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Covariate dimension reduction for
survival data via the Gaussian process
latent variable model
James E. Barrett*† and Anthony C. C. Coolen

The analysis of high-dimensional survival data is challenging, primarily owing to the problem of overfitting,
which occurs when spurious relationships are inferred from data that subsequently fail to exist in test data.
Here, we propose a novel method of extracting a low-dimensional representation of covariates in survival data
by combining the popular Gaussian process latent variable model with a Weibull proportional hazards model.
The combined model offers a flexible non-linear probabilistic method of detecting and extracting any intrinsic
low-dimensional structure from high-dimensional data. By reducing the covariate dimension, we aim to
diminish the risk of overfitting and increase the robustness and accuracy with which we infer relationships
between covariates and survival outcomes. In addition, we can simultaneously combine information from
multiple data sources by expressing multiple datasets in terms of the same low-dimensional space. We present
results from several simulation studies that illustrate a reduction in overfitting and an increase in predictive
performance, as well as successful detection of intrinsic dimensionality. We provide evidence that it is
advantageous to combine dimensionality reduction with survival outcomes rather than performing unsupervised
dimensionality reduction on its own. Finally, we use our model to analyse experimental gene expression data and
detect and extract a low-dimensional representation that allows us to distinguish high-risk and low-risk groups
with superior accuracy compared with doing regression on the original high-dimensional data. Copyright © 2015
John Wiley & Sons, Ltd.
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1. Introduction

High-dimensional data are increasingly common in biomedical research. For instance, current experimen-
tal techniques can acquire tens of thousands of gene expression measurements or hundreds of thousands
of single nucleotide polymorphism data. Automated image analysis software can generate hundreds
or thousands of parameters from biomedical images obtained using various imaging platforms. The anal-
ysis of high-dimensional data is a challenging problem, and this is also the case with high-dimensional
survival data, where in addition to covariates, we also measure the time until an event of interest. One
of the main difficulties is overfitting, which occurs when a model fits training data very well but fails to
generalise to test data. This happens when a model fits to noise and struggles to detect genuine structure in
the data. The greater the dimension of the data compared with the number of samples, the more difficult it
becomes to extract meaningful relationships between the covariates and outcomes. Applying traditional
methods such as a Cox proportional hazards model [1] is problematic as the regression coefficients are
not uniquely determined when the number of covariates (d) exceeds the number of samples (N) [2].

Strategies for tackling high-dimensional data can be divided into two broad classes. Supervised
methods take into account the survival outcomes. For example, feature selection aims to select a
subset of the covariates that are relevant either by doing a univariate analysis on each covariate and select-
ing the most significant [2] or performing L1-penalised or L2-penalised regression with a Cox model
[3–5]. Random forests [6] and elastic nets [7] have also been proposed for feature selection with survival
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data. These approaches are suitable when the goal is to establish associations between covariates and
survival outcomes.

Alternative unsupervised dimensionality reduction methods attempt to represent the information in a
high-dimensional dataset in a lower-dimensional space. The idea is that there will in general be some
redundancy between high-dimensional covariates and that by eliminating this redundancy, we can achieve
a more parsimonious representation of the data. As the ratio of covariates to samples is now smaller, the
risk of detecting spurious relationships is reduced. These approaches are appropriate when the goal is to
make predictions for new individuals because overfitting will hopefully be diminished, and consequently,
predictive accuracy will increase. A drawback is that the impact a particular covariate has on the survival
outcomes may not be easy to interpret (as the low-dimensional representation may be a complicated
combination of the high-dimensional covariates). For an excellent overview of survival analysis with
high-dimensional data, see [2].

One approach to dimensionality reduction is via latent variable models, which attempt to represent
the information contained in a high-dimensional dataset in terms of a smaller number of latent variables.
In this paper, we extend the popular Gaussian process latent variable model [8] (GPLVM) to incorporate
survival outcomes. The GPLVM is a flexible probabilistic non-linear dimensionality reduction method.
The model assumes that the high-dimensional covariates can be written as a stochastic function of the
latent variables and assumes a Gaussian process (GP) prior over that function. By choosing different
kernel functions in the GP prior, various types of non-linear mappings can be specified between the
low-dimensional and high-dimensional spaces. The latent variables are unknown and must be inferred
from the data.

The simplest case consists of a linear mapping from the low-dimensional to high-dimensional spaces
(corresponding to a linear GP kernel). It was shown in [8] that the maximum a posteriori solution for the
latent variables is equivalent to performing principal component analysis (PCA) and retaining the first q
principal components (where q is the number of latent variables). We can intuitively regard the GPLVM
as a non-linear probabilistic generalisation of PCA.

A drawback of the original GPLVM is its computational complexity. This prompted the subsequent
application of sparse GP regression methods to the GPLVM [9]. Recent advances in variational sparse
GP regression [10] have also been successfully applied [11]. A variational lower bound on the marginal
likelihood was constructed, which can then be optimised with respect to the variational parameters and
model hyperparameters. A detailed overview can be found in [12]. It is also possible to infer what the
intrinsic dimensionality of the latent variable space is using this method (that is, how many latent variables
are required to explain the observed data).

