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Modelling biological networks via
tailored random graphs

ACC Coolen, F Fraternali, A Annibale, L Fernandes, and J Kleinjung

King’s College London

1.1 Introduction
The nature of biological research has changed irreversibly in the last decade. Experimental
advances have generated unprecedented amounts of genetic and structural information at
molecular levels of resolution, and to understand the biological systems that are now being
studied, knowing the list of parts no longer suffices. The parts have become too complicated
and too numerous. It is often not even clear how best to represent the new high-dimensional
experimental data in a way that helps us making sense of them. We need to integrate
our knowledge of the individual biological events and components in mathematical and
computational models that can capture the complexity of the data at a systems level.

Data collected on metabolic, regulatory or signalling processes in the cell are usually
represented in the form of networks, with nodes representing dynamical variables
(metabolites, enzymes, RNA or protein concentrations) and links between nodes representing
pairs of variables that have been observed to interact with each other. Some of these networks
are directed (e.g. metabolic and gene regulatory networks, GRN), and some are undirected
(e.g. protein-protein interaction networks, PPIN). The idea behind this representation is that
functional properties of complex cellular processes will have fingerprints in the structure of
their networks. Most of the observed biological networks, however, are too complex to allow
for direct interpretations; to proceed we need precise tools for quantifying their topologies.

Ensembles of tailored random graphs with controlled topological properties are a natural
and rigorous language for describing biological networks. They suggest precise definitions
of structural features, they allow us to classify networks and obtain precise (dis)similarity
measures, they provide ‘null models’ for hypothesis testing, and they can serve as efficient
proxies for real networks in process modelling. In this chapter we explain the connection
between biological networks and tailored random graphs, we show how this connection can
be exploited, and we discuss exact algorithms for generating such graphs numerically.
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2 Modelling biological networks via tailored random graphs

1.2 Quantitative Characterization of Network Topologies
We consider networks with N nodes (‘vertices’) labelled by Roman indices. For each node
pair (i, j) we write cij = 1 if a link (‘edge’) j → i is present, and cij = 0 if not. The set ofN2

link variables {cij} specifies the network in full, and is abbreviated as c. We limit ourselves
in this chapter to non-directed networks (such as PPINs), where cij = cji for all (i, j), and
we assume that cii = 0 for all i. We denote the set of all such non-directed networks as
G = {0, 1} 1

2N(N−1). The specific biological networks we are interested in tend to be large,
containing of the orderN ∼ 104 nodes, but with a small average number 〈k〉 = N−1

∑
ij cij

of links per node. The current estimate for e.g. the human PPIN is 〈k〉 ∼ 7.

1.2.1 Local Network Features and Their Statistics

To characterize networks quantitatively a natural first step is to inspect simple local quantities
and their distributions (Albert and Barabási 2002, Dorogovtsev et al. 2008, Newman 2003),
such as the degrees ki(c) =

∑
j cij (the number of partners of node i) or the clustering

coefficients Ci(c) = [
∑
j 6=k cijcikcjk]/[

∑
j 6=k cijcik] (the fraction of the partners of i that

are themselves connected). For instance, the distribution of the N degrees1,

p(k|c) =
1

N

∑
i

δk,ki(c) (1.1)

gives us a simple and transparent characterisation of the network’s topology. Often we would
in addition like to capture correlations between local properties of different nodes, especially
between connected nodes, which prompts us to define also distributions such as

W (k, k′|c) =
1

N〈k〉
∑
ij

δk,ki(c)cijδk′,kj(c) (1.2)

i.e. the fraction of connected node pairs (i, j) with degrees (k, k′). From (1.2) follows the
assortativity (Newman 2002), the overall correlation between the degrees of connected nodes:

a(c) = [〈kk′〉w − 〈k〉2w]/[〈k2〉w − 〈k〉2w] (1.3)

with the short-hand 〈f(k, k′)〉w =
∑
kk′ f(k, k′)W (k, k′|c), and where we used the

symmetry of W (k, k′|c). Both (1.1) and (1.2) are global measures of network structure,
and they provide complementary information. They have the advantage of not depending
explicitly upon the network size N (such a dependence would be undesirable, as most
biological data sets are known to represent incomplete samples and the sizes of available
biological networks continue to increase). However, (1.1) and (1.2) are not independent, since

W (k|c) =
∑
k′

W (k, k′|c) =
k

〈k〉
p(k|c) (1.4)

More generally one could have for each node i a list ki(c) = (ki1(c), . . . , kir(c)) of
local quantities. Choosing e.g. ki`(c) = (c`+1)ii would give ki2(c) =

∑
jm cijcjmcmi (the

1Here δab = 1 if a = b, and δab = 0 if a 6= b.
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Figure 1.1 Windows on the H. sapiens PPIN data in (Prasad et al. 2009), with N = 9306 proteins and
〈k〉 = 7.53 interactions/node on average. Left: data shown as a non-directed network, with proteins as
nodes and physical interactions as links. Middle: degree distribution p(k), defined in (1.5). Right: re-
scaled joint degree statistics of connected nodes Π(k, k′) = W (k, k′)/W (k)W (k′), following (1.6).
One would have Π(k, k′) = 1 for all (k, k′) if connected nodes had uncorrelated degrees, so deviations
from light green suggest nontrivial structural properties. Figure taken from (Fernandes et al. 2010).

number of length-3 paths through i)2, followed by counters of longer loops. The choice
ki`(c) =

∑
j(c

`)ij would give observables that count the number of paths through each node
of a given length (open or closed)3. The distributions (1.1,1.2) would then generalize to

p(k|c) =
1

N

∑
i

δk,ki(c) (1.5)

W (k,k′|c) =
1

N〈k〉
∑
ij

δk,ki(c)cijδk′,kj(c) (1.6)

with (1.5) giving the overall fraction of nodes in the network with local properties k, and
(1.6) giving the fraction of connected node pairs (i, j) with local properties (k,k′).

