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Abstract

When data exhibit imbalance between a large number d of covariates and a small number n of samples,

clinical outcome prediction is impaired by overfitting and prohibitive computation demands. Here we

study two simple Bayesian prediction protocols that can be applied to data of any dimension and any

number of outcome classes. Calculating Bayesian integrals and optimal hyperparameters analytically leaves

only a small number of numerical integrations, and CPU demands scale as O(nd). We compare their

performance on synthetic and genomic data to the mclustDA method of Fraley and Raftery. For small d

they perform as well as mclustDA or better. For d¼ 10,000 or more mclustDA breaks down

computationally, while the Bayesian methods remain efficient. This allows us to explore phenomena

typical of classification in high-dimensional spaces, such as overfitting and the reduced discriminative

effectiveness of signatures compared to intra-class variability.
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1 Introduction

Discriminant analysis1 is the use of known classifications to find rules that link observations to their
classes, which are then used to predict the classes of new observations. It is applied in many
settings.2–4 Its methods are usually probabilistic and model based: observations are assumed to
have been generated from a class-specific distribution that must be estimated from the data.1

Many methods are accurate for data with low covariate dimension d, but problems arise when d
is large. The main ones are overfitting,5,6 i.e. the tendency of models with many parameters to
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capture the noise in the data as opposed to the signal when the number n of samples is small
and inability to do the required computations within practical timescales. With the increasing
availability of genomic covariates in medical data sets, where often d� n,5–11 these problems can
cause outcome predictions to have limited reliability, if they can be generated at all. Hence, for high-
dimensional data one often resorts to ‘class (prognostic) signatures’,12,13 i.e. selections of covariates
with specific combined value patterns that are characteristic of a class, with ad hoc rules for
converting signature similarity into classification. To combat overfitting one would prefer to use
Bayesian methods, but these involve more computations since each covariate contributes at least one
integral to the posterior parameter distribution. Several dimension reduction methods have been
suggested, such as principal component analysis,14–16 subspace clustering,17,18 or the use of
constrained and parsimonious models.19 The first runs the risk of reduced accuracy through loss
of information.20,21 The second assumes that high-dimensional data live in subspaces with
dimensionality less than d17,18,22 but relies on finding a classifier in high dimensions.21,22 The
third is a compromise between precise modelling and what can be estimated in practice. The
latter two have been combined to reduce the number of parameters and dimensions for EM.17,21,23

Probabilistic discriminant analysis methods assume that the observations x (d-dimensional
vectors) in each class y 2 f1, . . . , cg are described by a conditional distribution pðxj yÞ specific to y.
The number c of classes is usually known. A typical data set D ¼ fðx1, y1Þ, . . . , ðxn, ynÞg consists of n
observations xi and their class labels yi. Each pair ðxi, yiÞ is assumed to be drawn independently from
a joint distribution pðx, yÞ ¼ pðxj yÞ pð yÞ that describes the population, which is to be estimated from
the data. Many methods assume that the observations in each class are multivariate Gaussian24,25 or
Gaussian mixture Models (GMM).1,14,19,21 A popular model-based discriminative analysis approach
was proposed by Fraley and Raftery and implemented in the R software environment26 (reference
package mclust14,16). It is widely used in medical outcome prediction,27–31 and we therefore use it as
our benchmark. After splitting D into a training and validation set, the authors of R Core Team26 fit
a GMM to each class in the training set via model-based clustering. The number of classes c and the
covariance matrix for each class are inferred from the training set. For each number of GMM
components and each assumed covariance complexity level, hierarchical clustering
techniques24,25,32 are applied to the training set to yield trial partitions, whose parameters and
class-conditional probabilities are determined using the Expectation-Maximisation algorithm
(EM).33 The R implementation of the programme allows for different choices of priors and
various parametrisations for the covariance matrices Cr of each Gaussian component r, ranging
from spherically symmetric (Cr

k‘ ¼ c�k‘) via nonuniform diagonal (Cr
k‘ ¼ ck�k‘) to completely

general positive definite matrices. The model options available in the R package mclust are
summarised in Fraley and Raftery.28 In this paper, we report explicitly on results from mclustDA
when used in its default setting ‘MclustDA’ (where each class is allowed to be a Gaussian mixture),
and with default (i.e. conjugate) priors. In addition, we have repeated most of our experiments with
the alternative setting ‘EDDA’ (i.e. Eigenvalue Decomposition Discriminant Analysis, where each
class has one Gaussian component). The resulting performance differences are small and are
discussed in the relevant sections. The Bayesian information criterion24,34 is computed for each
GMM and used to identify the optimal model, which is then applied to the validation set. Class-
conditional probabilities are calculated using Bayes’ theorem, and each observation in the validation
set is assigned to the class with the highest posterior probability. The possible impact of degenerate
solutions is alleviated by using Maximum A Posteriori estimates.28 For large d, mclustDA is known
to suffer from overfitting and prohibitive computation demands.14,16,19,35,36 For data sets of modest
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sizes, such as n¼ 100 with d � 3000, mclustDA produces predictions relatively swiftly, but for
d¼ 10,000 or more mclustDA can no longer be used in practice on conventional (multi-core)
machines. This rules out its application to large-scale genomic data.

In this paper we follow37–41 and show how solving integrals and optimal hyperparameters
analytically reduces the detrimental impact of high data dimensionality in Bayesian class
prediction. Our formulae can be applied to data with arbitrary covariate dimension, without
approximations at parameter level. In Section 2 we describe and analyse two Bayesian outcome
prediction methods: one models the joint distribution of covariates and classes, and one models the
class-conditioned covariate densities. We show how class signatures can lose their discriminative
power in high-dimensional spaces, in contrast to intra-class covariate variability, which becomes
increasingly effective. In Sections 3 and 4 we apply our methods to high-dimensional data. We first
show with synthetic data how the curse of dimensionality42 is lifted in terms of CPU demands, in
comparison to mclustDA.14 We then analyse gene expression data from breast cancer and ovarian
cancer patient cohorts, with either clinical outcome classes or biologically defined classes, and breast
tissue imaging data for tumour detection. We close with a summary.