Another use of the GPLVM has been to combine multiple sources of data by simultaneously expressing
several datasets in terms of the same latent variables. The idea is that overlapping structure can be easily
captured by shared latent variables. This has been developed in the shared-GPLVM [13, 14]. That work
was further extended to allow each dataset to have a separate set of latent variables that would account
for information unique to each source [15, 16]. There have also been extensions of the model to include
‘output’ information. In the discriminative-GPLVM [17, 18], class labels are incorporated, and a low-
dimensional embedding is extracted that attempts to minimise within-class variance and maximise
between-class variance. The supervised-GPLVM [19] includes continuous output variables.

The main advance in this paper is to incorporate (possibly censored) survival outcomes into the
GPLVM by combing the GPLVM with a Weibull proportional hazards model (WPHM). The latent
variables now attempt to simultaneously capture structure contained in both the high-dimensional
covariates and the survival outcomes. By combining both sources of information, we hope to infer a
low-dimensional representation that captures not just the low-dimensional structure of the covariates but
also the relationship between covariates and outcomes. By connecting the covariates to survival outcomes
via the low-dimensional latent variable space, we are limiting the degrees of freedom the model has and
thereby reduce the risk of overfitting.

Recently, the GPLVM has been applied to facial expression recognition [18], which provides a useful
analogy for the model proposed here. Images of a subject’s face were taken from two different angles, and
these images were regarded as two different datasets. Both datasets are expressed in terms of the same
latent variables because both images are of the same facial expression, but from different angles. In our
model, we can think of the latent variable space as representing the underlying biological processes we
are interested in. Each observed dataset provides a different ‘view’ or ‘perspective’ onto those processes.
For example, we may acquire gene expression data from cancer patients. Additionally, we might generate
relevant parameters from imaging their tumours. If the gene expression data and imaging parameters are
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attempting to characterise the cancer in different ways, then it is reasonable to propose that they offer
two different but complementary ‘views’ of the underlying tumour. In addition, if the survival outcomes
are driven by those underlying biology, then they provide yet another ‘view’, and thus, it is desirable to
represent all of the observed data in terms of a shared low-dimensional structure (Figure 1).

We overcome some technical issues to construct a Laplace approximation of the marginal likelihood.
The Laplace approximation is straightforward to apply to complicated likelihoods involving WPHM
terms and is used for the purposes of hyperparameter optimisation and model selection. We compare the
model likelihood corresponding to different choices of q (number of latent variables) in order to determine
what the optimal dimensional of the latent variable space is. In our model, we also allow for multiple
datasets via a set of shared latent variables as in [13, 15].

We conduct several numerical simulations to study the effects of overfitting owing to high dimensional-
ity and examine the performance of the combined GPLVM–WPHM to detect and extract low-dimensional
structure under various conditions and finally apply the new model to gene expression data from the
breast cancer METABRIC dataset. One of the goals in the METABRIC study was to identify potential
new gene signatures that were associated with clinical outcome (overall survival or progression-free
survival). The risk of overfitting is high given the large number of genes, and it is therefore desirable to
reduce the dimension of the dataset while searching for potential associations between genes and clinical
outcome. We show that the GPLVM–WPHM can achieve a predictive accuracy (measured using k-fold
cross validation) that is considerably higher than using the WPHM alone, thereby achieving an advantage
of practical benefit.

The rest of this paper is structured as follows. In Section 2, we define the GPLVM and the WPHM
separately before defining the combined GPLVM–WPHM. We provide details of the Laplace approx-
imations, inference of parameters and hyperparameters, and how to make survival predictions for new
individuals. In Section 3, we present results from simulation studies and real data, and we finish with a
discussion in Section 5.

2. Model definition

2.1. The Gaussian process latent variable model

We consider S observed datasets 𝐘1,… ,𝐘S, each with N rows, which correspond to individuals, and
d1,… , dS columns, respectively, which correspond to the covariates. For example, 𝐘1 could be gene
expression data, 𝐘2 imaging parameters and so forth. It is assumed that the rows in each dataset corre-
spond to the same individuals. We assume each individual i can be represented by a low-dimensional
vector of latent variables 𝐱i ∈ R

q via

ys
i𝜇 = f s

𝜇
(𝐱i) + 𝜉s

i𝜇 for i = 1,… ,N, (1)

where ys
i𝜇 is the 𝜇th covariate value for individual i in dataset s. The functions f s

𝜇
are unspecified, and

a GP prior is assumed. The same prior is used for each dimension 𝜇 of the covariate space s but may

Figure 1. Schematic diagram of the combined GPLVM–WPHM. Here, two high-dimensional datasets 𝐘1 ∈
RN×d1 and 𝐘2 ∈ RN×d2 and the survival data (ti,Δi) for i = 1,… ,N are represented by the same underlying set
of q latent variables 𝐗 ∈ RN×q. The total number of patients is N, d1 and d2 are the dimensions of the observed
datasets respectively, ti is the time to event for individual i and Δi ∈ (0, 1) is an indicator variables that tells us
whether that individual was censored or experienced the primary event. The latent variable representation will
attempt to represent information from all the sources of data in a more parsimonious form. By ‘squashing’ the

data into a smaller number of latent variables, we aim to reduce the risk of overfitting.
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differ with respect to s. The noise variables 𝜉s
i𝜇 are i.i.d. Gaussian random variables with zero mean and