In this chapter we will mainly work with structure characterisations of the above form.
However, we note that there are alternatives. One is the network spectrum %(µ|c) =
N−1

∑
i δ[µ− µi(c)], where the µi(c) are the eigenvalues of the matrix c; from it one

obtains the joint distribution of loops of all lengths, see e.g. (Kühn 2008, Rogers et al. 2010)
and references therein. Another alternative is the spectrum of the network Laplacian L(c),
a matrix defined as Lij(c) = ki(c)δij − cij ; it contains information on sub-graph statistics,
modularity, and typical path distances, see e.g. (Mohar 1991) and references therein.

1.2.2 Examples

Figure 1.1 illustrates the topology characterization (1.1,1.2) for the PPIN of H. sapiens. It
is clear that from the network image itself (on the left) one cannot extract much useful
information. Instead we characterise the network structure hierarchically by measuring
increasingly sophisticated degree-related quantities. The zero-th level is to measure the

2From ki1(c) and ki2(c) the clustering coefficient Ci(c) follows via Ci(c) = ki2(c)/ki1(c)[ki1(c)− 1].
3These so-called generalized degrees were to our knowledge first proposed in (Skantzos, 2005).
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Figure 1.2 Classification of networks into hierarchically organized families. Starting from the set of
all non-directed graphs of size N , we first classify networks according to their average connectivities,
followed by class sub-division for each 〈k〉 according to the degree distribution p(k), and by
further class sub-division for each p(k) according to the degree correlation profile Π(k, k′) =
W (k, k′)/W (k)W (k′), etc. By construction, the subsets will decrease in size with each sub-division,
i.e. the specification of networks becomes increasingly detailed and prescriptive.

average degree 〈k〉. The next level is measuring the degree distribution p(k|c) (1.1). Finally,
we collect degree statistics of connected nodes by probing W (k, k′|c) (1.2). To aid our
interpretation of the latter distribution we plot, rather than W (k, k′|c) itself, the ratio

Π(k, k′|c) = W (k, k′|c)/W (k|c)W (k′|c) (1.7)

where the marginals W (k|c) follow via (1.4). A weak Gaussian smoothening is applied
to Π(k, k′), to prevent trivial pathologies in calculations. Since W (k|c) can be written
directly in terms of p(k|c), only the ratio Π(k, k′|c) can reveal topological information (if
any) that is not already contained in the degree distribution. Any significant deviation from
Π(k, k′|c) = 1 tells us that the network wiring contains nontrivial regularities beyond those
encoded in the degree distribution, which manifest themselves in either a higher (red) or a
lower (blue) than expected tendency of degree pairs (k, k′) to interact.

In dealing with real data one should be aware, however, that these are generally incomplete
samples of a true underlying biological network, and that sampling impacts on the shape
of distributions such as (1.5,1.6) (Han et al. 2005, Stumpf and Wiuf 2005). Both links and
nodes will be under-sampled, and the sampling is likely to be biased (Hakes et al. 2008).
For instance, PPIN data sets are influenced by experimentalists’ focus on proteins that are
‘interesting’ or easy to measure, by experimental protocol, and even by data processing.

1.3 Network Families and Random Graphs

1.3.1 Network Families, Hypothesis Testing and Null Models

Any quantitative characterization of networks via increasingly detailed structure
measurements, of which 〈k〉, p(k) andW (k, k′) are specific examples, induces automatically
a hierarchical classification of all networks into families, see Figure 1.2. This is not a deep
insight, but it does aid our formulation of practical concepts and questions. Let us denote with



Modelling biological networks via tailored random graphs 5

G[p] ⊆ G the subset of networks with topological features characterized by a given choice for
the function p(k) (see Figure 1.2), and let us write the number of networks in that subset as
|G[p]|. Similarly, let us denote with G[p,Π] ⊆ G[p] the subset of networks with topological
features characterized by specified choices for both p(k) and Π(k, k′), with |G[p,Π]| giving
the number of such networks. It is then natural to define network comparison, observation
interpretation, and hypothesis testing along the following lines:

• A network with features {p,Π} is more complex than a network with features {p′,Π′}
if |G[p,Π]| < |G[p′,Π′]|.

The rationale is this: the smaller the number of networks with given features {p,Π},
i.e. the smaller the associated compartment in Figure 1.2, the more difficult it will be
to find or construct a network with these specific features.

• Measuring a value Ω for some observable Ω(c) in a network c? ∈ G[. . .] is trivial for
the family G[. . .] if most of the networks c ∈ G[. . .] exhibit Ω(c) = Ω.

Especially in large networks, where usually |G[p,Π]| � |G[p]|, an observation may
be nontrivial for G[p] but trivial once we limit ourselves to G[p,Π]. For instance, in
the set of all graphs with average degree 〈k〉 the vast majority will have Poissonian
degree statistics, so observing 〈k2〉 > 2〈k2〉 becomes highly unlikely for large N . Yet,
once we limit ourselves further to networks with power-law degree distributions the
previously unlikely event becomes ordinary.

• To test a hypothesis that an observation Ω(c?) = Ω in a network c? is atypical, we
must define a null-hypothesis in terms of one of the above sets G[. . .]. The p-value of
the test is then the probability to observe Ω(c) = Ω (or a more extreme value) if we
pick graphs c randomly from G[. . .].

In analogy with our previous observations, an observation may have a very small p-
value (and be interpreted as important) if we choose a large and diverse family of
networks, say G[p], but may be recognized as trivial once we limit ourselves to the
subsetG[p,Π] to which c? belongs. In the latter case we would say that the observation
Ω(c?) = Ω is a strict consequence of its degree correlations, as measured by Π(k, k′).

Many important questions relating to quantifying network structures and to interpretation
of observations apparently involve calculating averages over constrained sets of randomly
generated networks, and counting the number of networks with specific structural features
(Milo et al. 2002, Holme and Zhao 2007, Foster et al. 2007). This is the connection between
biological networks and tailored random graph ensembles.

