the coefficients of which are complex-valued infinitely differentiable
functions of x , x′ . (The set of orders mj may be different on different connected
components of ∂M .) By A2m(x, ξ) , B(j)

mj (x′, ξ) we denote the principal symbols
of the operators A , (B(j) · )

∣∣
∂M

, i.e., homogeneous polynomials in ξ of degrees
2m , mj obtained by leaving only the leading (of orders 2m , mj ) derivatives in
A , (B(j) · )

∣∣
∂M

, and replacing each Dxk
= −i∂/∂xk by ξk , k = 1, 2, . . . , n .

It is well known that under changes of coordinates x the principal symbol
A2m(x, ξ) behaves as a function on T ′M . This means that in new coordinates
x̃ it takes the form

Ã2m(x̃, ξ̃) = A2m

(
x(x̃) ,

n∑
k=1

ξ̃k
∂x̃k

∂x

∣∣∣∣
x=x(x̃)

)
.

Analogously, the principal symbols B(j)
mj (x′, ξ) behave as functions on T ′M |∂M :

B̃(j)
mj

(x̃′, ξ̃) = B(j)
mj

(
x′(x̃′, 0) ,

n∑
k=1

ξ̃k
∂x̃k

∂x

∣∣∣∣
x=(x′(x̃′,0),0)

)
.

Recall that near ∂M the coordinate xn is assumed to be fixed once and for all
(see subsection 2 above), so ∂x̃n/∂xn ≡ 1 .

Later on we will have to deal with the subprincipal symbol Asub (x, ξ) of the
operator A , which is also a function on T ′M . The subprincipal symbol is a
polynomial in ξ of degree 2m− 1 , and it plays the role of the “second” symbol of
A . The rigorous definition of Asub (x, ξ) will be given in subsection 2.1.3.

4. Ellipticity. The problem (1.1.1), (1.1.2) is assumed to be regular elliptic
[LioMag, Chap. 2, Sect. 1.4], [RoShSo, Sect. 2.4]. This means that the following
four conditions are fulfilled.

Condition 1.1.1. The operator A is elliptic, i.e.

(1.1.4) A2m(x, ξ) 6= 0 , ∀(x, ξ) ∈ T ′M .
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Condition 1.1.2. The orders of the operators B(j) are different and lower than
the order of the operator A , i.e.

(1.1.5) 0 ≤ m1 < m2 < . . . < mm ≤ 2m− 1 .

Condition 1.1.3. The operators B(j) can be resolved with respect to their
leading conormal derivatives, i.e.

(1.1.6) B(j)
mj

(x′, 0, ξn) 6= 0 , j = 1, 2, . . . ,m , ∀x′ ∈ ∂M , ∀ξn 6= 0 .

Condition 1.1.4 (the Shapiro–Lopatinskii condition). For all (x′, ξ′) ∈
T ′∂M the equation A2m(x′, 0, ξ′, ξn) = 0 has exactly m ξn-roots with Im ξn > 0
(for n ≥ 3 this automatically follows from Condition 1.1.1) and ν = 0 is not
an eigenvalue (see Definition 1.1.5 below) of the auxiliary one-dimensional spectral
problem

(1.1.7) A2m(x′, 0, ξ′, Dxn
)v = νv ,

(1.1.8)
(
B(j)

mj
(x′, ξ′, Dxn

)v
)∣∣∣

xn=0
= 0 , j = 1, 2, . . . ,m,

on the half-line xn ∈ R+ = [0,+∞) .

Note that (1.1.7) is an ordinary differential equation with constant coefficients
and (x′, ξ′) comes into the spectral problem (1.1.7), (1.1.8) simply as a parameter.

Definition 1.1.5. We call the number ν an eigenvalue of the problem (1.1.7),
(1.1.8) if for this value of ν it has a solution v(xn) 6≡ 0 which vanishes as xn →
+∞ .

5. Self-adjointness. The problem (1.1.1), (1.1.2) is assumed to be formally
self-adjoint with respect to some inner product (· , ·) . Formal self-adjointness means
that (Av,w) = (v,Aw) for any v, w ∈ C∞(M) satisfying the boundary conditions
(1.1.2).

Usually it is assumed that v , w are functions and the inner product is defined
by the formula

(1.1.9) (v, w) =
∫
M

v(x)w(x)µ(x) dx

where µ ∈ C∞(M) is some positive density. We say that v is a function if it does
not depend on the choice of local coordinates, i.e., v(x) = ṽ(x̃(x)) where x̃ = x̃(x)
are new local coordinates and ṽ is the representation of v in the coordinates x̃ .
We say that µ is a density if µ(x) = J(x)µ̃(x̃(x)) where µ̃ is the representation of
µ in the coordinates x̃ and J = |det ∂x̃/∂x| . It is easy to see that the integrand
in (1.1.9) is independent of the choice of local coordinates and so the inner product
is well defined.

However, under such an approach the definition of the inner product and, conse-
quently, the notion of self-adjointness depend on the choice of the density µ . This
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is somewhat inconvenient because it subsequently leads to a parasitic dependence
of some quantities on µ (see, for example, the definition of the subprincipal symbol
in subsection 2.1.3). The following technical device allows us to avoid these incon-
veniences. Instead of functions and operators acting in spaces of functions one can
consider half-densities and operators acting in spaces of half-densities.

We say that v is a half-density if v(x) = J1/2(x)ṽ(x̃(x)) where ṽ is the repre-
sentation of v in the coordinates x̃ . For half-densities the inner product is defined
by the formula

(1.1.10) (v, w) =
∫
M

v(x)w(x) dx

(cf. (1.1.9)). Thus, the Hilbert space L2(M) and, consequently, the concept of
self-adjointness are invariantly defined for half-densities without any auxiliary con-
structions.

The elementary substitution v → µ1/2v , A → µ1/2Aµ−1/2 , B(j) → B(j)µ−1/2

transforms the spectral problem (1.1.1), (1.1.2) in functions into a spectral problem
in half-densities. So, without loss of generality, we shall assume from now on that
v , w are half-densities, A acts in the space of half-densities, (B(j) · )

∣∣
∂M

are
operators acting on half-densities, and the problem (1.1.1), (1.1.2) is formally self-
adjoint with respect to the inner product (1.1.10).

Let v be a half-density on M . According to our convention Av is also a half-
density on M . A separate question is an invariant interpretation of the expressions
(B(j)v)

∣∣
∂M

. An invariant interpretation of the expressions (B(j)v)
∣∣
∂M

is not really
essential for the formulation of the eigenvalue problem (1.1.1), (1.1.2) because the
boundary conditions are homogeneous. It is sufficient to have the boundary condi-
tions (1.1.2) written in local coordinates on a finite number of coordinate patches,
with them being equivalent on the intersections of different patches. (Here equiv-
alence means that on intersections of coordinate patches the conditions (1.1.2) in
different coordinates define the same linear relationships between

(
∂kv/∂xk

n

)∣∣
xn=0

,
k = 0, 1, 2, . . . , 2m− 1, subject to the standard rules of transformation of the half-
density v and of its partial derivatives under changes of coordinates.)

However, at some stage (in the course of the effective construction of oscillatory
integrals related to our eigenvalue problem) we will be forced to consider various
half-densities on M which, taken separately, do not necessarily satisfy the bound-
ary conditions (1.1.2). So it is convenient to assign an invariant meaning to the
expressions (B(j)v)

∣∣
∂M

. Further on we shall assume that they are half-densities on
∂M . This can always be achieved by an adequate renormalization of the operators
B(j) in some local coordinates, with subsequent transformation of these operators
under changes of coordinates x′ in the appropriate way. The identity operator is
an example of an operator B(j) satisfying the required invariance condition: the
expression v|∂M is a half-density on ∂M because our “normal” coordinate xn is
specified once and for all (see subsection 2).

In mechanical applications assigning an invariant interpretation to the expres-
sions (B(j)v)

∣∣
∂M

is usually easy because the boundary conditions have a clear
mechanical meaning: they state that some mechanical quantity (say, normal dis-
placement, angle of rotation, normal stress, flexural moment, etc.) is zero. These
quantities are either functions or densities on ∂M , so one has only to make an
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elementary substitution of the form B(j) → (µ′)±1/2B(j), where µ′(x′) is some
smooth positive density on ∂M .

The principal symbol of the formal adjoint of a differential operator is the com-
plex conjugate of the initial principal symbol. Therefore the principal symbol
A2m(x, ξ) of the formally self-adjoint operator A is real.

6. Positiveness. The problem (1.1.1), (1.1.2) is assumed to be positive definite.

Definition 1.1.6. We call the formally self-adjoint problem (1.1.1), (1.1.2)
semi-bounded from below if there exists a real constant c such that

(1.1.11) (Av, v) ≥ c (v, v)

for all half-densities v ∈ C∞(M) satisfying the boundary conditions (1.1.2). If
(1.1.11) holds with c > 0 we call the problem (1.1.1), (1.1.2) positive definite.

Though it is not always easy to check whether a spectral problem is positive
definite, one can usually check effectively whether it is semi-bounded from below
(i.e., establish a somewhat weaker property). Namely, a regular elliptic formally
self-adjoint spectral problem (1.1.1), (1.1.2) is semi-bounded from below if and only
if the following two conditions are fulfilled.

Condition 1.1.1′. The principal symbol of the operator A is positive, i.e.,

(1.1.12) A2m(x, ξ) > 0 , ∀(x, ξ) ∈ T ′M

(cf. (1.1.4)).

Condition 1.1.4′. The auxiliary one-dimensional spectral problem (1.1.7), (1.1.8)
on the half-line 0 ≤ xn < +∞ is positive definite, i.e., for all (x′, ξ′) ∈ T ′∂M it
does not have eigenvalues ν ≤ 0 .

Indeed, the necessity of Conditions 1.1.1′, 1.1.4′ follows from the fact that if at
least one of them does not hold then we can effectively construct (in the form of a lin-
ear combination of up to m oscillating or decaying exponential functions modulated
by smooth amplitudes) a sequence of half-densities wk(x) ∈ C∞(M) , k = 1, 2, . . . ,
satisfying boundary conditions (1.1.2) and such that (Awk, wk)/(wk, wk) → −∞ .
Sufficiency is proved, for example, in [AgrVi].

It is easy to see that Conditions 1.1.1, 1.1.4 follow from Conditions 1.1.1′, 1.1.4′.
This means that formulating the notion of a semi-bounded from below self-adjoint
elliptic boundary value problem we can replace Conditions 1.1.1, 1.1.4 by Conditions
1.1.1′, 1.1.4′.

Remark 1.1.7. In practice it is quite enough to establish whether the spectral
problem under consideration is semi-bounded from below. Indeed, any problem
semi-bounded from below can be turned into a positive definite one by the elemen-
tary substitution

(1.1.13) Ã = A− cI , ν̃ = ν − c = λ̃2m

(cf. (1.1.11)); here I is the identity operator. Moreover, writing the resulting
spectral asymptotics (see Sections 1.2, 1.4, 1.6, 1.7, 1.8) in terms of the spectral
parameter ν̃ → +∞ one may notice that all these asymptotics admit a formal
interchange ν̃ ↔ ν . This is due to the fact that replacing ν̃ by ν we introduce
an additional relative error of o(ν̃−1) , whereas the inherent relative error of these
asymptotics is at least o(λ̃−1) ≡ o(ν̃−1/2m) which is obviously greater than o(ν̃−1) .
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7. Statement of our problem in the framework of operator theory. Let
H2m(M) denote the Sobolev space of half-densities which belong to L2(M) to-
gether with all their partial derivatives of order ≤ 2m . Under the conditions
described above the differential operator A initially defined on

{v ∈ C∞(M) :
(
B(j)v

)∣∣∣
∂M

= 0 , j = 1, 2, . . . ,m}

is essentially self-adjoint and admits a self-adjoint closure A in L2(M) with domain
of definition

D(A) = {v ∈ H2m(M) :
(
B(j)v

)∣∣∣
∂M

= 0 , j = 1, 2, . . . ,m} .

It is well known [RoShSo, Sect. 5.1] that the operator A has a positive discrete spec-
trum 0 < ν1 ≤ ν2 ≤ . . . accumulating to +∞ (we enumerate the eigenvalues tak-
ing into account their multiplicities). The numbers λk = ν

1/2m
k , k = 1, 2, . . . (see

(1.1.1′), (1.1.3)) may be interpreted as the eigenvalues of the operator A1/(2m) . It
is also well known that the respective eigenfunctions (more precisely, half-densities)
vk are infinitely smooth on M , satisfy (1.1.1), (1.1.2) and form an orthonormal
basis in L2(M) .

Remark 1.1.8. Throughout the book we denote by A the differential expres-
sion from the left-hand side of (1.1.1), i.e., we do not normally assign A any
particular domain of definition in any particular space. However, for the sake of
simplicity we refer to A as to an operator. This should not cause confusion because
the real operator A is distinguished by different script.

Example 1.1.9. Let A be a formally self-adjoint second order differential oper-
ator (more precisely, differential expression) with A2(x, ξ) > 0 . Then the Dirichlet
and Neumann boundary value problems for A satisfy Conditions 1.1.1′, 1.1.2, 1.1.3,
1.1.4′ and generate self-adjoint operators A .

Example 1.1.10. Let A be a formally self-adjoint differential operator of order
2m with A2m(x, ξ) > 0 . Then the Dirichlet boundary value problem (B(j) =
∂j−1/∂xj−1

n , j = 1, 2, . . . ,m ) for A satisfies Conditions 1.1.1′, 1.1.2, 1.1.3, 1.1.4′

and generates a self-adjoint operator A .

8. Pseudodifferential case. For manifolds without boundary ( ∂M = ∅ )
one can also consider a somewhat more general case when A is a positive definite
self-adjoint elliptic pseudodifferential operator (see Section 2.1) of positive order
2m ; here m is an arbitrary positive real number. In this case the spectrum of the
problem (1.1.1) remains discrete, positive and accumulating to +∞ . Subsequent
asymptotic analysis differs insignificantly from the case of a differential operator;
only the reasoning from Remark 1.1.7 suffers for 2m ≤ 1 . Note that spectral
problems for pseudodifferential operators are a normal occurrence in applications,
see Sections 6.4, 6.5.

9. Mechanical interpretation. In mechanical and physical applications the
spectral problem (1.1.1) (if ∂M = ∅ ) or (1.1.1), (1.1.2) (if ∂M 6= ∅ ) usually de-
scribes free harmonic oscillations of some system (elastic body, resonator, etc.) with
ν being the frequency parameter proportional to some integer power of the natural
frequency. Self-adjointness of the spectral problem means conservation of the full
energy in the oscillating system, and positiveness means stability (i.e., absence of
movements with amplitude exponentially growing in time). Some examples arising
from applications will be considered in Chapter 6.



8 I. MAIN RESULTS

10. Canonical differential forms and measures. In order to formulate our
results we will have to deal with some invariant differential forms and measures (see
[Ar2], [Tr, vol. 2], [Hö3, vol. 3] for details).

The differential forms on T ∗M , T ∗∂M defined in local coordinates by

〈ξ, dx〉 = ξ1dx1 + ξ2dx2 + . . . + ξndxn ,

〈ξ′, dx′〉 = ξ1dx1 + ξ2dx2 + . . . + ξn−1dxn−1

respectively, are called symplectic 1-forms. One can easily check that these forms
are independent of the choice of local coordinates. Their differentials are the canon-
ical 2-forms

dξ ∧ dx = dξ1 ∧ dx1 + dξ2 ∧ dx2 + . . . + dξn ∧ dxn ,

dξ′ ∧ dx′ = dξ1 ∧ dx1 + dξ2 ∧ dx2 + . . . + dξn−1 ∧ dxn−1 .

As usual we denote

dx = dx1 dx2 . . . dxn , dξ = dξ1 dξ2 . . . dξn ,

dx′ = dx1 dx2 . . . dxn−1 , dξ′ = dξ1 dξ2 . . . dξn−1 .

Then the elements of symplectic volumes vol(·) , vol′(·) on the cotangent bundles
T ∗M , T ∗∂M are defined in local coordinates as dx dξ , dx′ dξ′ . Obviously, these
expressions are also independent of the choice of coordinates.

We shall also use the notation

d̄ξ = (2π)−n dξ, dx d̄ξ = (2π)−n dx dξ,

d̄ξ′ = (2π)1−n dξ′, dx′ d̄ξ′ = (2π)1−n dx′ dξ′ .

Throughout the book we shall extensively use the function

(1.1.14) h(x, ξ) = (A2m(x, ξ))1/(2m) > 0

which we shall call the Hamiltonian. The set

S∗M = {(x, ξ) ∈ T ′M : h(x, ξ) = 1}

is said to be the unit cosphere bundle. Having fixed x ∈M , we shall also deal with
the unit cosphere

S∗xM = {ξ ∈ T ′yM : h(x, ξ) = 1}

(the fibre of S∗M over the point x ).
There exists a natural measure measx on the unit cosphere S∗xM with element

dξ̃ defined by the equality dξ = dξ̃ dh . Note that the Euclidean measure dSx on
S∗xM is defined by dξ = dSx dρ , where ρ(ξ) is the Euclidean distance from ξ to
S∗xM , so dξ̃ = |∇ξh|−1 dSx . Equivalently, one can define dξ̃ by the condition that
for any function f(ξ) positively homogeneous in ξ of degree d > −n

(1.1.15) (n+ d)
∫

h(x,ξ)≤1

f dξ =
∫

h(x,ξ)=1

f dξ̃ .
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Clearly, for all measurable sets Ω ⊂ S∗xM and functions f defined on S∗xM , the
integrals

∫
Ω
f dξ̃ (in particular, measx Ωx =

∫
Ω
dξ̃ ) depend on the choice of the

coordinates x and behave as densities in x under change of coordinates. This
means that the measure measx takes its values in the space of densities on M .

The natural measure meas on the unit cosphere bundle S∗M is defined as
dx dξ̃ . We shall denote

d̄ξ̃ = (2π)−n dξ̃ , dx d̄ξ̃ = (2π)−n dx dξ̃ .

The element dξ̃ of the measure measx can be written in local coordinates ξ̃ on
S∗xM . In particular, on a conic subset of T ′xM on which hξn

6= 0 one can choose
as local coordinates (ξ̃, h) , where

ξ̃ =
(
ξ̃1 , ξ̃2 , . . . , ξ̃n−1

)
=
(
ξ1/h , ξ2/h , . . . , ξn−1/h

)
.

Then ξ̃ are local coordinates on S∗xM and

dξ̃ = (hξn)−1dξ̃1dξ̃2 . . . dξ̃n−1 .

1.2. One-term asymptotic formula for N(λ)

1. Statement of the result. Let us introduce the counting function N(λ)
which is defined as the number of eigenvalues λk of the problem (1.1.1), (1.1.2)
less than a given λ :

N(λ) = #{k : λk < λ} .

Our final aim is to describe the asymptotic behaviour of N(λ) as λ → +∞ . Of
course one can afterwards invert such formulae (see Remarks 1.2.2 and 1.6.2) and
obtain asymptotic formulae for λk as k → +∞ .

The following theorem gives a one-term asymptotic formula for N(λ) . Under
additional restrictions it was established in [Hö1] ( ∂M = ∅ ) and [Se1], [Se2] (m =
1 ). The final result appeared in [Va3], [Va4], [Va7].

Theorem 1.2.1.

(1.2.1) N(λ) = c0λ
n + O(λn−1) , λ→ +∞ ,

where

(1.2.2) c0 = (2π)−n vol {(x, ξ) : A2m(x, ξ) ≤ 1} =
∫

A2m≤1

dx d̄ξ .

By (1.1.15) the Weyl constant (1.2.2) can also be written as

(1.2.2′) c0 =
1

n (2π)n
measS∗M =

1
n

∫
S∗M

dy d̄η̃ .

Remark 1.2.2. Formula (1.2.1) can be written down in the equivalent form

(1.2.1′) λk = (c0)
−1/n

k1/n + O(1) , k →∞ .
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Example 1.2.3. Let M be a region in the Euclidean space Rn and A =
(−∆)m , where

∆ = ∂2/∂x2
1 + ∂2/∂x2

2 + . . . + ∂2/∂x2
n

is the Laplacian in Cartesian coordinates. In this case A2m = |ξ|2m and

(1.2.3) c0 = (2π)−nωn VolM ,

where VolM is the n-dimensional volume of M and ωn is the volume of the unit
ball in Rn . In particular, for n = 2 we have c0 = S/4π where S is the surface
area of M , and for n = 3 we have c0 = V/6π2 where V is the three-dimensional
volume of M .