2 Bayesian multi-class outcome prediction for high covariate dimensions

We focus on Bayesian class prediction that is computationally feasible for data with high covariate
dimensions. This requires that those integrals whose dimension scales with d are solved analytically.
To simplify formulas we first introduce the empirical frequency fy and the empirical averages hxiy
and hx2iy over each class y in D (with x2i ¼ xi � xi)

fy ¼
1

n

Xn
i¼1

�yyi , hxiy ¼

Pn
i¼1 �yyixiPn
i¼1 �yyi

, hx2iy ¼

Pn
i¼1 �yyix

2
iPn

i¼1 �yyi
ð1Þ

In these definitions we used the Kronecker delta-symbol, defined as �ab¼ 1 when a¼ b and �ab¼ 0 if
a 6¼ b. We assume that all classes are represented in D. We will see later that we need nfy � 2 for all y
when using a training and validation set. We also define the empirical average signal strength Xy and
noise strength �y in the covariates, for each class

X2
y ¼ hxi

2
y=d, �2

y ¼ ðhx
2iy � hxi

2
yÞ=d ð2Þ

2.1 Model parametrisation

We use h to denote all model parameters with d-dependent dimension, and H for all
hyperparameters, with d-independent dimensions. We need a sensible parameterisation of the
joint distributions pðx, yjh,HÞ for the covariate observations x 2 IRd and the classes y 2 f1, . . . , cg.
When overfitting is a real danger, only simple models with a small number of parameters are
acceptable. In the spirit of the literature37–41 and in line with the concept of outcome ‘class
signatures’, we choose in this paper each pðx, yjh,HÞ to be a homogeneous Gaussian distribution

pðx, yjh,HÞ ¼ pðxj y, h,HÞ py, pðxj y, h,HÞ ¼ ð�y
ffiffiffiffiffiffi
2�
p
Þ
�de�

1
2ðx�lyÞ

2=�2y , �y � 0 ð3Þ
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with c class probabilities py 2 ½0, 1�, subject to
Pc

y¼1 py ¼ 1, and with c true but unknown ‘signature’
vectors ly 2 IRd. Each ly is given a simple independent Gaussian Bayesian prior

pðlyj�yÞ ¼ ð�y
ffiffiffiffiffiffi
2�
p
Þ
�d e�

1
2l2

y=�
2
y , �y � 0 ð4Þ

Hence our choice of equations (3) and (4) involves

cd parameters : h ¼ fl1, . . . , lcg, ly 2 IRd ð5Þ

3c� 1 hyperparameters : H ¼ fð�1,�1, p1Þ, . . . , ð�c,�c, pcÞg, �y,�y, py � 0,
Xc
y¼1

py ¼ 1 ð6Þ

We assume in equation (3) that the variances of different components of the covariate vector x are
identical within a class. This will be appropriate if all covariates are of the same type, e.g. gene
expression levels or when they have been normalised. However, it is expected to give poor results if
covariates refer to distinct modalities, e.g. if gene expression levels are concatenated with other
clinical or imaging data. Adding nontrivial covariance matrices or Gaussian mixtures to
equations (3) and (4) would increase the number of parameters and hence the risk of overfitting.
To enable application of equations (3) and (4) to high-dimensional data, i.e. to covariate vectors
with d� 1, we must marginalise the vectors flyg analytically.

2.2 Method I: Generative Bayesian classification

In the generative framework one regards all the data in D as informative, including the empirical
class frequencies fy. Given equations (3) and (4), one can then write the joint likelihood of the data D

and any new pair (x0, y0), given parameters h and hyperparameters H, following22 as

pðx0, x1, . . . ,xn, y0, y1, . . . , ynjh,HÞ ¼
Yn
i¼0

pðxi, yijh,HÞ ð7Þ

From this expression follows the posterior class prediction for a new covariate observation x0

pð y0jx0, D,HÞ ¼

R
dh pðhjHÞ pðx0, y0jh,HÞ

Qn
i¼1 pðxi, yijh,HÞR

dh pðhjHÞ pðx0jh,HÞ
Qn

i¼1 pðxi, yijh,HÞ

¼
ð py0=�

d
y0
Þ
R �Qc

z¼1 dlz

�
e�

1
2

Pc

z¼1

�
l2
z=�

2
zþ�zy0 ðx0�lzÞ

2=�2zþ
Pn

i¼1
�zyi ðxi�lzÞ

2=�2z

�
Pc

y0¼1 ð py0=�
d
y0 Þ
R �Qc

z¼1 dlz

�
e�

1
2

Pc

z¼1

�
l2
z=�

2
zþ�zy0 ðx0�lzÞ

2=�2zþ
Pn

i¼1
�zyi ðxi�lzÞ

2=�2z

� ð8Þ
Since the above integrals are of a Gaussian form, they can all be solved analytically for any d. See
e.g. the literature38–41 for details (where a more general calculation with arbitrary covariance
matrices is given). For the present model the result reads

pð y0jx0, D,HÞ ¼
ð py0=S

d
y0
Þ e�

1
2ðx0�my0

Þ
2=S2

y0Pc
z¼1 ð pz=S

d
z Þ e

�1
2ðx0�mzÞ

2=S2
z

ð9Þ
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with the short-hands

my ¼ hxiy
nfy�

2
y

nfy�2y þ �
2
y

, S2
y ¼ �

2
y

�2y þ ðnfy þ 1Þ�2y
�2y þ nfy�2y

ð10Þ

Comparing equations (9) to (3) shows that the Bayesian sample mean my can be interpreted as
our estimated ‘class signature’. If next we choose noninformative hyperparameter priors, the
Bayes-optimal hyperparameters Ĥ become Type II Maximum Likelihood estimators

Ĥ ¼ argmaxH log pðDjHÞ

¼ argmaxf�y,�y,pyg log

Z Yc
z¼1

dlze
�1

2l
2
z=�

2
z

ð�z
ffiffiffiffiffiffi
2�
p
Þ
d

 ! Yn
i¼1

pyie
�1

2ðxi�lyi
Þ
2=�2yi

ð�yi
ffiffiffiffiffiffi
2�
p
Þ
d

 !( )

¼ argmaxf�y,�y,pyg
Xc
z¼1

�
nfz
d

log pz � ðnfz � 1Þ log �z �
1

2
log

�
�2z þ nfz�

2
z

�
�
1

2
nfz

�
�2

z

�2z
þ

X2
z

�2z þ nfz�2z

	

ð11Þ

The maximum over f�y,�y, pyg in equation (11) is found by straightforward differentiation,
resulting in

8y : p̂y ¼ fy, �̂2y ¼ �2
y þ X2

y � �̂
2
y, �̂2y ¼ X2

y �
�2

y

nfy � 1

 !
� X2

y �
�2

y

nfy � 1

" #
ð12Þ

In this expression we used the step function, defined by �½u5 0� ¼ 0 and �½u4 0� ¼ 1. Inserting
equation (12) into equation (9) gives the explicit prediction of the generative Bayesian model. For
classes y with weak signals one finds �̂y ¼ 0, giving my¼ 0 in equation (9). Here the ‘Occam’s razor’
action of the Bayesian method is apparently to decide that for such classes there is insufficient
evidence for ‘class signatures’.

