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Abstract. Following the approach of Haiden-Katzarkov-Kontsevich [10], to any homo-
logically smooth Z-graded gentle algebra A we associate a triple (ΣA,ΛA; ηA), where ΣA

is an oriented smooth surface with non-empty boundary, ΛA is a set of stops on ∂ΣA

and ηA is a line field on ΣA, such that the derived category of perfect dg-modules of A
is equivalent to the partially wrapped Fukaya category of (ΣA,ΛA; ηA). Modifying ar-
guments of Johnson and Kawazumi, we classify the orbit decomposition of the action of
the (symplectic) mapping class group of ΣA on the homotopy classes of line fields. As
a result we obtain a sufficient criterion for homologically smooth graded gentle algebras
to be derived equivalent. Our criterion uses numerical invariants generalizing those given
by Avella-Alaminos-Geiss in [5], as well as some other numerical invariants. As an appli-
cation, we find many new cases when the AAG-invariants determine the derived Morita
class. As another application, we establish some derived equivalences between the stacky
nodal curves considered in [16].

Introduction

Given a Liouville manifold (M,ω = dλ), a rigorous definition of the compact Fukaya
category, F(M), appears in the monograph [20]. This is a triangulated A∞-category linear
over some base ring K. Roughly speaking, the objects of F(M) are compact, exact, ori-
ented Lagrangian submanifolds in M , equipped with spin structures (if charK 6= 2). The
orientations on each Lagrangian determine a Z2-grading on F(M), and the spin structures
enter in orienting the moduli spaces of holomorphic polygons that enter into the definition
of structure constants of the A∞ operations. It is often convenient to upgrade the Z2-
grading on F(M) to a Z-grading, which can be done under the additional assumption that
2c1(M) = 0 (see [15], [19]). Under this assumption, one defines a notion of a grading struc-
ture on M , and correspondingly considers only graded Lagrangians as objects of F(M),
which now becomes a Z-graded category. We refer to [19] for these general notions. In this
paper, we focus our attention to the case where M = Σ is punctured (real) 2-dimensional
surface, equipped with an area form. A grading structure on Σ can be concretely described
as a homotopy class of a section η of the projectivized tangent bundle of P(TΣ). Note that
there is an effective H1(Σ)’s worth of choices (see Sec. 1). A Lagrangian can be graded if
the winding number of η along L vanishes, and in such a situation a grading is a choice of
a homotopy from the tangent lift L → TL ⊂ TΣ to η|L along L. These gradings extend
in a straightforward manner to the wrapped Fukaya category W(Σ) which contains F(Σ)
as a full subcategory, but also allows non-compact Lagrangians in Σ and more generally,
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partially wrapped categoryW(Σ,Λ), as studied in [10, Sec. 2.1], where Σ is a surface with
boundary and Λ is a collection of stops (i.e., marked points) on ∂Σ.

Given two graded surfaces with stops, (Σi,Λi; ηi) for i = 1, 2, a homeomorphism φ :
Σ1 → Σ2, which restricts to a bijection Λ1 → Λ2, and a homotopy between φ∗(η1) and
η2, one gets an equivalence between the partially wrapped Fukaya categoriesW(Σ1,Λ1; η1)
and W(Σ2,Λ2; η2). Thus, it is important to have a set of explicit computable invariants of
a line field η on a surface with boundary that determine the orbit of η under the action of
the mapping class group of Σ. Our first result (see Theorem 1.2.5) gives such invariants
in terms of winding numbers of η. In the most interesting case when genus is ≥ 2, the
invariants consist of the winding numbers along all the boundary components, plus two
more invariants, each taking values 0 and 1. The first of them is a Z2 valued invariant
which decides whether the line field η is induced by a non-vanishing vector field, while
the second is the Arf-invariant of a certain quadratic form over Z2. Note that from the
numerical invariants of Theorem 1.2.5 one can also recover the genus of the surface and
the numbers of stops on the boundary components, so if these invariants match then then
the corresponding partially wrapped Fukaya categories are equivalent.

Next, we use this result to construct derived equivalences between gentle algebras, intro-
duced by Assem and Skowrónski in [3]. This is a remarkable class algebras with monomial
quadratic relations of special kind with a well understood structure of indecomposable mod-
ules. Furthermore, their derived categories of modules also enjoy many nice properties (see
[7] and references therein). Avella-Alaminos and Geiss [5] gave a combinatorial definition
of derived invariants of finite-dimensional gentle algebras, which form a collection of pairs
of non-negative integers (m,n) with multiplicities. We refer to these as AAG-invariants.
It is known that these invariants do not completely determine the derived Morita class of
a gentle algebra in general (for example, see [1]).

We consider Z-graded gentle algebras and their perfect derived categories (the classical
case corresponds to algebras concentrated in degree 0). For such an algebra A, we denote
by D(A) the perfect derived category of dg-modules over A viewed as a dg-algebra with
zero differential. The category D(A) has a natural dg-enhancement which we take into
account when talking about equivalences involving D(A).

The connection between graded gentle algebras and Fukaya categories was established by
Haiden, Katzarkov and Kontsevich in [10] (cf. [6]): they constructed collections of formal
generators in some partially wrapped Fukaya categories whose endomorphism algebras
are graded gentle algebras. In Theorem 3.2.2 we give an inverse construction1: starting
from a homologically smooth graded gentle algebra A we construct a graded surface with
stops (ΣA,ΛA; ηA) together with a set formal generators whose endomorphism algebra is
isomorphic to A. This leads to an equivalence of the partially wrapped Fukaya category
W(Σ,Λ) with the derived category D(A). In addition, we generalize the combinatorial
definition of AAG-invariants to possibly infinite-dimensional graded gentle algebras and
show that they can be recovered from the winding numbers of ηA along all boundary
components.

1The existence of such construction is mentioned in [10]
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Now recalling our numerical invariants of graded surfaces with stops from Theorem
1.2.5 we obtain a sufficient criterion for derived equivalence between homologically smooth
graded gentle algebras. Namely, if we start with two such algebras A and A′ and find that
the corresponding invariants from Theorem 1.2.5, determined by winding numbers of ηA
and ηA′ , coincide then we get a derived equivalence between A and A′. Note that this
involves checking that A and A′ have the same AAG-invariants, and in addition that two
more invariants with values in {0, 1} match.

As an application, using the above approach we obtain a sufficient criterion for derived
equivalence of homologically smooth graded gentle algebras given purely in terms of AAG-
invariants (see Corollary 3.2.5). Using Koszul duality, we also get a sufficient criterion
for derived equivalence of finite-dimensional gentle algebras with grading in degree 0 (see
Corollary 3.2.6).

In a different direction, we construct derived equivalences between stacky nodal curves
studied in [16], Namely, these are either chains or rings of weighted projective lines glued
to form stacky nodes, locally modelled by quotients (xy = 0)/(x, y) ∼ (ζkx, ζy), where
ζr = 1 and k ∈ (Z/r)∗. In [16, Thm. B] we constructed an equivalence of the derived
category of coherent sheaves on such a stacky curve with the partially wrapped Fukaya
category of some graded surface with stops (this can be viewed as an instance of homological
mirror symmetry). Thus, using Theorem 1.2.5 we get many nontrivial derived equivalences
between our stacky curves. In the case of balanced nodes (those with k = −1) we recover
the equivalences between tcnc curves from [21].
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grant DMS-1509141, and would like to thank Martin Kalck for pointing out the reference
[5]. A.P. is supported in part by the NSF grant DMS-1700642 and by the Russian Academic
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London, Institut des Hautes Etudes Scientifiques, and Korea Institute for Advanced Study.
He would like to thank these institutions for hospitality and excellent working conditions.

1. Line fields on surfaces

1.1. Basics on line fields. Let Σ be an oriented smooth surface of genus g(Σ) with non-

empty boundary with connected components ∂Σ =
⊔b
i=1 ∂iΣ. The mapping class group of

Σ is
M(Σ) = π0(Homeo

+(Σ, ∂Σ)),

where Homeo+(Σ, ∂Σ) is the space of orientation preserving homeomorphism of Σ which
are the identity pointwise on ∂Σ.