1.3.2 Tailored Random Graph Ensembles

Random graph ensembles (see e.g. Erdös and Rényi 1959, Molloy and Reed 1995, Watts
and Strogatz 1998, Barabási and Albert 1999) give us a mathematical framework within
which to make our ideas precise, and allow us to apply methods from information theory and
statistical mechanics (Park and Newman 2004, Garlaschelli and Loffredo 2008). Random
graph ensembles are defined by a set of allowed graphs, here taken to be (a subset of) G,
and a measure p(c) that tells us how likely each c ∈ G is to be generated. The ensembles
found in the previous section were all of the following form. We prescribed as constraints
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the values for specific observables, i.e. Ωµ(c) = Ωµ for µ = 1 . . . p, and demanded that only
graphs that met the constraints were included, each with uniform weight:

ph(c|Ω) = Z−1
h (Ω) δΩ(c),Ω, Zh(Ω) =

∑
c∈G

δΩ(c),Ω (1.8)

with Ω = (Ω1, . . . ,Ωp). Such ensembles have maximum Shannon entropy (Cover and
Thomas 1991), given the imposed ‘hard’ constraints, so in an information-theoretic sense
the only structural information built into our graphs is that imposed by the constraints.
Alternatively, one could relax the constraints and instead of Ω(c) = Ω for all c ∈ G demand
that these constraints are satisfied on average, i.e. that

∑
c∈G p(c)Ω(c) = Ω. Maximising

Shannon’s entropy under the latter ‘soft’ constraint give the so-called exponential family

ps(c|Ω) = Z−1
s (Ω) e

∑
µ
ωµ(Ω)Ωµ(c)

, Zs(Ω) =
∑
c∈G

e

∑
µ
ωµ(Ω)Ωµ(c) (1.9)

where the parameters ωµ(Ω) must be solved from the equations
∑

c∈G ps(c|Ω)Ωµ(c) = Ωµ.
In contrast to (1.8), not all graphs generated by (1.9) will exhibit the properties Ω(c) = Ω,
but for observables Ω(c) that are macroscopic in nature one will generally find even in (1.9)
deviations from the ‘hard’ condition Ω(c) = Ω to tend to zero as N becomes large.

The normalization factor in (1.8) equals the number of graphs with the property Ω(c) = Ω,
and can also be written in terms of the Shannon entropy of this ensemble via Zh(Ω) =
exp[−

∑
c∈G ph(c|Ω) log ph(c|Ω)]. For ‘soft’ constrained ensembles (1.9) all graphs c ∈ G

could in principle emerge. However, some are much more likely than others and one can
define in that case more generally an effective number of graphs N (Ω), via the connection
with entropy. So we have more generally for either ensemble

N [Ω] = eS[Ω], S[Ω] = −
∑
c∈G

p(c|Ω) log p(c|Ω) (1.10)

and one must expect for large N and macroscopic observables Ω(c) that the leading order of
S(Ω) does not depend on whether we use (1.8) or (1.9).

For instance, if we choose as our constraining observable only the average degree
N−1

∑
ij cij , we obtain the following maximum entropy ensembles (upon rewriting the

measure for the soft constraint ensemble, and after solving its Lagrange parameter equation):

ph(c|〈k〉) = Z−1
h (〈k〉) δ∑

ij
cij ,N〈k〉 (1.11)

ps(c|〈k〉) =
∏
i<j

[ 〈k〉
N
δcij ,1 + (1− 〈k〉

N
)δcij ,0

]
(1.12)

The latter is the well known Erdös-Rényi random graph ensemble (Erdös and Rényi 1959).
Both are tailored to the production of random graphs with average connectivity 〈k〉, and are
otherwise strictly unbiased. Specializing further, in the spirit of Figure 1.2, we next constrain
the full degree sequence k = (k1, . . . , kN ) (equivalent to fixing the degree distribution p(k),
apart from node permutation). We then obtain the following maximum entropy ensembles:

ph(c|k) = Z−1
h (k)

∏
i

δ∑
j
cij ,ki

(1.13)

ps(c|k) =
∏
i<j

[ eωi+ωj

1+eωi+ωj
δcij ,1 +

1

1+eωi+ωj
δcij ,0

]
(1.14)
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with the {ωi} to be solved from the N equations ki =
∑
` 6=i(1 + e−ωi−ω`)−1. Both

ensembles (1.13,1.14) are tailored to the production of random graphs with degrees k, and are
otherwise strictly unbiased. Specializing further to the level where, for instance, all degrees
k as well as the joint distribution W (k, k′) (1.2) are precribed gives us the graph ensembles

ph(c|k,W ) =
δk,k(c)

Zh(k,W )

∏
kk′

δ∑
ij
δk,ki(c)cijδk′,kj(c),N〈k〉W (k,k′)

(1.15)

ps(c|k,W ) =
1

Zs(k,W )
e

∑
i<j

cij [ωi+ωj+ψ(ki(c),kj(c))+ψ(kj(c),ki(c))] (1.16)

with the {ωi} and {ψ(k, k′)} to be solved from the equations ki =
∑

c∈G ps(c|k,W )
∑
j cij

and
∑

c∈G ps(c|k,W )
∑
ij δk,ki(c)cijδk′,kj(c) = N〈k〉W (k, k′), respectively.

Increasing the complexity of our observables gives us increasingly sophisticated tailored
random graphs, which share more and more features with the biological networks one aims
to study or mimic, but the price paid is mathematical and computational complexity. For
instance, for realistic network sizes it will be hard to solve the equations for the Lagrange
parameters reliably in ensembles such as (1.16) by numerical sampling of the space G. Even
for N = 1000 this space already contains 2

1
2N(N−1) ≈ 10150,364 graphs (to put this number

into perspective, there are estimated to be only around 1082 atoms in the universe ...).