Example 1.2.4 (generalization of Example 1.2.3). Let M be a Riemann-
ian manifold with metric tensor {gij} , 1 ≤ i, j ≤ n , and contravariant metric
tensor {gij} = {gij}−1. Let A = (−∆)m where

∆ = g−1/4

∑
i

∂

∂xi

∑
j

gij√g ∂

∂xj

 g−1/4

is the Laplacian on half-densities; here g := det{gij} , and
√
g is the standard Rie-

mannian density. In this case A2m(x, ξ) = |ξ|2m
x where |ξ|x =

(∑
i,j

gijξiξj

)1/2

,

and formula (1.2.3) holds with VolM =
∫
M

√
g dx.

2. Discussion of the result. Theorem 1.2.1 is remarkable in two ways. First
of all, the one-term asymptotic formula (1.2.1) does not depend on the boundary
conditions (1.1.2). This fact suggests that in practice the asymptotic formula (1.2.1)
is not very accurate and that it is natural to search for a refined two-term asymptotic
formula with the second asymptotic term describing boundary phenomena.

The second remarkable fact about Theorem 1.2.1 is that the remainder estimate
in (1.2.1) is sharp, that is, in (1.2.1) one can not replace O(λn−1) by o(λn−1) . This
will become evident after we single out the second asymptotic term in Sections 1.6,
1.7; as we shall see, the second term is of the order of λn−1 and in the general
situation is not identically zero. However, the simplest way of checking that the
remainder estimate in (1.2.1) is sharp is by analyzing the following simple example.

Example 1.2.5. Let M be a unit n-dimensional sphere,

M = Sn = {x ∈ Rn+1 : |x| = 1 } ,

and A = (−∆ + (n− 1)2/4)m , where ∆ is the Laplacian (see Example 1.2.4). In
this case the spectrum of the operator A1/2m consists of the eigenvalues

Λj = j + (n− 1)/2, j = 0, 1, 2, . . . ,

with multiplicities
(n+ j − 2)! (n+ 2j − 1)

(n− 1)! j!
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(see, e.g., [Sh, Sect. 22]). Therefore

λk = j + (n− 1)/2, k = 1, 2, . . . ,

where j = j(k) is the maximal integer satisfying the inequality

j∑
i=0

(n+ i− 2)! (n+ 2i− 1)
(n− 1)! i!

≤ k .

Elementary calculations show that

N(Λj) =
2
n!

Λn
j − n2 − 3n+ 3

(n− 1)!
Λn−1

j + O(Λn−2
j ) ,(1.2.4)

N(Λj + 0) =
2
n!

Λn
j +

n2 − 3n+ 3
(n− 1)!

Λn−1
j + O(Λn−2

j ) ,(1.2.5)

(here c0 = 2/n! ). Formulae (1.2.4), (1.2.5) demonstrate that in the general case
the order of the remainder estimate in (1.2.1) can not be decreased.

3. Pseudodifferential case. Theorem 1.2.1 remains true in the case of a pseu-
dodifferential operator acting on a manifold without boundary [Hö1], [DuiGuiHö].

1.3. Hamiltonian billiards I : basic definitions and results

Singling out the second term in the asymptotic formula for N(λ) requires the
study of some global geometric characteristics of the problem. These characteris-
tics are formulated in terms of billiard (or Hamiltonian) trajectories generated by
the principal symbol of the differential operator A . In this section we introduce
the concept of branching Hamiltonian billiards and describe their basic properties.
More detailed discussions and proofs are contained in Appendix D, and, partially,
in various sections of the main text.

The notions introduced in this section are necessary for the formulation of all
our results on two-term spectral asymptotics (Sections 1.6–1.8).

The concept of branching Hamiltonian billiards is a generalization of the clas-
sical concepts of Hamiltonian flows and geodesic billiards. Therefore we shall first
consider Hamiltonian flows (subsection 1) and geodesic billiards (subsection 2);
branching Hamiltonian billiards as such will appear in subsection 3.

1. Hamiltonian flow. Let us consider the case when M is a manifold without
boundary.

For t ∈ R we shall denote by

(1.3.1) (x∗(t; y, η), ξ∗(t; y, η))

the integral curve of the Hamiltonian vector field generated by the Hamiltonian
(1.1.14). The curve (1.3.1) lies in T ′M and (y, η) denotes its starting point, i.e.,

(1.3.2) (x∗(0; y, η), ξ∗(0; y, η)) = (y, η) ∈ T ′M .

In other words, (1.3.1) is the solution of the Hamiltonian system of equations

(1.3.3) ẋ∗ = hξ(x∗, ξ∗), ξ̇∗ = −hx(x∗, ξ∗)
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with initial condition (1.3.2) at t = 0 . Here and further on the dot stands for the
time derivative, and subscripts are used for denoting respective partial derivatives.

In our notation for Hamiltonian trajectories we shall sometimes omit (for the
sake of brevity) the variables (y, η) , leaving only the variable t ; i.e., we shall
sometimes write (x∗(t), ξ∗(t)) instead of (1.3.1).

Denote by Φt the group of shifts along the trajectories (1.3.1). This group is
called the Hamiltonian flow . The group Φt preserves the symplectic differential
1-form and, consequently, the symplectic differential 2-form and the symplectic
volume vol (see Section 2.3).

We obviously have

d

dt
h(x∗, ξ∗) = 〈hx, ẋ〉 + 〈hξ, ξ̇〉 = 0 ,

so
h(x∗(t; y, η), ξ∗(t; y, η)) = h(y, η) ,

i.e., the Hamiltonian h is preserved by the Hamiltonian flow Φt . Since the Hamil-
tonian h is positively homogeneous in ξ of degree 1, the Hamiltonian flow is also
homogeneous:

(1.3.4) (x∗(t; y, µη), ξ∗(t; y, µη)) = (x∗(t; y, η), µξ∗(t; y, η)) , ∀µ > 0 .

Therefore it is convenient to consider the restriction of the Hamiltonian flow Φt to
the unit cosphere bundle S∗M . We retain for this restriction the original notation
Φt . Since dy dη = dy dη̃ dh , the flow Φt preserves the canonical measure meas
on S∗M .

We shall call the curves x∗(t) rays (by analogy with geometric optics). Note
that ẋ∗ 6= 0 , i.e., the ray cannot stop. This fact follows from Euler’s formula
〈ξ, hξ〉 = h 6= 0 and the conservation of the Hamiltonian.

In the special case when M is a Riemannian manifold and h(x, ξ) = |ξ|x (see
Example 1.2.4) the Hamiltonian flow is called geodesic flow. In this situation the
rays x∗ are geodesics and ξ∗i =

∑
j gij(x∗) ẋ∗j .

Having defined the Hamiltonian flow Φt we can now introduce the notions of
periodicity and absolute periodicity which are decisive in obtaining refined spectral
asymptotics.

Definition 1.3.1. The point (y, η) ∈ T ′M and the trajectory (1.3.1) originat-
ing from this point are called T -periodic, T > 0 , if

(1.3.5) (x∗(T ; y, η), ξ∗(T ; y, η)) = (y, η) .

The point (y, η) and the trajectory (1.3.1) are called periodic if they are T -periodic
for some T > 0 .

Definition 1.3.2. The point (y0, η0) ∈ T ′M and the trajectory (1.3.1) origi-
nating from this point are called absolutely T -periodic, T > 0 , if the function

(1.3.6) |x∗(T ; y, η)− y|2 + |ξ∗(T ; y, η)− η|2

of the variables (y, η) has an infinite order zero at (y0, η0) (clearly, this property
does not depend on the choice of coordinates). The point (y0, η0) and the trajectory



1.3. BILLIARDS : BASIC FACTS 13

(1.3.1) originating from this point are called absolutely periodic if they are absolutely
T -periodic for some T > 0 .

Remark 1.3.3. In the analytic case (when M is a real-analytic manifold and
h is a real-analytic function) the function (1.3.6) is analytic as well. Therefore in
the analytic case the existence of one absolutely T -periodic trajectory implies that
all the trajectories are absolutely T -periodic with the same T . (Recall that the
manifold M is assumed to be connected.)

It is important to know how rich are the sets of periodic and absolutely peri-
odic trajectories, because this determines the structure of the two-term spectral
asymptotics.

Denote by ΠT , Πa
T , Π , and Πa the sets of T -periodic, absolutely T -periodic,

periodic, and absolutely periodic points in S∗M , respectively. Of course,

Π = ∪
T>0

ΠT , Πa = ∪
T>0

Πa
T , Πa

T ⊂ ΠT , Πa ⊂ Π .

Lemma 1.3.4. The set Π ⊂ S∗M is measurable. Moreover, for all T+ > 0 the
sets ∪

0<T≤T+
ΠT are also measurable.

As a rule, the set Π has a very complicated structure whereas the set Πa

is organised essentially more simply (see Remark 1.3.3). Moreover, in realistic
situations the set of absolutely periodic points is usually empty. Nevertheless, the
following lemma shows that the set Π is insignificantly richer than Πa .

Lemma 1.3.5.

(1.3.7) meas
(
∪

T>0
(ΠT \Πa

T )
)

= 0 .

From (1.3.7) we immediately obtain

Corollary 1.3.6. Almost all periodic points are absolutely periodic, i.e.,

(1.3.8) meas (Π \Πa) = 0 .

Now we are prepared to introduce the notion of nonperiodicity which will play
a key role in the study of refined spectral asymptotics.

Definition 1.3.7. We will say that the nonperiodicity condition is fulfilled if

(1.3.9) meas Π = 0 .

It follows from Corollary 1.3.6 that (1.3.9) is equivalent to

(1.3.10) meas Πa = 0 .

Therefore, defining the concept of nonperiodicity we can choose between (1.3.9) and
(1.3.10) depending on the circumstances. This observation often allows us to sim-
plify matters. For example, when proving spectral results it is more convenient to
deal with the seemingly more restrictive condition (1.3.9). On the other hand, ap-
plying spectral results to concrete problems it is much easier to check the condition
(1.3.10). In particular, from Remark 1.3.3 and Corollary 1.3.6 we obtain
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Lemma 1.3.8. In the analytic case there are only two possibilities: either the
nonperiodicity condition is fulfilled or all the trajectories are periodic with the same
period T > 0 .

It is clear that failures of the nonperiodicity condition are very rare (at least in
the analytic situation). For instance, in the analytic case it is sufficient to find one
nonperiodic trajectory or two periodic trajectories with incommensurable periods
to make sure that the nonperiodicity condition is fulfilled.

Failure of the nonperiodicity condition is usually due to some strong symmetries.
The most obvious example is the geodesic flow on the sphere Sn . However, there
exist nontrivial examples.

Example 1.3.9. Let M be a closed (i.e., without boundary) connected compact
real-analytic two-dimensional surface of revolution in R3 without self-intersections.
We shall call a surface M of this class a Zoll surface if there exists a T > 0 such
that all the geodesics on M are T -periodic (i.e., if the nonperiodicity condition
fails). Following [Be] we explicitly describe below all Zoll surfaces.

Let us introduce cylindrical coordinates (ϕ, r, z) according to the formulae

y1 = r cosϕ , y2 = r sinϕ , y3 = z ,

where (y1, y2, y3) are the Cartesian coordinates in R3 and the y3-axis is the axis
of revolution. Let us consider the meridian curve of M in the half-plane

ϕ = const , 0 ≤ r < +∞ , −∞ < z < +∞ .

It turns out that the surface M is a Zoll surface if and only if its meridian curve
can be parametrized as

(1.3.11) r = R cos θ , z = R

∫ θ

0

√(
1 + f(ψ)

)2 − sin2 ψ dψ , −π
2
≤ θ ≤ π

2
,

with some constant R > 0 and some real-valued function f satisfying the following
conditions.

(1) f is odd.
(2) f(ψ) ≥ | sinψ| − 1 , ∀ψ ∈ [−π/2, π/2] .
(3) f is real-analytic on R .
(4) f is even with respect to the point π/2 .
(5) The Taylor expansions of the function

(
1 + f(ψ)

)2 − sin2 ψ at the points
±π/2 start with terms of order 4q± − 2 , where q± ∈ N .

(6) The function z defined by (1.3.11) satisfies the inequality z(θ) > z(−θ) ,
∀θ ∈ (0, π/2] .

We choose the sign of the the square root in (1.3.11) in such a way that the function

F (ψ) =
√(

1 + f(ψ)
)2 − sin2 ψ is real-analytic and F (0) > 0 .

Conditions (1), (2) are the main ones which single out the class of Zoll surfaces.
The other ones play only an auxiliary role, ensuring the analyticity of the surface
M and excluding self-intersections.

A trivial example of a function f satisfying all the above conditions is f ≡ 0 .
In this case (1.3.11) parametrizes a semicircle which means that M is a sphere. A
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nontrivial example is f(θ) = (1/3) sin θ cos2 θ ; the Zoll surface for this f is shown
on Fig. 1. It gives a side view of the Zoll surface. The external egg-shaped curve
is the meridian of the Zoll surface, and the internal boomerang-shaped curve is the
projection of a geodesic (namely, the geodesic intersecting the equator at the angle
π/4 ).

Figure 1. Example of a Zoll surface. Side view.

The reader can find other examples of manifolds with periodic geodesic flow and
interesting discussions of this subject in [Be], [Gui].

Now we proceed to manifolds with boundary. For the sake of simplicity we shall
consider only trajectories (x∗(t; y, η), ξ∗(t; y, η)) originating from points (y, η) ∈
T ′

◦
M (not T ′M ), i.e., strictly from the interior. This will be sufficient for our aims

because, as we shall see later, only sets of nonzero measure influence the second
asymptotic term of N(λ) , whereas

vol
(
T ′M

∣∣
∂M

)
= meas

(
S∗M

∣∣
∂M

)
= 0 .

2. Geodesic billiards. Let M be a Riemannian manifold with boundary,
and let h(x, ξ) = |ξ|x (see Example 1.2.4). In this case the Hamiltonian billiards
described below are called geodesic billiards.

The trajectory (x∗(t), ξ∗(t)) may hit the boundary at some time t = τ 6= 0
(i.e., x∗(τ) ∈ ∂M ) and the question arises how to extend it. Geometric optics
gives a natural reflection law: the angle of incidence of a ray equals the angle of
reflection. Certainly, the notion of angle is understood in the sense of Riemannian
geometry, i.e, at the point x0 angles are measured in local coordinates x in which
|ξ|x0 = |ξ| =

√
ξ21 + ξ22 + · · ·+ ξ2n .

We shall now reformulate the reflection law in a more explicit manner, in terms
of Hamiltonian trajectories. Consider the points (x∗(τ −0), ξ∗(τ −0)) and (x∗(τ +
0), ξ∗(τ + 0)) which we shall call the point of incidence and point of reflection,
respectively. As ξ∗(t) determines the direction of the ray x∗(t) , the ξ-components
of these two points are, generally speaking, different, and our aim is to determine
the unknown covector ξ , which is ξ∗(τ + 0) or ξ∗(τ − 0) depending on whether
τ > 0 or τ < 0 .

Let us impose the natural condition that the Hamiltonian h is preserved under
reflection, i.e.,

(1.3.12) h(x∗(τ − 0), ξ∗(τ − 0)) = h(x∗(τ + 0), ξ∗(τ + 0)) .

From this equality and from the geometric reflection law it follows that the points
of incidence and reflection differ only in their ξn-components. Therefore we can
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denote these points as

(x∗(τ − 0), ξ∗(τ − 0)) = (x∗′, 0, ξ∗′, ξ−n )

and
(x∗(τ + 0), ξ∗(τ + 0)) = (x∗′, 0, ξ∗′, ξ+n ) ,

respectively (recall that near ∂M we use special local coordinates x , see subsection
1.1.2). Now we can rewrite (1.3.12) as

(1.3.13) h(x∗′, 0, ξ∗′, ξ−n ) = h(x∗′, 0, ξ∗′, ξ+n ) .

This is the equation which describes the reflection law in terms of Hamiltonian
trajectories. Note that both the equation (1.3.13) and the condition that the points
of incidence and reflection differ only in their conormal components are invariant
under changes of coordinates x .

Having fixed (x∗′, ξ∗′) , let us consider h(ξn) := h(x∗′, 0, ξ∗′, ξn) as a function of
the variable ξn ∈ R . Since h is the square root of a quadratic polynomial it has a
unique local (and global) minimum at some point ξn = ξstn . As x∗n increases from
∂M into the interior of M and ẋ∗n = hξn , we have

(1.3.14) ξ−n ≤ ξstn , ξ+n ≥ ξstn ,

(1.3.15) hξn
(ξ−n ) ≤ 0 , hξn

(ξ+n ) ≥ 0 .

The qualities ξ−n = ξstn (τ > 0) or ξ+n = ξstn (τ < 0) describe the situation
when the arriving (from t = 0) ray x∗(t) is tangent to ∂M at the point x∗(τ∓0) .
Such trajectories trajectories (x∗(t), ξ∗(t)) are called grazing . We shall exclude
this case from consideration because the set of grazing trajectories is sparse (see
Lemma 1.3.11 below), and for our aims there is no need to deal with them.

Having excluded grazing trajectories, we obtain instead of (1.3.14), (1.3.15) strict
inequalities

(1.3.16) ξ−n < ξstn , ξ+n > ξstn ,

(1.3.17) hξn(ξ−n ) < 0 , hξn(ξ+n ) > 0 .

Formulae (1.3.13), (1.3.16), (1.3.17) are illustrated by Fig. 2.

Figure 2. Graph of the function h(ξn) in the case of a geodesic billiard system.

It is clear from Fig. 2 that, given ξ−n , one can uniquely determine ξ+n . This
means that for τ > 0 we uniquely determine (x∗(τ +0), ξ∗(τ +0)) which serves as
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the originating point of the reflected Hamiltonian trajectory. Conversely, if τ < 0
then given ξ+n one can uniquely determine (x∗(τ − 0), ξ∗(τ − 0)) which is the
starting point of the extended Hamiltonian trajectory. In the second case we have
deliberately avoided the word “reflected” because according to our terminology the
point of reflection is (x∗(τ +0), ξ∗(τ +0)) , whereas we are extending the trajectory
back in time from the point (x∗(τ − 0), ξ∗(τ − 0)) .

Exclusion of grazing trajectories means that we consider only transversal reflec-
tions, i.e., reflections at nonzero angles. Fig. 3 illustrates transversal reflections of
a ray.

Figure 3. Transversal reflections.

Definition 1.3.10. A trajectory obtained by consecutive transversal reflections
is called a billiard trajectory.

We shall retain for billiard trajectories the same notation (x∗(t; y, η), ξ∗(t; y, η))
as for Hamiltonian trajectories.

As the Hamiltonian h is preserved along the billiard trajectories and as these
trajectories are homogeneous in η (see (1.3.4)), it is natural to consider only tra-
jectories lying in S∗M .

It is easy to see that only two factors may prevent us from extending a billiard
trajectory (x∗(t; y, η), ξ∗(t; y, η)) to all t ∈ R .

First of all, it may occur that after a finite number of transversal reflections we
obtain a grazing Hamiltonian trajectory. We shall denote the set of starting points
(y, η̃) ∈ S∗

◦
M of such billiard trajectories by Pg .

Secondly, it may occur that a billiard trajectory experiences an infinite number
of transversal reflections in a finite (positive or negative) time; see Fig. 4.

Figure 4. A dead-end trajectory.

We shall call such a billiard trajectory a dead-end trajectory. By Pd we shall
denote the set of starting points (y, η̃) ∈ S∗

◦
M of dead-end billiard trajectories.
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Lemma 1.3.11 ([CorFomSin, Sect. 6.1]). For a geodesic billiard system

(1.3.18) measPg = 0

and

(1.3.19) measPd = 0 .

Lemma 1.3.11 means that almost all billiard trajectories can be extended to
all t ∈ R . The group Φt of shifts along the billiard trajectories is called the
billiard flow . The billiard flow preserves the symplectic differential 1-form and,
consequently, the symplectic differential 2-form, the symplectic volume and the
canonical measure on S∗M .

Adding the phrase “after a finite number of transversal reflections” in Definitions
1.3.1, 1.3.2 we obtain definitions of T -periodic, absolutely T -periodic, periodic and
absolutely periodic billiard trajectories and points. As before, we shall denote the
sets of such points in S∗

◦
M by ΠT , Πa

T , Π , and Πa , respectively. Lemmas 1.3.4,
1.3.5 and Corollary 1.3.6 remain valid in this case. We shall retain for geodesic
billiards Definition 1.3.7 describing the nonperiodicity condition.

