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Abstract
We use generating functional analysis to study minority-game-type market
models with generalized strategy valuation updates that control the psychology
of agents’ actions. The agents’ choice between trend-following and contrarian
trading, and their vigor in each, depends on the overall state of the market. Even
in ‘fake history’ models, the theory now involves an effective overall bid process
(coupled to the effective agent process) which can exhibit profound remanence
effects and new phase transitions. For some models the bid process can be
solved directly, others require Maxwell-construction-type approximations.

PACS numbers: 02.50.Le, 87.23.Ge, 05.70.Ln, 64.60.Ht

1. Introduction

Minority games (MG) [1, 2] are simple models proposed about a decade ago to understand
the origin of the cooperative phenomena and non-trivial fluctuations observed in financial
markets, on the basis of so-called inductive decision making by imperfect interacting agents
[3]. With the recent exposure of the inadequacy of classical economic modelling that assumes
full rationality, intelligence and honesty of market players and evolution to an efficient stable
market, the case for the alternative MG approach to market models is probably beyond
discussion. The further strength of MG-type models is that they can be solved analytically.
In particular, the generating functional analysis (GFA) method has proven to be an effective
tool in this field [4–6]. We refer to the recent textbooks [7, 8] for historical backgrounds, the
connection between MGs and markets, details on mathematical methods and full references.

Standard MG models are now understood quite well. We regard it as our next task to
generalize the mathematical technology that has been developed in the study of standard
MGs, so that this technology can also be applied to market models that are more realistic
economically. To do so we generalize the MG agents’ strategy valuation rules, allowing in
these rules for a non-trivial (and possibly non-monotonic) dependence on the overall market
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bid A. The overall market bid is, as usual, interpreted as a measure of the supply/demand
mismatch in the market. For instance, agents in our generalized models will be allowed to
switch from a contrarian to a trend-following strategy and adjust their level of caution on the
basis of how anomalous they perceive the market to be. It is, however, not at all clear what
form the above dependence should take. On the one hand, one could argue that when markets
are booming agents are trend-followers, as in the majority game [10], leading to a steady rise
of equity prices. The boom would continue until the magnitude |A| of the overall market bid
becomes too large. At that point agents lose their confidence in the sustainability of the boom,
leading to turmoil and contrarian behaviour. This was the view of [11, 12]. Alternatively, one
could equally argue that for small |A| the market would be regarded as normal, and agents
would seek advantage by speculative contrarian trading. In this latter picture, large values of
|A| (regarded as anomalous by the agents) would prompt panic-driven trend-following.

In this paper we first develop the theory for MG-type models with arbitrary valuation
update functions F [A]. In doing so we limit ourselves to so-called fake market histories,
advocated first in [13]. We then focus on specific choices for F [A] that represent three distinct
agent behaviour scenarios. The first scenario describes a market of strict contrarians, with
controlled levels of caution versus greed. The second is one where non-volatile markets (i.e.
those with modest values of |A|) are interpreted by agents as risk free and prompt trend-
following, with agents becoming contrarians under volatile conditions. The third scenario is
one where in non-volatile markets agents are contrarians, who switch to panic-driven trend-
following under volatile conditions. Although the latter two cases are mathematically similar,
they lead to qualitatively different solutions. We will find that certain regions of the phase
diagram are characterized by prominent remanence effects with multiple locally stable states,
prompting us to rely on approximations of the Maxwell-construction type. In all non-remanent
cases our predictions are confirmed satisfactorily by numerical simulations. When there is
remanence, there remain deviations and gaps in our understanding which will require further
investigation.

2. Definitions

Let there to be N agents in the game, labelled by i ∈ {1, . . . , N}, where N is odd. The game
proceeds at discrete steps t = 0, 1, 2, . . .. At every step t each agent takes a binary decision
bi(t) ∈ {−1, 1}, the ‘bid’, representing e.g. buying (−1) versus selling (+1). A rescaled
aggregate overall bid at step t is defined as A(t) = N−1/2∑N

i=1 bi(t) + Ae(t), where Ae(t)

is an external contribution, representing perturbations, the impact of large market operators,
or the action of regulators. At each step, the agents are provided with external information,
which in fake history MGs is a random number μ(t) ∈ {1, . . . , p}. Each agent i has two
strategies Ria , with a = 1, 2, with which to map each μ to a trading action:

Ria : {1, . . . , p} → {−1, 1}.
A strategy functions as a lookup table with p entries, all of which are drawn independently at
random from {−1, 1} (with equal probabilities) before the start of the game. If agent i uses
strategy a at step t, then he/she will act (deterministically) according to bi(t) = R