2.3 Method II: Discriminative Bayesian classification

If we are unsure whether the classes were sampled faithfully from the population, i.e. whether the
empirical frequencies fy estimate the true frequencies py, we may wish to extract from D only
information regarding the link between x and y. Following this discriminative route, one regards
the class labels fy1, . . . , yng as conditions (as opposed to potentially informative data) and replaces
equation (7) by

pðx1, . . . , xn, y0jx0, y1, . . . , yn, h,HÞ ¼ pð y0jx0, h,HÞ
Yn
i¼1

pðxij yi, h,HÞ ð13Þ

The posterior class prediction formula now becomes

pð y0jx0, D,HÞ ¼

Z
dh pðhjHÞð pðx0, y0jh,HÞ=pðx0jh,HÞÞ

Yn

i¼1
pðxij yi, h,HÞZ

dh pðhjHÞ
Yn

i¼1
pðxij yi, h,HÞ
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¼

Z Yc
z¼1

duz e
�1

2u
2
z

ð2�Þd=2

 !
ð py0=�

d
y0
Þe

� 1

2�2y0

�
x0�my0

�
�y0 �y0 uy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2y0
þnfy0

�2y0

p 	2

Pc
z¼1 ð pz=�

d
z Þe
� 1

2�2z

�
x0�mz�

�z�zuzffiffiffiffiffiffiffiffiffiffiffiffi
�zþnfz�

z2

p

	2

8>>>>><>>>>>:

9>>>>>=>>>>>;
ð14Þ

with the short-hands (10) (see Appendix 1). The integrals above are no longer strictly Gaussian,
unlike those in the literature,38–41 but most can still be done analytically. We choose for each class z
a convenient basis for the integration over uz, such that the first basis vector points in the direction of
x0 – mz. This allows us to write, with jxj ¼

ffiffiffiffiffiffiffiffiffi
x � x
p

pð y0jx0, D,HÞ ¼

Z �Yc
z¼1

duzdvzffiffiffiffiffiffi
2�
p e�

1
2u

2
z P ðvzÞ

	 py0
�dy0

e

� 1

2�2y0

�
jx0�my0

j�
�y0 �y0 uy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2y0
þnfy0

�2y0

p 	2

�1
2

�2y0
vy0

�2y0
þnfy0

�2y0

Pc
z¼1

pz
�dz
e
� 1

2�2z

�
jx0�mzj�

�z�zuzffiffiffiffiffiffiffiffiffiffiffi
�2zþnfz�

2
z

p

	2

�1
2

�2z vz

�2zþnfz�
2
z

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð15Þ

P ðvÞ ¼
1
2 v
� �1

2ðd�3Þe�
1
2v

2� 1
2 ðd� 1Þ
� � ð16Þ

(see Appendix 1). Formula (15) describing discriminative classification still requires only 2c integrals
to be done numerically, so also this route is computationally feasible for arbitrary d. The Type II
Maximum Likelihood hyperparameter estimators are almost identical to those of the previous case,
since log pðDjHÞ differs from its counterpart equation (11) only through the absence of the termPc

z¼1 nfz log pz. Hence we obtain the same values for �̂y and �̂y. If we believe that the frequencies fy
mirror those of the population, we choose p̂y ¼ fy as in equation (12), otherwise we must choose the
uniform prior p̂y ¼ 1=c.

2.4 Asymptotic formulae for large covariate dimension

Both Xy and �y were defined such that they scale as Oðd0Þ for large d. Hence the same is true for the
optimal hyperparameters f�̂y, �̂y, p̂yg of both our classification models. We may therefore focus for
large d and finite n and c on the asymptotic behaviour of the prediction formulae (9) and (15). In
both cases one finds these reducing to deterministic class assignment for d!1

lim
d!1

pð y0jx0, D,HÞ ¼ �y0,yðx0jD,HÞ ð17Þ

but with different formulae for the assigned classes yðxjD,HÞ. For the generative model we find

generative : yðxjD,HÞ ¼ argminy�c log Ŝy þ
ðx� bmyÞ

2

2dŜ2
y

( )
ð18Þ

bmy ¼ hxiy
nfy�̂

2
y

nfy�̂2y þ �̂
2
y

, Ŝ2
y ¼ �̂

2
y

�̂2y þ ðnfy þ 1Þ�̂2y

�̂2y þ nfy�̂2y
ð19Þ
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In contrast, for the more complicated discriminative case one may transform v ¼ d ~v and use
limd!1 ~P ð ~vÞ ¼ �ð ~v� 1Þ, which follows from the law of large numbers, to establish that

discriminative : yðxjD,HÞ ¼ argminy�c log �̂y þ
ðx� bmyÞ

2

2d�̂2y
þ
1

2

�̂2y

�̂2y þ nfy�̂2y

( )
ð20Þ

Since limn!1 �̂y ¼ Xy and limn!1 Ŝy ¼ limn!1 �̂y ¼ �y, we observe that if both the covariate
dimension d and the sample size n become large simultaneously, the generative and discriminative
formulae for pð yjx, D,HÞ become identical.