variances 𝛽2
s . It is assumed that q < mins(ds). It follows that the data likelihood is [8]

p({𝐘}|𝐗, {𝛽2},𝜽) =
S∏

s=1

ds∏
𝜇=1

e−
1
2
𝐲s
∶,𝜇 ⋅𝐊

−1
s 𝐲s

∶,𝜇

(2𝜋)
N
2 |𝐊s| 1

2

, (2)

where {𝐘} denotes the set of all observed datasets, 𝐗 ∈ R
N×q is the matrix of latent variables, and {𝛽}

and 𝜽 are hyperparameters that are defined subsequently. The kernel matrix is [𝐊s]ij = ks(𝐱i, 𝐱j) + 𝛽2
s 𝛿ij,

where k(., .) is called the kernel function. The kernel function tells us how ‘similar’ 𝐱i and 𝐱j are. If
two individuals are ‘similar’ in the latent space, then they are also likely to be ‘similar’ in the observed
covariate space. The vector 𝐲s

∶,𝜇 denotes the 𝜇th column of 𝐘s. Equation (2) is thus a product of ds GPs
for each dataset, which map the latent variables to each covariate in 𝐘s. A GP prior [20] can be regarded
as a prior over functions and is completely specified by its mean function, m(𝐱i) = mean(𝐱i) (zero in this
case), and the kernel function k(𝐱i, 𝐱j) = cov(𝐱i, 𝐱j), where cov(𝐱i, 𝐱j) denotes the covariance between 𝐱i
and 𝐱j. The kernel functions considered in this paper are

k(𝐱i, 𝐱j) = 𝜎𝐱i ⋅ 𝐱j linear,

k(𝐱i, 𝐱j) = 𝜎
(
1 + 𝐱i ⋅ 𝐱j

)2
polynomial (of second order),

k(𝐱i, 𝐱j) = 𝜎 exp
(
−l

(
𝐱i − 𝐱j

)2 ∕2
)

squared exponential.
(3)

In all three kernels, the hyperparameter 𝜎 controls the variance of the ‘outputs’ (which in our case are
the high-dimensional covariates). The hyperparameter l defines a characteristic length scale over which
the values of the outputs vary.

Consider for the moment that s = 1. With linear functions f𝜇 in (1), we can write 𝐲i = 𝐖𝐱i + 𝝃i, where
𝐖 ∈ R

N×q is a matrix of mapping coefficients. As shown originally in [8], if we assume a Gaussian prior
for 𝐖 and marginalise, we obtain equation (2) with the linear kernel. The maximum a posteriori solution
for 𝐗 in this case is equivalent to performing PCA and retaining the top q principal components.

2.2. Weibull proportional hazards model

For each individual i, in addition to the covariates, we observe an event time ti and an indicator variable
where Δi = 1 means the primary event occurred first and ti is therefore the time until the primary event,
whereas Δi = 0 indicates that that individual was right censored (censoring event times are assumed to
be independent of the primary risk event times). In the WPHM, the hazard rate for individual i is

hi(t|𝐱i, 𝜈, 𝜌,𝐛) = 𝜆0(t)e𝐛⋅𝐱i , (4)

where the base hazard rate is 𝜆0(t) = (𝜈∕𝜌)(t∕𝜌)𝜈−1. The scale parameter 𝜌, shape parameter 𝜈 and regres-
sion coefficients 𝐛 ∈ R

q need to be inferred from the data. Note that in anticipation of combining the
GPLVM with the WPHM, the hazard rate is a function of the latent variables 𝐱i and not the observed
data. Denoting the survival data as D = {(t1,Δ1),… , (tN , 𝛿N)} and the integrated base hazard rate as
Λ0(t) = (t𝜌)𝜈 , the data likelihood is

p(D|𝐗, 𝐛, 𝜌, 𝜈) =
N∏

i=1

[
𝜆0(ti)e𝐛⋅𝐱i

]Δi exp
(
−Λ0(ti)e𝐛⋅𝐱i

)
. (5)

Note that because this is a parametric model, it would be straightforward to include left, right or interval
censored observations.

2.3. The combined GPLVM–WPHM

We are now interested in a model where the high-dimensional covariates and the survival outcomes are
both related to the same latent variables. Using Bayes’ theorem, we can write the posterior density over
the unknown parameters:

p(𝐗,𝐛, 𝜌, 𝜈|{𝐘},D,𝜽, {𝛽}) =
p({𝐘},D|𝐗,𝐛, 𝜌, 𝜈,𝜽, {𝛽})p(𝐗)p(𝐛)p(𝜌)p(𝜈)

p({𝐘},D|{𝛽},𝜽) , (6)
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where

p({𝐘},D|{𝛽},𝜽) = ∫ d𝐗 d𝐛 d𝜌 d𝜈 p({𝐘},D|𝐗, 𝐛, 𝜌, 𝜈,𝜽, {𝛽})p(𝐗)p(𝐛)p(𝜌)p(𝜈). (7)