Definition 1.1.1. An (unoriented) line field η on Σ is a section of the projectivized tangent
bundle P(TΣ). We denote by

G(Σ) = π0(Γ(Σ,P(TΣ)))

the set of homotopy classes of unoriented line fields.

A non-vanishing vector field i.e. a section of the unit tangent bundle SΣ induces a line
field via the bundle map SΣ→ P(TΣ) which is a fibrewise double covering. However, not
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all line fields come from non-vanishing vector fields: a section of P(TΣ) may not lift to a
section of SΣ.

The trivial circle fibration S1 ι−→ P(TΣ)
p−→ Σ induces an exact sequence

0→ H1(Σ)
p∗−→ H1(P(TΣ))

ι∗−→ H1(S1)→ 0

A line field η determines a class [η] ∈ H1(P(TΣ)) such that ι∗[η]([S1]) = 1 by taking the
Poincaré-Lefschetz dual of the class of the image [η(Σ)] ⊂ H2(P(TΣ), ∂P(TΣ)). Via this
construction, we get an identification

G(Σ) = (ι∗)−1(ζ) ⊂ H1(P(TΣ)),

where ζ ∈ H1(S1) is the generator which integrates to 1 along S1. Thus, the set G(Σ)
is a torsor over H1(Σ). We denote the corresponding action of c ∈ H1(Σ) on G(Σ) by
η 7→ η + c, where

[η + c] = [η] + p∗c.

The mapping class group M(Σ) acts on G(Σ) on the right. Our goal in this section is
to understand the orbit decomposition of G(Σ) with respect to this action.

Given an immersed curve γ : S1 → Σ, one can consider its tangent lift γ̃ : S1 → P(TΣ)
given by (γ, Tγ), where Tγ is the tangent space to the curve γ.

Definition 1.1.2. Given a line field η and an immersed curve γ, define the winding number
of γ with respect to η to be

wη(γ) := 〈[η], [γ̃]〉,
where 〈 , 〉 : H1(P(TΣ))×H1(P(TΣ))→ Z is the natural pairing.

The winding number wη(γ) with respect to η only depends on the homotopy class of η
and the regular homotopy class of γ. From the definition we immediately get the following
compatibility with the action of H1(Σ):

wη+c(γ) = wη(γ) + 〈c, [γ]〉.

Throughout, ∂Σ is oriented with respect to the natural orientation as the boundary of
Σ. In particular, wη(∂D2) = 2 for the unique homotopy class of line fields on D2. For a
boundary component B ⊂ ∂Σ with the opposite orientation, we write −B. Then, we have
wη(−B) = −wη(B).

1.2. Invariants under the action of the mapping class group. The winding numbers
along boundary components of Σ gives the first set of invariants of elements of G(Σ).

Definition 1.2.1. Let Σ be a surface with boundary ∂Σ = tdi=1∂iΣ. The boundary in-
variants of a line field η are the numbers

ri(η) := wη(∂iΣ) + 2 for i = 1, . . . b.

They depend only on the homotopy class of η and are invariant under the action of the
mapping class group M(Σ).
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To go further, we need to study the winding numbers along non-separating curves on
Σ. As is well-known, the winding number invariants do not descend to a map from H1(Σ).
Indeed, if S ⊂ Σ is a compact subsurface with boundary ∂S =

⊔n
i=1 ∂iS, by Poincaré-Hopf

index theorem (see [11, Ch. 3]), we have:

n∑
i=1

wη(∂iS) = 2χ(S) (1.1)

However, considering the reduction modulo 2 we still get a well-defined homomorphism:

[wη]
(2) : H1(Σ;Z2)→ Z2

i.e an element H1(Σ;Z2).

Definition 1.2.2. We define the Z2-valued invariant

σ : G(Σ)→ Z2

η 7→

{
0 if [wη]

(2) = 0

1 otherwise

We have a natural inclusion induced map

i : H1(∂Σ;Z2) ∼= Zb2 → H1(Σ;Z2) ∼= Z2g+b−1
2 .

The cokernel of i is isomorphic to Z2g
2 and comes equipped with a non-degenerate intersec-

tion pairing.
Note that the numbers ri(η) mod 2 are precisely the values of [wη]

(2) on the boundary
cycles. Thus, if ri(η) is odd for at least one i then σ(η) = 1. If all ri(η) are even then we
can check whether σ(η) = 0 by looking at the winding numbers of a collection of cycles
projecting to a basis of the cokernel of i.

Proposition 1.2.3. Suppose η is a line field on Σ defined by the class [η] ∈ H1(P(TΣ)).
There is well defined map

qη : H1(Σ;Z4)→ Z4

given by

qη(
m∑
i=1

αi) =
m∑
i=1

wη(αi) + 2m ∈ Z4,

where αi are simple closed curves. It satisfies

qη(a+ b) = qη(a) + qη(b) + 2(a · b) ∈ Z4

where a, b ∈ H1(Σ;Z4), and a · b denotes the intersection pairing on H1(Σ;Z4).

Proof. In the case when η comes from a vector field v, we have wη(a) = 2wv(a), where
wv(·) is the winding number of the vector field. Hence, the assertion in this case follows
from [12, Thm 1A, Thm 1B]. In general we have [η] = η0 + c, for some c ∈ H1(Σ). Thus,
the function qη(a) := qη0(a) + 〈c, a〉 has the claimed properties. �
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Lemma 1.2.4. Suppose that g(Σ) ≥ 2. Assume that line fields η and θ have ri(η) = ri(θ)
for i = 1, . . . , d, and qη = qθ. Then their homotopy classes lie in the same M(Σ)-orbit.

Proof. The assumption qη = qθ implies that wη(a) ≡ wθ(a) mod 4 for any a ∈ H1(Σ).
Thus, we have θ = η + 4c for some c ∈ H1(Σ). Furthermore, the condition ri(η) = ri(θ)
implies that c has zero restriction to H1(∂Σ). Hence, there exists α ∈ H1(Σ), such that
〈c, γ〉 = (α · γ) for any γ ∈ H1(Σ). Now the fact that η and θ lie in the same M(Σ)-orbit
is proved in exactly the same way as in the proof of [13, Thm. 2.5]. �

Thus, the study of the M(Σ)-orbits on G(Σ) reduces to the study of M(Σ)-orbits on
the set of functions q : H1(Σ,Z4)→ Z4 satisfying

q(a+ b) = q(a) + q(b) + 2(a · b). (1.2)

Let us denote by Quad4 = Quad4(Σ) the set of all such functions (it is an H1(Σ,Z4)-torsor).
Recall that given a symplectic vector space V, (− · −) over Z2, one can consider the set

Quad(V ) of quadratic forms q : V → Z2 satisfying

q(x+ y) = q(x) + q(y) + (x · y). (1.3)

For every q ∈ Quad(V ), the Arf-invariant ([2],[8]) is the element of Z2 given by

A(q) =
n∑
i=1

q(ai)q(bi),

where (ai, bi) is a symplectic basis of V . The Arf invariant is the value that q attains on
the majority of vectors in V .

In the case when ri(η) = wη(∂iΣ) + 2 ∈ 4Z for every i = 1, . . . , d, and the quadratic
function q = qη takes values in 2Z4, we can associate to q a certain quadratic form on a
Z2-vector space, and its Arf-invariant will give us an additional invariant of η modulo the
mapping class group action.

Let us set H := H1(Σ,Z4), K = im(i∗ : H1(∂Σ,Z4) → H1(Σ,Z4)), H = H/2H, K =
K/2K. Since K lies in the kernel of the intersection pairing, for any q ∈ Quad4 the
restriction q|K is a homomorphism K → Z4. Note that for q = qη the value of this
homomorphism on [∂iΣ] is ri(η) mod 4.

Now let q ∈ Quad4 be such that q|K is zero. Then it is easy to see that q descends to a
well defined function qH/K on H/K. Assume in addition that σ(η) = 0, i.e., q takes values
in 2Z4. In this case we have qH/K = 2q, where q is a function H/K → Z2 satisfying (1.3).
It is easy to see that q(x+2y) = q(x), so q can be viewed as a Z2-valued quadratic form on
H/K ' Z2g

2 . Thus, q is an element of Quad(H/K) and we define A(η) as the Arf-invariant
of q.