Let us now introduce the important notions of convexity and concavity.

Definition 1.3.12. Denote

(1.3.20) k(x′, ξ′) := {hξn
, h}| x=(x′,0),ξ=(ξ′,ξst

n (x′,ξ′)) ,

(x′, ξ′) ∈ T ′∂M . Here {·, ·} are the Poisson brackets (see our list of notation for
the proper sign), and ξstn (x′, ξ′) is the real ξn-root of the equation

(1.3.21) hξn(x′, 0, ξ′, ξn) = 0 ,

see also Fig. 2. We shall call k the Hamiltonian curvature of ∂M .

Note that formulae (1.3.20), (1.3.21) have a simple interpretation: k = −ẍ∗n|t=0 ,
where x∗(t) ⊂ M̂ is a ray emitted from the point x∗(0) = (x′, 0) ∈ ∂M in the
direction ẋ∗(0) = hξ(x′, 0, ξ′, ξstn (x′, ξ′)) tangent to ∂M . Here we deliberately
consider the ray on the extended manifold M̂ (see subsection 1.1.2) because this
ray may leave M at arbitrarily small t 6= 0 . Obviously, under the assumption that
the coordinate ξn is fixed (see subsection 1.1.2) k is a well defined function on
T ′∂M .

Definition 1.3.13. We shall say that the manifold M is convex if k(x′, ξ′) ≥ 0,
∀(x′, ξ′) ∈ T ′∂M , and strongly convex if k(x′, ξ′) > 0 , ∀(x′, ξ′) ∈ T ′∂M .

Definition 1.3.14. We shall say that the manifold M is concave if k(x′, ξ′) ≤
0, ∀(x′, ξ′) ∈ T ′∂M , and strongly concave if k(x′, ξ′) < 0 , ∀(x′, ξ′) ∈ T ′∂M .

The notion of convexity is illustrated by the following
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Example 1.3.15 (Euclidean case). Let M ⊂ Rn and h = |η| ; in this ex-
ample we denote by y Cartesian coordinates in Rn , and by η their corresponding
duals. Definition 1.3.13 in this case is equivalent to the traditional definition of con-
vexity: the set M is called convex if for any two points y, z ∈M the entire segment
of the straight line connecting y and z belongs to M . Moreover, the quantity
k in this case has a clear geometric meaning. Let us introduce (curvilinear) local
coordinates x such that xn is the Euclidean distance from the point to ∂M , with
positive sign when the point is in

◦
M and negative when the point is in Rn \M .

Then k(x′, ξ′) is the curvature (in the traditional sense) of the normal section of the
surface ∂M at the point y = y(x′, 0) in the direction η = η(x′, 0, ξ′, ξstn (x′, ξ′)) .

The Euclidean case is ill-suited for illustrating the notion of concavity because
concave manifolds in this case are noncompact. Therefore we shall consider the
following less trivial

Example 1.3.16. Let M be a spherical cap, that is, part of a unit n-dimen-
sional sphere Sn ⊂ Rn+1 cut off by a hyperplane in Rn+1 :

M = {y ∈ Rn+1 : |y| = 1 , yn+1 ≥ c} ,

where c is some constant, |c| < 1 , and y are Cartesian coordinates in Rn+1 . The
metric on M is assumed to be the standard one induced by the Euclidean metric
in Rn+1 . In this case the manifold M is convex if it is less than or equal to a
hemisphere ( c ≥ 0 ), strongly convex if it is strictly less than a hemisphere ( c > 0 ),
concave if it is greater than or equal to a hemisphere ( c ≤ 0 ), and strongly concave
if it is strictly greater than a hemisphere ( c < 0 ); see Fig. 5.

Figure 5. Spherical caps: a) convex, b) concave.

Lemma 1.3.17. If the manifold M is strongly convex, then there are no grazing
billiard trajectories (i.e., Pg = ∅ ). If the manifold M is strongly concave or
strongly convex, then there are no dead-end billiard trajectories (i.e., Pd = ∅ ).

It is easy to see that a somewhat weaker version of Remark 1.3.3 holds for
geodesic billiards.

Remark 1.3.18. In the analytic case, if a trajectory is absolutely T -periodic
then all sufficiently close billiard trajectories are T -periodic with the same period
T .

Unfortunately, in the general case it is impossible to extend analytically the
property of absolute periodicity to all points from S∗

◦
M , because analyticity may

be lost on Pg . A lucky exception is the case of a convex manifold, see Lemma
1.3.17. For a convex manifold, Remark 1.3.3 and Lemma 1.3.8 still hold. Moreover,
we have the following important
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Lemma 1.3.19. Let us consider the analytic case and let the manifold M be
convex, ∂M 6= ∅ , and k(x′, ξ′) 6≡ 0 . Then the nonperiodicity condition is fulfilled.

Thus, Lemma 1.3.19 gives effective sufficient conditions guaranteeing nonperiod-
icity.

In particular, applying Lemma 1.3.19 to the Euclidean case (Example 1.3.15) we
conclude that if M is convex (in the traditional sense) and ∂M is analytic then
the nonperiodicity condition is fulfilled.

Applying Lemma 1.3.19 to Example 1.3.16 we conclude that if M is strictly less
than a hemisphere ( c > 0 ) then the nonperiodicity condition is fulfilled. On the
other hand, it is easy to see directly that if c ≤ 0 then the nonperiodicity condition
is not fulfilled: when M is a hemisphere ( c = 0 ) all geodesics are periodic after two
reflections, and when M is strictly greater than a hemisphere ( c < 0 ) the great
circles which do not intersect ∂M form a rich set of periodic geodesics. So in this
particular example strict convexity is necessary and sufficient for nonperiodicity.

It is worth noting that Lemma 1.3.19 does not have an analogue for manifolds
without boundary. This leads us to the paradoxical conclusion that some manifolds
with boundary are simpler objects than manifolds without boundary, at least as
far as nonperiodicity is concerned.

Concluding this subsection, let us make the obvious observation that given a
second order elliptic self-adjoint differential operator A acting on M one can
always introduce a Riemannian metric based on the principal symbol of A and
consider the corresponding geodesic billiard system.

3. Branching Hamiltonian billiards. Let us proceed at last to the most
difficult case when M is a manifold with boundary and A is an operator of order
2m, m > 1 .

As in the preceding subsections, we start by introducing the trajectories

(x∗(t; y, η), ξ∗(t; y, η)) , (y, η) ∈ T ′
◦
M ,

of the Hamiltonian system (1.3.3). The trajectory may hit the boundary at some
time t = τ 6= 0 and our task is to define the reflection law. Unfortunately, in
the general case we cannot formulate the reflection law in simple geometric terms
because the Hamiltonian h(x, ξ) does not induce a Riemannian metric on M (with
the exception of the special case A2m(x, x) =

(
A2(x, ξ)

)m , where A2(x, ξ) is the
principal symbol of some second order differential operator). We can, however,
formulate the reflection law on the basis of the Hamiltonian formalism developed
in subsection 2. Let us recall that this formalism requires x∗(t) and the first n−1
components of ξ∗(t) to be continuous at t = τ and the n-th component of ξ∗(t) to
satisfy the equality (1.3.13), ξ±n = ξ∗n(τ ±0) . For τ > 0 , ξ−n is given and ξ+n must
be determined from (1.3.13); for τ < 0 , ξ+n is given and ξ−n must be determined
from (1.3.13). As in subsection 2, we also require ξ±n to satisfy the inequalities
(1.3.17). In a weaker form (1.3.15) these inequalities are natural because the ray
x∗(t) has to stay on the manifold M . As in subsection 2, the exclusion of cases
hξn(ξ−n ) = 0 , hξn(ξ−n ) = 0 simplifies matters and (as we shall see later) leads to
the loss of a set of initial points (y, η) of zero measure.

Thus, in the most general case we define the reflection law by the equality (1.3.13)
with the additional conditions (1.3.17), plus the requirement that x∗(t) and ξ∗′(t)
are continuous.
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The application of this reflection law leads us to the discovery of a completely
new phenomenon compared with the case of a second-order differential operator:
for m ≥ 2 the equation (1.3.13) may have several solutions ξ+n ( τ > 0 ) or ξ−n
( τ < 0 ). This becomes clearer if we transform (1.3.13) to an equivalent form by
raising both parts to the 2m-th power:

(1.3.22) A2m(x′, 0, ξ′, ξ−n ) = A2m(x′, 0, ξ′, ξ+n ) .

Multiplying (1.3.17) by 2mh2m−1 , we obtain

(1.3.23) A′2m(x′, 0, ξ′, ξ−n ) < 0 , A′2m(x′, 0, ξ′, ξ+n ) > 0 ,

where the prime at A2m denotes differentiation with respect to ξn . At this stage
we assume, of course, that

(1.3.24) Im ξ±n = 0 ;

nonreal roots will be dealt with later, in subsection 2.6.4.
With respect to the unknown quantity ξ+n (or ξ−n ) (1.3.22) is an algebraic

equation of degree 2m with real coefficients. Obviously, this equation has at most
m ξ+n -roots (or ξ−n -roots) satisfying the conditions (1.3.23), (1.3.24) if ξ−n (or ξ+n )
is given. Moreover, one can easily construct an example when the equation (1.3.22)
has exactly m ξ+n -roots and m ξ−n -roots satisfying the conditions (1.3.23),
(1.3.24). Thus, the case m = 1 considered in subsection 2 was a very special one:
there we had a unique ξ+n for each given ξ−n and vise versa. Fig. 6 illustrates the
nonuniqueness of the solution ξ+n (here ξ−n is given).

Figure 6. Graph of the function h(ξn) in the case m ≥ 2 .

There is no reason to exclude any of the possible ways of continuation of the tra-
jectory (x∗(t), ξ∗(t)) at each reflection. We shall retain the notation (x∗(t), ξ∗(t))
for each of the possible continuations (in positive or negative time) of the initial
trajectory obtained by consecutive transversal reflections, and in line with Defi-
nition 1.3.10 we shall call (x∗(t), ξ∗(t)) a billiard trajectory. Here transversality
means that both of the inequalities (1.3.17) must be fulfilled; in the case m ≥ 2
these inequalities may not follow from one another as in the case m = 1 . Con-
sidering billiard trajectories of finite length and with finitely many legs we shall
always assume that x∗(t; y, η) and ξ∗(t; y, η) depend smoothly on (t; y, η) at the
points (t; y, η) such that x∗(t; y, η) /∈ ∂M (see also end of this subsection where
we introduce the notion of type of a billiard trajectory).

If for some incident trajectory there exist several reflected ones, then we shall
say that the trajectory branches, see Fig. 7. Note that if we have branching the set
of trajectories originating from a fixed point (y, η) may be uncountable.
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Figure 7. Branching of trajectories.

Remark 1.3.20. Branching of trajectories occurs also in transmission problems,
in which several manifolds are connected by common stretches of boundary with
appropriate boundary conditions, see [Sa1], [Sa3].

We shall call a billiard system with a Hamiltonian of general form (that is, not
necessarily the square root of a quadratic polynomial) a branching Hamiltonian
billiard system.

Let us now examine the factors that may prevent the extension of the billiard
trajectory (x∗(t; y, η), ξ∗(t; y, η)) to all t ∈ R .

Let Pg be the set of points (y, η̃) ∈ S∗
◦
M such that at least one trajectory

originating from (y, η̃) after a finite number of transversal reflections (in posi-
tive or negative time) hits a point (x′, 0, ξ′, ξn) ∈ T ′M |∂M at which the equation
h(x′, 0, ξ′, ζ) = 1 has a multiple real ζ-root. (It may well be that ζ = ξn is itself
a multiple root.)

Let Pd be the set of points (y, η̃) ∈ S∗
◦
M such that at least one trajectory

originating from (y, η̃) experiences an infinite number of transversal reflections in
a finite (positive or negative) time. As before we call such trajectories dead-end.

If (y, η̃) /∈ Pg ∪Pd then all trajectories originating from (y, η̃) can be extended
to all t ∈ R .

Lemma 1.3.21. For a branching Hamiltonian billiard system

(1.3.25) measPg = 0 .

In the general case we cannot guarantee the fulfilment of equality (1.3.19). More-
over, there exists an effective (even analytic) example [SaVa1] of a branching Hamil-
tonian billiard system with measPd 6= 0 . Therefore we will have to impose (1.3.19)
as a condition.

Definition 1.3.22. We shall say that the nonblocking condition is fulfilled if
measPd = 0 .

The word nonblocking is used here to exhibit the fact that under this condition
almost all (in terms of the measure of their starting points) trajectories can be
extended to all t ∈ R .

When the nonblocking condition is fulfilled, the set Pg ∪ Pd not only has zero
measure, but it is also a set of first category in the sense of Baire.

Let us define T -periodic, absolutely T -periodic, periodic and absolutely periodic
billiard trajectories in the same manner as in subsections 1 and 2 (Definitions 1.3.1,
1.3.2 plus the phrase “after a finite number of transversal reflections”). As before,
we shall denote the sets of starting points of such trajectories in S∗

◦
M by ΠT ,

Πa
T , Π , and Πa, respectively. However, we shall refrain from calling the points

themselves periodic because some trajectories originating from these points may
not be periodic.

The following results are analogues of Lemmas 1.3.4, 1.3.5 and Corollary 1.3.6
for branching Hamiltonian billiards.
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Lemma 1.3.23. If the nonblocking condition is fulfilled, then the sets Π and
∪

0<T≤T+
ΠT , ∀T+ > 0 , are measurable.

Lemma 1.3.24. If the nonblocking condition is fulfilled, then (1.3.7) and (1.3.8)
hold.

In accordance with Definition 1.3.7, we say that the nonperiodicity condition is
fulfilled if

(1.3.26) meas Π = 0 .

It follows from Lemma 1.3.24 that if the nonblocking condition is fulfilled, then
(1.3.26) is equivalent to

(1.3.27) meas Πa = 0 ,

which is very useful in obtaining effective sufficient conditions for nonperiodicity.
Further on it will be convenient for us to avoid considering reflections at negative

times. Since our Hamiltonian (1.1.14) is an even function of ξ we have

(1.3.28) (x∗(−t; y, η), ξ∗(−t; y, η)) = (x∗(t; y,−η),−ξ∗(t; y,−η)) ,
so all the results for negative t can be deduced from those for positive t . We shall
use this observation throughout the book. Note that if A is a pseudodifferential
operator formula (1.3.28) does not necessarily hold, so in this case one has to
consider negative as well as positive t .

In the process of the effective construction of the wave group (Chapter 3) we will
often be forced to restrict ourselves to some finite interval on the time axis and to
exclude some awkward reflections. We introduce the following

Definition 1.3.25. Let T+ be a finite positive number. We shall say that the
trajectory

(1.3.29) (x∗(t; y, η), ξ∗(t; y, η)) , 0 ≤ t ≤ T+ , (y, η) ∈ T ′
◦
M ,

is admissible if it satisfies the following conditions.
(1) It experiences a finite number of reflections.
(2) At each moment of reflection t = τ ∈ (0, T+] all the ζ-roots of the algebraic

equation

(1.3.30) A2m(x∗′(τ ; y, η), 0, ξ∗′(τ ; y, η), ζ) = A2m(y, η)

are simple.
(3) At each moment of reflection t = τ ∈ (0, T+] the number ν = A2m(y, η) is

not an eigenvalue of the auxiliary one-dimensional spectral problem (1.1.7),
(1.1.8) with (x′, ξ′) = (x∗′(τ ; y, η), ξ∗′(τ ; y, η)) ∈ T ∗∂M .

The second condition of Definition 1.3.25 implies, in particular, that the reflec-
tions are transversal. However this condition has wider implications. When we say
“the ζ-roots of the algebraic equation are simple” we mean all the roots in the
complex plane, not only the real ones. The role of the nonreal roots will become
clear in Sections 2.6 and 2.8 when we introduce the concept of a boundary layer
oscillatory integral. In a sense, the nonreal ζ-roots correspond to Hamiltonian tra-
jectories which leave the real space after reflection and become complex (in the
analytic situation this statement has a precise meaning). Obviously, the equation
(1.3.30) may have nonreal ζ-roots only if m ≥ 2 .

Note also that for a second order operator the third condition of Definition 1.3.25
is always fulfilled.
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Definition 1.3.26. We shall say that (y, η) ∈ T ′
◦
M is a T+-admissible point

if all the trajectories (1.3.29) originating from this point are T+-admissible. We
shall say that (y, η) ∈ T ′

◦
M is an admissible point if it is T+-admissible for all

T+ > 0 . A subset of T ′
◦
M is said to be T+-admissible (admissible) if all its points

are T+-admissible (admissible).

Denote by OT+ and O∞ the sets of all T+-admissible and admissible points in

T ′
◦
M , respectively.

Lemma 1.3.27. For any finite positive T+ the set OT+ is open.

Lemma 1.3.28. If the nonblocking condition is fulfilled, then vol(T ′
◦
M \O∞) =

meas(S∗
◦
M \O∞) = 0 .

Further on we prefer to deal with T+-admissible billiard trajectories. Most of
our results and definitions can be extended to all well defined billiard trajectories,
so it is a rather technical assumption. In view of Lemma 1.3.28 this will be sufficient
for our purposes. Often we shall not distinguish between ΠT+ and ΠT+ ∩ OT+ ,
Πa

T+
and Πa

T+
∩OT+ , Π and Π ∩O∞ , Πa and Πa ∩O∞ .

Consider a T+-admissible billiard trajectory (1.3.29) experiencing r reflections
on the time interval (0, T+) . We can associate with this trajectory its type, which
is the multiindex m = m1|m2| . . . |mi| . . . |mr defined as follows. If τi ∈ (0, T+)
is the moment of the ith reflection, then ξ∗n(τi + 0; y, η) is the 2mith (in order
of growth) real ζ-root of the equation (1.3.30). The notion of a billiard trajec-
tory being T+-admissible ensures that all the real ζ-roots of the equation (1.3.30)
are simple; consequently, for any real root with even sequential number we have
hξn

(x∗′(τi; y, η), 0, ξ∗′(τi; y, η), ζ) > 0 , i.e., it really corresponds to a reflected tra-
jectory.

Lemma 1.3.29. The number of types of billiard trajectories originating from a
T+-admissible point is finite.

Let (x∗(t; y0, η0), ξ∗(t; y0, η0)) be a T+-admissible billiard trajectory of type m
such that T+ is not a moment of reflection. Clearly, if we fix the type m then
(x∗(t; y, η), ξ∗(t; y, η)) smoothly depends on (t; y, η) provided (y, η) is sufficiently
close to (y0, η0) and t is not a moment of reflection.

The branching of trajectories does not allow us to introduce the group of shifts
Φt along billiard trajectories (cf. subsection 2). However, shifts along admissible
billiard trajectories of fixed type preserve the symplectic differential 1-form and
2-form, as well as the symplectic volume (see Section 2.3).

4. Simple reflection. An important class of Hamiltonian billiard systems is
the class of systems satisfying the simple reflection condition.

Definition 1.3.30. We shall say that the simple reflection condition is fulfilled
if for any (x′, ξ′) ∈ T ′∂M the Hamiltonian h(x′, 0, ξ′, ξn) has only one local (and
hence global) minimum as a function of ξn ∈ R .

In other words, the simple reflection condition is fulfilled if and only if there is
no branching.
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Lemma 1.3.31 (generalization of the second part of Lemma 1.3.11). If
the Hamiltonian billiard system satisfies the simple reflection condition, then the
nonblocking condition is fulfilled, i.e., measPd = 0 .

For a Hamiltonian billiard system satisfying the simple reflection condition we
can introduce the group of shifts Φt along billiard trajectories. This billiard flow
has properties similar to those of the geodesic billiard flow.

Definition 1.3.32. We shall say that the strong simple reflection condition is
fulfilled if for any (x′, ξ′) ∈ T ′∂M the equation hξn

(x′, 0, ξ′, ξn) = 0 has only one
real ξn-root and this root is simple (hξnξn

6= 0 ).

Remark 1.3.33. Geodesic billiards obviously satisfy the strong simple reflection
condition.

Hamiltonian billiards satisfying the strong simple reflection condition are a sub-
class of Hamiltonian billiards satisfying the simple reflection condition. Billiards
from this subclass are of special interest because all the facts described in subsec-
tion 2 (devoted to geodesic billiards) remain true for them as well. In particular,
Lemma 1.3.19 remains true; due to its importance we shall state it again.