2.5 Overfitting and combined signature-based and variability-based
class separation

When overfitting occurs, the estimated ‘class signatures’ bmy move away from the true centres ly

towards the sample means hxiy. This is alleviated by the influence of the factor nfy�̂
2
y=ðnfy�̂

2
y þ �̂

2
yÞ in

equation (10). If the signal in a class is strong, the signal-to-noise ratio nfy�̂
2
y=�̂

2
y becomes large, andbmy and hxiy become approximately equal. However, the signal-to-noise ratio can become very small

for classes y with weak signals. This drives bmy away from hxiy and towards ly � 0 for large d and
fixed n. A typical example of this movement is the ‘Occam’s razor’ effect which makes bmy exactly
zero by estimating �̂y ¼ 0. We calculate the relationship between bmy and hxiy in Appendix 2. We can
use the result of equation (33) of this calculation to monitor how the location of bmy changes with
increasing dimension d, for fixed �y¼ 1 and different �y values, by evaluating the signature shrinkage
ratio

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hbm2

yipðX2
y,�

2
yÞ

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhxi2yipðX2

y,�
2
yÞ

q
ð21Þ

If the signal-to-noise ratio in the data is high, we will have nfy�
2
y=�

2
y � 1 and �& 1. Here the impact

of the prior is negligible and our protocol approaches maximum likelihood regression. If the signal-
to-noise ratio is low, or we have too few samples, we will find nfy�

2
y=�

2
y 	 1, and the ratio (21)

generally shrinks to zero, especially for large d (see Figure 1). Thus, � tells us exactly when the
present model employs the Bayesian mechanism of balancing evidence against model complexity to
combat overfitting.

Another typical phenomenon is observed upon choosing c¼ 2, f1 ¼ f2 ¼ 1=2, �1 5�2, and
�1¼ �2¼ 0. Now it follows from equation (4) that l1 ¼ l2 ¼ 0, so the centres of the covariate
distributions of the two classes are forced to be identical, and hence any classification strategy
that is based on finding class signatures is fundamentally ruled out. For large d, the ratio (21)
shrinks and can reduce to zero under the ‘Occam’s razor’ effect (see Figure 1). One might naively
expect that a vanishing estimated signature bmy would automatically cause inaccurate prediction.
However, the squared length x2 of a new observation is distributed according to Gaðd=2, 2�2yÞ (see
Appendix 2), from which we deduce that the data are still easily separable for large d, but now on the
basis of observed class covariate variability differences (see Figure 2(c)). The typical value of x2

differs between the two classes according to d ð�22 � �
2
1Þ which is progressively greater than bm2

y as d
becomes larger. For small d, the difference remains similar to bm2

y, and we observe considerable
overlap between the class distributions (see Figure 2(a)). For large d the Bayesian method will
increasingly rely on variability-based class separation as opposed to separation based on
covariate averages.
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The solvability of our models allows us to understand the overfitting mechanism in detail. Each of
the bmy and hxiy are random vectors, whose locations are difficult to predict for small d. However, for
larger d each is found at its typical location. The typical location of the estimated signature vectors bmy

can then be used to assess the border-hyperplane behaviour (see Figure 3(a)). We inspect, for instance,
the case c¼ 2, f1 ¼ f2 ¼

1
2 , �1 ¼ �2 ¼ 1, and �1¼ �2> 0.We assume for simplicity that shrinkage does

not occur, i.e. we consider nfy�
2
y=�

2
y � 1, so that bmy � hxiy. We also specify l2 ¼ �l1 and

l2
1 ¼ l2

2 ¼ l2ðd Þ. After a suitable rotation of the coordinate system in the space of x, the direction
of the first three dimensions is given by l1 � l2, bm1 � bm2, and bm1 þ bm2. The first two dimensions are
shown in Figure 3(a). The training observations are typically distributed with average

bmy ¼ ð

ffiffiffiffiffiffiffiffiffiffi
l2ðd Þ

p
, 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 1Þ=n

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 1Þ=n

p
, 0, 0, . . .Þ ð22Þ

Figure 1. Dependence of the signature shrinkage ratio � (21) on the covariate dimension d. The lines in each panel

denote �y¼ 10, 1, 0.1, and 0, from top to bottom, whereas �y is fixed to unity. When �y¼ 0 one has � ¼
ffiffiffi
R
p

.

Left: nfy¼ 2 (so there are only two samples in class y). Right: nfy¼ 50 (so there are 50 samples in class y), here

the signature shrinkage is less severe for nonzero values of �y.

(a) (b) (c)

Figure 2. Statistics of covariate variability x2 in binary classification with l1 ¼ l2 ¼ 0, but �2
1 5�2

2. (a) d¼ 10,

where class-specific variability differences are still modest. (b) d¼ 100. (c) d¼ 1000, where the classes have become

nearly perfectly separable on the basis of the observed value of x2. As the dimension d increases, class separation on

the basis of variability becomes progressively more effective than separation on the basis of signatures alone (which in

this example would be impossible, since the classes have identical signatures).
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and covariance matrix n=2�1
n=2 1Id�d. According to equation (4), a new observation in the validation set

is distributed with average 
ly and covariance matrix 1Id�d. By considering the Mahalanobis
distance22 between an observation and the prediction border-hyperplane (see Figure 3(a)), and
using the short-hand �ðaÞ ¼ 1

2�
1
2 erfða=

ffiffiffi
2
p
Þ, the training and validation errors can then be written as

ET ¼ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½l2ðd Þ þ ðd� 1Þ=n�=ð1� 2=nÞ

p �
, EV ¼ �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4ðd Þ=½l2ðd Þ þ ðd� 1Þ=n�

p �
ð23Þ

When d is large and �y of Oðd
0Þ we have h l2

yi ¼ d�2y, according to equation (4). It then follows that
l2ðd Þ � d�2y ¼ Oðd Þ. Hence both errors in equation (23) will be small, and the observations will be
classified correctly in both the training and the validation set. If �2y is of Oð1=

ffiffiffi
d
p
Þ, then

l2ðd Þ ¼ Oð
ffiffiffi
d
p
Þ. Now the observations in training and validation sets will still be separable (see

the two curves on the left in Figure 3(b)), despite the equivalent �y value converging to zero,
limd!1 �y ¼ 0. If �2y is of Oðd�1 logðd ÞÞ, however, then l2ðd Þ ¼ Oðlogðd ÞÞ. Here the training
observations are still separable but the observations in the validation set will no longer be so for
large d, see the right two curves in Figure 3(b), in spite of the fact that the distance between the two
true class centres l1 and l2 diverges. The border-hyperplane behaviour in the case where signature
shrinkage occurs, i.e. for nfy�

2
y=�

2
y 	 1 and bmy � 0, warrants further investigation, which we

consider to be beyond the scope of this paper.