Theorem 1.2.5. (i) Suppose g(Σ) = 0, then the action of M(Σ) on G(Σ) is trivial.
Moreover, two line fields η and θ are homotopic if and only if

wη(∂iΣ) = wθ(∂iΣ) for all i = 1, . . . d.
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(ii) Suppose g(Σ) = 1. Then two line fields η and θ are in the same M(Σ)-orbit if and
only if

wη(∂iΣ) = wθ(∂iΣ) for all i = 1, . . . d.

and
Ã(η) = Ã(θ) ∈ Z≥0,

where

Ã(η) := gcd({wη(γ) : γ non-separating}) =

gcd({wη(α), wη(β), wη(∂1Σ) + 2, . . . , wη(∂dΣ) + 2}).
Here α, β are simple curves such that [α] and [β] project to a basis of H1(Σ)/ im(i∗).

(iii) Suppose g(Σ) ≥ 2. Then two line fields η and θ are in the same M(Σ) orbit if and
only if the following conditions are satisfied:
(1) wη(∂iΣ) = wθ(∂iΣ) for all i = 1, . . . d;
(2) σ(η) = σ(θ) (this only needs to be checked if all wη(∂iΣ) are even);
(3) if wη(∂iΣ) = wθ(∂iΣ) ∈ 2 + 4Z and σ(η) = σ(θ) = 0 then additionally one

must have
A(η) = A(θ),

where A is an Arf invariant defined above.

Proof. (i) This follows immediately from the fact that G(Σ) is an H1(Σ)-torsor and the
boundary curves ∂iΣ generate the group H1(Σ).
(ii) This is proved in the same way as Theorem 2.8 in [13].
(iii) We need to prove that if the invariants match then η and θ are in the same M(Σ)-
orbit. Note that σ(η) is determined by whether the quadratic function qη is trivial modulo
2 or not. By Lemma 1.2.4, it is enough to prove that the quadratic functions qη and qθ are
in the same M(Σ)-orbit.

First, let us analyze the result of the action of a transvection

Ta(x) = x+ (a · x)a

on quadratic functions in Quad4. We have

q(Ta(x)) = q(x) + (a · x)q(a) + 2(a · x)(x · a) = q(x) + (q(a) + 2)(a · x). (1.4)

In particular, if q(a) = −1 then qTa = q + (a·?).
If q, q′ ∈ Quad4 have q|K = q′|K then (q′− q) is a homomorphism H → Z4, vanishing on

K, hence it has form x 7→ (a · x) for some a ∈ H.
Assume now that q ∈ Quad4 is such that q|K is surjective, i.e., the reduction of q|K

modulo 2 is nonzero. Then we claim that any q′ ∈ Quad4 with q′|K = q|K lies in the
M(Σ)-orbit of q. Indeed, we have q′− q = (a·?) for some a ∈ H. By surjectivity of q|K we
can find k ∈ K such that q(k) = −1− q(a), i.e., q(a+ k) = −1. Then from (1.4) we get

qTa+k = q′.

Next, let us consider q ∈ Quad4 such that q|K takes values in 2Z4. Assume also that
qmod 2 6= 0. We claim that in this case the M(Σ)-orbit of q is determined by q|K . Note
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that qmod 2 is a homomorphismH → Z2 trivial onK, so it is an element of Hom(H/K,Z2).
SinceM(Σ) acts transitively on nonzero elements in Hom(H/K,Z2), it is enough to prove
that if q′ ≡ qmod 2 and q′|K = q|K then q′ and q are in the same M(Σ)-orbit. As before
we deduce that q′ − q = 2(a·?) for some a ∈ H. If q(a) ≡ 1 mod 2 then this immediately
gives q′ = qT 2

a . On the other hand, if q′(a) ≡ q(a) ≡ 0 mod 2 then for any element b with
q(b) ≡ 1 mod 2 we have

qT 2
a+b = q + 2((a+ b)·?) = q′ + 2(b·?) = q′T 2

b ,

so q′ and q are in the same orbit.
Finally, if q takes values in 2Z4 then we have q = 2q for a quadratic form q on H

satisfying (1.3), and we can use the description of M(Σ)-orbits on such forms from [13,
Thm. 1.3]. �

Remark 1.2.6. 1. It follows from (1.1) that the genus of the surface is determined by the
boundary invariants of η via the formula

4− 4g(Σ) =
d∑
i=1

(wη(∂iΣ) + 2). (1.5)

2. In the case g(Σ) = 1, let α, β be the standard non-separating curves in Σ. Then, it can
be shown as in [13, Lemma 2.6] that

gcd({wη(γ) : γ non-separating }) = gcd({wη(α), wη(β), wη(∂1Σ) + 2, . . . , wη(∂dΣ) + 2})

We also note that in the case d = 1, wη(∂Σ) = −2, hence this invariant reduces to
gcd(wη(α), wη(β)) considered in [1].
3. In the case σ(η) = 0, the line field η is induced by a non-vanishing vector field v.
This induces a spin structure on the surface Σ (by considering its mod 2 reduction). The
condition that wη(∂iΣ) ∈ 2 + 4Z means that this spin structure extends to a spin structure
on the compact surface obtained from Σ by capping off the boundaries with a disk. Now,
it is a theorem of Atiyah [4] (see also [12]) that the action of the mapping class group on
the spin structures on a compact Riemann surface has exactly 2 orbits distinguished by
the Arf invariant.

2. Partially wrapped Fukaya categories

The partially wrapped Fukaya category W(Σ,Λ; η) (with coefficients in a field K) is
associated to a graded surface (Σ,Λ; η), where Σ is a connected compact surface with
non-empty boundary ∂Σ, Λ ⊂ ∂Σ is a collection of marked points called stops, and η is
a line field on Σ. There is a combinatorial description of W(Σ,Λ; η) provided in [10]. A
set of pairwise disjoint and non-isotopic Lagrangians {Li} in Σ\Λ generates the partially
wrapped Fukaya category W(Σ,Λ; η) as a triangulated category if the complement of the
Lagrangians

Σ \ {
⊔
i

Li} =
⋃
f

Df
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is a union of disks Df each of which has exactly one stop on its boundary. Figure 1
illustrates how each Df may look like, where the blue arcs are in

⊔
i Li while the black arcs

lie in ∂Σ.

Lm

Lm−1

L·
L2

L1

Figure 1. An example of a disk Df

Furthermore, in this case, the associative K-algebra

AL• :=
⊕
i,j

hom(Li, Lj)

is formal, and it can be described by a graded gentle algebra (see Def. 3.1.1). The
generators of this quiver can easily be described following the flow lines corresponding to
rotation around the boundary components of Σ connecting the Lagrangians. Note that
each boundary component of Σ is an oriented circle (where the boundary orientation is
induced by the area form on Σ). Specifically, a flowline that goes from Lj to Li gives a
generator for hom(Li, Lj) (note the reversal of indices). The data of Λ enters by disallowing
flows that pass through a marked point. The algebra structure is given by concatenation
of flow lines. Given αi ∈ hom(Li, Li+1) for i = 1, . . . , n, we write

αnαn−1 . . . α1 ∈ hom(L1, Ln)

for their product, read from right-to-left, and if non-zero, this expression corresponds to a
flow from Ln to L1.

Finally, the line field η is used to grade the morphism spaces. A convenient way to
determine the line field η is by describing its restrictions along each of the disks Df . Each
such disk is as in Figure 1. Different disks are glued along the curves Li (the blue parts in
their boundary). Changing a line field by homotopy, we can arrange that it is tangent to
Li (as Li are contractible). Thus, every line field on Σ (up to homotopy) can be glued out
of such line fields on the disks Df .