Lemma 1.3.34 (generalization of Lemma 1.3.19). Let us consider the an-
alytic case and let the strong simple reflection condition be satisfied, the manifold
M be convex (see Definitions 1.3.12, 1.3.13), ∂M 6= ∅ , and k(x′, ξ′) 6≡ 0 . Then
the nonperiodicity condition is fulfilled.

Note that under the assumptions of Lemma 1.3.34 the nonblocking condition is
fulfilled as well, by virtue of Lemma 1.3.31.

In the case of a manifold without boundary there are no reflections, but in order
to simplify our subsequent statements we shall assume throughout the book that a
billiard system without reflections satisfies the strong simple reflection condition.

Concluding this subsection, let us make a remark on the relationship between the
concepts of nonperiodicity and ergodicity. As pointed out earlier, a Hamiltonian
billiard system satisfying the simple reflection condition generates the group of shifts
Φt which preserves the symplectic volume; such groups are called flows. A flow is
called ergodic if any set invariant with respect to this flow has zero or full measure
[CorFomSin]. If the billiard flow is ergodic, then the nonperiodicity condition is
fulfilled. The converse is, in general, not true. An example is the case of Euclidean
billiards in a closed domain M ⊂ R2 bounded by an ellipse. The fact that such
a billiard system is not ergodic is well known [CorFomSin, Sect. 6.3], whereas its
nonperiodicity follows from Lemma 1.3.19 or Lemma 1.3.34. Thus, nonperiodicity is
a weaker (in fact, considerably weaker) requirement than ergodicity. This explains
why constructing effective sufficient conditions for nonperiodicity is easier and more
rewarding than constructing effective sufficient conditions for ergodicity.

5. Euclidean billiards. Let us finally look at the most basic billiards, that
is, Euclidean billiards. Euclidean billiards are a special case of geodesic billiards.
In this case the manifold M is a region in Rn , the metric is Euclidean, the rays
are straight lines, and reflections from the boundary satisfy the usual “angle of
incidence equals angle of reflection” law.

For Euclidean billiards the nonblocking condition is always fulfilled due to simple
reflection. But nonperiodicity has to be checked.

We state the following
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Conjecture 1.3.35. In the case of a Euclidean billiard system there are no
absolutely periodic billiard trajectories.

Note that this conjecture, if proven, would imply the nonperiodicity of Euclidean
billiard systems (see Lemma 1.3.6).

The arguments in favour of this conjecture are the following.
If one assumes the existence of an absolutely periodic billiard trajectory this leads

to certain algebraic equations involving the Taylor coefficients which describe the
shape of the boundary near the points of reflection. There are infinitely many al-
gebraic equations and they involve infinitely many Taylor coefficients, which makes
analysis difficult. However, one can truncate this infinite system of equations and
look at the resulting finite subsystem of l equations. One can check that if l is
sufficiently large, then the number of unknowns (Taylor coefficients) is less than l .
Therefore it is highly unlikely that this system has a solution.

There is also a physical argument in favour of conjecture 1.3.35. If the conjecture
were not true one could construct an ideal optical system with a finite number
of mirrors. Here “ideal” means focusing up to infinite order, i.e., without any
aberrations.

Conjecture 1.3.35 is purely geometrical, and is remarkably simple and natural.
It contains no direct reference to partial differential equations, spectral theory,
symplectic geometry, measure theory, etc. The authors, however, are unaware of a
mathematical proof of this conjecture.

We know Conjecture 1.3.35 to be true only for special classes of shapes of M . In
particular, we know it to be true when M is convex (in the usual sense) and ∂M
analytic; see proof of Lemma 1.3.34 given in Appendix D. If one allows piecewise
smooth boundaries [Va6], we can state two other sets of conditions under which the
conjecture is true.

(1) Each smooth component of ∂M has nonpositive normal curvature (say, a
polyhedron satisfies this condition). In this case a divergent beam of rays
becomes more and more divergent after each reflection and can not focus.
This is a standard argument from ergodic theory.

(2) A very special set of conditions [Wo].

1.4. Hamiltonian billiards II : reflection matrix

As we shall discover later (Sections 3.3, 3.4), the physical meaning of a branching
Hamiltonian billiard system is that it describes the propagation of waves governed
by the equation D2m

t u = Au (analogue of the wave equation). Billiard trajectories
trace the movement of these waves, and our billiard trajectories play the role of a
“skeleton” upon which we will consequently build the wave group exp(−itA1/(2m)) .

Tracing the path of a wave is only the first (and simplest) step. The next step
is to describe the partition of energy between different branches of reflected waves.
The notion of the reflection matrix introduced in this section serves this purpose.
The reflection matrix is not used directly in the formulation of the main result
of Section 1.6. However, it is used later on in Section 1.6 when we perform the
effective calculation of the second asymptotic coefficient.

Under the simple reflection condition energy is not redistributed at reflections
(there is no branching), and the reflection matrix is just a complex number of the
form eiµ , µ ∈ R . In this case it is natural to study the phase shift which the wave
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gains in the process of its propagation. The phase shift comes from three sources :
(1) phase shift induced by reflections from the boundary (the sum of arguments

µ of the corresponding reflection matrices);
(2) phase shift induced by the passage of the trajectory through caustics;
(3) phase shift induced by the subprincipal symbol of the differential operator

A .
This section deals with the first source and Section 1.5 deals with the second

one. Dealing with the third source will not require a special section because the
corresponding phase shift will be given by a simple integral over the billiard tra-
jectory (see subsection 1.7.2). The notion of the phase shift is necessary for the
formulation of the results of Sections 1.7 and 1.8.

Let us fix an arbitrary point (x′, ξ′) ∈ T ∗∂M and consider the one-dimensional
spectral problem (1.1.7), (1.1.8) on the half-line xn ∈ R+ . For the time being let
us omit the parameters (x′, ξ′) and rewrite (1.1.7), (1.1.8) as

(1.4.1) A(Dxn
)v = νv ,

(1.4.2)
(
B(j)(Dxn)v

)∣∣∣
xn=0

= 0 , j = 1, 2, . . . ,m ,

where A(Dxn
) = A2m(x′, 0, ξ′, Dxn

) , B(j)(Dxn
) = B

(j)
mj (x′, ξ′, Dxn

) . Obviously,
the spectral problem (1.4.1), (1.4.2) is formally self-adjoint with respect to the
inner product

(1.4.3) (v, w)+ =

+∞∫
0

v(xn)w(xn) dxn ,

and one can associate with (1.4.1), (1.4.2) a self-adjoint operator A+ in L2(R+) .
The equation (1.4.1) is an ordinary differential equation of order 2m with con-

stant coefficients and it can be explicitly solved in exponential functions. This
simple observation opens the way to the effective study of the spectral problem
(1.4.1), (1.4.2). In fact, all the constructions described below (as well as in subsec-
tion 1.6.3 and Appendix A) are of purely algebraic nature.

In this section we give a list of basic properties of the spectral problem (1.4.1),
(1.4.2), referring the reader to Appendix A for details.

The problem (1.4.1), (1.4.2) has a finite number of eigenvalues. Moreover, this
number is uniformly bounded over all problems of this type with fixed order 2m ,
see Proposition A.1.13.

The problem (1.4.1), (1.4.2) has no singular continuous spectrum (see Remark
A.2.8). As the number of eigenvalues is finite, the continuous spectrum coincides
with the essential. Thus, the spectrum of (1.4.1), (1.4.2) is the union of the (abso-
lutely) continuous spectrum and of the set of eigenvalues. Note that some eigen-
values may be embedded in the continuous spectrum.

The continuous spectrum of the problem (1.4.1), (1.4.2) is the interval [νst
1 ,+∞),

where νst
1 = min

ξn∈R
A(ξn) (see subsections A.1.4 and A.1.5).

We shall call the number νst a threshold (or a stationary value of the symbol)
if the equation A(ξn) = νst has a multiple real ξn-root. Let us enumerate the
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thresholds: νst
1 < νst

2 < · · · < νst
s . Clearly, 1 ≤ s ≤ 2m − 1 . After the removal of

thresholds the continuous spectrum separates into zones

(1.4.4) (νst
1 , ν

st
2 ) , (νst

2 , ν
st
3 ) , . . . , (νst

s−1, ν
st
s ) , (νst

s ,+∞) .

Further on we use the (scalar) variable ζ instead of ξn in order to simplify
notation.

Assume that ν belongs to one of the zones (1.4.4), and consider the algebraic
equation

(1.4.5) A(ζ) = ν .

By 2q we shall denote the number of real ζ-roots of this equation. The number
q is called the multiplicity of the continuous spectrum at the point ν . Obviously,
this number is the same for all ν from a given zone (1.4.4), and 1 ≤ q ≤ m .

It will be convenient for us to impose temporarily the following technical condi-
tions (which are related to the admissibility condition).

Condition 1.4.1. Our ν is such that the complex ζ-roots of (1.4.5) are simple.

Condition 1.4.2. Our ν is not an eigenvalue of (1.4.1), (1.4.2).

Let us denote the real ζ-roots of (1.4.5) by ζ∓(ν) , where the superscript ∓
indicates the sign of the derivative A′(ζ∓(ν)) , A′ ≡ dA/dζ ; note that this deriva-
tive is non-zero because our ν is not a threshold. Let us enumerate the real roots
ζ∓(ν) in order of growth :

(1.4.6) ζ−1 (ν) < ζ+
1 (ν) < ζ−2 (ν) < ζ+

2 (ν) < . . . ζ−q (ν) < ζ+
q (ν) .

Formula (1.4.6) is illustrated by Fig. 8 (here q = 2 ). Note that apart from
different notation Fig. 8 is essentially the same as Fig. 6 from subsection 1.3.3.

Figure 8. Real roots of the equation (1.4.5).

Let us denote by ζ∓l (ν) , l = q+1, q+2, . . . , m, the complex roots of (1.4.5) with
negative and positive imaginary part, respectively. Note that under the Condition
1.4.1 we have A′(ζ∓(ν)) 6= 0, l = q + 1, q + 2, . . . , m.

Let us call nontrivial bounded solutions of (1.4.1), (1.4.2) generalized eigenfunc-
tions (or eigenfunctions of the continuous spectrum) corresponding to our ν . As
we have excluded eigenvalues (Condition 1.4.2) generalized eigenfunctions defined
in this way are not in L2(R+) . With account of Condition 1.4.1 we shall search
for generalized eigenfunctions in the form

(1.4.7) v(xn) =
q∑

l=1

a−l e
ixnζ−l (ν)√

−2πA′(ζ−l (ν))
+

m∑
l=1

a+
l e

ixnζ+
l (ν)√

2πA′(ζ+
l (ν))

,



1.4. BILLIARDS : REFLECTION MATRIX 29

where the a−l , l = 1, 2, . . . , q, and a+
l , l = 1, 2, . . . ,m, are some complex constants.

In the right-hand side of (1.4.7) all the square roots in the first sum and the first q
square roots in the second sum are chosen to be positive, whereas the last m − q
square roots in the second sum can be chosen arbitrarily. The normalizing factors

1√
∓2πA′(ζ∓l (ν))

in (1.4.7) are introduced for the sake of convenience, in order to make the reflection
matrix defined below a unitary one. Another reason for introducing these normal-
izing factors is that they will naturally appear when we will start dealing with our
global invariant oscillatory integrals, see Lemmas 2.9.10, 2.9.11.

Proposition A.2.1 establishes that the linear space of generalized eigenfunctions
is q-dimensional (this justifies our notion of multiplicity defined above) and that
each generalized eigenfunction (1.4.7) is uniquely defined by the set of coefficients
a−l , l = 1, 2, . . . , q, or by the set of coefficients a+

l , l = 1, 2, . . . , q. Denote by a−

and a+ the columns of coefficients a−l , l = 1, 2, . . . , q, and a+
l , l = 1, 2, . . . , q,

respectively. As a generalized eigenfunction is uniquely determined by either of the
two columns a− or a+ , we have a linear relation

(1.4.8) a+ = R(ν) a− ,

where R(ν) is an invertible q × q matrix. The matrix R(ν) can be effectively
constructed by substituting (1.4.7) into the boundary conditions (1.4.2) and solving
the resulting system of linear algebraic equations with respect to the a+

l .
The matrix R(ν) is called the reflection matrix . By Proposition A.2.1 the

reflection matrix is unitary.
Obviously, the matrix R(ν) is real-analytic as a function of ν in each of the

zones (1.4.4) apart, maybe, from a finite number of points at which either of the
Conditions 1.4.1 or 1.4.2 fails. By Proposition A.2.1 R(ν) admits an analytic
extension to such points. Thus R(ν) is well defined and real-analytic in each of
the zones (1.4.4).

The thresholds are, generally speaking, branching points for the elements of
R(ν) . In addition, passage through a threshold normally results in a change of the
size of R(ν) ; this corresponds to the change of the multiplicity of the continuous
spectrum.

Note, however, that the elements of the reflection matrix always have one-sided
limits at thresholds. This follows from the fact that these elements are bounded
(recall that the matrix is unitary!) and that the branching is of root type.

Definition 1.4.3. We shall say that the one-dimensional problem (1.4.1), (1.4.2)
satisfies the simple reflection condition if the continuous spectrum has multiplicity
one in all the zones (1.4.4).

Of course, in the case of simple reflection the reflection matrix R(ν) is of size
1 × 1 (complex number) in all the zones (1.4.4), and in view of (1.4.8) R(ν) =
a+
1 /a

−
1 . Naturally, |R(ν)| = 1 . The quantity argR(ν) is called the phase shift

generated by the reflection. This phase shift is defined modulo 2π .
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Definition 1.4.4. We call the threshold νst normal if the algebraic equation
A(ζ) = νst has only one multiple real root ζ = ζst and A′′(ζst) 6= 0 .

Note that the situation of a normal threshold can be viewed as a generic one,
in the sense that all the thresholds can be made normal by a small self-adjoint
perturbation of the coefficients of our spectral problem (1.4.1), (1.4.2).

Definition 1.4.5. We shall say that the one-dimensional problem (1.4.1), (1.4.2)
satisfies the strong simple reflection condition if the problem has only one threshold
and this threshold is normal.

Definitions 1.4.3, 1.4.5 given above match well with Definitions 1.3.30, 1.3.32.
Namely, the one-dimensional problem (1.4.1), (1.4.2) satisfies the simple reflection
condition (strong simple reflection condition) for all (x′, ξ′) ∈ T ′∂M if and only
if the Hamiltonian billiard system satisfies the simple reflection condition (strong
simple reflection condition).

From now on it will be convenient for us to indicate the dependence of all our
quantities on the parameters (x′, ξ′) ∈ T ∗∂M .

Let us examine how the reflection matrix R(ν;x′, ξ′) behaves under changes of
local coordinates. Let x = x(x̃) be a change of local coordinates on M such that
xn ≡ x̃n (see subsection 1.1.2), and let

f ′(x̃′) :=
∂x′

∂x̃n

∣∣∣∣
x̃n=0

.

Our original change of local coordinates on M generates a change of local coordi-
nates x′ = x′(x̃′) := x′(x̃′, 0) on ∂M , which leads to a change of dual coordinates

ξ′ = ξ′(x̃′, ξ̃′) :=
n−1∑
k=1

ξ̃k
∂x̃k

∂x′

∣∣∣∣
x′=x′(x̃′)

on the fibres of T ′∂M .
Suppose now that v(xn;x′, ξ′) is a solution of the problem (1.1.7), (1.1.8). Set

(1.4.9) ṽ(x̃n; x̃′, ξ̃′) := eix̃n〈f ′(x̃′),ξ′(x̃′,ξ̃′)〉 v(x̃n;x′(x̃′), ξ′(x̃′, ξ̃′)) .

Direct substitution demonstrates that this function is a solution of the problem

A2m(x̃′, 0, ξ̃′, Dx̃n
)ṽ = νṽ ,(

B(j)
mj

(x̃′, ξ̃′, Dx̃n
)ṽ
)∣∣∣

x̃n=0
= 0 j = 1, 2, . . . ,m .

Formula (1.4.9) implies that under changes of local coordinates x the ordering of
the real roots (1.4.6) is preserved and, moreover, the reflection matrix R(ν;x′, ξ′)
behaves as a function on T ′∂M . In the case of simple reflection the same applies
to the phase shift.

It remains only to relate the quantities defined above to billiard trajectories. Let
(x∗(t; y, η), ξ∗(t; y, η)) be a trajectory which experiences a reflection at t = t∗(y, η) .
Then

ν = A2m(y, η) , (x′, ξ′) = (x∗′(t∗(y, η); y, η), ξ∗′(t∗(y, η); y, η)) ∈ T ∗∂M
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are the values of parameters corresponding to this particular reflection, and these
are the values to be substituted into all the functions defined in this section. In
particular, we get

ξ∗n(t∗(y, η)− 0; y, η) = ζ−k (A2m(y, η);x∗′(t∗(y, η); y, η), ξ∗′(t∗(y, η); y, η)) ,

ξ∗n(t∗(y, η) + 0; y, η) = ζ+
l (A2m(y, η);x∗′(t∗(y, η); y, η), ξ∗′(t∗(y, η); y, η))

for some k and l . Consequently

Rlk(A2m(y, η);x∗′(t∗(y, η); y, η), ξ∗′(t∗(y, η); y, η))

is the element of the reflection matrix corresponding to our particular reflection;
here l is the number of the row, and k is the number of the column.

In the case of simple reflection

argR(A2m(y, η);x∗′(t∗(y, η); y, η), ξ∗′(t∗(y, η); y, η))

is the phase shift generated by our particular reflection. Recall that in the case of
simple reflection

|R(A2m(y, η);x∗′(t∗(y, η); y, η), ξ∗′(t∗(y, η); y, η))| = 1 ,

and consequently the 1× 1 reflection matrix is uniquely determined by the phase
shift. The phase shift itself is, of course, defined modulo 2π ; we shall always choose
it to be locally continuous in (y, η) .

1.5. Hamiltonian billiards III : Maslov index

In this section we introduce an important geometric characteristic of a billiard
trajectory which is called the Maslov index . We also state some simple results
which justify the definitions and can be used for the calculation of the Maslov
index. These results will be proved in Appendix D.

In geometrical optics the Maslov index, multiplied by −π/2 , is interpreted as the
phase shift generated by the passage of the trajectory through caustics. It should
be mentioned that the words “Maslov index” are often used for absolutely different
objects and, probably, in our case it would be more appropriate to call it the Morse
index rather than the Maslov index. However, we will follow the tradition.

The notion of the Maslov index introduced in this section is necessary for the
formulation of the results of Sections 1.7, 1.8, but it is not needed in Section 1.6.

Consider a T -admissible billiard trajectory

(1.5.1)0 Γ =
(
x∗(t; y0, η0) , ξ∗(t; y0, η0)

)
0 ≤ t ≤ T ,

such that x∗(T ; y0, η0) /∈ ∂M . Let O ∈ T ′M be a sufficiently small conic neigh-
bourhood of the point (y0, η0) and

(1.5.1)
(
x∗(t; y, η) , ξ∗(t; y, η)

)
, 0 ≤ t ≤ T , (y, η) ∈ O ,

be the family of T -admissible billiard trajectories with the same type (see end of
subsection 1.3.3). We denote by 0 < t∗1(y, η) < · · · < t∗r(y, η) < T the moments of
reflection.
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Let us introduce in local coordinates the matrices x∗η and ξ∗η with elements
(x∗j )ηi

and (ξ∗j )ηi
respectively ( j being the number of the row and i that of the

column). Certainly, at the moments of reflection these matrices are not smooth
in t , and at these points we have to consider the matrices x∗η(t∗k(y, η) − 0; y, η) ,
ξ∗η(t∗k(y, η)− 0; y, η) and x∗η(t∗k(y, η) + 0; y, η) , ξ∗η(t∗k(y, η) + 0; y, η) .

Throughout the section we assume that

(1.5.2) x∗η(T ; y0, η0) = 0 .

Under change of coordinates x∗η behaves as a vector in x and as a vector in y ,
i.e., in new coordinates x̃∗η̃ = (∂x̃/∂x) · x∗η · (∂ỹ/∂y)T where ∂x̃/∂x and ∂ỹ/∂y

are the Jacobi matrices. Therefore the condition (1.5.2) is invariant under changes
of coordinates.