1.4 Information-Theoretic Deliverables of Tailored Random Graphs
If we choose our ensembles carefully, and our networks are sufficiently large, it is possible
to proceed analytically. We want to define our ensembles up to the complexity limit where
the various sums over all c ∈ G can in leading order in N still be calculated mathematically.
There is little point limiting ourselves to (1.11,1.12), since they typically generate graphs
with Poissonian degree distributions which are very different from our biological networks
(Barabási and Albert 1999). So we focus on (1.13,1.14) and (1.15,1.16). Since we know the
degrees of our biological networks, and since it is not hard to handle hard degree constraints,
we choose our ensembles such that k = k(c) for all c. However, incorporating the wiring
information contained inW (k, k′) or in the ratio Π(k, k′) = W (k, k′)/W (k)W (k′) is easier
using a soft constraint. The following choice was studied in detail in (Annibale et al. 2009):

p(c|k,Π) =
δk,k(c)

Z(k,Π)

∏
i<j

[
〈k〉
N
Q(ki, kj)δcij ,1 +

(
1− 〈k〉

N
Q(ki, kj)

)
δcij ,0

]
(1.17)

with Q(k, k′) = Π(k, k′)kk′/〈k〉2. In fact, in (Annibale et al. 2009) the degree distribution
p(k) was constrained, instead of the sequence k, giving the modestly different starting point

p(c|p,Π) =
∑
k

[
∏
i

p(ki)]p(c|Π,k) (1.18)

The ensemble (1.17) is tailored to the production of random graphs with degrees k (via a
‘hard’ constaint) and with joint degree statistics of connected nodes characterized by Π(k, k′)
(via a ‘soft’ constraint), and is otherwise unbiased. It is the maximum entropy ensemble if we
constrain the values of all degrees and the expectation value of the joint distributionW (k, k′)
in (1.2). For N →∞ the ‘soft’ deviations from W (k, k′|c) = W (k, k′) will vanish.
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1.4.1 Network Complexity

We saw that the complexity of graphs with given properties Ω(c) = Ω is related to the
number of graphs that exist with these properties. This number is expressed in terms of the
Shannon entropy of the random graph ensemble p(c|Ω) via (1.10). It turns out that for the
ensemble (1.18) one can calculate analytically the leading orders in N of the entropy, via
statistical mechanical techniques (e.g. path integrals and saddle-point integration), and thus
avoid the need for numerical sampling to find Lagrange parameters. The result is an exact
expression for the Shannon entropy S[p,Π] and for the effective number of graphs N [p,Π]
with degree distribution p(k) and degree statistics of connected nodes given by Π(k, k′):

S[p,Π]/N = S0 − C[p,Π] + εN , N [p,Π] = eS[p,Π] (1.19)

in which εN represents a finite size correction term that will vanish as N →∞, and S0 is the
Shannon entropy per node one would have found for the trivial ensembles (1.11,1.12), viz.

S0 =
1

2
〈k〉
[

log[N/〈k〉+1
]

(1.20)

The most interesting term in (1.19) is C[p,Π], which tells us precisely when and how the
imposition of the structural properties p(k) and Π(k, k′) reduces the space of compatible
graphs, in the spirit of figure (1.2). It contains two non-negative contributions:

C[p,Π] =
∑
k

p(k) log
[ p(k)

π(k)

]
+

1

2〈k〉
∑
kk′

p(k)p(k′)kk′Π(k, k′) log Π(k, k′) (1.21)

Here π(k) = e−〈k〉〈k〉k/k! is the Poissonian degree distribution with average degree 〈k〉 one
would have found for the ensemble (1.12). If the degrees of connected nodes are uncorrelated,
so Π(k, k′) = 1 for all (k, k′), the second term of (1.21) will vanish. Hence the first term
represents the complexity per node generated by the degree distribution alone; it is seen to
increase as the degree distribution becomes more dissimilar from a Poissonian one (measured
via a Kullback-Leibler distance). The second term of (1.21) represents the excess complexity
per node generated by preferential wiring of the network, beyond the complexity induced
by the imposed degrees. For the derivation of the above formulae we refer to (Annibale et
al. 2009) and its precursors (Pérez-Vicente and Coolen 2008, Bianconi et al. 2008).

1.4.2 Information-Theoretic Dissimilarity

Information-theory also provides measures for the dissimilarity between networks cA and
cB , that take account of the probabilistic nature of network data by being formulated in terms
of the associated random graph measures p(c|pA,ΠA) and p(c|pB ,ΠB). One has a choice
of definitions, but most are very similar and even identical when the underlying distributions
become close. One of the simplest formulae is Jeffrey’s divergence, which after a simple
re-scaling leads to the following distance between networks cA and cB :

DAB =
1

2N

∑
c∈G

{
p(c|pA,ΠA) log

[ p(c|pA,ΠA)

p(c|pB ,ΠB)

]
+ p(c|pB ,ΠB) log

[p(c|pB ,ΠB)

p(c|pA,ΠA)

]}
(1.22)

Again the sums over all graphs inG can be calculated in leading order in the system size, and
after takingN →∞ the end result is once more surprisingly simple, explicit and transparent:
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DAB =
1

2

∑
k

pA(k) log
[pA(k)

pB(k)

]
+

1

2

∑
k

pB(k) log
[pB(k)

pA(k)

]
+

1

4〈k〉A

∑
kk′

pA(k)pA(k′)kk′ΠA(k, k′) log
[ΠA(k, k′)

ΠB(k, k′)

]
+

1

4〈k〉B

∑
kk′

pB(k)pB(k′)kk′ΠB(k, k′) log
[ΠB(k, k′)

ΠA(k, k′)

]
+

1

2

∑
k

pA(k)k log ρAB(k) +
1

2

∑
k

pB(k)k log ρBA(k) (1.23)

The first line gives the degree statistics contribution to the dissimilarity of networks A and
B. The second and third lines reflect wiring details beyond those imposed by the degree
sequences. Line four is an interference term, involving quantities ρAB(k) to be solved from a
simple equation that is derived in (Roberts et al. 2010). The derivation of (1.23) from (1.22),
apart from the interference term, is found in (Annibale et al. 2009). In contrast to dissimilarity
measures of networks that are based on link overlap, the measure (1.23) is based strictly on
macroscopic measures and has a precise information-theoretic basis4.

1.5 Applications to Protein-Protein Interaction Networks
In contrast to genomic data, the available proteome data are still far from complete and
of limited reproducibility (Hart et al. 2006, Stumpf et al. 2008). It is therefore vital that
we understand the origin of the discrepancies between observed PPINs. Here we explore
the use of information-theoretic random graph based tools for PPIN characterization and
comparison, as described in the preceding sections, to shed light on this problem.