Note that if we have an embedded segment c ⊂ Σ and a line field η, which is transversal
to c at the ends p1, p2 of c, then we can define the winding number wη(c) (first, one can
trivialize TΣ along c in such a way that the tangent line to c is constant, then count the
number of times (with sign) η coincides with the tangent line to c along c. An equivalent
definition is given in [10, Sec. 3.2]). Now a line field on a disk Df , tangent to {Li}, is
determined (up to homotopy) by the integers θi, for i = 1, . . . ,m, given by its winding
numbers along the boundary parts on ∂Σ (the black parts in Figure 1). By definition,
these numbers are the degrees of the corresponding morphisms in the wrapped Fukaya
category.
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The numbers θi can be chosen arbitrarily subject to the constraint
m∑
i=1

θi = m− 2. (2.1)

This last constraint is the topological condition that needs to be satisfied in order for the
line field to extend to the interior of the disk. (Note that the stops do not play a role in
this discussion.)

The gentle algebra AL• is always homologically smooth since so is W(Σ,Λ; η). The
algebra AL• is proper (i.e., finite-dimensional) if and only if there is at least one marked
point on every boundary component. The “if” part is [10, Cor. 3.1]. On the other hand,
if there is a boundary component with no stops, then we can compose flows along this
boundary indefinitely, so AL• is not proper.

In what follows, it will be convenient to consider AopL• as a quiver algebra KQ/I, so that

flow lines from Li to Lj correspond to arrows from the ith vertex to jth vertex. Note that
the collection {Li} generates the partially wrapped Fukaya categoryW(Σ,Λ; η). Therefore,
we have an equivalence

D(AopL•)
∼=W(Σ,Λ; η),

where the category on the left denotes the bounded derived category of perfect (left) dg-
modules over AopL• .

3. Gentle algebras and Fukaya categories

3.1. Graded gentle algebras and AAG-invariants. A quiver is a tupleQ = (Q0, Q1, s, t)
where Q0 is the set of vertices, Q1 is the set of arrows, s, t : Q1 → Q0 is the functions that
determine the source and target of the arrows. We always assume Q to be finite. A path
in Q is a sequence of arrows αn . . . α2α1 such that s(αi+1) = t(αi) for i = 1, . . . , (n− 1). A
cycle in Q is a path of length ≥ 1 in which the beginning and the end vertices coincide but
otherwise the vertices are distinct. For K a field, let KQ be the path algebra, with paths
in Q as a basis and multiplication induced by concatenation. Note that the source s and
target t maps have obvious extensions to paths in Q.

Definition 3.1.1. A gentle algebra2 A = KQ/I is given by a quiver Q with relations I
such that

(1) Each vertex has at most two incoming and at most two outgoing edges.
(2) The ideal I is generated by composable paths of length 2.
(3) For each arrow α, there is at most one arrow β such that αβ ∈ I and there is at

most one arrow β such that βα ∈ I.
(4) For each arrow α, there is at most one arrow β such that αβ /∈ I and there is at

most one arrow β such that βα /∈ I.

In addition, we always assume Q to be connected.

2Our terminology is the same as in [18], so we do not impose the condition of finite-dimensionality in
the definition of a gentle algebras. What we call “gentle algebra” is sometimes referred to as “locally gentle
algebra”.
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We will consider Z-graded gentle algebras, i.e., every arrow in Q should have a degree
assigned to it. For a Z-graded gentle algebra A we denote by D(A) the derived category
of perfect dg-modules over A, where A is viewed as a dg-algebra with its natural grading
and zero differential.

Remark 3.1.2. Note that D(A) is different from the derived category of graded A-
modules. On the other hand, if the grading of A is zero then D(A) is equivalent to
the perfect derived category of ungraded A-modules.

Lemma 3.1.3. (i) A gentle algebra is homologically smooth if and only if there are no
forbidden cycles i.e. cycles αn . . . α2α1 in KQ such that αi+1αi ∈ I for i ∈ Z/n.
(ii) A gentle algebra is proper (i.e., finite-dimensional) if and only if there are no permitted
cycles i.e. paths αn . . . α2α1 in KQ such that αi+1αi /∈ I for i ∈ Z/n.

Proof. The “if” direction is proved in [10, Prop. 3.4]. The “only if” for properness is
well known. It remains to prove that if a gentle algebra A is homologically smooth then
there are no forbidden cycles. Since A is homologically smooth, the diagonal bimodule
is perfect dg-module over Aop ⊗ A. Thus, for every simple A-module S (corresponding
to one of the vertices), we get a quasi-isomorphism of S with a perfect dg-module over
A. It follows that the space Ext∗A−dgmod(S, S) is finite-dimensional. Equivalently, the space
Ext∗A(S, S), computed in the category of ungraded A-modules, is finite-dimensional (see [17,
Thm. 1.3.3]). But the latter space can be computed using the standard Koszul complex,
and the presence of forbidden cycles would mean that for some S the space Ext∗A(S, S) is
infinite-dimensional. �

We will use the following notions from [5].

Definition 3.1.4. A forbidden path is a path in Q of the form

f = αn−1 . . . α2α1 ∈ KQ
such that all (αi) are distinct and for all i = 1, . . . , (n − 2), αi+1αi ∈ I. It is a forbidden
thread if for all β ∈ Q1 neither βαn . . . α2α1 nor αn . . . α2α1β is a forbidden path. In
addition, if v ∈ Q0 with #{α ∈ Q1|s(α) = v} ≤ 1,#{α ∈ Q1|t(α) = v} ≤ 1, then we
consider the idempotent ev as a (trivial) forbidden thread in the following cases:

• either there are no α with s(α) = v or there are no α with t(α) = v;
• we have β, γ ∈ Q1 with s(γ) = v = t(β) and γβ ∈ I.

The grading of a forbidden thread is defined by

|f | =
n−1∑
i=1

|αi| − (n− 2).

Definition 3.1.5. A permitted path is a path in Q of the form

p = αn . . . α2α1 ∈ KQ
such that all (αi) are distinct and for all i = 1, . . . , (n−1), αi+1αi /∈ I, and it is a permitted
thread if for all β ∈ Q1 neither βαn . . . α2α1 nor αn . . . α2α1β is a permitted path. In
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addition, if v ∈ Q0 with #{α ∈ Q1|s(α) = v} ≤ 1,#{α ∈ Q1|t(α) = v} ≤ 1, then we
consider the idempotent ev as a (trivial) permitted thread in the following cases:

• either there are no α with s(α) = v or there are no α with t(α) = v;
• we have β, γ ∈ Q1 with s(γ) = v = t(β) and γβ /∈ I.

The grading of a permitted thread is defined by

|p| = −
n∑
i=1

|αi|.

Remark 3.1.6. Inclusion of the idempotents as forbidden and permitted threads ensures
that every vertex appears in exactly two forbidden threads/cycles and exactly two permit-
ted threads/cycles.

Definition 3.1.7. For a gentle algebra A, a combinatorial boundary component of type I
is an alternating cyclic sequence of forbidden and permitted threads:

b = pnfn . . . p2f2p1f1

such that s(fi) = s(pi) for i ∈ Z/n, and t(pi) = t(fi+1) for i ∈ Z/n with the following
condition:

(?) For each i ∈ Z/n, if fi+1 = αk . . . α1, pi = βm . . . β1, and fi = γn . . . γ1 such that
s(fi) = s(pi) and t(pi) = t(fi+1), we have

γ1 6= β1 and βm 6= αk.

The winding number associated to a combinatorial boundary component b of type I is
defined to be

w(b) :=
r∑
i=1

(|pi|+ |fi|).

We also denote the number n of forbidden threads in b as n(b).
A combinatorial boundary component of type II (that can appear only if A is not proper)

is simply a permitted cycle
pc = αm . . . α1.

The winding number associated to such a cycle is

w(pc) := −
m∑
i=1

|αi|.

A combinatorial boundary component of type II’ (that can appear only if A is not homo-
logically smooth) is simply a forbidden cycle

fc = αm . . . α1.

The winding number associated to such a cycle is

w(fc) :=
m∑
i=1

|αi| −m.

For combinatorial boundary components of types II and II’ we set n(b) = 0.
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Lemma 3.1.8. Let A be a proper gentle algebra, with grading in degree zero. Then the
collection of pairs (n(b), n(b)− w(b)), over all combinatorial boundary components (taken
with multiplicities) coincides with AAG-invariants of A.