In practice, we will work with the negative log posterior (𝐗,𝐛, 𝜌, 𝜈; {𝛽},𝜽) = −N−1 log p(𝐗,𝐛, 𝜌,
𝜈|{𝐘},D,𝜽, {𝛽}). We now make a key assumption of conditional independence between the observed
covariates and the survival data given the latent variables:

p({𝐘},D|𝐗,𝐛, 𝜌, 𝜈,𝜽, {𝛽}) = p({𝐘}|𝐗,𝜽, {𝛽})p(D|𝐗,𝐛, 𝜌, 𝜈,𝜽). (8)

The first term is given by the GPLVM likelihood (2), and the second is given by the WPHM likelihood
(4). Following the example of [21, Section 2.2], we choose Gamma prior distributions for the scale and
shape parameters:

p(𝜈|𝜅0, 𝛼0) =
𝜈𝜅0−1e−𝜈∕𝛼0

𝛼
𝜅0

0 Γ(𝜅0)
and p(𝜌|𝜅1, 𝛼1) =

𝜌𝜅1−1e−𝜌∕𝛼1

𝛼
𝜅1

1 Γ(𝜅1)
. (9)

For the regression parameters prior, we chose p(𝐛) =  (
𝟎, 𝜎−2

0 𝐈
)
. We found (𝜅0, 𝛼0) = (3, 1), (𝜅1, 𝛼1) =

(3, 6) and 𝜎0 = 2 to be satisfactory in practice (where we expect the event times are measured in years).
For the linear and polynomial kernel, there is some redundancy between the overall scale controlled

by p(𝐗) and the hyperparameter 𝜎. We decided to fix 𝜎 = 1 and use a flat improper prior p(𝐗) = 1. The
overall scale of 𝐗 is now naturally determined by the observed data (which will typically be normalised to
unit variance and zero mean). In the case of the squared exponential kernel, we imposed 𝐱i ∼  (𝟎, 𝜎−2

1 𝐈)
with 𝜎1 = 2 for i = 1,… ,N.

2.4. Inference of parameters and hyperparameters

The latent variables, 𝐗∗, are determined by numerically solving 𝐗∗ = min𝐗 (𝐗,𝐛, 𝜌, 𝜈) while holding
𝐛, 𝜌 and 𝜈 fixed. This is followed by solving (𝐛∗, 𝜌∗, 𝜈∗) = min𝐛,𝜌,𝜈 (𝐗∗,𝐛, 𝜌, 𝜈), where 𝐗 is fixed to
its previously determined optimal value. This procedure is then repeated by alternately optimising with
respect to one set of parameters while the others are fixed at their previously optimal values until a stable
solution is converged upon. Further details of the implementation are given in Section 2.7. The posterior
over hyperparameters is

p({𝛽2},𝜽|{𝐘},D) =
p({𝐘},D|{𝛽2},𝜽)p({𝛽2})p(𝜽)

∫ d{𝛽′2}d𝜽′ p({𝐘},D|{𝛽′2},𝜽′)p({𝛽′2})p(𝜽′)
, (10)

where the marginal likelihood p({𝐘s},D|{𝛽2
s },𝜽) is defined by (7). Flat priors are assumed for the kernel

parameters. The marginal likelihood involves an integral that is generally intractable both analytically and
numerically. We therefore construct a Laplace approximation of the marginal likelihood. The negative
hyperparameter log likelihood is defined as −N−1 log p({𝛽2},𝜽|{𝐘}), which in this case gives

hyp({𝛽2},𝜽|{𝐘}) = (𝐗∗,𝐛∗, 𝜌∗, 𝜈∗) − q

2
log 2𝜋 + 1

2N
log |N𝐇({𝛽2},𝜽)|. (11)

The Hessian matrix 𝐇 contains second-order partial derivatives. Full details are given in the Supporting
Information. Optimal hyperparameters are determined by numerically minimising (11). Note that each
evaluation of hyp requires computing (𝐗∗,𝐛∗, 𝜌∗, 𝜈∗). This is computationally expensive, although the
search can be initialised to the optimal value from the previous evaluation of hyp.

2.5. Elimination of symmetries due to invariance under unitary transformations

A problem that arises with the Laplace approximation is that the second-order partial derivatives are zero
along certain directions in the Nq-dimensional posterior search space. These directions point along lines
where the log likelihood is constant. This occurs owing to the invariance of the log likelihood to rotation
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or reflection of the latent variables. A consequence of this is that the Hessian matrix is not guaranteed to be
positive definite, and secondly, the solution will not be unique (as any rotation or reflection is an equivalent
solution). The problem can be eliminated by breaking the symmetry. We achieve this by constraining
some of the degrees of freedom 𝐗 can take. This is fully described in the Supporting Information.