The matrix ξ∗η does not behave as a tensor. We will discuss its properties in
Section 2.3. In particular, we will prove (Lemma 2.3.2) that for any fixed point
(t0; y0, η0) and for any coordinates y one can choose coordinates x in a neigh-
bourhood of x∗(t0; y0, η0) such that

(1.5.3) det ξ∗η(t; y, η) 6= 0

for (t; y, η) close to (t0; y0, η0) .

1. First definition. We start with a definition which is closer to the standard
definition of the Morse index.

Let us choose functions tj(y, η) ∈ C∞(O) , j = 0, . . . , N , and coordinate patches
Ωj ⊂Mx , j = 0, . . . , N − 1 , in such a way that

(1) 0 ≡ t0(y, η) < t1(y, η) < . . . < tN−1(y, η) < tN (y, η) ≡ T ;
(2) for each k = 1, 2, . . . , r there exists a jk such that tjk

(y, η) ≡ t∗k(y, η) ;
(3) x∗(t; y, η) ∈ Ωj for all (t; y, η) ∈ Ǒj , j = 0, 1, . . . , N − 1 ;
(4) the local coordinates defined on Ωj satisfy (1.5.3) for all (t; y, η) ∈ Ǒj ,

j = 0, . . . , N − 1 (here we may need to use coordinates in which ∂M 6=
{xn = 0} , see Remark 2.3.3).

We use the notation

(1.5.4) Ǒj := {(t; y, η) : (y, η) ∈ O , t ∈ [tj(y, η), tj+1(y, η)]} ,

j = 0, 1, . . . , N − 1. Clearly, conditions (1), (2) imply that N ≥ r + 1 .
Let us introduce the matrix-functions Cj = Cj(t; y, η) := (ξ∗η)T · x∗η defined on

the sets (1.5.4). If t = tjk
(y, η) = t∗k(y, η) is a moment of reflection then we set

Cjk−1(t; y, η) := Cjk−1(t−0; y, η) and Cjk
(t; y, η) := Cjk

(t+0; y, η) . Since the shift
along billiard trajectories preserves the canonical 2-form dx ∧ dξ the matrices Cj

are symmetric, i.e., Cj = (x∗η)T · ξ∗η (see Section 2.3). Since the functions x∗j are
homogeneous in η of degree 0, by the Euler identity we have x∗η η ≡ 0 . Therefore
rankx∗η(t; y, η) ≤ n − 1 and, consequently, rankCj(t; y, η) ≤ n − 1 for all j and
(t; y, η) ∈ Ǒj .

Let r−j (t; y, η) be the number of strictly negative eigenvalues of the matrix
Cj(t; y, η) . By r−j (t ± 0; y, η) we shall denote the one-sided limits of the func-
tions r−j (whenever these limits exist).



1.5. BILLIARDS : MASLOV INDEX 33

Definition 1.5.1. The integer number

(1.5.5) αΓ = −
N−1∑
j=0

(
r−j (tj+1(y0, η0); y0, η0) − r−j (tj(y0, η0); y0, η0)

)
is called the Maslov index of the trajectory Γ .

Proposition 1.5.2. Let x̃ be another coordinate system on Ωj satisfying (1.5.3)
and r̃−j (t; y, η) be the number of negative eigenvalues of the corresponding matrix
C̃j(t; y, η) . Then

r−j (t; y, η) − r̃−j (t; y, η) = const ,

i.e. this difference is independent of (t; y, η) ∈ Ǒj .

By Proposition 1.5.2 the difference

r−j (tj+1(y0, η0); y0, η0) − r−j (tj(y0, η0); y0, η0)

does not depend on the choice of the coordinates x . This implies that the definition
of the Maslov index is independent of the choice of the tj , the covering {Ωj} and
the coordinate systems on Ωj . Besides, Proposition 1.5.2 shows that the jumps
r−j (t+0; y, η)−r−j (t; y, η) and r−j (t; y, η)−r−j (t−0; y, η) are invariant objects. Up
to the factor -1, the Maslov index αΓ is equal to the sum of all these jumps along
the billiard trajectory Γ provided the number of jumps is finite.

Lemma 1.5.3. For all k = 1, . . . , r

rankx∗η(t∗k(y, η)− 0; y, η) = rankx∗η(t∗k(y, η) + 0; y, η)

(here we first take the limit in t and then evaluate the rank.)

Let R = R(t; y, η) := rankx∗η(t; y, η) . By Lemma 1.5.3 R(t; y, η) is well defined
at the points of reflection, and we can consider it as a function on [0, T ]×O .

If R(t; y, η) is constant on some subset of (1.5.4) then r−j (t; y, η) is also constant
on this subset. This means that the parts of the trajectory where R does not change
do not contribute to the Maslov index. Thus, the Maslov index αΓ depends only
on the behaviour of the trajectory Γ in the neighbourhoods of the points at which
R has jumps.

If R(t; y, η) < n− 1 then the point x∗(t; y, η) is said to be the conjugate point
of the ray x∗(t; y, η) and the number n− 1−R(t; y, η) is called its multiplicity. In
geometrical optics the set of conjugate points of the rays starting at a fixed point
y is often called the caustic set (or just caustic). It is known that when a ray
x∗(t; y, η) passes through the caustic set the wave amplitude is multiplied by

exp
(
i π (r−j (t+ 0; y, η)− r−j (t− 0; y, η))/2

)
,

or, in other words, the wave acquires the phase shift

π
(
r−j (t+ 0; y, η) − r−j (t− 0; y, η)

)
/2 .

Thus, the quantity fc(t; y0, η0) = αΓπ/2 is the total phase shift generated by the
passage of the ray x∗(t; y0, η0) through caustics.
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Remark 1.5.4. Since C0(0; y, η) ≡ 0 and CN−1(T ; y0, η0) = 0 ,

(1.5.6) αΓ = −
N−1∑
j=1

(
r−j−1(tj(y0, η0); y0, η0) − r−j (tj(y0, η0); y0, η0)

)
.

Let ∂M = ∅ . Then by Proposition 1.5.2 for any j = 1, . . . , N − 1 the expression

σj−1,j := r−j−1(t; y, η) − r−j (t; y, η) , ∀(t; y, η) ∈ Ǒj−1 ∩ Ǒj ,

is an integer constant (note that our σj−1,j differ by sign from Hörmander’s [Hö2,
p. 92] [DuiGuiHö, p. 36(92)]). Let us assume that all the trajectories (1.5.1) are
T -periodic and ΩN = Ω1 . We identify the points (0; y, η) and (T ; y, η) , and then
the set of intersections Ǒj−1 ∩ Ǒj and the constant functions σj−1,j defined on
them is an integer cocycle on S1 × O . From the representation (1.5.6) it is clear
that −αΓ coincides with the value of this cocycle on the closed curve (t; y0, η0) ,
0 ≤ t ≤ T , so αΓ is determined by the corresponding Čech cohomology class.

2. Some explicit formulae. Let r+(x, ξ) and r−(x, ξ) be the numbers of the
positive and negative eigenvalues of the matrix ∂ξξh(x, ξ) . Changing coordinates
x → x̃ we obtain hξ̃ ξ̃ = (∂x̃/∂x) · hξξ · (∂x̃/∂x)T . Therefore the definition of the
functions r+(x, ξ) and r−(x, ξ) is independent of the choice of coordinates. Since
hξ(x, ξ) is positively homogeneous in ξ of degree zero Euler’s identity implies
rank ∂ξξh(x, ξ) ≤ n− 1 for all (x, ξ) ∈ T ′M .

We have seen that in “good” cases the Maslov index αΓ is the sum of the
jumps of r−j (t; y0, η0) . It turns out that under some assumptions these jumps can
be expressed in terms of r+(x∗, ξ∗) , r−(x∗, ξ∗) and R(t; y, η) . Here and below
(x∗, ξ∗) = (x∗(t; y, η), ξ∗(t; y, η)) .

Lemma 1.5.5. Let x∗η(t; y, η) = 0 and rank ∂ξξh(x∗, ξ∗) = n − 1 for some
(t; y, η) ∈ Ǒj . If s 6= 0 is sufficiently small and t+ s ∈ [tj(y, η), tj+1(y, η)] then

(1.5.7) rankCj(t+ s; y, η) = n− 1

and

r−j (t+ s; y, η) =
{
r+(x∗, ξ∗) , s < 0 ,
r−(x∗, ξ∗) , s > 0 .

Lemma 1.5.6. Let r+(x∗, ξ∗) = n−1 for some (t; y, η) ∈ Ǒj . If s is sufficiently
small and t+ s ∈ [tj(y, η), tj+1(y, η)] then

r−j (t+ s; y, η) =

{
r−j (t; y, η)−R(t; y, η) + n− 1 , s < 0 ,

r−j (t; y, η) , s ≥ 0 ,

and (1.5.7) hold.

Remark 1.5.7. In the general case, when the conditions of Lemma 1.5.5 or
Lemma 1.5.6 are not fulfilled, the jumps of r−j depend not only on the matrix
∂ξξh but also on the higher order derivatives of h.
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Example 1.5.8. Let M be a Riemannian manifold and h(x, ξ) = |ξ|x (see
Example 1.2.4). Then r+(x, ξ) = n − 1 for all (x, ξ) ∈ T ′M . Therefore by
Lemma 1.5.6 and Definition 1.5.1 the Maslov index is the number of conjugate
points counted with their multiplicities. Note that in this case the number of
conjugate points on the trajectory Γ is finite; this fact follows from (1.5.7) and the
obvious formula R(t; y, η) = rankCj(t; y, η) .

3. Another definition. In this subsection we give another definition of the
Maslov index which is more traditional. In fact, it is a modification of the classical
definition suggested by V. Arnol’d [Ar1].

In Section 2.4 we will associate with the k-th leg of our family of billiard trajec-
tories (1.5.1) a class Fk of smooth complex-valued non-degenerate phase functions
ϕk which are defined in a neighbourhood of the set

{ (t, x; y, η) : t ∈ [t∗k(y, η), t∗k+1(y, η)] , x = x∗(t; y, η) } , k = 0, . . . , r,

where t∗0(y, η) := 0 and t∗r+1(y, η) := T . The fact that ϕk(t, x; y, η) is a phase
function means that Imϕk ≥ 0 and ϕk is positively homogeneous in η of degree
1. A phase function ϕk belongs to Fk if

(1.5.8) (ϕk)η(t, x; y, η)|x=x∗ = 0 , (ϕk)x(t, x; y, η)|x=x∗ = ξ∗(t; y, η) ,

and
det(ϕk)xη(t, x; y, η)|x=x∗ 6= 0

for all t ∈ [t∗k(y, η), t∗k+1(y, η)] (see Section 2.4 for more precise definitions).
Let us choose a matching sequence of phase functions ϕk ∈ Fk , k = 0, . . . , r ,

for which

(1.5.9) ϕk(t, x; y, η)|x∈∂M = ϕk+1(t, x; y, η)|x∈∂M

(by Lemma 2.6.3 such a sequence always exists). The matrices (ϕk)xη behave as
tensors under changes of coordinates, i.e., they are multiplied by the Jacoby matri-
ces (see Section 2.2). So under changes of coordinates the expressions (det(ϕk)xη)2

are multiplied by positive numbers, which does not change their arguments. More-
over, the condition (1.5.9) implies that(

det2(ϕk)xη / |det2(ϕk)xη|
)∣∣

x=x∗(t∗k+1;y,η)

=
(
det2(ϕk+1)xη / |det2(ϕk+1)xη|

)∣∣
x=x∗(t∗k+1;y,η)

(see formula (2.6.14)). Therefore we can introduce on [0, T ] × O the continuous
function f defined by the equalities

(1.5.10) f(t; y, η) :=
(
det2(ϕk)xη / |det2(ϕk)xη|

)∣∣
x=x∗(t;y,η)

where t ∈ [t∗k(y, η), t∗k+1(y, η)] , k = 0, . . . , r .
Obviously, |f | ≡ 1 . Since x∗|t=0 ≡ y , the conditions (1.5.8) imply that

(ϕ0)xη ≡ I for t = 0 , x = y (see subsection 2.4.1) and, consequently, f(0; y, η) ≡
1 . Therefore there exists a unique continuous branch arg0 f(t; y, η) of the argument
arg f(t; y, η) such that arg0 f(0; y, η) ≡ 0 .

Under the condition (1.5.2) the matrix (ϕr)xη is real for t = T , x = x∗(T ; y0, η0).
Consequently, arg0 f(T ; y0, η0) is a multiple of 2π .
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Definition 1.5.9. The integer number −(2π)−1 arg0 f(T ; y0, η0) is called the
Maslov index of the trajectory Γ .

In other words, the Maslov index is equal to the sum over k = 0, . . . , r of the
variations of −(2π)−1 arg(det(ϕk)xη)2

∣∣
x=x∗(t;y0,η0)

as t goes from t∗k(y0, η0) to
t∗k+1(y0, η0) .

The equivalence of Definitions 1.5.1 and 1.5.9 will be proved in Appendix D.

Remark 1.5.10. When ∂M = ∅ we have only one phase function ϕ = ϕ0

(instead of the sequence {ϕk} ). Let us introduce the differential 1-form

− (2π)−1 d
(
arg(detϕxη)2

∣∣
x=x∗

)
.

Obviously, the Maslov index αΓ coincides with the integral of this 1-form over
the curve (t; y0, η0) , 0 ≤ t ≤ T . Under the assumptions of Remark 1.5.4 this
integral is determined by the corresponding de Rham cohomology class, which
is the image of the Čech cohomology class from Remark 1.5.4 provided by the
standard isomorphism of the Čech and de Rham cohomology groups (see [LapSaVa]
for details).

1.6. Classical two-term asymptotic formula for N(λ)

1. Statement of the result. Having introduced the geometrical concepts of
nonperiodicity (see Definition 1.3.7 and its subsequent generalizations in subsections
1.3.2, 1.3.3) and nonblocking (Definition 1.3.22), we can now formulate the theorem
which gives the classical two-term asymptotic formula for N(λ) . For the case
∂M = ∅ it was established in [DuiGui], and for the case m = 1 in [Iv1], [Me]. The
general result appeared in [Va3], [Va4], [Va7].

Theorem 1.6.1. If the nonperiodicity and nonblocking conditions are fulfilled,
then

(1.6.1) N(λ) = c0λ
n + c1λ

n−1 + o(λn−1) λ→ +∞ .

Here the coefficient c0 is the same as in Theorem 1.2.1 and

(1.6.2) c1 =
∫

T∗∂M

shift+(1;x′, ξ′) dx′ d̄ξ′ ,

where shift+(ν;x′, ξ′) for fixed (x′, ξ′) ∈ T ∗∂M is the spectral shift (see subsection
3) of the auxiliary one-dimensional problem (1.1.7), (1.1.8) on the half-line. For
manifolds without boundary c1 = 0 .

Remark 1.6.2. Formula (1.6.1) can be written down in an equivalent form

(1.6.1′) λk = c
−1/n
0 k1/n − c1(nc0)−1 + o(1) k → +∞ .

The remainder of this section is split into five subsections. In subsection 2 we
briefly discuss the conditions appearing in Theorem 1.6.1. In subsection 3 we define
the spectral shift and produce formulae for its effective evaluation. In subsection 4
we discuss the formula for the second asymptotic coefficient and give two elemen-
tary examples of its calculation. In subsection 5 we formulate a modified version
of Theorem 1.6.1 suited for the case of a pseudodifferential operator acting on a
manifold without boundary.
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2. Discussion of the result. Let us turn once again to Example 1.2.5 (Lapla-
cian on a sphere). We have already noted that in this example the second as-
ymptotic term of N(λ) is of the order λ(n−1)/(2m) . However, it is not of the
form c1λ

(n−1)/(2m) , i.e., the classical two-term Weyl formula (1.6.1) does not hold.
Indeed, it follows from (1.2.4), (1.2.5) that there is a sequence Λj → +∞ such
that N(Λj + 0) − N(Λj) ≥ const Λn−1

j , const > 0 , whereas (1.6.1) would imply
N(λ+0)−N(λ) = o(λn−1) as λ→ +∞ . In other words, looking at the fine struc-
ture of the spectrum we see that in Example 1.2.5 the eigenvalues are unevenly
distributed along the spectrum, they cluster into groups of growing multiplicity.

The reason for the uneven distribution of eigenvalues in Example 1.2.5 is clear —
in this case the spectral problem (1.1.1), (1.1.2) has a very rich group of symmetries
and, consequently, the eigenvalues have very high multiplicities. Such “pathologi-
cally” (in the terminology of [DuiGui]) symmetric cases have to be excluded if we
want to obtain a classical (polynomial) two-term asymptotic formula for N(λ) ,
and this is why we need the nonperiodicity condition. It was first introduced in
[DuiGui] for manifolds without boundary and it appears in all the subsequent works
on classical two-terms spectral asymptotics.

The fact that the (asymptotic) symmetries of the spectral problem (1.1.1), (1.1.2)
can be described in terms of billiard trajectories is a nontrivial one. The precise
role of billiard trajectories will be revealed in further chapters in the course of our
proof. However, the underlying idea is worth mentioning here. Let us introduce
the time variable t by a change λ → Dt ( = −i∂/∂t ), i.e., let us consider the
nonstationary equation

(1.6.3) Av = D2m
t v

with boundary conditions (1.1.2). One can single out (see Section 3.1) solutions of
(1.6.3), (1.1.2) of the form v(x, t) = exp(−itA1/(2m))v0(x) . Clearly, such solutions
contain full information about the spectral problem (1.1.1), (1.1.2). Analysis of the
nonstationary problem (1.6.3), (1.1.2) shows that the singularities of such solutions
propagate along the billiard trajectories defined in Section 1.3, so it is natural to
use them for describing global geometrical characteristics.

Another way of explaining the appearance of billiard trajectories is to try to
solve the spectral problem (1.1.1), (1.1.2) asymptotically. Let us search for the
eigenfunction v in the form

(1.6.4) v = a(x, λ) exp(iλϕ(x)) ,

where a(x, λ) = a0(x) + λ−1a−1(x) + λ−2a−2(x) + . . . , λ → +∞ . Substituting
(1.6.4) into (1.1.1) and leaving only the terms with the leading power of λ , we ob-
tain the eikonal equation A2m(x, ϕx) = 1 the solution of which can be expressed in
terms of Hamiltonian trajectories (1.3.1); see, e.g., [Sh]. A similar construction with
m compensating exponents added to (1.6.4) allows one to satisfy asymptotically
the boundary conditions (1.1.2), with the phase functions ϕ(l) of the compensating
exponents being expressed in terms of reflected billiard trajectories. Unfortunately,
the exponential representation technique works only locally, in the neighbourhood
of a fixed point (x0, ϕx|x=x0

) ∈ T ′M . In the general case one can not solve the
equations (1.1.1) and (1.1.2) on the whole of M and ∂M using this technique, but
it gives an idea why billiard trajectories appear in spectral asymptotics.
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The nonblocking condition is more technical and its necessity in Theorem 1.6.1
is less obvious. Spectral problems which do not satisfy the nonblocking condition
have not yet been studied; we can only say that for such problems the geometric
picture may be very complicated and modern microlocal techniques fail to describe
it adequately.

The nonblocking condition was introduced by the authors in two independent
works [Va4] and [Sa1].

3. Spectral shift of the auxiliary one-dimensional problem. Let us con-
sider the one-dimensional spectral problem (1.1.7), (1.1.8). In this subsection we
define for (1.1.7), (1.1.8) the notion of the spectral shift, and give (without proof)
a convenient trace formula for its evaluation. A more detailed analysis with the
proofs is carried out in Appendix A.

As in Section 1.4, let us omit for the time being the parameter (x′, ξ′) , and
rewrite (1.1.7), (1.1.8) as (1.4.1), (1.4.2). Recall that by A+ we denote the self-
adjoint operator in L2(R+) associated with (1.4.1), (1.4.2).

Let us also consider the spectral problem (1.4.1) on the whole line R with-
out boundary conditions, and let us denote by A the corresponding self-adjoint
operator in L2(R) .

Denote by E+
ν , Eν the spectral projections of the operators A+ , A , respec-

tively. For definiteness we choose E+
ν , Eν to be left-continuous in ν . For each

fixed ν our spectral projections are integral operators

E+
ν =

+∞∫
0

e+(ν, xn, yn) ( · ) dyn , Eν =

+∞∫
−∞

e(ν, xn, yn) ( · ) dyn

with continuous kernels e+ , e .
Denote by θ : L2(R) → L2(R+) the restriction operator; its adjoint

θ∗ : L2(R+) → L2(R) is the extension operator defined by

(θ∗v)(xn) =
{

0 , xn < 0 ,
v(xn) , xn ≥ 0 .