Proof. This follows directly from the description of the AAG-invariants in [5, Sec. 3]. Note
that the pair (0,m) in Step (3) of the algorithm of [5, Sec. 3] associated to a forbidden
cycle fc = αm . . . α1 match with the pair (0, w(fc)) associated with the corresponding
combinatorial component of type II’. Indeed, w(fc) = m since the grading of A is in
degree 0. �

From now on we will always assume that our gentle algebras are homologically smooth,
with the exception of Remark 3.2.10.

Motivated by Lemma 3.1.8 we extend the definition of the AAG-invariants to graded
gentle algebras.

Definition 3.1.9. For a graded gentle algebra A we define the AAG-invariants to be
the collection of pairs (n(b), n(b) − w(b)), taken with multiplicities, where b runs over all
combinatorial boundary components of A.

3.2. Relation to Fukaya categories. The definition of the combinatorial boundary com-
ponent for a gentle algebra is motivated by the following proposition:

Proposition 3.2.1. Suppose Σ is a surface with a collection of marked points Λ ⊂ ∂Σ, and
a line field η. Let {Li} be a collection of Lagrangians such that the complement of

⊔
i Li is a

union of disks each of which has exactly one stop on its boundary. Then the combinatorial
boundary components of the homologically smooth gentle algebra A =

(⊕
i,j hom(Li, Lj)

)op
are in natural bijection with the boundary components of ∂Σ. Furthermore, if a combinato-
rial boundary component b corresponds to a boundary component B ⊂ ∂Σ then the number
of forbidden threads in b is equal to the number of stops on B and the winding numbers
match:

wη(B) = w(b).

Proof. Figure 2 shows an example of the way the surface Σ looks around a boundary
component B. Assume first that there is at least one stop on B. Let

q1(1), . . . , q1(k1), q2(1), . . . , q2(k2), . . . , qn(1), . . . , qn(kn)

be the endpoints of the Lagrangians ending on B, ordered compatibly with the orientation
of B. Here we assume that there are no stops between qi(j) and qi(j + 1) and there is
exactly one stop si between qi(ki) and qi+1(1), for i ∈ Z/n. Then for every i ∈ Z/n we have
a permitted thread pi = βi(ki−1) . . . βi(1), where βi(j) is the generator of A corresponding
to the flow on B from qi(j) to qi(j + 1). On the other hand, each stop si lies on a unique
disk D, and by looking at the pieces of ∂D formed by other boundary components of Σ, we
obtain a forbidden thread fi = αmi

. . . α1 starting at the Lagrangian corresponding to qi(1)
and ending at the one corresponding to qi−1(ki−1). Thus, we get a combinatorial boundary
component of type I, b = pnfn . . . p1f1.



14 YANKI LEKILI AND ALEXANDER POLISHCHUK

The winding number of η along the arc passing through the stop, oriented in the opposite
direction to the boundary direction, is determined using the constraint (2.1) to be

|f | =
n−1∑
i=1

|αi| − (n− 2)

On the other hand, the winding number of η along the arc corresponding to the permitted
thread p is simply |p|. Thus, we get the equality wη(B) = w(b).

In the case of a boundary component B ⊂ ∂Σ with no stops, the sequence of flows
between the corresponding ends of Lagrangians on B gives a permitted cycle, i.e., a com-
binatorial boundary component of type II. Again, the winding numbers match.

It is easy to see that in this way we get a bijection between the boundary components
B and the combinatorial boundary components of A.

α1

α2

α3

β1

β2

γ1

γ2

δ1

β̃2

Figure 2. The boundary component is given by the cyclic sequence p2f2p1f1
where f1 = α3α2α1, p1 = β2β1, f2 = γ2γ1 and p2 = δ1. Note that if instead
of f1, we considered the forbidden thread f̃1 = β̃2β1, the condition (?) is
violated.

�

Theorem 3.2.2. (i) Given a homologically smooth graded gentle algebra A over a field
K (with |Q1| > 0), there exists a graded (connected) surface with stops (ΣA,ΛA, ηA), with
non-empty boundary and a derived equivalence

D(A) ∼=W(ΣA,ΛA; ηA)

Furthermore, the AAG-invariants of A are given by the collection of pairs

(ni, ni − wηA(∂iΣA)),

where (∂iΣA)i=1,...,N) are all boundary components of ΣA and ni ∈ Z≥0 is the number of
marked points on ∂iΣA.
(ii) One has

χ(ΣA) = χ(Q) = |Q0| − |Q1|.
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Proof. (i) We define a ribbon graph RA whose vertices are in bijection with the collection
of forbidden threads in Q, and whose edges are in bijection with vertices of Q.

Recall that there are precisely two forbidden threads that pass through a vertex ofQ. The
corresponding edge on RA is defined to connect the two forbidden threads. Furthermore,
we can equip the set of edges in RA incident to a vertex f with a total ordering. Namely,
the set of edges incident to a vertex f of R is in bijection with the set of vertices of Q
which appear in the forbidden thread f . Hence, we can use the order in which these
vertices appear in the forbidden thread. This linear order of edges incident to vertices of
RA induces a ribbon structure on RA, i.e., a cyclic order of edges incident to each vertex.
Therefore, we can consider the associated thickened surface ΣA such that RA is embedded
as a deformation retract of ΣA. (A graph with the additional data of a linear ordering on
the edges incident to a vertex is called a ciliated fat graph [9].)

Thus, to construct ΣA we replace each vertex of RA with a 2-disk D2 and each edge with
a strip, a thin oriented rectangle [−ε, ε] × [0, 1], where the rectangles are attached to the
boundary of the disks according to the given cyclic orders at the vertices. On the boundary
of each disk associated to the vertex of RA we also mark a point, called a stop as follows.
If the linear order on edges incident to this vertex is given by e1 < e2 < . . . < ek, the stop
e0 appears in the circular order such that ek < e0 < e1. We define ΛA by taking the union
of all such points. In particular, the cardinality of ΛA, is equal to the number of forbidden
threads in A.

We claim that the ribbon graph RA and hence the associated surface ΣA is connected.
Indeed, for every vertex v of Q let e(v) be the corresponding edge in RA, viewed as a
subgraph in RA. Since Q is connected, it is enough to check that if v and v′ are connected
by an edge α in Q then e(v) and e(v′) intersect in RA. Indeed, let f be a forbidden thread
containing α (it always exists). Then f is a vertex of both e(v) and e(v′). This proves our
claim that RA is connected.

Dual to the edges of RA we obtain a disjoint collection of non-compact arcs Lv indexed
by vertices of Q. Thus, ΣA is a surface with non-empty oriented boundary, ΛA is a set
of marked points in its boundary, and {Lv : v ∈ Q0} is a collection pair-wise disjoint and
non-isotopic Lagrangian arcs in ΣA \ ΛA. Furthermore, the complement

ΣA \ {
⊔
v

Lv} =
⋃
f

Df

is a union of disks Df indexed by forbidden threads f in Q, with exactly one marked point
on its boundary (see Examples 3.2.7, 3.2.8 below). In particular, the collection {Lv} gives
a generating set.

By construction, there is a bijection between arrows in the quiver Q and the generators
of the endomorphism algebra AL :=

⊕
v,w hom(Lv, Lw) since each edge α in Q is in exactly

one forbidden thread f , and the corresponding Df has a flow associated to α. Furthermore,
two flows α1 : Lv2 → Lv1 and α2 : Lv3 → Lv2 can be composed in AL if and only if αi
is in a forbidden thread fi, for i = 1, 2, such that the disks Df1 and Df2 are glued along
the edge corresponding to v2. But this means that the corresponding elements of A satisfy
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α2α1 /∈ I, as otherwise condition (3) of Definition 3.1.1 would be violated. This imples
that A is naturally identified with AopL as an ungraded algebra.