Figure 1.3 gives a table of various PPIN datasets, colour coded according to their
experimental method. To get some feeling for these data we show in Figure 1.4 the degree
correlations of connected nodes as measured by (1.7) for the bacterial species in our table.
There appears to be nontrivial information in the degree correlations, giving rise to diverse
patterns for different species. The most closely related bacteria in our table are H. pylori and
C. jejuni, which both belong to the Campylobacterales genus, yet this is not reflected in their
degree correlations. Similarly, comparing E. coli ,C. jejuni, T. pallidum and H. pylori, all
belonging to the Proteobacteria Phylum family (the majority of gram-negative bacteria), does
not reveal a consistent pattern either. More worryingly, fully consistent degree correlation
fingerprints are not even observed for datasets of the same species. This is seen in Figure
1.5 which shows the degree correlations for yeast, the focus of most large-scale PPIN
determinations so far, displayed in chronological order of experimental determination.

A hint at a possible explanation emerges if one compares only plots that refer to the
same experimental technique. The degree correlation patterns then appear more similar,
differing mostly in the strengths of the deviations from the random level, which increase
roughly with the time of publication of the dataset. Compare e.g. S. cerevisiae II (core) to
S. cerevisiae XII (both obtained via Y2H), and S. cerevisiae VIII to S. cerevisiae X (both
obtained via AP–MS). The interactions reported in S. cerevisiae X were derived from the raw

4Link-by-link overlap is not a good measure of the (dis)similarity between two networks, just as the size in bits
of a file does not generally give its true information content.
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Species     NP    PCG      NI         <k>       kmax DM        Ref
C.elegans    2528    20176     3864        2.96       99 Y2H        Simonis et al. 2008
C.jejuni     1324    1736      11796     17.5       207 Y2H        Parrish et al. 2007

D.melanogaster    7286    14141     25102      6.85       176 DD        Stark et al. 2006

E.coli     2457    4246      8664        7.05       641 AP-MS         Arifuzzaman et al. 2006

H.pylori     724    1587      1403        3.87       55  Y2H        Rain et al. 2001
H.sapiens I    1499    21370     2530        3.37       125 Y2H        Rual et al. 2005
H.sapiens II    1655    21370     3076        3.71       95 Y2H        Stelzl et al. 2005

H.sapiens III     2268    21370     6433        5.67       314 AP-MS        Ewing et al. 2007

H.sapiens IV    9306    21370     35021      7.52       247 DD        Prasad et al. 2009

M.loti     1803    7343      3094        3.43       401 Y2H        Shimoda et al. 2008
P.falciparum    1267    5385      2709        4.17       51  Y2H        Lacount et al. 2005
S.cerevisiae I     991    6532      948        1.82       24  Y2H         Uetz et al. 2000
S.cerevisiae II    787    6532      806          1.91       55  Y2H        Ito et al. 2001(core)
S.cerevisiae III    3241    6532      4367        2.69       279 Y2H        Ito et al. 2001

S.cerevisiae IV    1576    6532      3617        4.58       62  AP-MS         Ho et al. 2002

S.cerevisiae V    2617    6532      11855      9.05       118 DI        Von Mering et al. 2002

S.cerevisiae VI     1358    6532      3220        4.73       53  AP-MS         Gavin et al. 2002

S.cerevisiae VII    1379    6532      2493        3.61       32  DI        Han et al. 2004

S.cerevisiae VIII    2551    6532      21394    16.77       955 AP-MS         Gavin et al. 2006
S.cerevisiae IX    2708    6532      7121        5.25       141 AP-MS        Krogan et al. 2006
S.cerevisiae X    1630    6532      9089      11.15       127 AP-MS        Collins et al. 2007
S.cerevisiae XI     1078    6532      2770        4.7         58  PCA        Tarassov et al. 2008

S.cerevisiae XII    1544    6532      1809        2.34       86  Y2H        Yu et al. 2008
Synechocystis    1903    3725      3100        3.25       51  Y2H        Sato et al. 2007
T.pallidum    724    1039      3627      10.01       285 Y2H        Titz et al. 2008

Affinity Purification-Mass Spectrometry Protein Complementation AssayYeast-two-Hybrid
Database Datasets Data Integration

Figure 1.3 Table of PPIN datasets corresponding to 11 species (nine eukaryotic, and six bacteria).
Abbreviations: NP–Number of Proteins, NI–Number of Interactions, PCG–Number of Protein Coding
Genes, AD–Average Degree, Kmax–Maximum Degree, and DM–Data collection Method. Most data
were derived from high-throughput Y2H or AP-MS experiments. We added a recent PCA dataset and
several consolidated datasets that combine high-throughput experimental data with literature mining.
The Ito et al. data were divided in a high confidence set (core) and a low confidence set, as suggested by
the authors. The Collins et al. data consist of the raw purifications in Krogan et al. and Gavin et al. , but
re-analyzed differently. We also included two commonly used yeast datasets: the Han et al. network
(a consolidated dataset referred to as the ‘Filtered Yeast Interactome’, consisting of experimentally
determined and in silico predicted interactions), and the von Mering et al. dataset (assembled from two
catalogs of yeast protein complexes, the MIPS and Yeast Protein Database catalogue).

data of two AP-MS datasets (S. cerevisiae VIII and S. cerevisiae IX), but processed using
a different scoring and clustering protocol. The AP-MS datasets generally show stronger
degree correlation patterns than the Y2H ones (this is also observed for H. sapiens data)
although the regions where the main deviations from the random level occur are different.