3 Application to synthetic data

We have applied our methods and mclustDA first to synthetic data sets. Each set consisted of n¼ 100
covariate vectors and their classifications, generated according to equation (3). We increased d on a
logarithmic scale up to d¼ 10,000. The largest d value, although typical of biomedical data,5–11

(a) (b)

Figure 3. (a) location of the class means l1 and l2, and their Bayesian estimators bm1 and bm2. The thick line

denotes the border-hyperplane which is perpendicular to the line bm2 � bm1. The formulae denote the average

distances from the border-hyperplane. (b) classification errors ET and EV (fractions of misclassified samples) calculated

from training and validation sets, for l2ðd Þ ¼ Oð
ffiffiffi
d
p
Þ (leftmost curves, specifically l1 ¼ ð1

�1=4, 2�1=4, 3�1=4, . . . , d�1=4Þ,

where we observe no overfitting) and for l2ðd Þ ¼ Oðlog d Þ (rightmost curves, specifically l1 ¼ ð1
�1=2, 2�1=2,

3�1=2, . . . , d�1=2Þ, where overfitting occurs: the validation error is significantly higher than the training error).
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cannot be handled by mclustDA and underlines the merit of analytically integrable models. The
characteristics of our data are shown in Table 1. Classification of sets A1 and A2 was tested using
leave-one-out cross-validation (LOOCV), and of sets B1, B2, and C1 using a training set (T, n¼ 100)
and a validation set (V, n¼ 100). The curves ET and EV in Figure 4 give the fractions of incorrect
classifications, all averaged over 100 randomly generated data sets.

The performance of Methods I and II observed in Figure 4(a) and (b) can be understood using
Figure 2. The overlap between the covariate distributions of the classes results for small d in high
error rates, but for large d separation on intra-class covariate variability differences become
increasingly effective. Both Bayesian methods also suffer less from overfitting (marked by a gap
between ET and EV) than mclustDA. The unsupervised clustering in mclustDA struggles to separate
the observations in sets A1 and A3, since the true class centres are identical. Method I would have
struggled too if the sample means hxiy had been used instead of the estimators bmy in equation (7).
The difference between data sets B1 and B2, whose classification results are shown in Figure 4(c) and
(d), is in the distance between the true class centres l1 and l2, which in B1 remains finite, but
diverges as d!1 in B2. The curves in Figure 4(d) are reminiscent of the l2ðd Þ ¼ Oðlog d Þ
curves in Figure 3(b). Figure 4(c) is similar, except that here the validation error EV approaches
the random guessing level 0.5 sooner. This is because l2ðd Þ in set B1 is finite, i.e. more difficult to
separate: limd!1 l2ðd Þ ¼ �2=6, whereas limd!1 l2ðd Þ ¼ 1 in B2. mclustDA performs similarly to
Method I for data sets B1 and B2 for d � 3, 000. Its unsupervised hierarchical clustering can learn
the characteristics of the observations in the training set without using the class labels y, because the
class centres are well separated. Replacing the standard setting ‘MclustDA’ of the R-implementation
of mclustDA by ‘EDDA’ leads for data sets A1 and A3 to further performance deterioration,
whereas there is no significant change for data sets B1 and B2.

In Figure 4(e) and (f) we show results on data where the training and validation sets have different
class frequencies. Here we expect any method that assumes the training data to be representative of
the population in terms of class frequencies to perform badly. This is indeed the case for Method I
and mclustDA, which both use the 10%/90% class imbalance of the training set to predict labels in

Table 1. Characteristics of our synthetic data.

Data set n f1 f2 l1 l2 �1 �2

A1 100 0.5 0.5 ð0, . . . , 0Þ ð0, . . . , 0Þ 0.24 0.28

A2 100 0.5 0.5 ð1, . . . , 1, 1
2
, . . . , 1

2
, 0, . . . , 0Þ ð1, . . . , 1, 1

2
, . . . , 1

2
, 0, . . . , 0Þ 0.24 0.28

B1 (T,V) 100 0.5 0.5 ð�1, � 1
2
, � 1

3
, . . . , � 1

d
Þ ð1, 1

2
, 1

3
, . . . , 1

d
Þ 1.00 1.00

B2 (T,V) 100 0.5 0.5 ð�1, � 1ffiffi
2
p , � 1ffiffi

3
p , . . . , � 1ffiffi

d
p Þ ð1, 1ffiffi

2
p , 1ffiffi

3
p , . . . , 1ffiffi

d
p Þ 1.00 1.00

C1 (T) 100 0.1 0.9 ð0, . . . , 0Þ ð0, . . . , 0Þ 0.24 0.28

C1 (V) 100 0.9 0.1 ð0, . . . , 0Þ ð0, . . . , 0Þ 0.24 0.28

Data set n f1 f2 f3 l1 l2 l3 �1 �2 �3

A3 100 0.33 0.33 0.34 ð0, . . . , 0Þ ð0, . . . , 0Þ ð0, . . . , 0Þ 0.24 0.26 0.28

Top table: sets with two classes. Data for which training and validation sets have identical characteristics are indicated with (T,V).

A1: classes have identical covariate averages, centred in the origin, but distinct intra-class variability. A2: classes have identical

covariate averages, with a mixture of zero and nonzero components (values 0, 1
2

and 1, equally distributed over the d entries), but

distinct intra-class variability. B1 and B2: distinct class averages but identical covariate variability. C1: identical class averages and

distinct variability, but now the training and validation sets differ in the imbalance of class membership. Bottom table, A3: data with

three classes. Here the class averages are identical, but the covariate distributions of the classes have different widths.
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the validation set, where the class imbalance is in fact 90%/10%. In contrast, Method II, which
disregards class frequency information altogether, does not suffer from this mismatch. In large
dimensions, both Method I and Method II will rely increasingly on intra-class variability to
classify samples (see Figure 2), whereas mclustDA continues to suffer from inappropriate
extrapolation of the class imbalance of the training set to the validation set. To test our
interpretation of the above performance curves we applied modifications of our methods to data
C1 and show the results in Figure 4(f). In Method I we replaced the estimators bmy by the sample
means hxiy, to inhibit the Bayesian switch from signature-based to variability-based classification
(and now overfitting indeed persists for large d), we replaced Methods IIa and IIb by their large n
asymptotic form (Method n) to suppress the beneficial regularising effect of the hyperparameters
(and now overfitting sets in), and we imposed a uniform class balance fy¼ 1/c in running mclustDA
on the validation set (see mclustDAu in Figure 4(f)), which reduces overfitting for small d, although
performance remains poor for large d. Replacing the standard setting ‘MclustDA’ of the
R-implementation of mclustDA by ‘EDDA’ (results not presented here) leads for data set C1 to
further performance deterioration, whereas it improves performance for small dimensions d � 100
when we impose uniform class balance (as was previously done in Figure 4(e)). Figure 5 shows the
result of analysing synthetic data A2 in which the class centres combine zero and nonzero
components. Here all three methods considered perform very similarly, with mclustDA making
slightly more validation errors for larger covariate dimensions (with the usual proviso that
mclustDA cannot be used for the largest d values).