2.6. Making predictions for new individuals

When we observe a new individual with covariates 𝐲∗, we wish to firstly infer their optimal position 𝐱∗
in the latent variable space using the GPLVM and from there make a prediction of survival outcomes
using the WPHM part of the model. To find the optimal location in the latent variable space, we use
the GP predictive distribution to write p(𝐲∗|𝐱∗, {𝐘},D) =  (𝐦, 𝜅−2𝐈), where m𝜇 = 𝐤 ⋅ 𝐊−1𝐲𝜇 and
𝜅2 = k(𝐱∗, 𝐱∗)−𝐤 ⋅𝐊−1𝐤+𝛽2. We maximise the posterior using gradient-based methods (see Supporting
Information for partial derivatives):

p
(
𝐱∗|𝐲∗1,… 𝐲∗S, {𝐘},D

)
∝ p

(
𝐲∗1|𝐱∗, {𝐘},D)

· · · p
(
𝐲∗S|𝐱∗, {𝐘},D)

p(𝐱∗). (12)

It is not necessary to make observations for each data source s because the terms corresponding to missing
data in (12) can simply be omitted. Once we have determined 𝐱∗ by maximising (12), we use the WPHM
part of the model to make survival predictions. We can generate a prediction of the event time, t∗,
corresponding to 𝐱∗ by numerically computing the mean of the corresponding event time density:

t∗ = ⟨t⟩ = ∫
∞

0
ds s𝜆0(s)e�̂�⋅𝐱

∗
exp

(
−Λ0(s)e�̂�⋅𝐱

∗
)
. (13)

Note that the optimal values �̂� are used. Optimal values of 𝜈 and 𝜌 are used inside 𝜆0(s) and Λ0(s). We can
similarly compute the variance

⟨
t2
⟩
−⟨t⟩2 as a measure of the uncertainty associated with our prediction.

2.7. Implementation

Gradient-based optimisation functions were used in a MATLAB implementation. Partial derivatives are
given in the Supporting Information. Initial values were set as 𝐛 = 𝟎, 𝜌 = 3 and 𝜈 = 10. The initial
values of 𝐗 are randomly generated from a Gaussian density with zero mean and covariance matrix equal
to the identity matrix. In the case of the linear kernel function (3), it was shown in [8] that the GPLVM
log likelihood has a single global minimum that corresponds to performing PCA and retaining the top
q principal components. Experience suggests that in the GPLVM–WPHM, the log likelihood still has a
single minimum, although this has not been proved. In the case of a non-linear kernel, then there will
exist multiple local minima. Several attempts are made to locate the global minimum, with each attempt
starting from a different initial search point.

Software is available to download from the author’s Mathwork’s file exchange page. A model with
N = 100 and q = 2 can be fitted in < (10) min on an Intel i7 quad-core CPU (Intel Corporation,
Santa Clara, CA, USA). It is also possible to optimise the posterior (6) with respect to {𝛽} and 𝜽 also.
However, we found that the model will typically fail to infer the correct value of q (larger values of q
have a higher posterior probability). The Laplace approximation was sufficient to penalise larger values
of q and the model performs well. As an alternative to the Laplace approximation, one could compute
the Bayes information criterion score for each value of q, and this may provide an acceptable level of
performance at a reduced computational cost.

3. Simulation studies

3.1. Generation of synthetic data

To examine the behaviour of the model under different conditions, we generate simulated data. We do
this by first generating latent variables 𝐗 and from these generating high-dimensional covariates 𝐘 and
survival data (ti,Δi)i=1,…,N . The high-dimensional data can be generated according to equation (2). Firstly,
the kernel matrix 𝐊 is computed (for certain chosen values of the hyperparameters 𝜽 and noise level 𝛽),
and then for each dimension of 𝐘, we draw a random vector from a GP prior (which for fixed N is simply
a multivariate Gaussian density). This can be carried out for an arbitrary dimension d and can be repeated
to generate multiple datasets (with possibly different kernel functions and dimensions).

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015
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To generate survival outcomes, we pick values for 𝜷, 𝜌 and 𝜈 manually. Event times are generated using
the inverse of the cumulative distribution, which is Ci(t) = 1 − exp(−Λ0(t)e𝐛⋅𝐱i) by generating random
numbers z ∈ [0, 1] from a uniform density and obtaining the corresponding event time from the inverse
cumulative distribution:

ti = 𝜌
(
−e−𝐛⋅𝐱i log(1 − z)

)1∕𝜈
. (14)

Finally, independent censoring is simulated by randomly selection a subset (about 10%) of the individuals
and generating a random number from a uniform distribution defined on the interval [0, ti), which is then
recorded as the time of censoring.

3.2. Retrieval accuracy

It will be helpful to compare the retrieved 𝐗∗ with the ‘true’ values 𝐗. For this purpose, we choose the
specific latent variables plotted in Figure 2(a), which are arranged in a specific geometrical pattern that
allow quantitative measures of similarity to be defined. The samples that belong to either of the two
circles, for instance, should be equidistant from the origin. If r̃ is the mean distance from the origin, then
we can define the radial error as

radial =
1
|C|

∑
i∈C

|𝐱i| − r̃

r̃
, (15)

where C is the set of points belonging to the circle and |C| is the number of samples belonging to that
set. The error for both circles is averaged.