1.5.1 PPIN Assortativity and Wiring Complexity

To assess the statistical significance of observed differences in degree correlation patterns we
measure for the different datasets two quantities that are strongly dependent upon the degree
correlations: the assortativity (1.3) and the wiring complexity, i.e. the second term of (1.21).
We test the observed values against similar observations in appropriate null models. The latter
are graphs generated randomly and with uniform probabilities from the set G[p], all non-
directed networks with size and degree distribution identical to those of the networks under
study, but without degree correlations. For large N all graphs in G[p] will have Π(k, k′) = 1
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Figure 1.4 Re-scaled degree statistics Π(k, k′) of connected nodes in bacterial PPINs. Since one
would have found Π(k, k′) = 1 for all (k, k′) if connected nodes had uncorrelated degrees, deviations
from light green suggest nontrivial structural features. Figure taken from (Fernandes et al. 2010).

for all (k, k′), and zero wiring complexity and assortativity. Any nonzero value reflects finite
size effects, possibly complemented by imperfect equilibration during the generation of the
null models (the numerical generation of such graphs is the subject of a subsequent section).

In Fig. 1.6 (top) we plot the assortativities of our PPIN datasets (original), together with
those of their null models (reshuffled). Most sets have slightly negative assortativity values,
i.e. weak preference for interactions between nodes with different degrees. The main deviant
from this trend is S. cerevisiae X, with a strong positive assortativity. This is consistent
with Fig. 1.5, where this dataset indeed exhibits high values of Π(k, k′) along the main
diagonal, signalling a preference for interactions between nodes with similar degrees. The
assortativities of the null models are expected to be closer to zero than those of the PPINs.
This is indeed true for the majority of cases, and we may therefore conclude that the structures
observed for Π(k, k′) in our PPIN data (as in Figures 1.4 and 1.5) cannot all be attributed
to finite size fluctuations, and are hence statistically significant. The wiring complexity
per node is the second term in (1.21). It measures topological information contained in
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Figure 1.5 Re-scaled degree statistics Π(k, k′) of connected nodes in yeast PPINs. Since one would
have found Π(k, k′) = 1 for all (k, k′) if connected nodes had uncorrelated degrees, deviations from
light green suggest nontrivial structural features. Figure taken from (Fernandes et al. 2010).

a network’s degree correlations, beyond that contained in the degree distribution alone.
However, given the considerable differences between the average connectivities in table 1.3,
and the likelihood that these reflect sampling variability (if anything), we choose to measure
and plot instead the wiring complexity per link, i.e.

C̃[p,Π]wiring =
1

2

∑
kk′

p(k)p(k′)kk′Π(k, k′) log Π(k, k′) (1.24)

(related to C[p,Π]wiring via division by 〈k〉). In Fig. 1.6 (bottom) we plot this quantity for our
PPIN datasets (original), together with those of the corresponding null models (reshuffled).
Interestingly, the AP–MS networks tend to have higher wiring complexities than the Y2H
ones. The wiring complexities of the null models are expected to be closer to zero than those
of the real PPINs, and this is again borne out by the data. Once more we conclude that
the structures observed for Π(k, k′) in our PPIN data (as in Figures 1.4 and 1.5) cannot be
attributed to finite size fluctuations; they are statistically significant.
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Figure 1.6 Assortativity (top) and wiring complexity per link (bottom) for the biological PPIN
of table 1.3 and their null models. Apart from having size and degree distributions identical to
their biological counterparts, the null models are strictly random, and would for large N have zero
assortativity and wiring complexity. Figures taken from (Annibale et al. 2009, Fernandes et al. 2010).

1.5.2 Mapping PPIN Data Biases

We saw that an efficient information-theoretic measure for the dissimilarity between two
networks cA and cB is given by the Jeffrey’s divergence between the probability measures
of the associated random graph ensembles. If we work at the level of the sets G[p,Π],
the result is formula (1.23). Had we characterized networks only according to their degree
distributions we would have worked with the sets G[p], and would have found only the first
line of (1.23). Given the observed assortativies and wiring complexities of our data, relative
to those of null models, we take the degree correlations to be significant. We may then study
the relations between the different biological networks by calculating their pairwise distances
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Figure 1.7 Network comparison by dendrogram clustering using the distance measure (1.23). Left
(A): dendrogram for the full PPIN collection of table 1.3. Right (B): dendrogram for PPINs of
S. cerevisiae only. Branch colours indicate the different experimental detection techniques. The
integration datasets (S. cerevisiae V and S. cerevisiae VII were excluded from panel B, since they are
based on a variety of techniques. Figure taken from (Fernandes et al. 2010).

via (1.23), use the distance table to cluster the datasets, and show the result in the form of
a dendrogram. This gives Figure 1.7, which is quite revealing5. Those data sets which were
most strongly criticized in the past for having worryingly small overlaps, e.g. the Y2H data
sets S. cerevisiae I versus II and H. sapiens I versus II, are now unambiguously found to be
topologically similar. However, our collection of PPINs group primarily by detection method;
for the presently available PPIN datasets, any biological similarities are overshadowed by
methodological biases. This is particularly evident in the central subgroup (central pink
leaves in panel A), which clusters almost exclusively Y2H datasets and comprises a wide
range of species. The methodological biases are also obvious in the intra-species comparison
of S. cerevisiae shown in panel B. The largest sub–group distance within this tree is the
one between two AP–MS datasets that have been post–processed differently (the top two
within the green box). Also, the single PCA network is separated from the AP–MS and Y2H
subgroups. We conclude: (i) protein-protein interaction networks of the same species and
measured via the same experimental method are statistically similar, and more similar than
networks measured via the same method but for different species, and (ii) protein-protein
interaction networks measured via the same experimental method cluster together, revealing
a bias introduced by the methods that is seen to overrule species-specific information.

5If one repeats this exercise using only the first line of (1.23), the resulting dendrogram is similar but less clear.
The degree–degree correlations apparently contribute a valuable amount of information to PPIN comparisons.
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1.6 Numerical Generation of Tailored Random Graphs
We now turn to the question of how to generate numerically graphs from ensembles such as
(1.17). It is not difficult to build algorithms that sample the space of all graphs with a given
degree sequence; the difficulty lies in generating each graph with the correct probability
(Bender and Canfield 1978, Chung and Lu 2002, Stauffer and Barbosa 2005). One popular
algorithm (Newman et al. 2001) is limited to the case where graphs are to be generated with
equal probabilities, i.e. to (1.13) or (1.17) with Π(k, k′) = 1. This method cannot generate
graphs with degree correlations. A second popular method for generating random graphs with
a given degree sequence is ‘edge swapping’, which involves successions of ergodic graph
randomizing moves of a type that leave the degrees k invariant (Seidel 1973, Taylor 1981).
However, we will see that naive accept-all edge swapping can cause sampling biases which
render this protocol unsuitable for generating null models. The reason is that the number of
edge swaps that can be executed is not a constant, it depends on the graph c at hand.