We define the line field ηA on ΣA as follows. We require that the line field is tangent to
each Lv. Then it suffices to describe its restrictions to the disks Df . Each Df is a 2m-gon
as in Figure 1. The homotopy class of a line field on Df is determined by the winding
numbers θi along the boundary arcs of Df , αi, for i = 1, . . . , (m− 1), avoiding the unique
stop (black in Figure 1) between the Lagrangians (blue in Figure 1). Indeed, the remaining
winding number θm along the boundary arc that passes through the stop is determined by
the condition

∑m
i=1 θi = m− 2, and we can define ηA|Df

as the unique line field with these
winding numbers. Now we set θi, for i = 1, . . . ,m− 1, to be the degree of the generator of
A corresponding to αi.

With this definition A and AopL are identified as graded algebras. Since we also know
that the collection {Lv} generates W(ΣA,ΛA; ηA), we conclude that

D(A) ∼=W(ΣA,ΛA; ηA).

Finally, the last statement follows from Proposition 3.2.1.
(ii) We have χ(ΣA) = χ(RA). Let us denote by v(RA) and e(RA) the numbers of vertices
and edges in RA. We have e(R1) = |Q0|, while v(RA) is the number of forbidden threads.
Let f1, . . . , fm be all forbidden threads. Since every edge of Q belongs to the unique
forbidden thread, we have ∑

`(fi) = |Q1|

(where `(·) is the length). On the other hand, since every vertex is contained in exactly
two forbidden threads, we have ∑

(`(fi) + 1) = 2|Q0|.

Combining this with the previous formula we get

v(RA) = 2|Q0| − |Q1|,

so we deduce that χ(RA) = χ(Q). �

Using formula (1.5) we derive the following property of the AAG-invariants.

Corollary 3.2.3. Let {(ni,mi)}i=1,...,d be the AAG-invariants of a homologically smooth
graded gentle algebra A. Then

d∑
i=1

(ni −mi + 2) = 4− 4g,

where g ≥ 0 is the genus of the corresponding surface ΣA.

Corollary 3.2.4. Given two homologically smooth graded gentle algebras A and B, assume
there exists a homeomorphism of φ : ΣA → ΣB inducing a bijection ΛA → ΛB such that
φ∗(ηA) is homotopic to ηB, i.e., the invariants of ηA and ηB from Theorem 1.2.5 coincide.
Then D(A) ' D(B).
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As a particular case of the last Corollary, we can describe some cases when already
looking at the AAG-invariants gives the derived equivalence.

Corollary 3.2.5. Assume that A and B are homologically smooth graded gentle algebras,
such that the AAG-invariants of A and B coincide (up to permutation) and are given by a
collection {(ni,mi)}i=1,...,d. Assume in addition that one of the following conditions holds:
(a)

∑
i(ni −mi + 2) = 4;

(b)
∑

i(ni −mi + 2) = 0 and gcd(n1 −m1 + 2, . . . , nd −md + 2) = 1;
(c)

∑
i(ni −mi + 2) < 0 and at least one of the numbers ni −mi is odd.

Then D(A) ' D(B).

Proof. By Corollary 3.2.3, the three cases are distinguished by the genus g(ΣA): in case
(a) it is 0, in case (b) it is 1, and in case (c) it is > 1. Now the assertion follows from the
corresponding cases in Theorem 1.2.5. �

We can use Koszul duality to convert our results about homologically smooth graded
gentle algebras into those about finite-dimensional gentle algebras. Namely let A be a
finite-dimensional gentle algebra with grading in degree 0. Let A! be the Koszul dual
gentle algebra (with respect to the generators given by the edges). We equip A! with the
grading for which all edges have degree 1 (i.e., path-length grading). Then the result of
Keller in [14, Sec. 10.5] (“exterior” case) gives an equivalence

Df (A) ' D(A!),

where Df (A) is the bounded derived category of finite-dimensional A-modules (and D(A!)
is the perfect derived category of A! viewed as a dg-algebra, as before).

Furthermore, it is easy to check that the AAG-invariants of A and A! are the same.
Thus, Corollary 3.2.5 leads to the following result.

Corollary 3.2.6. Let A and B be finite-dimensional gentle algebras with grading in degree
0, such that the AAG-invariants of A and B coincide (up to permutation) and satisfy one
of the conditions (a)–(c) of Corollary 3.2.5. Then

Df (A) ' Df (B).

Example 3.2.7. Here is an example illustrating the construction of associating a surface
to a gentle algebra. Consider the gentle algebra given in Figure 3.

1 2 3 4

d

a

b c
bd = 0

Figure 3. An example of gentle algebra

The forbidden threads are given by {a, bd, c, e4}. The permitted threads are given by
{cba, d, e3, e4}. The combinatorial boundary components are given by {p3f3p2f2p1f1, p4f4}
where, f1 = e4, p1 = e4, f2 = c, p2 = e3, f3 = bd, p3 = cba, and f4 = a, p4 = d.
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a bd c e4

2

1

43

Figure 4. Ribbon graph associated to a gentle algebra

The associated ribbon graph is given in Figure 4, where the cyclic order at vertices are
given by counter-clockwise rotation.

Figure 5 depicts the corresponding surface, together with the dual arcs L1, L2, L3, L4.

L3

L4

a

b

c

d

L1

L2

Figure 5. Surface associated to a gentle algebra

Example 3.2.8. Here is another example that produces a genus 1 surface with 2 boundary
components. Consider the gentle algebra given by Figure 6.

1 2 3

4 5 6

a b

c

d

t x

y

z
za = by = xc = dt = 0

Figure 6. Another example of a gentle algebra

The forbidden threads are given by {za, by, xc, dt}, and the permitted threads are given
by {ba, dc, xt, zy}. The combinatorial boundary components are given by {p2f2p1f1, p4f4p3f3}
where f1 = dt, p1 = zy, f2 = xc, p2 = ba, and f3 = za, p3 = dc, f4 = by, p4 = xt.

The corresponding surface is given in Figure 7.

Remark 3.2.9. An optimist’s conjecture would be that conversely if A and B are ho-
mologically smooth graded gentle algebras which are derived equivalent, then there exists
a homeomorphism φ : ΣA → ΣB inducing a bijection ΛA → ΛB and such that φ∗(ηA) is
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homotopic to ηB. Note that to prove this, one needs to show that the topological type of
(ΣA,ΛA; ηA) is a derived invariant of A. This is encoded by the numerical invariants of
ηA introduced in Theorem 1.2.5 (from which one can recover the topological type of the
surface), together with the numbers of marked points on each boundary component.

Remark 3.2.10. In Theorem 3.2.2, it is possible to drop the assumption that A is smooth.
Assume for simplicity that A is proper. In this case, the surface Σ would be glued together
from the disks Df associated to forbidden threads as before, and also disks Dc with an
interior hole, associated with forbidden cycles. In other words, Dc is an annulus whose
inner boundary component has no marked points and is not glued to anything, while
its outer boundary component is connected by strips, corresponding to the vertices in
c, to other disks (this boundary component of Dc still has no stops). In the presence
of unmarked boundary components, there is a dual construction to the construction of
partially wrapped Fukaya categories,W(Σ,Λ; η), namely, the infinitesimal wrapped Fukaya
categories F(Σ,Λ; η), studied in [16]. Its objects are graded Lagrangians which do not
end on the unmarked components of the boundary. Thus, for non-smooth proper gentle
algebras, a version of Theorem 3.2.2 should state the equivalence

D(A) ' F(ΣA,ΛA; ηA)

However, we have not checked that the collection of Lagrangians {Lv} given by the con-
struction in Theorem 3.2.2 (and modified as above) generates F(ΣA,ΛA; ηA).

4. Derived equivalences between stacky curves

4.1. Chains. Recall that in [16] we considered stacky curves C(r0, . . . , rn; k1, . . . , kn−1)
obtained by gluing weighted projective lines

B(r0, r1), B(r1, r2), . . . , B(rn−1, rn)

into a chain, where ki ∈ (Z/ri)∗ are used to determine the stacky structure of the nodes
in this chain. We showed in [16, Thm. B] that the bounded derived category of coherent

3 6

3 6

1 2

4

5

5

a

b

c

d

t

x

y

z

Figure 7. Genus 1 surface with 2 boundary components. Left-right and
top-bottom are identified.
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sheaves on such a stacky curve is equivalent to the partially wrapped Fukaya category of
a surface obtained by a certain linear gluing of the annuli.