Similarly, the angles between each pair of samples belonging to each circle should be equal. In the case
of the larger circle, the angular separation should be 𝜃 = 2𝜋∕20. If we let Δ𝜃i denote the angle between
𝐱i and the neighbouring point, then we can define the mean angular error as

angular =
1
|C|

∑
i∈C

Δ𝜃i − 𝜃

𝜃
. (16)

For both of the lines, we can attempt a linear fit by writing q2 = 𝛼q1. The value of 𝛼 that minimises the
sum of squared errors

∑
i(xi2 −𝛼xi1)2 is given by �̂� =

∑
xi1xi2∕

∑
x2

i1. We can then define the total sum of
squares SStot =

∑
(xi2 − ⟨xi2⟩)2 and the sum of squared residuals SSerr =

∑
(xi2 − �̂�xi1)2 and finally define

linear =
SSerr

SStot
. (17)

Figure 2. On the left are the ‘true’ synthetic latent variables that are projected into a high-dimensional space
with d = 10 (using a linear kernel) according to (1). The variance of the Gaussian noise was 𝛽2 = 0.1. On the
right are the latent variables retrieved by the GPLVM–WPHM model from those high-dimensional data. This
specific geometric pattern was used to allow for qualitative and quantitative comparison. Misalignment errors areradial = 0.0051, angular = 0.0086 and linear = 0.0288.
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Note that 1 − linear is called the coefficient of determination and is typically denoted by R2 and takes a
value between 0 and 1, where 1 corresponds to a perfect linear fit. These misalignment error measures
have two desirable properties. Firstly, all three errors are zero for the ‘true’ latent variables. Secondly,
the error measures are invariant under rescaling of 𝐗.

3.3. Retrieval accuracy of combined model compared with GPLVM

Our aim here is to see if including survival data improves the ability of the model to accurately extract the
correct low-dimensional structure. To compare the combined GPLVM–WPHM to the GPLVM (which
ignores the survival data), we generated 50 datasets from the two-dimensional pattern in Figure 2(a)
(which contains n = 96 samples). A linear kernel was used with 𝛽 = 0.01 and d = 10. Survival times
were generated as described earlier (approximately 20% of observations were censored).

For each dataset, the GPLVM–WPHM was used to generate an optimal latent variable solution 𝐗∗

with q = 2, and the misalignment errors were computed. The GPLVM was also used to generate a q = 2
representation, and misalignment errors were also computed for these solutions. Averaged over the 50
datasets, a decrease was observed in the misalignment errors as shown in Table I. We conclude that the
inclusion of survival outcomes provides useful information that aids recovery of the true latent structure.

3.4. Integration of multiple sources

Earlier, we saw that including survival outcomes increases the accuracy of the retrieved latent variables.
Now, we investigate whether including multiple datasets simultaneously leads to similar improvement.
We generated one dataset with d1 = 10 and 𝛽2

1 = 0.1 and second with d2 = 100 and 𝛽2
2 = 1.0 (a

linear kernel was used). N = 96 and approximately 10% of observations were censored. We compute the
misalignment errors after analysing each dataset separately with the GPLVM–WPHM and compare this
with the errors obtained after including both datasets simultaneously in the GPLVM–WPHM. The results
in Table II show that it is beneficial to include both data sources together. These results were averaged
over 50 repetitions.

3.5. Prediction accuracy using the latent variables

In this section, we want to try and see the effect of overfitting due to high dimensionality. We generate
datasets 𝐘 of different dimensions with N = 200 individuals from a randomly generated matrix 𝐗 with

Table I. The average percentage change in error when the
GPLVM–WPHM is used instead of the GPLVM.

𝛽 radial (%) angular (%) linear (%)

0.1 −7.3 −5.3 −6.1
0.5 −14.5 −17.1 −19.5
1.0 −16.0 −24.8 −15.7

A decrease in the misalignment error is observed owing to the
additional information provided by the survival data. The bene-
fit becomes more apparent as the observed data become noisier
(the survival data will contain roughly the same amount of ‘noise’
in each experiment because they are generated with the same
parameters throughout).

Table II. Misalignment errors (averaged over 50 repetitions)
decrease when both datasets are combined simultaneously.

radial angular linear

𝐘1 (d1 = 10, 𝛽2
1 = 0.1) 0.0071 0.0093 0.0270

𝐘2 (d2 = 100, 𝛽2
2 = 1.0) 0.0244 0.0148 0.0509

𝐘2 and 𝐘2 0.0046 0.0052 0.0146

It is beneficial to include all available information simultaneously
rather than performing separate analyses on each dataset.
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q = 2. Each dataset is split into a training set and a test set of equal size. In the high-dimensional space,
we train a WPHM model on the training individuals and then use the trained model to predict the event
time for those individuals in the test set as described in Section 2.6. We then compute the mean square
error (MSE) between the predicted and reported event times (censored individuals are excluded from the
test set).

Next, we run the GPLVM–WPHM on the same training data and use the trained model to firstly infer
𝐱∗ from 𝐲∗ for each individual in the test set and subsequently predict an event time. Again, the MSE
is computed, and we can compare the MSE in the latent space with that obtained in the observed data
space. In Table III, we can see that the MSE increases as the dimension of the observed data increases.
The results are averaged over 50 datasets.

Note that these data were generated with a linear kernel so the increase in MSE is not due to
non-linearities induced during the generation of the synthetic data. Also, the noise level is relatively low
(𝛽2 = 0.01), so the observed data are only slightly corrupted with noise. We conclude that the increase
in MSE is due to high dimension alone (rather than noise or non-linearities).

We also examined the effect that the noise level has (for fixed d). We can see from Table IV that the
MSE in general increases with the noise level. The unusually large value for 𝛽 = 0.5 is due to an ‘outlier’
(that is, one particularly bad prediction in the high-dimensional space).

Finally, we investigated the behaviour at different levels of censoring. In Table V, we can see that
higher levels of censoring lead to a degradation in predictive performance.