1.6.1 Generating Random Graphs via Markov Chains

A general and exact method for generating graphs from the set G[k] = {c ∈ G| k(c) = k}
randomly, with specified probabilities p(c) = Z−1 exp[−H(c)] was developed in (Coolen et
al. , 2009). It has the form of a Markov chain, viz. a discrete time stochastic process

∀c ∈ G[k] : pt+1(c) =
∑

c′∈G[k]

W (c|c′)pt(c′) (1.25)

Here pt(c) is the probability of observing graph c at time t in the process, and W (c|c′) is
the one-step transition probability from graph c′ to c. For any set Φ of ergodic6 reversible
elementary moves F : G[k]→ G[k] we can choose transition probabilities of the form

W (c|c′) =
∑
F∈Φ

q(F |c′)
[
δc,Fc′A(Fc′|c′) + δc,c′ [1−A(Fc′|c′)]

]
(1.26)

The interpretation is as follows. At each step a candidate move F ∈ Φ is drawn with
probability q(F |c′), where c′ denotes the current graph. This move is accepted (and the
transition c′ → c = Fc′ executed) with probability A(Fc′|c′) ∈ [0, 1], which depends on
the current graph c′ and on the proposed new graph Fc′. If the move is rejected, which
happens with probability 1−A(Fc′|c′), the system stays in c′. We may always exclude from
Φ the identity operation. One can prove that the process (1.25) will converge towards the
equilibrium measure p∞(c) = Z−1 exp[−H(c)] upon making in (1.26) the choices

q(F |c) = IF (c)/n(c) (1.27)

A(c|c′) =
n(c′)e−

1
2 [H(c)−H(c′)]

n(c′)e−
1
2 [H(c)−H(c′)] + n(c)e

1
2 [H(c)−H(c′)]

(1.28)

Here IF (c) = 1 if the move F can act on graph c, with IF (c) = 0 otherwise, and n(c)
denotes the total number of moves that can act on a graph c (the ‘mobility’ of state c):

n(c) =
∑
F∈Φ

IF (c). (1.29)

6So we can go from any initial graph c ∈ G[k] to any final graph c′∈ G[k] by a finite number of moves F ∈ Φ.
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1.6.2 Degree-Constrained Graph Dynamics Based on Edge Swaps

We apply the above result to the case where our moves are edge swaps, which are the
simplest graph moves that preserve all node degrees. They act on quadruplets of nodes and
their mutual links, so we define the set Q = {(i, j, k, `) ∈ {1, . . . , N}4| i<j<k<`} of all
ordered node quadruplets. The possible edge swaps to act on (i, j, k, `) are the following,
with thick lines indicating existing links and thin lines indicating absent links that will be
swapped with the existing ones, and where (IV, V, VI) are the inverses of (I, II, III):
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We group the edge swaps into the three pairs (I,IV), (II,V), and (III,VI), and label all
three resulting auto-invertible operations for each ordered quadruple (i, j, k, `) by adding
a subscript α. Our auto-invertible edge swaps are from now on written as Fijk`;α, with i <
j < k < ` and α ∈ {1, 2, 3}. We define associated indicator functions Iijk`;α(c) ∈ {0, 1}
that detect whether (1) or not (0) the edge swap Fijk`;α can act on state c, so

Iijk`;1(c) = cijck`(1− ci`)(1− cjk) + (1− cij)(1− ck`)ci`cjk (1.30)

Iijk`;2(c) = cijck`(1− cik)(1− cj`) + (1− cij)(1− ck`)cikcj` (1.31)

Iijk`;3(c) = cikcj`(1− ci`)(1− cjk) + (1− cik)(1− cj`)ci`cjk (1.32)

If Fijk`;α can indeed act, i.e. if Iijk`;α(c) = 1, this edge swap will operate as follows:

Fijk`;α(c)qr = 1− cqr for (q, r) ∈ Sijk`;α (1.33)

Fijk`;α(c)qr = cqr for (q, r) /∈ Sijk`;α (1.34)

where

Sijk`;1 = {(i, j), (k, `), (i, `), (j, k)} Sijk`;2 = {(i, j), (k, `), (i, k), (j, `)} (1.35)

Sijk`;3 = {(i, k), (j, `), (i, `), (j, k)} (1.36)

Insertion of these definitions into the general recipe (1.26,1.27,1.28) then gives

W (c|c′) =
∑

i<j<k<`

∑
α≤3

Iijk`;α(c′)

n(c′)

×
[δc,Fijk`;αc′e−

1
2 [E(Fijk`;αc′)−E(c′)] + δc,c′e

1
2 [E(Fijk`;αc′)−E(c′)]

e−
1
2 [E(Fijk`;αc′)−E(c′)] + e

1
2 [E(Fijk`;αc′)−E(c′)]

]
(1.37)

with E(c) = H(c) + log n(c). The graph dynamics algorithm described by (1.37) is the
following. Given an instantaneous graph c′: (i) pick uniformly at random a triplet (i, j, k, `)
of sites, (ii) if at least one of the three edge swaps c′ → Fijk`;α(c′) is possible, select one of
these uniformly at random and execute it with an acceptance probability

A(c|c′) =
[
1 + eE(Fijk`;αc′)−E(c′)

]−1
(1.38)
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then return to (i). For this Markov chain recipe to be practical we finally need a formula for
the mobility n(c) of a graph. This could be calculated (Coolen et al. , 2009), giving7:

n(c) =
1

4

(∑
i

ki
)2

+
1

4

∑
i

ki −
1

2

∑
i

k2
i −

1

2

∑
ij

kicijkj +
1

4
Tr(c4) +

1

2
Tr(c3) (1.39)

Naive ‘accept-all’ edge swapping would correspond to choosing E(c) = 0 in (1.37),
and upon equilibration it would give the biased graph sampling probabilities p∞(c) =
n(c)/

∑
c′ n(c′). The graph mobility is seen to act as an entropic force, which can only be

neglected if (1.39) is dominated by its first three terms; it was shown that a sufficient condition
for this to be the case is 〈k2〉kmax/〈k〉2 � N . For networks with narrow degree sequences
this condition would hold, and naive edge swapping would be acceptable. However, one has
to be careful with scale-free degree sequences, where both 〈k2〉 and kmax diverge asN →∞.