Namely, let A(r, r′) denote the annulus with ordered boundary components that has
r marked points p−1 , . . . , p

−
r on the first component and r′ marked points p+1 , . . . , p

+
r′ on

the second boundary component (the points are ordered cyclically compatibly with the
orientation of the boundary). Given a collection of permutations σi ∈ Sri , i = 1, . . . , n−1,
we consider the surface Σlin(r0, . . . , rn;σ1, . . . , σn−1) obtained by gluing the annuli

A(r0, r1), A(r1, r2), . . . , A(rn−1, rn)

in the following way. For each i = 1, . . . , n−1, j = 1, . . . , ri, we glue a small segment of the
boundary around the marked point p+j in A(ri−1, ri) with a small segment of the boundary

around the point p−σi(j) in A(ri, ri+1) by attaching a strip, as in Figure 8.

Figure 8. Surface glued from annuli (top and bottom are identified).
(r0, r1, r2, r3) = (2, 3, 3, 1), σ1 = σ2 : (1, 2, 3)→ (2, 1, 3)

Note the resulting surface has two special boundary components equipped with r0 and
rn marked points, respectively (there are no other marked points on the other boundary
components). The boundary components that arise because of the gluing are from n − 1
groups, so that components in the ith group are in bijection with cycles in the cycle
decomposition of the commutator [σi, τ ] ∈ Sri , where τ is the cyclic permutation j 7→ j−1.

We equip each annulus with the standard line field that has zero winding numbers
on both boundary components. These line fields glue into a line field η on the surface
Σlin(r0, . . . , rn;σ1, . . . , σn−1). More precisely, we take η that corresponds to the horizontal
direction in Figure 8.

It is easy to see that the boundary invariants of η are given as follows. For the two special
boundary components the winding numbers are equal to zero, so the corresponding invari-
ant is 2. For a boundary component corresponding to a k-cycle in the cycle decomposition
of [σi, τ ] the winding number is −2k, so the invariant is 2− 2k.

To get the surface related to the stacky curve C(r0, . . . , rn; k1, . . . , kn−1), we take in [16]
the permutation σi to be the permutation x 7→ −kix of Z/riZ. Let us denote the resulting
surface by Σlin(r0, . . . , rn; k1, . . . , kn−1). We equip it with r0 and rn stops on two special
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boundary components, and denote this set of stops as Λr0,rn . Now [16, Thm. B] states that

Db(CohC(r0, . . . , rn; k1, . . . , kn−1)) ∼=W(Σlin(r0, . . . , rn; k1, . . . , kn−1),Λr0,rn ; η).

Note that for each i the commutator [σi, τ ] is given by x 7→ x + ki + 1 mod(ri), so its
cycle decomposition has pi = gcd(ki+ 1, ri) cycles of length ri/pi. Thus, the corresponding
boundary invariants are 2, 2 (for the special boundary components) and for each i =
1, . . . , n− 1, the number 2− 2ri/pi repeated pi times.

The genus of the surface Σlin(r0, . . . , rn; k1, . . . , kn−1) is given by

g =
1

2

n−1∑
i=1

(ri − pi).

4.1.1. Genus 0. Due to the above formula the genus of the surface is 0 precisely when
ki = −1 for all i. In this case all the other boundary components except for the two special
ones have the zero invariant (since pi = ri). Thus, Theorem 1.2.5 implies that there exists
a homeomorphism

Σlin(r0, . . . , rn;−1, . . . ,−1) ' Σlin(r0, r1 + . . .+ rn−1, rn;−1)

preserving the line fields. In fact, this homeomorphism is easy to construct directly. This
leads to a derived equivalence between the categories of coherent sheaves over C(r0, . . . , rn;−1, . . . ,−1)
and C(r0, r1 + . . .+ rn−1, rn;−1) (see [21]).

4.1.2. Trade-off for balanced nodes. More generally, let I ⊂ [1, n − 1] be the subset of
indices i such that ki = −1, and let rI =

∑
i∈I ri. Then, we have a homeomorphism

Σlin(r0, . . . , rn; k1, . . . , kn−1) ' Σlin(r0, rI , (ri)i 6∈I , rn;−1, (ki)i 6∈I)

preserving the line fields. This can be either derived from Theorem 1.2.5 as above or
constructed directly. As before, this leads to a derived equivalence of the corresponding
stacky curves.

4.1.3. Genus 1. The surfaces Σlin(r•; k•) can have genus 1 only when ri0−pi0 = 2 for some
i0 ∈ [1, n− 1] and ri = pi for i 6= i0. This can happen only when either ri0 = 3 or ri0 = 4
and ki0 = 1. These cases are distinguished by the presence of the boundary components
with the invariant either −4 or −2. So in this case we do not any other equivalences except
those due to the trade-offs for balanced nodes.

4.1.4. Genus ≥ 2. Because of the two special components with the boundary invariant 2,
the Arf-invariant never appears. Thus, two surfaces Σlin(r•; k•) and Σlin(r′•; k

′
•) of genus

g ≥ 2 are homeomorphic as surfaces with a line field, whenever we have r0 = r′0, rn = r′n
and the sequence ((r1/p1)

p1 , . . . , (rn−1/pn−1)
pn−1) differs from the corresponding sequence

for (r′•, k
′
•) by a permutation (here (ri/pi)

pi means the number ri/pi repeated pi times).
For example, we can specialize to the case n = 2, r0 = r2 = 0, r1 = r. Note that the

corresponding stacky curve C(0, r, 0; k) is the global quotient of the affine coordinate cross
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xy = 0 by the µr-action ζ · (x, y) = (ζkx, ζy). We obtain that for k, k′ ∈ (Z/r)∗, such that
gcd(k + 1, r) = gcd(k′ + 1, r), there exists an equivalence

Db Coh(C(0, r, 0; k)) ' Db Coh(C(0, r, 0; k′)).

4.2. Rings. Now let us consider another class of stacky curves considered in [16], de-
noted by R(r1, . . . , rn; k1, . . . , kn). They are defined by gluing the weighted projective lines
B(r1, r2), B(r2, r3), . . . , B(rn, r1) into a ring, where as before ki ∈ (Z/ri)∗ are used to de-
termine the stacky structure of the nodes.

On the symplectic side we can modify our definition of the surfaces Σlin(r0, . . . , rn;σ1, . . . , σn−1)
as follows. Starting with the annuli A(r1, r2), A(r2, r3), . . . , A(rn, r1) we can glue them
circularly using permutations σ1, . . . , σn. Thus, the corresponding surface could be rep-
resented similarly to Figure 8 but with the right and left ends identified (so that the
corresponding boundary components disappear). We denote the resulting surface by
Σcir(r1, . . . , rn;σ1, . . . , σn). Similarly to the case of a linear gluing it is equipped with a
natural line field η that corresponds to the horizontal direction when the surface is depicted
as on Figure 8.

By [16, Thm. B], we have an equivalence

Db(CohR(r1, . . . , rn; k1, . . . , kn)) ∼=W(Σcir(r1, . . . , rn; k1, . . . , kn); η)

with the (fully) wrapped Fukaya category of the surface

Σcir(r1, . . . , rn; k1, . . . , kn) := Σcir(r1, . . . , rn;σ(k1), . . . , σ(kn)),

where σi is the permutation x 7→ −kix of Z/riZ. The genus of this surface is given by

g = 1 +
1

2

n∑
i=1

(ri − pi).

4.3. Case of irreducible stacky curve. This is the case n = 1. Let r = r1. Let us
consider the case of k ∈ Zr such that gcd(k + 1, r) = 1 (note that this is possible only
when r is odd). Then the surface Σcir(r; k) has genus g = (r + 1)/2 and one boundary
component with the winding number −2r, i.e., the invariant 2 − 2r. Note that 2 − 2r is
divisible by 4, so to determine the orbit of the line field under the mapping class group we
have to calculate the corresponding Arf-invariant. This invariant will depend on k.