By θX we shall denote the characteristic function of the interval [0, X] , and by
Tr we shall denote the trace of an operator.

Definition 1.6.3. The spectral shift of the problem (1.4.1), (1.4.2) is the func-
tion on R defined as follows:

(1) for ν which are not thresholds (see Section 1.4)

(1.6.5) shift+(ν) =

+∞∫
0

(e+(ν, xn, xn)− e(ν, xn, xn)) dxn

≡ lim
X→+∞

Tr(θX(E+
ν − θEνθ

∗)θX) ;

(2) at thresholds shift+(ν) is defined by left-continuity.
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Convergence of the integral (1.6.9) follows from the asymptotic formula

(1.6.6) e+(ν, xn, xn) − e(ν, xn, xn) =

q∑
k,l=1

√
−A′(ζ+

l (ν))A′(ζ−k (ν))

π xn

(
A′(ζ+

l (ν))−A′(ζ−k (ν))
) Im

(
Rlk(ν) eixn(ζ+

l (ν)−ζ−k (ν))
)

+ O(x−2
n )

as xn → +∞ ; here the Rlk(ν) are the elements of the reflection matrix and the
ζ±l (ν) are the real ζ-roots of the algebraic equation A(ζ) = ν , see Section 1.4 for
details. Formula (1.6.6) implies that normally the integral (1.6.5) is not absolutely
convergent. The absence of absolute convergence in (1.6.5) implies, in turn, that
the operator E+

ν − θEνθ
∗ is not of trace class.

For a positive self-adjoint operator with a purely discrete spectrum the trace
of the spectral projection is the counting function (i.e., the number of eigenvalues
below a given ν ). Hence the notion of the spectral shift is very similar to that of
the counting function. The difference is that the spectral shift may be defined for
self-adjoint operators the spectra of which are not purely discrete; in this situation
the spectral projection is not of trace class and one has to perform a regularization
procedure. In our particular case (1.6.5) regularization is performed in two stages:
firstly, by subtracting the spectral projection of a basic (reference) operator, and
secondly, by introducing the regularizing spatial cut-off θX .

Denote by σ(A+) , σ(A) the spectra of the operators A+ , A . We have

[νst
1 ,+∞) = σ(A) ⊂ σ(A+) ⊂ [0,+∞) ,

where νst
1 is as defined in Section 1.4, and the last inclusion is a consequence of

Conditions 1.1.1′, 1.1.4′. Thus, for any µ ∈ C\σ(A+) we can define the resolvents
R+

µ = (A+ − µI)−1 and Rµ = (A− µI)−1 . For each fixed µ these resolvents are
integral operators

R+
µ =

+∞∫
0

r+(µ, xn, yn) ( · ) dyn , Rµ =

+∞∫
−∞

r(µ, xn, yn) ( · ) dyn

with continuous kernels r+ , r .
For any µ ∈ C \ σ(A+) the operator R+

µ − θRµθ
∗ is of trace class (moreover,

it is of finite rank), and r+(µ, xn, xn)− r(µ, xn, xn) tends to zero exponentially as
xn tends to +∞ . Thus, the expression

(1.6.7) f+(µ) := Tr(R+
µ − θRµθ

∗) ≡
+∞∫
0

(r+(µ, xn, xn)− r(µ, xn, xn)) dxn

is well defined. The function f+ is analytic in C \ σ(A+) , and for any given
ν ∈ σ(A+) which is not a threshold and not an eigenvalue of the problem (1.4.1),
(1.4.2) f+(µ) is bounded as C \ σ(A+) 3 µ→ ν .

Definition 1.6.3 is equivalent to
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Definition 1.6.4. The spectral shift of the problem (1.4.1), (1.4.2) is the func-
tion on R defined as follows:

(1) shift+(ν) = 0 for ν ≤ 0 ;
(2) for positive ν which are not thresholds and are not eigenvalues

(1.6.8) shift+(ν) = (−2πi)−1

∫
L(ν)

f+(µ) dµ ,

where L(ν) is the oriented arc of the circumference |µ| = ν in the complex
µ-plane going counterclockwise from ν + i0 to ν − i0 ;

(3) at thresholds and eigenvalues shift+(ν) is defined by left-continuity.

Let us now list the basic properties of our spectral shift.

Lemma 1.6.5. The function shift+ is bounded:

| shift+(ν)| ≤ m, ∀ν ∈ R.

Recall that 2m is the order of the differential equation (1.4.1).
Let us denote by N+(ν) the counting function of the spectral problem (1.4.1),

(1.4.2), that is the number of eigenvalues below a given ν . Here we count both
eigenvalues outside the continuous spectrum and those embedded in the continuous
spectrum.

Lemma 1.6.6. The function shift+(ν) − N+(ν) is continuous in each of the
zones (1.4.4) of the continuous spectrum.

Lemma 1.6.6 implies that the function shift+ may be discontinuous only at
thresholds and eigenvalues. With account of Proposition A.1.13 this means that the
number of discontinuities of the function shift+ is finite, and, moreover, uniformly
bounded over all problems of this type with fixed order 2m .

Lemma 1.6.7. For any µ ∈ C \ [minσ(A+),+∞)

f+(µ) =

+∞∫
0

shift+(ν)
(ν − µ)2

dν .

A consequence of Lemma 1.6.7 is the following result which can be used for the
evaluation of the jumps of the function shift+ .

Corollary 1.6.8. For any ν ∈ R

shift+(ν + 0) − shift+(ν) = lim
µ→ν

µ∈C\σ(A+)

(ν − µ) f+(µ) .

If ν is an eigenvalue which is not a threshold, then it it is not necessary to
use Corollary 1.6.8 because by Lemma 1.6.6 shift+(ν + 0) − shift+(ν) is just the
multiplicity of the eigenvalue ν . Corollary 1.6.8 is really needed for computing the
jumps of the function shift+ at thresholds. Corollary 1.6.8 is, however, not very
convenient. Below we consider the important special case of a normal threshold (see
Definition 1.4.4). Then the formula for the jump of the function shift+ becomes
completely explicit.
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Definition 1.6.9. We call the normal threshold νst soft if for ν = νst the
problem (1.4.1), (1.4.2) has a solution of the form

v(xn) = eixnζst
+ w(xn) , where w(xn) → 0 as xn → +∞ ,

and rigid if it has no solution of this form. Here ζst is as in Definition 1.4.4.

Lemma 1.6.10. If the threshold νst is normal then

shift+(νst + 0) − shift+(νst) = N+(νst + 0) − N+(νst) ± 1
4
,

where the plus or minus sign is chosen according to whether the threshold νst is
soft or rigid, respectively.

It follows from Lemma 1.6.10 that a normal threshold produces a jump in the
spectral shift which in absolute value is one quarter of the jump produced by an
eigenvalue.

Lemmas 1.6.6, 1.6.10 and Corollary 1.6.8 provide us with an effective descrip-
tion of the jumps of the spectral shift, but we are still left with the problem of
determining its continuous part. Using Definitions 1.6.3 or 1.6.4 for this purpose is
inconvenient. Indeed, Definition 1.6.3 involves the spectral function e+(ν, xn, yn)
of the problem (1.4.1), (1.4.2), the effective construction of which is not completely
trivial, and, moreover, it involves integration in xn . Definition 1.6.4 is better in the
sense that it does not use the spectral function, but on the other hand it contains
a double integral (see (1.6.7), (1.6.8)). Fortunately, this inconvenience can be over-
come. The following lemma gives a formula for the continuous part of the spectral
shift which does not contain the spectral function or any integrations. Everything
is expressed through the reflection matrix R(ν) introduced in Section 1.4.

Lemma 1.6.11. For each zone (1.4.4) of the continuous spectrum there exists a
continuous branch arg0 det

(
i R(ν)

)
of the argument of det

(
i R(ν)

)
such that

(1.6.9) shift+(ν) = N+(ν) +
arg0 det

(
i R(ν)

)
2π

in this zone. For ν lying below the continuous spectrum shift+(ν) = N+(ν) .

Remark 1.6.12. Formula (1.6.9) is a special case of the standard trace formula
from scattering theory

(1.6.10) shift(ν) = N(ν) +
arg0 detS(ν)

2π
,

where N(ν) is the counting function of the perturbed problem and S(ν) is the
scattering matrix; see, e.g., [Ya]. There is, however, a technical difficulty in that
we compare two spectral problems in different Hilbert spaces, namely, L2(R+)
and L2(R) . The natural way of overcoming this difficulty is to consider instead of
the problem on the half-line R+ a problem on the perforated line R+ \ {0} with
boundary conditions

(1.6.11+)
(
B(j)(Dxn

)v
)∣∣∣

xn=+0
= 0 , j = 1, 2, . . . ,m,
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(1.6.11−)
(
B(j)(Dxn

)v
)∣∣∣

xn=−0
= 0 , j = 1, 2, . . . ,m

(cf. (1.4.2)), whereB(j)(Dxn) ≡
(
B(j)(Dxn)

)∗
. Then the problem (1.4.1), (1.6.11+),

(1.6.11−) on the perforated line R+ \{0} is a spectral problem in the Hilbert space
L2(R) , and one can view it as a perturbation of the reference problem (1.4.1) on
the full line R in the same Hilbert space L2(R) . In this case one can develop a con-
sistent scattering theory, see Appendix A, and show that (1.6.10) holds. Moreover,
the scattering matrix in this case is given by the formula

(1.6.12) S(ν) =
(

0 R(ν)
RT (ν) 0

)
,

where R(ν) is the reflection matrix defined in Section 1.4. Formulae (1.6.10),
(1.6.12) imply

(1.6.13) shift(ν) = N(ν) +
arg0 det2

(
i R(ν)

)
2π

.

But the problem (1.4.1), (1.6.11+), (1.6.11−) on the perforated line R+ \ {0} is
invariant under the change v(xn) → v(−xn) , consequently

(1.6.14) shift(ν) = 2 shift+(ν) , N(ν) = 2N+(ν) .

From (1.6.13), (1.6.14) we obtain

shift+(ν) = N+(ν) +
arg0

(
±det

(
i R(ν)

))
2π

with either a plus or a minus. A more detailed analysis shows that the sign in the
latter formula is a plus, and we arrive at (1.6.9).

Further on we use the notation arg0 det
(
i R(ν)

)
for the particular branch of the

argument arg det
(
i R(ν)

)
specified by Lemma 1.6.11. It will be convenient for us

to set arg0 det
(
i R(ν)

)
≡ 0 for ν lying below the continuous spectrum, and to

define arg0 det
(
i R(ν)

)
at thresholds by left-continuity. Under such a convention

the trace formula (1.6.9) holds for all ν ∈ R .
Lemmas 1.6.10, 1.6.11 immediately imply

Corollary 1.6.13. If the threshold νst is normal then∣∣arg0 det
(
i R(νst + 0)

)
− arg0 det

(
i R(νst)

)∣∣ =
π

2
.

If νst is a normal threshold and if we know the choice of the branch
arg0 det

(
i R(ν)

)
of the argument arg det

(
i R(ν)

)
for ν ≤ νst , then Corollary

1.6.13 allows us to choose uniquely the branch arg0 det
(
i R(ν)

)
of the argument

arg det
(
i R(ν)

)
for ν > νst . This is possible because according to Corollary 1.6.13

arg0 det
(
i R(νst + 0)

)
belongs to the interval[

arg0 det
(
i R(νst)

)
− π/2 , arg0 det

(
i R(νst)

)
+ π/2

]
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the length of which is less than 2π . One does not even have to check whether
the threshold νst is soft or rigid. Thus, if all the thresholds are normal we can
determine consecutively the branches arg0 det

(
i R(ν)

)
on all the intervals (1.4.4)

of the continuous spectrum.
Matters are facilitated even further if our one-dimensional problem (1.4.1), (1.4.2)

satisfies the strong simple reflection condition (see Definition 1.4.5). In this case

(1.6.15) arg0 det
(
i R(ν)

)
=

{
0 , if ν ≤ νst

1 ,

arg0

(
i a+

1 (ν)

a−1 (ν)

)
, if ν > νst

1 ,

where the a±1 (ν) are the coefficients from (1.4.7) and the branch of the argument
is uniquely specified by the condition

(1.6.16)
∣∣∣∣arg0

(
i a+

1 (νst
1 + 0)

a−1 (νst
1 + 0)

)∣∣∣∣ =
π

2
.

Further on we indicate the dependence of all our quantities on the parameter
(x′, ξ′) ∈ T ′∂M . The reasoning from the end of Section 1.4 (see formula (1.4.9))
shows that under changes of local coordinates shift+(ν;x′, ξ′) , N+(ν;x′, ξ′) , and
arg0 det

(
i R(ν;x′, ξ′)

)
behave as functions on T ′∂M .

We shall often be using the following two properties of the spectral shift:

(1.6.17) shift+(λ2mν;x′, λξ′) = shift+(ν;x′, ξ′) , ∀λ > 0 ;

for any given local coordinate system x there exists a positive constant such that

(1.6.18) shift+(ν;x′, ξ′) = 0 for |ξ′|2m > const ν .

The rescaling property (1.6.17) follows from the homogeneity of A(x, ξ) , B(j)
mj (x′, ξ)

in ξ . The property (1.6.18) follows from (1.6.17) and the fact that for any given
ξ′ 6= 0 the spectra of the operators A+ , A are strictly positive.

4. The second asymptotic coefficient: discussion and examples. First,
let us show that the integral (1.6.2) exists in the usual Riemann sense. In view of
(1.6.18) the domain of integration in (1.6.2) is, in fact, bounded. Denote by Σ′ the
set of points (x′, ξ′) ∈ T ∗∂M such that 1 is an eigenvalue or a threshold of the one-
dimensional problem (1.1.7), (1.1.8); obviously, the set Σ′ is closed and bounded.
By Lemma A.4.1 the function shift(1;x′, ξ′) is continuous on T ∗∂M \ Σ′ , and by
Lemma 1.6.5 it is uniformly bounded on T ∗∂M . So in order to prove Riemann
integrability it is sufficient to show that the (2n−2)-dimensional Jordan measure of
Σ′ is zero. As the set Σ′ is closed and bounded, this is equivalent to the (2n− 2)-
dimensional Lebesgue measure of Σ′ being zero. In view of Tonelli’s theorem, in
order to prove the latter it is sufficient to show that for any (x′0, ξ

′
0) ∈ T ′∂M the

ray {(x′0, λξ′0), λ > 0} intersects Σ′ at a finite number of points. By rescaling,
a point (x′0, λξ

′
0) belongs to Σ′ if and only if ν = λ−2m is is an eigenvalue or a

threshold of the one-dimensional problem (1.1.7), (1.1.8) with (x′, ξ′) ≡ (x′0, ξ
′
0) ,

and we already know that the number of such ν is finite. This completes the proof
of Riemann integrability.
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Substituting (1.6.14) into (1.6.2) we obtain

(1.6.19) c1 =
∫

T∗∂M

(
N+(1;x′, ξ′) +

arg0 det
(
i R(1;x′, ξ′)

)
2π

)
dx′ d̄ξ′ .

Formula (1.6.19) proves to be very convenient for the practical evaluation of the
coefficient c1 .

Let us illustrate the algorithm of computing the coefficient c1 by a few elemen-
tary examples.

Example 1.6.14. Let us consider the spectral problem

(1.6.20) −∆v = λ2v ,

(1.6.21) v|∂M = 0

in a region M ⊂ R2 . Here ∆ = ∂2/∂y2
1 +∂2/∂y2

2 is the Laplacian and y = (y1, y2)
are Cartesian coordinates in R2 . We already know (see Example 1.2.3) that for
this problem c0 = S/(4π) , where S is the surface area of M . For computing
the coefficient c1 we introduce special local coordinates x = (x1, x2) in the small
neighbourhood of ∂M (see Fig. 9): we associate with a point P ∈M the nearest
point P̃ ∈ ∂M and then we take x2 to be the length of the (straight) line segment
PP̃ and x1 to be the length of the (curvilinear) arc P0P̃ ⊂ ∂M , where P0 ∈ ∂M
is some fixed point.

Figure 9. Local coordinates x .

The auxiliary one-dimensional spectral problem associated with (1.6.20), (1.6.21)
is

(1.6.22) −d2v/dx2
2 + ξ21v = νv ,

(1.6.23) v|x2=0 = 0 ,

where v ≡ v(x2) , x2 ∈ R+ . In the subsequent analysis we assume that ξ1 6= 0 ;
this can be done because the integral (1.6.19) does not depend on the value of the
integrand at a particular ξ1 .

The problem (1.6.22), (1.6.23) has no eigenvalues, so

(1.6.24) N+(ν;x1, ξ1) ≡ 0 .
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The problem (1.6.22), (1.6.23) has only one threshold νst
1 = ξ21 , and the con-

tinuous spectrum is the semi-infinite interval [ξ21 ,+∞) . The points ν > ξ21 of
the continuous spectrum have multiplicity one, and the corresponding generalized
eigenfunctions have the form

v(x2) = sin
(
x2

√
ν − ξ21

)
=

a−1 e
ix2ζ−1 (ν)√

−2πA′(ζ−1 (ν))
+

a+
1 e

ix2ζ+
1 (ν)√

2πA′(ζ+
1 (ν))

(cf. (1.4.7)), where ζ±1 (ν) = ±
√
ν − ξ21 and

(1.6.25) a±1 = ∓ i
√
π
√
ν − ξ21 .

As the strong simple reflection condition is satisfied, we can use formulae (1.6.15),
(1.6.16). Substituting (1.6.25) into (1.6.15) we obtain for ν > ξ21

(1.6.26) arg0 det
(
i R(ν;x1, ξ1)

)
= −π/2 + 2πk

with an unknown integer k . Substituting (1.6.26) into (1.6.16) we establish that
k = 0 . Thus,

(1.6.27) arg0 det
(
i R(ν;x1, ξ1)

)
=
{

0 , if ν ≤ ξ21 ,

−π/2 , if ν > ξ21 .

Finally, substituting (1.6.24) and (1.6.27) into (1.6.19) we obtain

(1.6.28) c1 =

L∫
0

+∞∫
−∞

arg0 det
(
i R(1;x1, ξ1)

)
2π

d̄ξ1 dx1 = −1
4

L∫
0

1∫
−1

d̄ξ1 dx1 = − L

4π
,

where L is the length of ∂M .
It is interesting to determine whether in our case the normal threshold νst

1 is
soft or rigid, and check whether Lemma 1.6.10 gives the proper sign for the jump.
The function v(xn) from Definition 1.6.9 in this case has the form

(1.6.29) v(x2) ≡ 1 .

Obviously, the function (1.6.29) does not satisfy the boundary condition (1.6.23),
so the threshold is rigid. Accordingly, the sign of arg0 det

(
i R(νst

1 + 0;x1, ξ1)
)

is
negative.

Example 1.6.15. Consider the same spectral problem as in Example 1.6.14,
but with the Neumann boundary condition

(1.6.30) ∂v/∂x2|∂M = 0

instead of (1.6.21). Of course, the coefficient c0 is the same as in Example 1.6.14.
In order to compute the coefficient c1 we have to consider the auxiliary one-dimen-
sional spectral problem associated with (1.6.20), (1.6.30). This one-dimensional
problem is described by the equation (1.6.22) with boundary condition

(1.6.31) dv/dx2|x2=0 = 0 .
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The problem (1.6.22), (1.6.31) has no eigenvalues, so (1.6.24) remains true.
The threshold and the continuous spectrum are the same as in Example 1.6.14,

but the generalized eigenfunctions now have the form

v(x2) = cos
(
x2

√
ν − ξ21

)
=

a−1 e
ix2ζ−1 (ν)√

−2πA′(ζ−1 (ν))
+

a+
1 e

ix2ζ+
1 (ν)√

2πA′(ζ+
1 (ν))

,

where

(1.6.32) a+
1 = a−1 =

√
π
√
ν − ξ21

(cf. (1.6.25)). Substituting (1.6.32) into (1.6.15) we obtain for ν > ξ21

(1.6.33) arg0 det
(
i R(ν;x1, ξ1)

)
= π/2 + 2πk

(cf. (1.6.26)) with an unknown integer k . Substituting (1.6.33) into (1.6.16) we
establish that k = 0 . Thus,

(1.6.34) arg0 det
(
i R(ν;x1, ξ1)

)
=
{

0 , if ν ≤ ξ21 ,

π/2 , if ν > ξ21 ,

which differs from (1.6.27) only in sign.
Finally, substituting (1.6.24) and (1.6.34) into (1.6.19) we obtain

(1.6.35) c1 =
L

4π
,

which also differs from (1.6.28) only in sign.
It is easy to see that the function (1.6.29) satisfies the boundary condition

(1.6.31), so the threshold in Example 1.6.15 is soft. Accordingly, the sign of
arg0 det

(
i R(νst

1 + 0;x1, ξ1)
)

is positive.