1.6.3 Numerical Examples

It is easy to construct example degree distributions where taking into account the entropic
effects caused by nontrivial graph mobilities is vital in order to generate correct graph
sampling probabilities. Here we show an example of the Markov chain (1.37) generating
upon equilibration8 graphs with controlled degree correlation structures of the form

Π(k, k′) =
(k − k′)2

[β1 − β2k + β3k2][β1 − β2k′ + β3k′2]
(1.40)

(with the parameters βi following from 1.4). An initial graph c0 was constructed with a
non-Poissonian degree distribution and trivial relative degree correlations Π(k, k′|c0) ≈ 1,
corresponding to the flat ensemble (1.13); see Figure 1.8. After iterating until equilibrium
the Markov chain (1.37) with move acceptance rates tailored to approaching (1.17) as
an equilibrium measure, one finds indeed values for the degree correlations in very good
agreement with their target values; (see the bottom panels of Figure 1.8).

1.7 Discussion
In this chapter we have discussed the fruitful connection between biological signalling
networks and the theory of random graph ensembles with tailored structural features. We
focused on two aspects of this connection: how random graph ensembles can be used to
generate rigorous information-theoretic formulae with which to quantify the complexities
and (dis)similarities of observed networks, and how to generate numerically tailored random
graphs with controlled macroscopic structural properties, to serve e.g. as null models in
hypothesis testing. We limited ourselves here to non-directed graphs, in view of space
limitations and since these have so far been the focus of most research papers; similar
analyses can be (and are being) undertaken for directed ones. The quantitative study of
cellular signalling networks is still in its infancy, and as our mathematical tools continue
to improve one can envisage many future research directions. These include e.g. the

7Here TrA =
∑

i
Aii.

8The algorithm ran for a duration of 75,000 accepted edge swaps, and measurements of Hamming distances
confirmed that with this duration the dynamics achieved maximum distance between initial and final graphs.
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Figure 1.8 Results of canonical edge-swap Markov chain dynamics tailored to generating random
graphs with the non-uniform measure (1.17). Top left: degree distribution of the (randomly generated)
initial graph c0, with N = 4000 and 〈k〉 = 5. Top right: relative degree correlations Π(k, k′|c0) of the
initial graph. Bottom left: the target relative degree correlations (1.40) chosen in (1.17). Bottom right:
colour plot of the relative degree correlations Π(k, k′|cfinal) in the final graph cfinal, measured after
75,000 accepted moves of the Markov chain (1.37). Figure taken from (Coolen et al. 2009).

(biased) network sampling problem, where one could perhaps use the new information-
theoretic formulae to predict unobserved nodes, and the study of integrated signalling
networks that combine transcription and protein-protein interaction information. At the
mathematical level the main new challenge to be confronted is to develop tools similar
to the ones discussed in this chapter for measures of network structure that involve the
statistics of loops. If observables include loop counters one cannot simply extend the existing
mathematical techniques (sums over all graphs can no longer be made to factorize by existing
manipulations); radically new ideas are required.
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[41] Rogers T, Pérez Vicente C, Takeda K and Pérez Castillo I 2010 Spectral density of random graphs with

topological constraints. J. Phys. A: Math. Theor. 43, 195002 (20 pp).
[42] Rual JFF, Venkatesan K, Hao T, Kishikawa TH, Dricot A, et al. 2005 Towards a proteome-scale map of the

human protein-protein interaction network. Nature 437, 1173–1178.
[43] Sato S, Shimoda Y, Muraki A, Kohara M, Nakamura Y, et al. 2007 A large-scale protein-protein interaction

analysis in synechocystis sp. PCC6803. DNA Res. 14, 207–216.
[44] Seidel JJ 1973 A survey of two-graphs. In Colloquio Internazionale sulle Teorie Combinatorie (Atti dei

Convegni Lincei, No. 17. Accad. Naz. Lincei, Rome), Tomo I, 481–511.
[45] Shimoda Y, Shinpo S, Kohara M, Nakamura Y, Tabata S, et al. 2008 A large scale analysis of protein-protein

interactions in the nitrogen-fixing bacterium mesorhizobium loti. DNA Res. 15, 13–23.
[46] Simonis N, Rual JF, Carvunis AR, Tasan M, Lemmens I, et al. 2008 Empirically controlled mapping of the

caenorhabditis elegans protein-protein interactome network. Nature Methods 6, 47–54.
[47] Skantzos NS 2005 unpublished research report
[48] Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, et al. 2006 Biogrid: a general repository for

interaction datasets. Nucleic Acids Res. 34, D535–D539.
[49] Stauffer AO and Barbosa VC 2005 A study of the edge switching Markov-Chain method for the generation of

random graphs. arXiv:0512105.
[50] Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, et al. 2005 A human protein-protein interaction

network: a resource for annotating the proteome. Cell 122, 957–968.
[51] Stumpf MPH and Wiuf C 2005 Sampling properties of random graphs: the degree distribution. Phys. Rev. E

72, 036118 (7 pp).
[52] Stumpf MPH, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, and Wiuf C 2008 Estimating the size of the

human interactome. Proc. Natl. Acad. Sci. USA 105, 6959-6964.
[53] Taylor R 1981 Constrained switchings in graphs. In Combinatorial Mathematics VIII 884, (ed. McAvaney

KL), 314–336. Springer Lect. Notes Math.
[54] Tarassov K, Messier V, Landry CR, Radinovic S, Molina MM, et al. 2008 An in vivo map of the yeast protein

interactome. Science 320, 1465–1470.
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