3.6. Non-linear dimensionality reduction

In this section, we investigate the effects that a non-linear mapping can induce. We used the squared
exponential kernel to project latent variables with q = 1 to d = 2. The observed data would not be
considered ‘high’ dimensional, but they now lie on a non-linear one-dimensional manifold. In Figure 3,
we compare survival curves in both spaces (obtained after training a GPLVM–WPHM and a WPHM,
respectively). The cohort was split into equally sized ‘high-risk’ and ‘low-risk’ groups by ranking all
individuals according to the values of 𝐛 ⋅ 𝐱i and then separating them into two groups of the same size. A
complete loss of structure is observed in the two-dimensional space owing to the non-linearities, whereas
after we extract the one-dimensional non-linear manifold, we see a clear separation of the two groups.
We can also compare the inferred hyperparameters with those that were used to generate the data. The

Table III. Percentage change in the mean squared
error between predicted event times and reported
event times in the high-dimensional space compared
with that in the low-dimensional space.

d = 10 d = 25 d = 50 d = 100

+1.2% +14.7% +26.6% +43.4%
The prediction error increases as the dimension of the
observed data grows. The noise was fixed at 𝛽 = 0.01. The
proportion of observations that were censored was set to
p = 0.1 and N = 200.

Table IV. Percentage change in the mean squared
error between predicted event times and the actual
event times when computed in the high-dimensional
space compared with the low-dimensional one for
different noise values (d = 10 in all cases).

𝛽 = 0.01 𝛽 = 0.1 𝛽 = 0.5 𝛽 = 1.0

+1.2% +2.7% +38.0% +5.67%
In general, the error increases as the high-dimensional data
become more noisy. The large value at 𝛽 = 0.5 was due
to one particularly poor prediction in the high-dimensional
space. The proportion of observations that were censored
was set to p = 0.1 and N = 200.
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Table V. Percentage change in the mean squared error
between predicted event times and the actual event
times when computed in the high-dimensional space
compared with the low-dimensional one for different
censoring levels.

p = 0.10 p = 0.25 p = 0.50 p = 0.75

+38.9% +60.9% +105.6% +282.9%
The variable p is the fraction of individuals that were censored.
Higher censoring leads to a loss in predictive accuracy. The
dimension was d = 25 with 𝛽 = 1.0 and N = 200.

Figure 3. Kaplan–Meier survival curves obtained in the latent variable space q = 1 (left) and observed data space
with d = 2 (right) from synthetic two-dimensional data that lie on a one-dimensional non-linear manifold. A log-
rank test returned a p-value of 0.00006 on the left and 0.60755 on the right. Individuals were split into ‘high-risk’
and ‘low-risk’ groups by on the basis of risk factors 𝐛 ⋅ 𝐱i. In the left figure, we can clearly distinguish between
the high-risk and low-risk individuals, but this pattern is lost after the data are projected (in a non-linear manner)
into the high-dimensional space. A squared exponential kernel was used with 𝛽2 = 0.001, l = 1 and 𝜎 = 1
to generate the two-dimensional observed data. These results illustrate how the model can be used to extract a

low-dimensional manifold, which may reveal additional structure to the data.

generating hyperparameters in this case are (𝛽2, 𝜎, l, b, 𝜌, 𝜈) = (0.0010, 1.00, 1.00,−1.00, 10.0, 10.0), and
the inferred values are (𝛽2, 𝜎, l, b, 𝜌, 𝜈) = (0.0006, 1.23, 1.11,−0.68, 9.70, 10.3).

This illustrates that the GPLVM–WPHM is useful not only for cases where d > N but also for cases
where non-linear structures can be extracted from the covariates that may potentially reveal additional
patterns of survival.

3.7. Dimensionality detection

Next, we illustrate the ability of the GPLVM–WPHM to correctly detect any intrinsic low-dimensional
structure. This is carried out by training models with different values of q and comparing the minimum
value of the negative log marginal likelihood. Shown in Figure 4(a) is an example of the model correctly
determining that q∗ = 2. Additionally, we can compare this with an alternative kernel, and we see that
the linear kernel (correctly) offers the best description of these data.

In Figure 4(b), we repeat the same experiment using the GPLVM, and we see similar results. In fact, the
GPLVM has a slightly sharper minimum at q = 2. One possible explanation for this is that the GPLVM–
WPHM is overfitting slightly by using the third latent variable to explain some of the survival outcomes
(the three regression coefficients are b1 = −3.76, b2 = 0.54 and b3 = 1.19).

3.8. Comparison with other methods

We compared the performance of our model with three existing tools for high-dimensional survival data.
We performed L2 regularised Cox regression using the ‘penalised’ R package [3]. Secondly, we used the
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Figure 4. Comparison of the GPLVM–WPHM and the GPLVM on synthetic data. The minimum negative log
marginal likelihood is plotted as a function of q for both models. Synthetic data with d = 10, 𝛽 = 0.1 and N = 96
(Figure 2(a)) were generated using a linear kernel along with survival times. Both models correctly detect that
q∗ = 2. However, the model likelihood ratio between q = 2 and q = 3 using the GPLVM is 1.94 (that is, two
latent variables is almost twice as probable as three), compared with a ratio of 1.23 using the GPLVM–WPHM.
Furthermore, both models correctly detect that the linear kernel offers a better description of these data than the

non-linear polynomial kernel.