(a) (b) (c)

(d) (e) (f)

Figure 4. Training and validation errors, ET and EV, for the synthetic data described in Table 1, for different covariate

dimensions d. All data sets were analysed via our generative method, Method I (9,12), our discriminative method,

Method II (15,12) (with fy¼ 1/c, called Method IIa), the large d approximation (20) of Method II (called Method IIb),

and with mclustDA. Note that (f) refers to the same data as (e), but in (f) we applied modified versions of some of our

methods (see the main text and Table 1 for motivation and details).
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Table 2 shows the typical computation demands of some of the methods tested in Figure 4. Each
value is an average over 100 runs. Due to their simplicity and analytical integrability, the Bayesian
methods I and IIb considered here have no problems in processing high-dimensional data sets,
unlike mclustDA. To have a meaningful comparison of CPU demands we provided mclustDA for
each class with the correct type of covariance matrix (isotropic) and the correct number of
components (one).

4 Applications to cancer data with genomic covariates

We applied the various classification methods to the data set exprset2 of De Rinaldis et al.,11 which
contains gene expression profiles of triple-negative breast cancer patients who were treated at Guy’s
and St Thomas’s Hospitals (London) between 1979 and 2001, and who had at least 5.5 years of
follow-up. Expression levels were recorded for d¼ 22,035 genes, and patients with missing data or
who were lost to follow up were excluded, leaving n¼ 165 for this study. Patients who survived for at

Figure 5. Training errors ET (filled markers) and LOOCV validation errors EV (open markers), for data A2

(see Table 1) with different dimensions d, upon analysis via method, Method I (9,12) (blue curves), the large d

approximation (20) of Method II (red curves), and mclustDA (green curves).

Table 2. Dependence on the covariate dimension d of typical CPU demands (in minutes)

required for LOOCV analysis of the data in Figure 4(a), measured for single-processor runs

on a standard UNIX workstation. For d¼ 10,000 mclustDA can no longer be run due to its

excessive computation requirements. For smaller values of d< 300 all methods use

negligible computation time.

d Method I Method IIb mclustDA

300 0.026 0.029 1.136

1000 0.044 0.047 8.498

3000 0.092 0.074 96.200

10000 0.213 0.182 NA
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least five years from initial diagnosis are designated as class y¼ 2 (‘good’ prognosis, a fraction
f2¼ 0.75), and patients who died from breast cancer within five years are as class y¼ 1 (‘poor’
prognosis, a fraction f1¼ 0.25). There is no censoring due to competing events.43 Our aim is to
predict a patient’s prognosis class from their gene expressions. To apply mclustDA to exprset2, we
needed to reduce the dimensionality, since mclustDA cannot handle d¼ 22,035. Assuming that genes
with greater correlation with outcome are more likely to predict clinical outcome, we followed12,13

and ranked the genes according to their Pearson correlation with outcome. The highest ranked 100,
300, 1000, 3000, and 10,000 genes were chosen, and to these sets the various classification methods
were applied. Validation performance was measured via LOOCV. Figure 6(a) shows that the
optimal predictive information resides in the first 1000 ranked genes, and that all methods give
very similar results. However, the Bayesian methods can handle much larger d values and confirm in
doing so that no relevant information is lost by limiting oneself to the top 1000 genes. Moreover,
Method IIb (20) suffers much less from overfitting than mclustDA. The optimal validation error EV

is approximately 0.24. Since one can already achieve EV¼ 0.25 by assigning any new sample simply
by default to the largest class y¼ 2, we conclude that the gene expression measurements of exprset2
either confer only a modest amount of predictive information on five-year survival from triple-
negative breast cancer after treatment, or all methods considered fail to match the structure of
the data.

Next we use level 3 gene expression data.a from The Cancer Genome Atlas (TCGA) ovarian
carcinoma cohort.8 This set consists of n¼ 204 patients and expression levels for 17,814 genes. As
outcome variable we use the mutation status for the TP53, BRCA1, and BRCA2 genes. Patients are
classified according to whether germline or somatic mutations are present in TP53 and one or more
of BRCA1, and BRCA2 (y¼ 3), just TP53 (y¼ 2), or in none of these three genes (y¼ 1). The relative
class sizes are f1¼ 0.04, f2¼ 0.73, and f3¼ 0.23. The question is whether the gene expression profiles
of ovarian carcinoma patients can predict the mutation status of three common and known drivers
of ovarian tumour genesis.8 Due to various reasons, including data availability, it is not always
possible to directly assess whether a specific gene is mutated. It would therefore be useful to have a
surrogate means of predicting mutations, for instance by deriving a gene expression signature that
can be used as a substitute. This has indeed been the rationale of several studies, such as Miller
et al.44 and Bernardini et al.45 (for TP53) or van’t Veer et al.,12 Konstantinopoulos et al.,46

Press et al.47 (for BRCA genes). Here the covariate genes were ranked as described for the

(a) (b) (c)

Figure 6. Training and validation errors, ET and EV, for three high-dimensional gene expression data sets of breast

and ovarian cancer patient cohorts. Validation errors were measured via leave-one-out cross-validation (LOOCV).

(a) Triple-negative Breast cancer (n¼ 165 samples), (b) TCGA Ovarian cancer (n¼ 204 samples), and (c) TCGA

Breast cancer (n¼ 500 samples).
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previous data set. Figure 6(b) shows that all methods agree that for this data set the optimal
predictive information is in the first 300 ranked genes, with Method IIb giving the best validation
error rate EV � 0:33. However, the error rates are again not impressive, given that EV¼ 0.27 can be
achieved by simply assigning all samples to the largest class y¼ 2. The situation here is in fact worse
than with the previous data set, which suggests again that all approaches considered suffer from
model mismatch or there is simply no information in these gene expression data to predict the
chosen outcome variable.