We are now prepared to explain the origin of the names “rigid” and “soft”
with respect to normal thresholds. The spectral problem considered in Examples
1.6.14, 1.6.15 can be interpreted as the problem of free harmonic vibrations of a
membrane. The Dirichlet boundary condition (1.6.21) (Example 1.6.14) describes
the situation when the edge of the membrane is fixed (“rigid” boundary condition),
and, accordingly, the threshold is called “rigid”. The Neumann boundary condition
(1.6.30) (Example 1.6.15) describes the situation when the edge of the membrane
is free in the direction normal to the surface (“soft” boundary condition), and,
accordingly, the stationary point is called “soft”.

Example 1.6.16. Let M be an n-dimensional Riemannian manifold and A =
−∆ , where ∆ is the Laplacian (see Example 1.2.4). We shall consider the Dirichlet
v|xn

= 0 or Neumann ∂v/∂xn|xn
= 0 boundary conditions, where xn is the

geodesic distance to ∂M . Direct calculations along the lines of Examples 1.6.14,
1.6.15 show that

c1 = ∓ 1
4

(2π)1−n ωn−1 Meas ∂M ,
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where the minus corresponds to the Dirichlet condition, the plus to the Neumann
one, Meas ∂M is Riemannian (n − 1)-dimensional volume of ∂M and ωn−1 is
the volume of the unit ball in Rn−1 . Note that in deriving the above formula it is
convenient to fix a point x0 = (x′0, 0) ∈ ∂M , choose normal geodesic coordinates
with origin x0 , and first integrate in (1.6.19) with respect to d̄ξ′ only. The result
will be a density on ∂M , so the integral with respect to dx′ will be well defined
and lead to the appearance of the factor Meas ∂M .

Examples with nontrivial functions N+(ν;x′, ξ′) and arg0 det
(
i R(ν;x′, ξ′)

)
will be considered in Section 6.2.

Let us now compare the structure of the terms c0 λ
n and c1 λ

n−1 from the
asymptotic expansion (1.6.1).

By (1.2.2) we have

(1.6.36) c0 λ
n =

∫
T ′M

NA(ν;x, ξ) dx d̄ξ ,

where

(1.6.37) NA(ν;x, ξ) =
{

0 , if ν ≤ A2m(x, ξ) ,
1 , if ν > A2m(x, ξ)

(the subscript A in NA indicates that this quantity depends only on the differ-
ential operator A , but not on the boundary conditions). For fixed (x, ξ) ∈ T ′M
the function (1.6.37) is the counting function of the operator of multiplication by
A2m(x, ξ) in R . In other words, (1.6.37) is the counting function of the 1 × 1
matrix A2m(x, ξ) . This trivial spectral problem

(1.6.38) A2m(x, ξ)v = νv

(where v is a real number, not a function) has only one eigenvalue ν = A2m(x, ξ) ,
and (1.6.37) is indeed the corresponding counting function.

With account of (1.6.19) and the rescaling properties of the functions N+(ν;x′, ξ′)
and arg0 det

(
i R(ν;x′, ξ′)

)
(cf. (1.6.17)) we have

(1.6.39) c1 λ
n−1 =

∫
T∗∂M

(
N+(ν;x′, ξ′) +

arg0 det
(
i R(ν;x′, ξ′)

)
2π

)
dx′ d̄ξ′ .

Comparing formulae (1.6.36) and (1.6.39) we see that the terms c0 λ
n and

c1 λ
n−1 have roughly the same structure. In both cases integration is carried out

over a cotangent bundle and the integrand contains the counting function (NA or
N+ ) of some elementary spectral problem. The analogy seems to be spoiled by
the presence of the term arg0 det

(
i R(ν;x′, ξ′)

)
in (1.6.39), but this is in fact quite

natural: it is known that such a quantity plays the role of the counting function for
the continuous spectrum.

It is interesting to note that formula (1.6.19) for the coefficient c1 has a me-
chanical interpretation.

If for some (x′, ξ′) ∈ T ′∂M the auxiliary one-dimensional spectral problem
(1.1.7), (1.1.8) has an eigenvalue, then the original spectral problem (1.1.1), (1.1.2)
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usually has a subsequence of eigenvalues corresponding to eigenfunctions which are
localized in a small neighbourhood of ∂M (xn . λ−1 , with exponential decay for
xn � λ−1 ). Such eigenfunctions are well known in the theory of elasticity and
are associated with the so-called Rayleigh surface waves. In scalar problems this
boundary localization effect may also occur, see Section 6.2 in which we consider the
two-dimensional biharmonic operator with free boundary conditions. The quantity∫

T∗∂M

N+(ν;x′, ξ′) dx′ d̄ξ′

is the contribution of the subsequence of eigenvalues described above to the total
counting function N(λ) .

The mechanical interpretation of the quantity

(1.6.40)
∫

T∗∂M

arg0 det
(
i R(ν;x′, ξ′)

)
2π

dx′ d̄ξ′

is somewhat more complicated. It describes the influence of the boundary condi-
tions on the “generic” eigenfunctions of the problem (1.1.1), (1.1.2), i.e., on those
eigenfunctions which are not localized near the boundary. If the strong simple re-
flection condition is fulfilled then the integrand in (1.6.40) is expressed (see (1.6.15),
(1.6.16)) through the phase shift induced by the reflection. The acquisition of a
phase shift is equivalent to a slight displacement of the boundary, and (1.6.40) can
be viewed as the resulting correction to the first term of the asymptotic expansion
of N(λ) .

5. Pseudodifferential case. In subsection 1.1.8 we stated that apart from the
main spectral problem (1.1.1), (1.1.2) in which A is the differential operator, we
are also interested in the case when A is a pseudodifferential operator acting on a
manifold without boundary. In order to honour this commitment we state below
a modified version of Theorem 1.6.1, which is due to J.J. Duistermaat and V.W.
Guillemin [DuiGui], [DuiGuiHö].

Theorem 1.6.1′. Let ∂M = ∅ and A be a pseudodifferential operator. If the
nonperiodicity condition is fulfilled, then (1.6.1) holds. Here c0 is the same as in
Theorem 1.2.1, and

(1.6.41) c1 = − 1
2m

∫
S∗M

Asub (x, ξ̃) dx d̄ξ̃

= −
(

1 +
n− 1
2m

) ∫
A2m≤1

Asub (x, ξ) dx d̄ξ .

Note that for differential operators of even order the subprincipal symbol is an
odd function with respect to ξ , Asub (x,−ξ) = −Asub (x, ξ) , so for such operators
the integral (1.6.41) is zero. This explains why formula (1.6.2) does not contain the
integral (1.6.41) as an additional term.
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1.7. Nonclassical two-term asymptotic formulae for N(λ)

1. Preliminary discussion. In this section we turn to the case when the
measure of the set Π is nonzero. One can expect that in this situation the two-
term asymptotic formula contains an extra term of order O(λn−1) which reflects
the influence of the periodic trajectories. The most natural conjecture is that

(1.7.1) N(λ) = c0 λ
n + c1 λ

n−1 + Q̃(λ)λn−1 + o(λn−1) , λ→ +∞ ,

where c0 and c1 are the same constants as in (1.4.1), and Q̃(λ) is a bounded
function.

Of course, a function Q̃ satisfying (1.7.1) always exists; for example, we can
take any function Q̃ of the form

Q̃(λ) = λ1−nN(λ) − c0 λ − c1 + o(1) , λ→ +∞ .

But this observation is of no use unless we can say something more definite about
Q̃ . In particular, we would like this function to depend only on the higher order
terms of the differential operator A and the boundary operators B(k) .

However, Example 1.7.1 (see below) shows that, generally speaking, (1.7.1) can
not hold with a Q̃ independent of the lower order terms. Since in the general case
the lower order terms are not invariantly defined, it seems to be impossible to obtain
any general results concerning Q̃ . Therefore we adopt another approach. We shall
prove that there exists a bounded function Q depending only on the principal and
subprincipal symbols of A and on the principal symbols of B(k) , such that

(1.7.2) Q(λ+ ε) − Q(λ) ≥ −ε n c0 , ∀λ ∈ R , ∀ε ≥ 0 ,

and

(1.7.3) c0 λ
n + c1 λ

n−1 + Q (λ− o(1)) λn−1 − o(λn−1) ≤ N(λ)

≤ c0 λ
n + c1 λ

n−1 + Q (λ+ o(1)) λn−1 + o(λn−1) , λ→ +∞ ,

where o(1) is some positive function tending to zero as λ→ +∞ and o(λn−1) =
λn−1o(1) . In view of (1.7.2)

c0 λ
n + c1 λ

n−1 + Q(λ)λn−1

≤ c0 (λ+ ε)n + c1 λ
n−1 + Q(λ+ ε)λn−1 + o(λn−1) , λ→ +∞ ,

for any fixed ε ≥ 0 , so (1.7.3) makes sense.
The asymptotic estimate (1.7.3) implies that the “distance” between the graphs

of the functions

(N(λ))1/n and
(
c0λ

n + c1λ
n−1 + Q(λ)λn−1

)1/n

tends to zero as λ → +∞. The asymptotic formula (1.7.1) would mean that the
distance between these graphs in the vertical direction tends to zero, whereas (1.7.3)
allows also an error o(1) in the horizontal direction.
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In other words, we shall prove that for all ε > 0

(1.7.4) c0 (λ− ε)n + c1 λ
n−1 + Q(λ− ε)λn−1 − o(λn−1) ≤ N(λ)

≤ c0 (λ+ ε)n + c1 λ
n−1 + Q(λ+ ε)λn−1 + o(λn−1) , λ→ +∞ ,

where, generally speaking, o(λn−1) depends on ε . Obviously, (1.7.4) is equivalent
to (1.7.3).

If the function Q is uniformly continuous then we obtain from (1.7.4)

(1.7.5) N(λ) = c0 λ
n + c1 λ

n−1 + Q(λ)λn−1 + o(λn−1) , λ→ +∞ .

We shall call (1.7.5) with a uniformly continuous Q the quasi-Weyl asymptotic
formula.

If

(1.7.6) Q(µj + εj) − Q(µj − εj) ≥ c , j = 1, 2, . . . ,

where µj → +∞ , εj → +0 are some positive sequences and c is a positive
constant, then (1.7.4) implies

(1.7.7) N(µj + εj) − N(µj − εj) ≥ c µn−1
j + o(µn−1

j ) .

This means that the spectrum of the operator A1/(2m) contains contracting groups
of eigenvalues lying in the εj-neighbourhoods of the points µj , whose total mul-
tiplicities are estimated from below by const µn−1

j . Such groups of eigenvalues
are called clusters. The precise location of eigenvalues inside the clusters normally
depends on the lower order terms of the operators A and B(k) . Therefore in the
case of cluster asymptotics one can not expect to have (1.7.5) with a function Q
depending only on the higher order terms.

If the quasi-Weyl formula (1.7.5) holds then there are no clusters in the spectrum.
Indeed, since Q is uniformly continuous,

N(µj + εj) − N(µj − εj) = o(µn−1
j )

for all sequences µj → +∞ and εj → 0 .

Example 1.7.1. Let

(1.7.8) A = (−∆ + (n− 1)2/4)m + V ,

where ∆ is the Laplacian on the unit sphere and V is the operator of multiplication
by a smooth nonnegative function. Recall that the spectrum of the operator
(−∆ + (n− 1)2/4)1/2 consists of the eigenvalues

Λj = j + (n− 1)/2 , j = 0, 1, 2, . . . ,

with multiplicities

(n+ j − 2)! (n+ 2j − 1)
(n− 1)! j!

≥ const Λn−1
j
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(see Example 1.2.5).
We shall see later that for the operator (1.7.8) formula (1.7.4) holds with a

periodic function Q which has jumps at the points j+(n−1)/2 (Example 1.7.11).
Such a function satisfies (1.7.6) with µj = Λj , so we have clusters around the points
Λj . This result can be also obtained by means of perturbation theory: if we add
the lower order operator V to the operator (−∆+(n− 1)2/4)m then the multiple
eigenvalues Λj of (−∆ + (n− 1)2/4)m turn into contracting groups of eigenvalues
with the same total multiplicities.

For a general potential V the quasi-Weyl formula (1.7.5) is not true. However,
the difference

N(λ) − c0 λ
n − c1 λ

n−1 − Q(λ)λn−1

is zero outside εj-neighbourhoods of the points j + (n − 1)/2 , for some εj → 0 .
Note that there is no function Q̃ depending only on the principal and subprincipal
symbols which satisfies (1.7.1) for all potentials V . Indeed, if V ≡ V0 = const > 0
then the spectrum of A1/(2m) consists of the eigenvalues(

(j + (n− 1)/2)2m + V0

)1/(2m)

, j = 0, 1, 2, . . . ,

with the same multiplicities as Λj . Since these eigenvalues depend on the constant
V0 , the function Q̃ in (1.7.1) must also depend on V0 .

2. The case of simple reflection. Assume that the Hamiltonian billiard
system satisfies the simple reflection condition (see Definition 1.3.30).

Definition 1.7.2. For a T -admissible trajectory

Γ = (x∗(t; y, η), ξ∗(t; y, η)) , 0 ≤ t ≤ T ,

let
fr(T ; y, η) be the total phase shift generated by the reflections of the tra-
jectory Γ , that is, the sum of the phase shifts generated by the reflections
of Γ (see end of Section 1.4);
fs(T ; y, η) = − (2m)−1 h1−2m(y, η)

∫ T

0
Asub

(
x∗(t; y, η), ξ∗(t; y, η)

)
dt (this

quantity is interpreted as the phase shift generated by the subprincipal
symbol).

When xη(T ; y, η) = 0 we also define
fc(T ; y, η) to be the phase shift generated by the passage of the trajectory
Γ through caustics, that is, fc(T ; y, η) = −αΓπ/2 where αΓ is the Maslov
index of Γ (see Section 1.5).

The quantity

f(T ; y, η) = fr(T ; y, η) + fs(T ; y, η) + fc(T ; y, η)

is said to be the total phase shift along the trajectory Γ .

The total phase shift is an additive function in the sense that

f(T1 + T2; y, η) = f(T1; y, η) + f (T2;x∗(T1; y, η), ξ∗(T1; y, η)) ,

and the same is valid for fr , fs and fc .
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Definition 1.7.3. For a periodic point (y, η) we denote by T(y, η) the cor-
responding minimal positive period. If, in addition, (y, η) is absolutely T(y, η)-
periodic and admissible, then we set q(y, η) = f(T(y, η); y, η) .

Obviously, q(y, η) is the total phase shift along the primitive closed trajectory
originating from (y, η) . In view of Lemmas 1.3.5 and 1.3.28 the function q is
defined almost everywhere (a.e.) on Πa , as well as on Π .

Lemma 1.7.4. There exists a constant C > 0 such that T(y, η̃) ≥ C for all
(y, η̃) ∈ Π .

Lemma 1.7.5. The functions T and q are measurable.

Let us denote by {τ}2π the residue of the real number τ modulo 2π , that is,

{τ}2π := τ + 2πk ∈ [−π, π) , k ∈ Z .

Clearly, {τ}2π = 2π{τ/(2π) + 1/2} − π , where { · } is the fractional part.

Theorem 1.7.6 ([Sa4], [Sa5], [Sa7]). If the Hamiltonian billiard system satisfies
the simple reflection condition then (1.7.4) (and (1.7.3)) hold with the function

(1.7.9) Q(λ) =
∫

Πa

{π − q− λT}2π

T
dy d̄η̃ .

Note that for each fixed (y, η) ∈ T ∗M we have

(1.7.10) {π − q− λT}2π = 2
∞∑

k=1

k−1 sin k(λT + q)

where the series converges in the sense of distributions. From (1.7.9) and (1.7.10)
one can easily deduce the following elementary properties of the function Q :

(1) Q is uniformly bounded, |Q(λ) | ≤ π
∫
Πa T−1 dy d̄η̃ ;

(2) Q is an oscillating function, i.e., the integral
∫ λ

0
Q(µ) dµ is bounded uni-

formly with respect to λ ∈ R ;
(3) Q is left-continuous;
(4) for all ε > 0 we have Q(λ+ ε)−Q(λ) ≥ −ε(2π)−n meas Πa ;
(5) Q(λ+ 0)−Q(λ) = 2π

∫
Πa(λ)

T−1 dy d̄η̃ , where

Πa(λ) := { (y, η) ∈ Πa : q(y, η) + λT(y, η) = 0 (mod 2π) } ;

(6) if T = T = const a.e. on Πa then Q is 2πT−1-periodic.

In view of (1.2.2′), (4) implies (1.7.2). Moreover, from Theorem 1.7.6 and (4) it
follows that

N(λ+ ε) − N(λ) ≥ ε (2π)−n meas (S∗M \Πa)λn−1 + o(λn−1) .

Therefore we obtain the following
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Corollary 1.7.7. Let the conditions of Theorem 1.7.6 be fulfilled. Assume that
there exists a sequence of points µj → +∞ and an ε > 0 such that the number
of eigenvalues lying in the ε-neighbourhood of µj is o(µn−1

j ) . Then meas Πa =
measS∗M .

The condition T = T = const in (6) seems to be very restrictive. However, the
following lemma shows that it is always satisfied when M and h are analytic and
the set Πa is connected.

Lemma 1.7.8. In the analytic case T ≡ const almost everywhere on any open
connected subset of Πa .

Assume that (6) is fulfilled. Then, since a periodic function is uniformly contin-
uous if and only if it is continuous, Theorem 1.7.6 and (5) immediately imply

Corollary 1.7.9. Let the conditions of Theorem 1.7.6 be fulfilled and T = T =
const a.e. on Πa . Then the quasi-Weyl formula (1.7.5) holds with the function
Q given by (1.7.9) if and only if

meas { (y, η) ∈ Πa : q(y, η) = µ } = 0 , ∀µ ∈ R .

If

(1.7.11) meas { (y, η) ∈ Πa : q(y, η) = q } = Cq > 0

for some constants q and Cq then, in view of (5) and (6),

Q
(
T−1(q + 2πj) + 0

)
− Q

(
T−1(q + 2πj)

)
= (2π)1−n T−1 Cq , j = 1, 2, . . .

This implies

Corollary 1.7.10. Let the simple reflection condition be fulfilled, T = T =
const a.e. on Πa , and (1.7.11) hold for some q . Then we have (1.7.7) with
c = (2π)1−n T−1 Cq , µj = T−1(q + 2πj) and some εj → 0 , i.e., the spectrum
contains clusters.

Thus, if T = T = const a.e. on Πa then either the quasi-Weyl formula holds
or the spectrum contains clusters. If, modulo a set of measure zero, Πa consists of
several open connected components then Q is the sum of functions corresponding
to these components. Each of these functions either generates clusters or gives a
contribution to the quasi-Weyl part of the asymptotics.

Example 1.7.11. For the operator (1.7.8) we have Πa = S∗M , T ≡ 2π ,
q = qc , and qc ≡ π(n− 1) (mod 2π) . Therefore

Q(λ) = (2π)−n meas S∗M
{π − π(n− 1)− 2π λ}2π

2π
= n c0 ({n/2− λ} − 1/2) ,

where {n/2 − λ} is the fractional part of n/2 − λ . The constant c0 is equal to
c0 = 2/n! (see Example 1.2.5), and c1 = 0 since ∂M = ∅ .
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Example 1.7.12. Let M be an n-dimensional unit sphere and A = −∆ + B
where B is a self-adjoint first order differential operator. Again, we have Πa =
S∗M , T ≡ 2π , and qc ≡ π(n− 1) (mod 2π) . However, now q = qc + qs , where

qs(y, η) = − 1
2h

∫
B1 ds ,

B1 is the principal symbol of B , and the integral is taken over the primitive
periodic trajectory originating from (y, η) . In this case the type of asymptotics
is determined by the principal symbol B1 . It can even happen that Q ≡ 0 ,
and then we have the classical Weyl formula for N(λ) (with the same constants
as in Example 1.7.11) though all the trajectories are periodic. For instance, Q
is identically zero if M is a unit three-dimensional sphere embedded in R4 and
B = B + B∗ , where B is the first order differential operator generated by the
vector field with components (−x2, x1,−x4, x3) (this vector field is tangent to the
sphere); see [Sa2], [Sa8].