Table VI. Comparison of different algorithms using simulated data under various conditions.

d = 25, d = 100, d = 200, d = 25, d = 25, d = 25, d = 25,
𝛽 = 0.1, 𝛽 = 0.1, 𝛽 = 0.1, 𝛽 = 0.5, 𝛽 = 1.0, 𝛽 = 0.1, 𝛽 = 0.1,
p = 0.1 p = 0.1 p = 0.1 p = 0.1 p = 0.1 p = 0.5 p = 0.75

GPLVM–WPHM 0.949 0.951 0.953 0.946 0.939 0.952 0.949
L2 regularised 0.949 0.951 0.952 0.944 0.937 0.952 0.948
Univariate shrinkage 0.941 0.945 0.926 0.937 0.931 0.942 0.927
Random forests 0.937 0.943 0.945 0.929 0.921 0.902 0.838

For each condition, the mean C-statistic was computed over 50 simulations. In each simulation, N = 100 samples
were used to train the models, and a further N = 100 samples were used as a validation dataset to evaluate the
C-statistic. A linear kernel was used to generate the data.

‘univariate shrinkage’ method described in [22] and implemented in the ‘uniCox’ R package. Finally,
we used the ‘randomForestSRC’ R package to implement a random forest for survival data [23–25].
As a metric of performance, we used the C-statistic proposed by [26] where larger values correspond
to a greater ability to discriminate between high-risk and low-risk patients. Data were simulated under
a variety of conditions, and the mean C-statistic was computed over 50 simulations for each condition.
The results are presented in Table VI. All four methods offer broadly similar performance. The GPLVM–
WPHM is marginally ahead of the L2 regularised Cox regression. The random forests approach tended
to perform slightly poorer, particularly when the level of censoring was high.

4. Experimental data

Finally, we ran our model on a dataset of gene signature scores from breast cancer patients in Guy’s
METABRIC dataset. This gene expression dataset from [27] was filtered for array intensity, quantile
normalised and batch corrected for BeadChip (n = 234 samples). In total, there were N = 152 patients
and a total of 14 804 gene expression levels per patient. We ranked the genes according to a univariate
Cox model and selected the top 100 genes for use in our model. One of the aims of the METABRIC study
was to search for potential gene signatures that are associated with clinical outcome (overall survival
or progression-free survival). Given the high dimensionality of the dataset, there is a considerable risk
of overfitting, and therefore, methods to probe associations between gene expression levels and survival
outcomes while offering some protection against overfitting are needed. For this purpose, we applied the
GPLVM–WPHM to the dataset.
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Figure 5. Results from our analysis of experimental gene expression data. The minimum log likelihood corre-
sponds to the most probably number of latent variables. In this case, four latent variables are required to capture the
information contained in 100 genes. Using this four-dimensional representation leads to a considerable increase

in predictive accuracy.

We performed eightfold cross validation, which consists of training a model on 7/8 of the data and
then testing the predictive ability of the trained model on the remaining 1/8. The C-statistic was then
computed and averaged over the eight cross-validation runs. In addition, we compared our model with
the three existing tools for high-dimensional survival data described in Section 3.8.

Using all N = 152 of the samples, we trained the GPLVM–WPHM for different values of q, and
the minimum log likelihood obtained for models with q = 1,… , 10 is plotted in Figure 5. The opti-
mal number of latent variables is q∗ = 4, which indicates that there is substantial redundancy between
these genes.

The best-performing models were the GPLVM–WPHM and the L2-regularised Cox model, which
both had an average C-statistic of 0.83. A WPHM model fitted to the d = 100 genes had a score of
0.69. The univariate shrinkage method had a score of 0.76, while the random forest model performed
the worst with a score of 0.70. There is therefore a significant improvement in predictive performance
if a low-dimensional representation is used instead of the original high-dimensional data. The perfor-
mance is superior or equal to the other models tested here. In addition, the information on intrinsic
dimensionality may be of interest in itself, and the latent variable representation can be subsequently
used for subsequent analyses.

5. Discussion and conclusion

Our proposed GPLVM–WPHM offers a novel supervised dimensionally reduction method for survival
data. Simulation studies illustrate that including survival data is worthwhile and leads to a more accurate
retrieval of low-dimensional structure. Our results also show that reducing the dimension can lead to a
significant improvement in predictive accuracy as the effects of overfitting are diminished. In addition,
our model can be used to extract non-linear low-dimensional structure that has the potential to provide
new insight into survival outcomes.

We used a gene expression dataset from the METABRIC study to show that using the GPLVM–WPHM
can achieve a greater predictive accuracy than using the original dataset. This translates into a greater
ability to discriminate between high-risk and low-risk breast cancer patients that may potentially be of
practical benefit. Furthermore, the GPLVM–WPHM offers state of the art performance when compared
with existing models for high-dimensional survival data.

Future work could involve combining the GPLVM with more sophisticated survival analysis models.
See [28–30] for examples of models that allow for flexible non-linear covariate effects in the hazard rate.
Another research direction would be to apply some of the sparse GP regression techniques in order to
reduce the computational burden.
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