As a third medical application we use level 3 gene expression data from TCGA breast carcinoma
cohort.9 It consists of n¼ 500 patients with their expression levels for 17,332 genes. As our outcome
variable y we now use the dichotomised status for estrogen receptor (ER) and HER2
immunohistochemistry-derived expression. Patients are either ER negative and HER2 negative
(y¼ 1), ER positive and HER2 negative (y¼ 2), ER negative and HER2 positive (y¼ 3), or
positive for both ER and HER2 (y¼ 4), with relative class sizes f1¼ 0.19, f2¼ 0.66, f3¼ 0.04, and
f4¼ 0.11. The question is to ascertain whether the gene expression profiles of breast cancer patients
can predict the immunohistochemical status of their tumours. The gene expression covariates were
ranked as before. Figure 6(c) shows that all methods agree that the optimal predictive information is
in the first 100 ranked genes, and all produce an optimal validation error rate EV � 0:14. In contrast
to the previous examples, this result is significant, since assigning all samples to the largest class
would here have given an average validation error of EV¼ 0.34. We conclude that gene expression
profiles of breast cancer patients are reliable predictors of their ER and HER2 status.

In Figure 7 we show the Pearson correlation coefficients between the gene expressions and the
clinical outcome variable y, for the above three cancer data sets. The absolute values of these
correlations (i.e. the distances from zero) were used to rank the genes.

5 Applications to cancer data with imaging covariates

Finally, we illustrate the application of our method to the problem of how to classify tissue types
from imaging data. The task is to differentiate benign from malignant breast tissue, with a view to

Figure 7. Densities of Pearson correlation coefficients between individual gene expressions and the outcome

variable y, for the three genomic cancer data sets analysed in this paper.
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reducing re-operation rates in breast conserving surgery, based on waveform data obtained from a
handheld Terahertz pulsed imaging device.48,b Existing methods for intra-operative tumour margin
assessment are either accurate but slow (e.g. off-line cytological analysis) or fast but inaccurate
(e.g. specimen radiography, with 40–60% sensitivity and 70–90% specificity). Our data set
consisted of n¼ 100 breast tissue samples from three classes (see Table 3 for details). The wavelet
expansion representation replaces the original waveforms f(x), sampled at 301 equidistant points,
with the following convolutions.c

Frð	i,xj Þ ¼ 	
r
i

Z
dy

	i
ffiffiffiffiffiffi
2�
p e�

1
2ðxj�yÞ

2=	2i
dr

dyr
f ð yÞ, r ¼ 0, 1, 2, 3, 4 ð24Þ

The wavelet centres xj are the middle 100 sampled values of the x-axis in the waveforms (vertical
axes in heat maps). The wavelet scales are 	i¼ 0.3i for i ¼ 1 . . . 100 (horizontal axes in heat maps).
Each heat map represents 10,000 values, so using all five heat maps gives a combined covariate
dimension d¼ 50,000. One would normally already hesitate, in view of overfitting, to attempt tissue
classification from the Terahertz waveforms, given the unfavourable ratio n=d � 0:332. One would
advise strongly against using the wavelet expansion, where n=d � 0:002. However, we see in Table 3
that the Bayesian discriminant analysis protocol (9) exhibits a highly significant classification
performance, which in fact improves upon switching to the high-dimensional wavelet
representation (further reduction of training and validation errors by roughly a factor two).
When focused on tumour detection, the method gives 85% sensitivity and 82% specificity. Since
computation time is negligible and performance is promising, this method would appear suitable for
intra-operative tumour margin assessment.

6 Discussion

Following the literature37–41 we have studied Bayesian clinical outcome prediction methods in which
the parameter integrals can be done analytically, so that they can handle data with arbitrary
numbers of classes and large covariate dimensions. We thereby avoid the computational hurdles
normally associated with Bayesian methods in large dimensions (e.g. d ¼ 20,000 or more as in
genomic data sets11), without sacrificing possibly valuable information by prior dimension
reduction, and we can explore important aspects of discriminant analysis in high dimensions.

Table 3. Classification of tissue types based on Terahertz imaging data. The data set

consisted of n¼ 100 breast tissue samples, all scored via histological analysis and assigned

to one of three classes: tumour (class y¼ 1, fraction f1¼ 0.283), fibrous (class y¼ 2,

fraction f2¼ 0.457), and adipose (class y¼ 3, fraction f3¼ 0.261). Our method (9) was

applied to the original Terahertz waveform data (left column in Figure 8), and to a

high-dimensional multi-scale wavelet expansion49 of the waveforms (heat maps in Figure 8).

Validation errors were calculated via LOOCV. Naive assignment to the largest class would

give the baseline performance E¼ 0.543, so the observed classification performance is

highly significant.

Data (n¼ 100) d ET EV

Original Terahertz wave forms 301 0.153 0.174

Multi-scale wavelet expansion 50,000 0.056 0.087
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We showed how for large d values Bayesian discriminative methods can exploit intra-class
variability, as opposed to differences between the average signals of the different classes as
captured by ‘signatures’. We compared the integrable Bayesian methods to mclustDA,14,16 which
is also built on Bayesian principles and widely applied to medical data.27–31 The analytically
integrable Bayesian methods outperform mclustDA significantly in CPU demands, since
mclustDA estimates more parameters through the use of EM, and mclustDA becomes
computationally infeasible for d& 10,000 or more. Application to synthetic data showed that for
modest dimensions d our methods perform in similar manner to mclustDA, but they generally
outperform the latter in giving lower validation errors and less overfitting for larger d. Moreover,
version II of our methods is significantly more robust against mismatch in relative class sizes
between training and validation sets. We have also tested our methods on synthetic data sets with
alternative covariate statistics (e.g. discrete covariates, these experiments are not described in this
paper), and we have found no significant deterioration in performance.