μ(t)

ia .
In the standard MG an agent makes a profit if he/she finds himself/herself in the minority,

i.e. if A(t)bi(t) < 0. Each agent monitors the performance of his/her two strategies
(irrespective of whether they were used) by measuring the so-called valuations pia(t), defined
dynamically via the update rule pia(t + 1) = pia(t) − η̃A(t)R

μ(t)

ia . Here η̃ > 0 denotes a
‘learning rate’. At each step t of the game, each agent i will select his/her best strategy ai(t)

at that stage of the process, defined as ai(t) = argmaxa∈{1,2}{pia(t)}. Agents thus always
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behave as ‘contrarians’. Here we generalize this rule in the spirit of [11], to allow whether
agents behave as contrarians or trend-followers to depend on the instantaneous overall state
A(t) of the market. We define pia(t + 1) = pia(t) − η̃R

μ(t)

ia F [A(t)], with an anti-symmetric
function F [−A] = −F [A] (in order to retain A = 0 as the ‘natural’ value for the overall bid).
In the ‘batch’ version of the above dynamics one replaces in the evolution equations for the
valuations the randomly drawn information μ(t) by an average over {1, . . . , p}. The result is

pia(t + 1) = pia(t) − η̃√
N

p∑
μ=1

F [Aμ(t)]Rμ

ia (1)

Aμ(t) = Ae(t) +
1√
N

N∑
i=1

R
μ

iai (t)
. (2)

We switch in the usual manner to new variables qi(t) = 1
2 [pi1(t)−pi2(t)], ξ

μ

i = 1
2

(
R

μ

i1 −R
μ

i2

)
,

ω
μ

i = 1
2

(
R

μ

i1 + R
μ

i2

)
and �μ = N−1/2∑

i ω
μ

i . We choose η̃ = 2, and add perturbations
θi(t) in order to define response functions. We introduce decision noise by replacing
sgn[qi(t)] → σ [qi(t), zi(t)], in which {zj (t)} are independent and zero-average Gaussian
random numbers (the standard examples are additive and multiplicative noise definitions,
corresponding to σ [q, z] = sgn[q + T z] and σ [q, z] = sgn[q] sgn[1 + T z]). This leaves us
with

qi(t + 1) = qi(t) + θi(t) − 2√
N

p∑
μ=1

ξ
μ

i F [Aμ(t)] (3)

Aμ(t) = Ae(t) + �μ +
1√
N

N∑
j=1

ξ
μ

j σ [qj (t), zj (t)]. (4)

One obtains the standard batch MG for F [A] = A, and a batch majority game for F [A] = −A.
We will develop the theory initially for arbitrary F [A], but focus ultimately on the choices

F [A] = sgn(A)|A|γ , F [A] = τA
[
1 − A2/A2

0

]
(5)

with τ = ±1 and A0 > 0. In the second formula, for τ = −1 the agents behave as a
trend-followers (majority game play) when |A| < A0, but switch to contrarians (minority
game play) for |A| > A0; this is the model of [11, 12]. For τ = 1 the situation is reversed.

We will write averaging over the stochastic process (3) as 〈. . .〉. The global bid fluctuations
in the system are characterized by the volatility matrix 
tt ′ :


tt ′ = 1

p

p∑
μ=1

〈[
Aμ(t) − 1

p

p∑
ν=1

〈Aν(t)〉
][

Aμ(t ′) − 1

p

p∑
ν=1

〈Aν(t
′)〉
]〉

. (6)

From this follows the conventional market volatility σ via σ 2 = limτ→∞ τ−1∑τ
t=1 
tt .

3. Generating functional analysis

The appropriate moment generating functional for a stochastic process of the type (3), given
that now we will be interested also in overall bid statistics, is

Z[ψ, φ] = 〈
ei
∑

t�0

∑
i ψi (t)σ [qi (t),zi (t)]+i

√
2
∑

t�0

∑
μ φμ(t)Aμ(t)

〉
(7)
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with Aμ(t) as defined in (4). For (7) to be well defined, we specify an upper time limit tmax.
Taking suitable derivatives of (7) with respect to the variables {ψi(t), φμ(t)} generates all
moments of the random variables {σ [qi(t), zi(t)]} and {Aμ(t)}, at arbitrary times, e.g.