First, let us consider the case k = 1. Let us look at the simple curves αi, i = 1, . . . , r−1,
depicted on Figure 9. In addition, we have two simple curves α and β corresponding to a
vertical and horizontal line on Figure 9.

Then the classes [α], [β] and ([αi])i=1,...,r−1 give a basis of H1(Σ,Z2) with the intersection
numbers

αi · αj = 1 mod 2, i < j; α · β = 1; αi · α = αi · β = 0.

Furthermore, the winding number along each αi is −2 so q(αi) = 0. On the other hand,
the winding numbers along either α and β is zero. Thus, the corresponding space with a
quadratic form over Z2 is a direct sum of Vr−1 from Example 4.5.1 below and a 2-dimensonal
space with the Arf-invariant 1.

Hence, the Arf-invariant is given in this case by 1 +
(
(r−1)/2

2

)
mod 2.
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α1

α2

α3

α4

β

α

Figure 9. Circular gluing with r = 5, k = 1 (left-right, top-bottom are identified).

Next, assume in addition that r is not divisible by 3 and consider the case k = 2 (then
gcd(k + 1, r) = 1). Then we claim that the classes [αi], together with (α, β) still project
to a basis of H1(Σ,Z2), however, their intersection numbers are now given by

αi · αj =

{
0, i < j < i+ r/2,

1, otherwise,

where i < j (we still have αi · α = αi · β = 0 and α · β = 1. It is easy to see that by
renumbering the classes (αi) as follows:

α′1 = α(r−1)/2, . . . , α
′
(r−1)/2 = α1, α

′
(r−1)/2+1 = αr−1, . . . , α

′
r−1 = α′(r−1)/2+1

we get the quadratic form of Example 4.5.2. Hence, the Arf invariant is given by 1 + (r −
1)/2 mod 2. Thus, we deduce the following derived equivalence.

Proposition 4.3.1. Assume that r ≥ 7 is not divisible by 3 and r ≡ ±1 mod(8). Then
the stacky curves Cring(r; 1) and Cring(r; 2) are derived equivalent.

4.4. Merging two nodes into one. Let us fix an odd r. Then the surfaces Σcir(r, r; 1, 1)
and Σcir(2r; 1) are homeomorphic: they both have genus r and 2 boundary components.
One can ask whether they are homeomorphic as surfaces with line fields. The boundary
invariant on each component is equal to 2− 2r, so we need to look at the Arf-invariant.

Proposition 4.4.1. The Arf-invariant of the form associated to the line field on Σcir(r, r; 1, 1)
is equal to 1. The Arf-invariant of the form associated to the line field on Σcir(2r; 1) is
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equal to (r+ 1)/2 mod 2. Hence, if r ≡ 1 mod(4) then the stacky curves Cring(r, r; 1, 1) and
Cring(2r; 1) are derived equivalent.

Proof. In the case of the surface Σcir(r, r; 1, 1) we have two collections of simple curves
(α1, . . . , αr−1), (α′1, . . . , α

′
r−1) associated with each of the two segments where the gluing

happens. In addition we have two standard curves α and β as before. So the corresponding
quadratic space will be a direct sum of two copies of Vr−1 together with the 2-dimensional
space spanned by (α, β). Thus, the Arf-invariant is equal to 1.

For the surface Σcir(2r; 1) we have in addition to α and β the curves α1, . . . , α2r−1
defined as before. However, the class [α1] + . . . + [α2r−1] comes from the homology of the
boundary, so passing to the quotient by this class we get the direct sum of the quadratic
space V 2r−2 from Example 4.5.1 with the 2-dimensional space spanned by (α, β). Hence,
the Arf-invariant is equal to 1 + (r − 1)/2 mod(2).

Thus, the Arf-invariants match exactly when (r − 1)/2 ≡ 0 mod(2). �

4.5. Computation of Arf-invariants.

Example 4.5.1. Let Vn be a Z2-vector space with the basis α1, . . . , αn, and the even
pairing given by αi · αj = 1 for i 6= j. Let q be the unique quadratic form in Quad(Vn)
such that q(αi) = 0 for all i.

First, assume that n is even. Then we claim that this pairing is nondegenerate and the
Arf-invariant of q is given by

A(q) =

(
n/2

2

)
mod 2.

Indeed, it is enough to prove that the Gauss sum

G(q) :=
∑
x∈Vn

(−1)q(x)

is equal to ±2n/2. Then the sign will determine the Arf-invariant. It is easy to see that

q(x) = (−1)(
k
2), where k is the number of nonzero coordinates of x. Thus, we have

G(q) =
n∑
k=0

(
n

k

)
(−1)(

k
2).

Now we observe that

(−1)(
k
2) =

1− i
2
· ik +

1 + i

2
· (−i)k,

where i =
√
−1. Thus, we have

n∑
k=0

(
n

k

)
(−1)(

k
2) =

1− i
2
· (1 + i)n +

1 + i

2
· (1− i)n =

2n/2 · [1− i
2
· in/2 +

1 + i

2
· (−i)n/2] = 2n/2 · (−1)(

n/2
2 ).

Now, let us assume that n is odd. Then the vector v0 =
∑n

k=1 αk lies in the kernel
of the pairing and q(v0) =

(
n
2

)
mod 2. Thus, if we assume in addition that n ≡ 1 mod 4
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then we have q(v0) = 0 and so the form q descends to a well-defined quadratic form q on
V n−1 = Vn/〈v0〉. We claim that its Arf-invariant is

A(q) =
n− 1

4
mod 2.

Indeed, again we will consider the Gauss sum

G(q) :=
∑
x∈V

(−1)q(x).

We have

G(q) =
1

2
·G(q) =

1

2

n∑
k=0

(
n

k

)
(−1)(

k
2) =

1− i
4
· (1 + i)n +

1 + i

4
(1− i)n = (−4)(n−1)/4.

Example 4.5.2. Now let V be a Z2-vector space with the basis α1, . . . , αn, where n ≥ 4
is even, the even pairing given by the rule

αi · αj =

{
1, i < j < i+ n/2,

0, j ≥ i+ n/2,

and the quadratic form q in Quad(V ) such that q(αi) = 0 for all i. Assume also that
n 6≡ 2 mod(3). Then we claim that the pairing is nondegenerate and

A(q) = n/2 mod 2.

We will prove this by relating (V, q) with another quadratic form. For every k ≥ 0, such
that k 6≡ 2 mod(3), let us consider a Z2-vector space Wk with the basis β1, γ1, . . . , βk, γk,
the even pairing given by the rule

βi · βj = 1 for i 6= j; γi · γj = 1 for i 6= j;

βi · γj = 1 for i ≤ j; βi · γj = 0 for i > j,

and the quadratic form qk in Quad(Wk) such that qk(βi) = q(γi) = 1 for all i.
First, we will prove that A(q) = A(qn/2−2) and then we will prove that

A(qk) = kmod 2 (4.1)

To relate (V, q) with (Wn/2−2, qn/2−2) let us consider the 2-dimensional isotropic subspace
I ⊂ V spanned by α1 and αn. Then we have q|I ≡ 0, so the Arf-invariant of q is equal to
that of the induced quadratic form on I⊥/I. Now setting

γi = α2 + α2+i, βi = αn/2+1 + αn/2+1+i,

for i = 1, . . . , n/2 − 2, we get an identification of I⊥/I with Wn/2−2, compatible with the
quadratic forms.

To prove (4.1) we use induction on k. It is easy to check that A(q1) = 1 (and A(q0) = 0
for trivial reasons), so it is enough to establish the formula

A(qk) = A(qk−3) + 1.
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To this end we consider the 2-dimensional isotropic subspace J ⊂ Wk spanned by βk + γ1
and β1 + βk + γk. We have qk|J = 0, and our formula follows from the identification

J⊥/J ' Wk−3 ⊕W1,

where the standard basis of Wk−3 corresponds to the elements

(β2 + β2+i mod J, γ2 + γ2+i mod J)1≤i≤k−3

while a copy of W1 spanned by βk mod J and γk mod J .
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