We next used the various outcome prediction methods to analyse three genomic cancer data sets.
In the triple-negative breast cancer data set exprset2 (where we sought to predict five-year survival)
and the TCGA ovarian cancer data set (where we sought to predict oncogene mutations), none of
the methods succeeded in achieving nontrivial prediction performance. In contrast, for the TCGA
breast cancer data set (where we seek to predict ER and HER2 receptor status), all methods did
exhibit statistically significant prediction performance. We also applied our methods to the task of
identifying breast tissue types (specifically cancer tissue) from Terahertz imaging data, sufficiently
accurately and fast to support intra-operative tumour margin assessment. Despite a very poor ratio
n/d¼ 0.002, the most informative multi scale waveform expansion of the data, with d¼ 50,000

Figure 8. Typical examples of imaging data of three breast tissue types. Left: waveforms obtained from a handheld

pulsed Terahertz imaging device, giving d¼ 301 covariate values. Heat maps: multi-scale wavelet expansion49 of the

waveforms, of orders r¼ 0, 1, 2, 3, 4 (see main text). The horizontal axis in each heat map gives the wavelet scale (100

equidistant values), and the vertical coordinate gives the wavelet centre (100 equidistant values). The resulting wavelet

representation of the tissue data, where d¼ 50,000, rules out the use of mclustDA due to prohibitive CPU demands.

Clearly, the main difficulty is to distinguish between tumour samples and fibrous samples.
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(so mclustDA cannot be used), is found to allow for very precise classification, with hardly any
overfitting.

The advantage of mclustDA over our analytically integrable models is that it can handle data sets
with multimodal class-specific covariate distributions. While there will certainly be situations where
this allows mclustDA to outperform unimodal discriminant analysis models, in the present clinical
applications we did not observe this computationally costly added flexibility of mclustDA translating
into significant outcome prediction benefit. Many other model-based methods exist that try to
overcome the computational limitations of discriminant analysis in high dimensions.19,21 These
include variable selection steps30,50 and combining subspace clustering with constrained and
parsimonious models.17,21 However, all these methods are expected to suffer from loss of
information and/or underestimated uncertainty at parameter level.

The Bayesian routes proposed in this paper can be extended in several ways, without sacrificing
the key analytical integrability. The obvious one is to allow for more complicated covariance
matrices in the class-specific distributions pðxj yÞ, as in the literature37–41 (using Wishart priors).
Another direction is to investigate the limit c!1, where we may be able to predict real-valued
outcomes (such as time to relapse) from high-dimensional data.
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Notes

a. These are defined as the aggregate of processed data from single sample or in some cases grouped by probed
loci to form larger contiguous regions (https://wiki.nci.nih.gov/display/TCGA/Dataþ level).

b. This device has a spatial resolution of around 15mm and requires 20 s for generating a sample.
c. Waveform derivatives are discretised as usual: 2f ð1ÞðxiÞ ¼ f ðxiþ1Þ � f ðxi�1Þ, 4f ð2ÞðxiÞ ¼ f ðxiþ2Þ þ f ðxi�2Þ �

2f ðxiÞ, 8f ð3ÞðxiÞ ¼ f ðxiþ3Þ � f ðxi�3Þ � 3f ðxiþ1Þ þ 3f ðxi�1Þ, and 16f ð4ÞðxiÞ ¼ f ðxiþ4Þ þ f ðxi�4Þ � 4f ðxiþ2Þ �

4f ðxi�2Þ þ 6f ðxiÞ.
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Appendix 1: Calculation of PðvÞ

Here we calculate the following integrals for d � 2, required in the evaluation of equation (16)

P ðvÞ ¼

Z Yd�1
j¼1

duje
�1

2u
2
jffiffiffiffiffiffi

2�
p

 !
� v�

Xd�1
j¼1

u2j

" #
ð25Þ

For d¼ 2 and d¼ 3 they are easy

d ¼ 2 : P ðvÞ ¼

Z 1
�1

duffiffiffiffiffiffi
2�
p e�

1
2u

2

�ðv� u2Þ ¼
e�

1
2v

ð2�Þ3=2
ffiffiffi
v
p ð26Þ

d ¼ 3 : P ðvÞ ¼

Z 1
0

dr re�
1
2r

2

�ðv� r2Þ ¼
1

2
e�

1
2v ð27Þ

For d> 3 we first write the delta distribution in integral form, and find after some simple
manipulations

P ðvÞ ¼

Z 1
�1

dv̂

2�
eiv̂v

Z 1
�1

duffiffiffiffiffiffi
2�
p e�

1
2u

2ð1�2iv̂Þ

� 	d�1
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Z 1
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dv̂
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With the substitution v̂ ¼ 1
2 tan
 this can be simplified to

P ðvÞ ¼

Z �=2

0

d


2�
ðcos
Þ

d�5
2 cos

1

2
v tan
�

1

2
ðd� 1Þ


� 	
ð29Þ

The latter integral can be found in Gradshteyn and Ryzhik51 (on page 423), which leads us to the
simple formula of equation (16)

P ðvÞ ¼
1
2 v
� �1

2ðd�3Þe�
1
2v

2� 1
2 ðd� 1Þ
� � ð30Þ

This is a chi-squared distribution with d – 1 degrees of freedom. It includes the above cases d¼ 2, 3.
For numerical evaluation it is convenient to exploit the properties

R
dv P ðvÞv ¼ d� 1 andR

dv P ðvÞv2 ¼ ðd� 1Þðdþ 1Þ, and introduce a zero-average and unit-variance integration variable ~v
via v ¼ d� 1þ ~v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd� 1Þ

p
, giving

P ð ~vÞ ¼
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Note that lim
d!1

P ð ~vÞ ¼ ð2�Þ�
1
2e�

1
2
~v2 . This follows from the definition of P ðvÞ in equation (16) via the

law of large numbers and can alternatively be derived from equation (31) using the asymptotic
properties of the gamma function.

Appendix 2: Effect of overfitting on class centre estimators

Here we quantify the effect of overfitting on the relation between the class centre estimators my and
the true class centres ly. We recall that the observations x and the centres ly are assumed to obey the
relations defined in equations (3) and (4). From these it follows that X2

y and �2
y are distributed

according to

pðX2
y,�

2
yÞ ¼ Ga X2

y;
d

2
,
2

d

�2y
nfy
þ �2y

 ! !
Ga �2

y;
d

2
ðnfy � 1Þ,

2�2y
dnfy

 !
ð32Þ

where Gaðx; a, bÞ ¼ xa�1e�x=b=�ðaÞba denotes the gamma distribution. This expression can be used
to calculate the average lengths of hxiy and bmy (the squared length is used to simplify the integration)
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with
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Here 2F1ða, b; c; zÞ ¼
P1

k¼0
�ðaþkÞ

�ðaÞ
�ðbþkÞ

�ðbÞ
�ðcÞ

�ðcþkÞ
zk

k!
is the hypergeometric function. From the asymptotic

properties of the hypergeometric function it follows that R	 1 for large d.
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