〈σ [qi(t), zi(t)]〉 = −i lim
ψ,φ→0

∂Z[ψ, φ]

∂ψi(t)
(8)

〈σ [qi(t), zi(t)]σ [qj (t
′), zj (t

′)]〉 = − lim
ψ,φ→0

∂2Z[ψ, φ]

∂ψi(t)∂ψj (t ′)
(9)

〈Aμ[q(t), z(t)]〉 = − i√
2

lim
ψ,φ→0

∂Z[ψ, φ]

∂φμ(t)
(10)

〈Aμ[q(t), z(t)]Aν[q(t ′), z(t ′)]〉 = −1

2
lim

ψ,φ→0

∂2Z[ψ, φ]

∂φμ(t)∂φν(t ′)
. (11)

Averaging (7) over the disorder (the strategies) allows us to obtain from (8)–(11) expressions
for disorder-averaged observables, such as correlation and response functions:

Ctt ′ = 1

N

∑
i

〈σ [qi(t), zi(t)]σ [qi(t ′), zi(t ′)]〉 = − lim
ψ→0

1

N

∑
i

∂2Z[ψ]

∂ψi(t)∂ψi(t ′)
(12)

Gtt ′ = 1

N

∑
i

∂

∂θi(t ′)
〈σ [qi(t), zi(t)]〉 = − lim

ψ→0

i

N

∑
i

∂2Z[ψ]

∂ψi(t)∂θi(t ′)
. (13)

3.1. Evaluation of the disorder average

We write (7) in the usual way as an integral over all possible values of qi(t) and Aμ(t) at all
times, and insert δ-functions to select the solution of (3), followed by averaging over the noise
z = {zi(t)}. With the short-hand si(t) = σ [qi(t), zi(t)] we obtain

Z[ψ, φ] =
∫ [∏

μt

dAμ(t) dÂμ(t)

2π
eiÂμ(t)[Aμ(t)−Ae(t)]+i

√
2φμ(t)Aμ(t)

]

×
〈 ∫

p0(q(0))

[∏
it

dqi(t) dq̂i (t)

2π
eiq̂i (t)[qi (t+1)−qi (t)−θi (t)]+iψi(t)si (t)

]

×
∏
iμ

e
i√
N

∑
t {2ξ

μ

i q̂i (t)F [Aμ(t)]−Âμ(t)[ωμ

i +ξ
μ

i si (t)]}
〉

z
. (14)

The disorder variables appear only in the last line, so

Z[ψ, φ] =
∫ [∏

μt

dAμ(t) dÂμ(t)

2π
eiÂμ(t)[Aμ(t)−Ae(t)]+i

√
2φμ(t)Aμ(t)

]

×
〈 ∫

p0(q(0))

[∏
it

dqi(t) dq̂i (t)

2π
eiq̂i (t)[qi (t+1)−qi (t)−θi (t)]+iψi(t)si (t)

]



〉
z

(15)

with


 =
∏
iμ

e
i√
N

∑
t {(R1−R2)q̂i (t)F [Aμ(t)]− 1

2 Âμ(t)[R1+R2+(R1−R2)si (t)]}

=
∏
μ

e− 1
4

∑
t t ′ Âμ(t)Âμ(t ′)−∑t t ′ Ltt ′F [Aμ(t)]F [Aμ(t ′)]− 1

4

∑
t t ′ Ctt ′ Âμ(t)Âμ(t ′)

× e
∑

t t ′ Ktt ′ Âμ(t)F [Aμ(t ′)]+O(N−1) (16)
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where we introduced the temporary abbreviations

Ctt ′ = 1

N

∑
i

si(t)si(t
′)Ktt ′ = 1

N

∑
i

si(t)q̂i(t
′)Ltt ′ = 1

N

∑
i

q̂i (t)q̂i(t
′).

We isolate these as usual by inserting appropriate δ-functions (in integral representation, which
generates conjugate integration variables), and define the short-hands DC = ∏

t t ′[dCtt ′/
√

2π ]
and DA = ∏

t [dA(t)/
√

2π ] (with similar definitions for the other kernels and functions).
Substitution into Z[ψ, φ], followed by re-arranging terms, then leads to

Z[ψ, φ] =
∫

[DC DĈ][DKDK̂][DLDL̂] eiN
∑

t t ′ [Ĉtt ′Ctt ′ +K̂tt ′Ktt ′ +L̂tt ′Ltt ′ ]+O(log(N))

×
〈 ∫

DqDq̂p0(q(0)) ei
∑

t i q̂i (t)[qi (t+1)−qi (t)−θi (t)]+i
∑

it ψi (t)si (t)