Example 1.7.13. Let M be a two-dimensional hemisphere of radius R , and
A be the biharmonic operator ∆2 on M with Dirichlet boundary condition. Then

c0 = R2/2 , c1 = − R

2

(
1 + π−1/2 Γ(3/4)

Γ(5/4)

)
,

Q(λ) = −R

(
{Rλ} + (cosπ{Rλ})1/2

+ − K(
√

2/2) +
√

2
2K(

√
2/2)

)
,

where Γ(·) is the Gamma function, {Rλ} is the fractional part of Rλ , and K(·) is
the complete elliptic integral of the first type. Note that the coefficient c1 coincides
with that for a plate with the same length of ∂M , see Section 6.2. The function
Q is R−1-periodic and continuous, so the quasi-Weyl formula holds. The graph of
Q is given below.

Figure 10. The function Q for the Dirichlet bi-Laplacian on a hemisphere.

Elementary analysis of the formula for Q shows that the number of eigenvalues
λk lying in the intervals [(j − 1/2 + ε)/R , (j − ε)/R] , 0 < ε < 1/4 , j = 1, 2, . . . ,
is o(j) as j → ∞ . This means that asymptotically the spectrum contains gaps.
Another elementary observation is that the left derivative of Q is infinite at the
points (j − 1/2)/R , so one expects the density of eigenvalues λk around these
points to be abnormally high.

3. The general case. A similar result is true in the general case of a branching
Hamiltonian billiards.
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Theorem 1.7.14. Let the nonblocking condition (Definition 1.3.22) be fulfilled.
Assume, in addition, that there exist positive numbers T1, T2, . . . tending to +∞

such that meas
(

∪
T 6=0, T 6=Tj

Πa
T

)
= 0 . Then (1.7.4) holds with a bounded function Q

depending only on the principal and subprincipal symbols of A and on the principal
symbols of B(k) , and satisfying (1.7.2). The function Q is left-continuous and
almost periodic with periods T1, T2, . . .

In the general case there is no simple formula for the function Q . One can only
prove that for positive λ this function is given by a trigonometric series

(1.7.12) Q(λ) =
∞∑

j=1

Cj sinλTj ,

where Cj are constants depending on some characteristics of the corresponding
periodic trajectories.

Theorem 1.7.14 is obtained in the same manner as Theorem 1.7.6, and therefore
we shall not prove it in this book. A rigorous proof of (1.7.12) and formulae for Cj

are given in [Sa5] where even a more general situation (with A being a system of
partial differential operators) is examined.

4. Pseudodifferential case. Theorem 1.7.6 remains true for a pseudodiffer-
ential operator acting on a manifold without boundary [Sa4]. The only difference
is that in this case the constant c1 is given by formula (1.6.41).

1.8. Two-term asymptotic formulae for the spectral function

1. The spectral function. The spectral function of the operator A is defined
by

e(λ, x, y) =
∑

λk<λ

vk(x) vk(y) ,

where λk, vk(x), k = 1, 2, . . . , are the eigenvalues and the orthonormalized eigen-
functions of the problem (1.1.1), (1.1.2). Clearly, e(λ, x, y) is a smooth half-density
on M ×M depending on the spectral parameter λ , and e(λ, x, y) ≡ 0 if λ ≤ 0 .

The operator
Eλv =

∑
λk<λ

(v, vk) vk ,

where (· , ·) stands for the inner product (1.1.10), is called the spectral projection of
the problem (1.1.1), (1.1.2) (or of the corresponding self-adjoint operator A1/(2m) ).
The spectral function is the integral kernel of the spectral projection:

Eλv =
∫
M

e(λ, x, y) v(y) dy .

Clearly, e(λ, y, y) is a density on M depending on λ . Integrating over M we
obtain

(1.8.1) N(λ) = TrEλ =
∫
M

e(λ, y, y) dy .



56 I. MAIN RESULTS

Thus, e(λ, y, y) contains full information about the spectrum.
In this section we shall discuss the asymptotic behaviour of e(λ, y, y) as λ →

+∞ at a fixed interior point y . More generally, we shall consider the functions

eP,Q(λ, x, y) =
∑

λk<λ

Q∗vk(x)P ∗vk(y) ,

where P,Q are pseudodifferential operators of the class Ψl
0 , 2l > 1−n . The prin-

cipal and subprincipal symbols of P and Q are denoted by Pl, Ql and Psub , Qsub

respectively. (See Section 2.1 for definitions of pseudodifferential operators and
their symbols.)

Obviously, eP,Q(λ, x, y) is the integral kernel of the operator Q∗EλP . We have

eP,Q(λ, x, y) =
1
4
eP+Q,P+Q(λ, x, y) − 1

4
eP−Q,P−Q(λ, x, y)

+
i

4
eP+iQ,P+iQ(λ, x, y) − i

4
eP−iQ,P−iQ(λ, x, y)

(the polarization formula). Applying polarization, one can easily deduce the results
for eP,Q(λ, x, y) from those for eP,P (λ, x, y) .

2. Notation and definitions. Throughout this section we shall always assume
that the Hamiltonian billiard system satisfies the simple reflection condition (see
Definition 1.3.30).

Let us denote

Πy,T = { η̃ ∈ S∗yM : x∗(T ; y, η̃) = y } , Πy = ∪
T>0

Πy,T .

Let Πa
y,T ⊂ Πy,T be the set of η̃ such that

∂α
η

(
|y − x∗(T ; y, η)|2

)∣∣
η=η̃

= 0 , ∀α ,

and Πa
y = ∪T>0Πa

y,T .

Definition 1.8.1. A point y ∈
◦
M is said to be regular if for almost all η̃ ∈

S∗yM the points (y, η̃) ∈ S∗M are admissible.

Lemma 1.8.2. If y is a regular point then the sets Πy and ∪
0<T≤T+

Πy,T , ∀T+ >

0 , are measurable.

Lemma 1.8.3. If y is a regular point then measy(Πy \ Πa
y) = 0 . Moreover,

meas ∪T>0

(
Πy,T \Πa

y,T

)
= 0 .

Definition 1.8.4. A regular point y ∈
◦
M is said to be focal if measy Πa

y > 0 .

3. Classical asymptotics. The following well known result is an analogue of
Theorem 1.2.1.
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Theorem 1.8.5. If y ∈
◦
M then

(1.8.2) eP,Q(λ, y, y) = c0;P,Q(y)λn+2l + O(λn+2l−1) , λ→ +∞ ,

where

(1.8.3) c0;P,Q(y) = (n+ 2l)−1

∫
S∗

yM

Pl(y, η̃)Ql(y, η̃) d̄η̃ .

The asymptotic formula (1.8.2) is uniform on compact subsets of
◦
M .

Note that eP,Q(λ, y, y) is a density depending on λ , and the coefficient c0;P,Q(y)
also behaves as a density on M . If P and Q are operators of multiplication by
some functions P̃ , Q̃ ∈ C∞0 (

◦
M) and P̃ (y) = Q̃(y) = 1 , then eP,Q(λ, y, y) =

e(λ, y, y) and (1.8.2) takes the form

(1.8.4) e(λ, y, y) = c0(y)λn + O(λn−1) , λ→ +∞ ,

where
c0(y) = (2π)−n voly {η : A2m(y, η) ≤ 1} =

∫
A2m(y,η)≤1

d̄η .

If M is a manifold without boundary then Theorem 1.2.1 is obtained by integrating
(1.8.4) over M .

Remark 1.8.6. By (1.8.2), if ord P̃ > ordP and the principal symbols of P̃
and P do not vanish at y , then∑

λk<λ |P̃ vk(y)|2∑
λk<λ |Pvk(y)|2

→ +∞ , λ→ +∞ .

This means that, in a sense, the eigenfunctions vk become more and more oscillat-
ing as k →∞ .

Theorem 1.8.7 ([Sa6]). Let y ∈
◦
M be a regular non-focal point. Then

(1.8.5) eP,P (λ, y, y) = c0;P (y)λn+2l + c1;P (y)λn+2l−1 + o(λn+2l−1)

as λ→ +∞ , where c0;P (y) = c0;P,P (y) and

(1.8.6) c1;P (y) = (n+ 2l− 1)−1

∫
S∗

yM

(
2 Re(Pl Psub ) +

Im{Pl, Pl}
2

)
d̄η̃

+
∫

S∗
yM

(
Im(Pl{h, Pl})−

Asub |Pl|2

2m

)
d̄η̃ .

The asymptotic formula (1.8.5) is uniform on compact subsets of
◦
M which do not

contain any focal or non-regular points.

Assuming that P is the operator of multiplication by a C∞0 -function which is
equal to one in a neighbourhood of y , we obtain

e(λ, y, y) = c0(y)λn + o(λn−1) , λ→ +∞ .

Indeed, in this case Psub = 0 at the point y and the second term in the right-hand
side of (1.8.6) disappears because Asub is an odd function of η̃ . If M is a manifold
without boundary and all the points y ∈ M are non-focal then the last formula
implies (1.6.1) (with c1 = 0 ).
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4. Non-classical asymptotics. Given η̃ ∈ Πy we denote

Ty(η̃) = min { t > 0 : x∗(t; y, η̃) = y } .

If, in addition, η̃ ∈ Πa
y,Ty(η̃) and (y, η̃) is admissible, then we set

qy(η̃) = f (Ty(η̃); y, η̃) ,

where f is the total phase shift from Definition 1.7.2. In the case of a geodesic flow
Ty(η̃) is the length of the minimal geodesic loop originating from the point y and
going in the direction η̃ , and qy(η̃) is the total phase shift along this loop.

Further on in this section we assume that the point y is regular. Then Definition
1.8.1 and Lemma 1.8.3 imply that the function qy is defined a.e. on Πa

y , as well
as on Πy .

Let us define a map Φy : Πa
y → S∗yM by

Φy η̃ = ξ∗ (Ty(η̃); y, η̃) ,

and let
Jy(η̃) = | det ξ∗η (Ty(η̃); y, η̃) | .

If x∗η(t; y, η) = 0 then |det ξ∗η(t; y, η)| 6= 0 behaves under change of coordinates as a
density in x and a density to the power -1 in y . Therefore the restriction of Jy to
Πa

y is independent of the choice of coordinates y , assuming that we take the same
coordinates for x and for y . Moreover, since the shift along billiard trajectories is
a non-degenerate map and x∗η = 0 on Πa

y , we have Jy ≥ const > 0 uniformly on
Πa

y .
We shall need the following two lemmas.

Lemma 1.8.8. The functions Ty and qy are measurable.

Lemma 1.8.9. For any measurable set Ω ⊂ Πa
y the set ΦyΩ ⊂ S∗yM is also

measurable and

(1.8.7) measy(ΦyΩ) =
∫

Ω

Jy(η̃) dη̃ .

In other words, Lemma 1.8.9 states that Jy is the Radon–Nikodym derivative
of the measure measy(Φy · ) with respect to measy .

Let Uy : L2(S∗yM) → L2(S∗yM) and Uy,λ : L2(S∗yM) → L2(S∗yM) be the linear
operators defined as follows:

(Uyf) (η̃) =

{
0 , if η̃ /∈ Πa

y ,

e−iqy(η̃)
√
Jy(η̃) f (Φy η̃) , if η̃ ∈ Πa

y ,

(Uy,λf) (η̃) = e−iλTy(η̃) (Uyf) (η̃)

(here λ is considered as a parameter). By Lemma 1.8.8 the operators Uy and
Uy,λ are partially isometric with kernel

{f ∈ L2(S∗yM) : supp f ∩ ΦyΠa
y = ∅}

and range

UyL2(S∗yM) = Uy,λL2(S∗yM) = {f ∈ L2(S∗yM) : supp f ⊂ Πa
y} .
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Lemma 1.8.10. For each compact set K ⊂
◦
M there exists a constant CK > 0

such that Ty(η̃) ≥ CK for all y ∈ K , η̃ ∈ Πy .

Lemma 1.8.11. For all f ∈ L2(S∗yM) the series

‖f‖2L2(S∗
yM) +

∞∑
k=1

2 Re
(
f, Uk

y,λ f
)
L2(S∗

yM)

converges in the sense of distributions in λ . Its sum is a positive Borel measure
on R .

By Lemma 1.8.11 the series

(1.8.8)
∞∑

k=1

(
Uk

y,λ + (Uk
y,λ)∗

)
converges in the weak operator topology and defines a Borel measure with values
in the space of bounded operators in L2(S∗yM) .

Lemma 1.8.12. The Fourier transform Fλ→t

[∑∞
k=1

(
Uk

y,λ + (Uk
y,λ)∗

)]
van-

ishes in a neighbourhood of zero.

Let Q(y, λ) be the operator-valued distribution function of the measure (1.8.8)
such that Fλ→t[Q(y, λ)] = 0 for sufficiently small t . Clearly, Q(y, λ) = Q∗(y, λ) ,
∀λ ∈ R .

Lemma 1.8.13. The function Q(y, λ) is uniformly bounded and oscillating in
the sense that

∫ λ

0
Q(y, µ) dµ is uniformly bounded.

Now we can state the following general result (it is an analogue of Theorem
1.7.6).

Theorem 1.8.14 ([Sa6]). Let y ∈
◦
M be a regular point. Then

(1.8.10) c0;P (y)λn+2l + c1;P (y)λn+2l−1 + QP (y, λ− o(λ))λn+2l−1 − o(λn+2l−1)

≤ eP,P (λ, y, y)

≤ c0;P (y)λn+2l + c1;P (y)λn+2l−1 + QP (y, λ+ o(λ))λn+2l−1 + o(λn+2l−1)

as λ → +∞ , where c0;P (y) , c1;P (y) are the same as in Theorem 1.8.7 and

QP (y, λ) =
(
Pl|S∗

yM ,Q(y, λ) Pl|S∗
yM

)
L2(S∗

yM)
.

Note that, in view of Lemma 1.8.11,

QP (y, λ+ ε) − QP (y, λ) ≥ − ε (n+ 2l) c0;P (y) , ∀λ ∈ R , ∀ε ≥ 0 ,

so (1.8.10) makes sense.
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5. The case Ty ≡ const . If the function QP (y, λ) is uniformly continuous in
λ then (1.8.10) implies the quasi-Weyl formula

(1.8.11) eP,P (λ, y, y) = c0;P (y)λn+2l + c1;P (y)λn+2l−1

+ QP (y, λ)λn+2l−1 + o(λn+2l−1) .

In the general case the definition of Uy,λ involves two non-commuting operators
(Uy and multiplications by Ty ) which makes it very difficult to give any simple
sufficient conditions for the function QP (y, λ) to be uniformly continuous.

In this subsection we consider a special case assuming that there exists a constant
T such that

(1.8.12) Ty(η̃) = T almost everywhere on Πa
y .

This assumption is motivated by the following

Lemma 1.8.15. In the analytic case Ty ≡ const almost everywhere on any
open connected subset of Πa

y .

Under the condition (1.8.12) Uy,λ = e−iλTUy , so the operator-valued function
Q(y, λ) is defined by the series

∞∑
k=1

(
(ikT )−1 eikλT (Uk

y )∗ − (ikT )−1 e−ikλTUk
y

)
.

In this case Q(y, λ) is 2πT−1-periodic in λ , so it is uniformly continuous if and
only if it is continuous.

Proposition 1.8.16. Under the condition (1.8.12)

Q(y, λ) = {π + argUy − λT}2π

where {·}2π denotes the residue modulo 2π , and the function {π+argUy−λT}2π

of the contraction operator Uy is understood in the sense of the Sz.-Nagy–Foias
calculus [Sz.-NaFoi].

According to [Sz.-NaFoi], any contraction operator U in the Hilbert space H can
be represented as PŨ

∣∣∣
H

, where Ũ is a unitary operator acting in a wider Hilbert

space H̃ ⊃ H and P is an orthogonal projection in H̃ such that PH̃ = H and
U j = PŨ j

∣∣∣
H

, j = 0, 1, 2, . . . . The operator Ũ is called a unitary dilation of U .

For an arbitrary measurable function F on S one defines F (U) = PF (Ũ)
∣∣∣
H

.

Proposition 1.8.16 implies

Theorem 1.8.17 ([Sa6]). Under the condition (1.8.12) the function QP (y, λ)
is uniformly continuous with respect to λ if and only the function Pl|S∗

yM is or-
thogonal in L2(S∗yM) to all the eigenfunctions of Uy corresponding to eigenvalues
lying on S (i.e., with modulus 1).
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On the other hand, if Pl|S∗
yM is an eigenfunction of Uy corresponding to an

eigenvalue eis0 , s0 ∈ (−π, π] , then

QP (y, λ) = {π + s0 − λT}2π

∫
S∗

yM

|Pl|2 d̄η̃

and QP (y, λ) has jumps at the points

Λj = T−1 (2πj + s0) , j = 1, 2, . . . ,

In this case, by Theorem 1.8.14,

eP,P (y, y,Λj+1−ε) − eP,P (y, y,Λj+ε) = o(Λn+2l−1
j ) , ∀ε ∈ (0, πT−1) , Λj → +∞ ,

and there exist positive numbers εj → 0 such that

eP,P (y, y,Λj +εj) − eP,P (y, y,Λj−εj) = 2πΛn+2l−1
j

∫
S∗

yM

|Pl|2 d̄η̃ + o(Λn+2l−1
j ) .

In other words, eP,P (y, y, λ) has a purely cluster asymptotics with clusters around
the points Λj . This implies, in particular, that there exist eigenvalues of A1/(2m)

lying in small neighbourhoods of the points Λj , i.e., the eigenvalue of Uy generates
a series of eigenvalues of A1/(2m) .

Example 1.8.18. Let M be a two-dimensional surface of revolution and A be
the Laplace–Beltrami operator. Then e(y, y, λ) has purely cluster asymptotics at
the poles. The corresponding series of eigenvalues is λj = π(j+ 1/2)/l , where l is
the length of the meridian.

Example 1.8.19. Let M be a ball in Rn and A be the Laplace operator
subject to Dirichlet or Neumann boundary condition. Then (1.8.5) holds for all
points y excluding the centre of the ball. At the centre e(y, y, λ) has a purely
cluster asymptotics.

Example 1.8.20. Let M be the flat domain bounded by an ellipse and A be
the Laplace operator subject to Dirichlet or Neumann boundary condition. Then
(1.8.5) (with c

(0)
0,P = (4π)−1, c(0)1,P = 0 ) holds at all interior points excluding the

foci of the ellipse. The foci are focal points. The corresponding operators Uy have
purely continuous spectrum, so the quasi-Weyl formula (1.8.11) holds. In particular,
if y is a focus and P is the operator of multiplication by a C∞0 (

◦
M)-function equal

to 1 at y , then

QP (y, λ) =
1

8π3a

∫ +∞

−∞

{
µ ln

1 + ε

1− ε
− 4aλ

}
2π

f2(µ) dµ ≡
∞∑

k=1

bk sin(4akλ) ,

where

f(µ) =
∫ +∞

−∞

cosµτ√
cosh 2τ

dτ , bk =
(−1)k

4π3ak

∫ +∞

−∞
cos
(
kµ ln

1 + ε

1− ε

)
f2(µ) dµ ,
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2a is the length of the major axis and 0 < ε < 1 is the eccentricity. The graph of
this function for ε = 1/2 is given below.

Figure 11. The function QP (y, λ) for a = 1 , ε = 1/2 .

6. Off-diagonal asymptotics. We do not consider in this book the asymptotic
behaviour of e(λ, x, y) when x 6= y . This is a much more complicated problem,
mostly because the function e(λ, x, y) is not monotone in λ . It is known [Hö1],
[DuiGuiHö] that at interior points

(1.8.13) e(λ, x, y) = O(λn−1) , λ→ +∞ , x 6= y .

More advanced results can be found in [Sa6]. In particular, in [Sa6] it is shown that
under some additional conditions

e(λ, x, y) = o(λn−1) , λ→ +∞ , x 6= y ,

and that the estimate (1.8.13) can not be improved in the general case.

7. Pseudodifferential case. All the main results of this section remain true
for a pseudodifferential operator acting on a manifold without boundary [Sa6].