× e−i
∑

i

∑
t t ′ [Ĉtt ′ si (t)si (t

′)+K̂tt ′ si (t)q̂i (t
′)+L̂tt ′ q̂i (t)q̂i (t

′)]
〉

z

×
∏
μ

∫
DADÂ ei

∑
t [Â(t)[A(t)−Ae(t)]+i

√
2φμ(t)A(t)]− 1

4

∑
t t ′ Â(t)[1+Ctt ′ ]Â(t ′)

× e−∑t t ′ Ltt ′F [A(t)]F [A(t ′)]+
∑

t t ′ Ktt ′ Â(t)F [A(t ′)]. (17)

Upon assuming simple initial conditions of the form p0(q) = ∏
i p0(qi) we then arrive at

Z[ψ, φ] =
∫

[DC DĈ][DKDK̂][DLDL̂] eN[�+�+�]+O(log(N)) (18)

with

� = i
∑
t t ′

[Ĉtt ′Ctt ′ + K̂tt ′Ktt ′ + L̂tt ′Ltt ′] (19)

� = 1

N

∑
μ

log
∫

DADÂ ei
∑

t [Â(t)[A(t)−Ae(t)]+i
√

2φμ(t)A(t)]

× e− 1
4

∑
t t ′ Â(t)[1+Ctt ′ ]Â(t ′)−∑t t ′ Ltt ′F [A(t)]F [A(t ′)]+

∑
t t ′ Ktt ′ Â(t)F [A(t ′)] (20)

� = 1

N

∑
i

log

〈 ∫
Dq Dq̂p0(q(0)) ei

∑
t [q̂(t)[q(t+1)−q(t)−θi (t)]+ψi(t)σ [q(t),z(t)]]−i

∑
t t ′ q̂(t)L̂tt ′ q̂(t ′)

× e−i
∑

t t ′ [Ĉtt ′σ [q(t),z(t)]σ [q(t ′),z(t ′)]+K̂tt ′σ [q(t),z(t)]q̂(t ′)]
〉

z
. (21)

The O(log(N)) term in the exponent of (18) is independent of {ψi(t), φμ(t), θi(t)}, and the
external bid Ae(�) and the introduced valuation update function F [A] appear only in �.

3.2. Saddle-point equations and interpretation of order parameters

The disorder-averaged functional (18) is evaluated by steepest descent integration, leading to
coupled equations from which to solve the dynamic order parameters {C, Ĉ,K, K̂, L, L̂}:

Ctt ′ = 〈σ [q(t), z(t)]σ [q(t ′), z(t ′)]〉� (22)

Ktt ′ = 〈σ [q(t), z(t)]q̂(t ′)〉� (23)

Ltt ′ = 〈q̂(t)q̂(t ′)〉� (24)

5
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Ĉtt ′ = i∂�

∂Ctt ′
K̂tt ′ = i∂�

∂Ktt ′
L̂tt ′ = i∂�

∂Ltt ′
. (25)

The notation 〈. . .〉� in the above expressions is a short-hand for

〈g[{q, q̂, z}]〉� = lim
N→∞

1

N

∑
i

∫
Dq Dq̂〈Mi[{q, q̂, z}]g[{q, q̂, z}]〉z∫

Dq Dq̂〈Mi[{q, q̂, z}]〉z
(26)

Mi[{q, q̂, z}] = p0(q(0)) ei
∑

t q̂(t)[q(t+1)−q(t)−θi (t)]+i
∑

t ψi (t)σ [q(t),z(t)]

× e−i
∑

t t ′ [Ĉtt ′σ [q(t),z(t)]σ [q(t ′),z(t ′)]+K̂tt ′σ [q(t),z(t)]q̂(t ′)]

× e−i
∑

t t ′ L̂tt ′ q̂(t)q̂(t ′). (27)

Since the bid contribution Ae(t) appears only in �, one can take over standard results from
the theory of batch MGs with regard to interpretation and simplification of order parameters
(see e.g. [8]). Using the normalization identity limψ,φ→0 Z[ψ, φ] = 1 we find

Ctt ′ = lim
ψ,φ→0

〈σ [q(t), z(t)]σ [q(t ′), z(t ′)]〉� (28)

Gtt ′ = −i lim
ψ,φ→0

〈σ [q(t), z(t)]q̂(t ′)〉� (29)

0 = − lim
ψ,φ→0

〈q̂(t)q̂(t ′)〉�. (30)

These expressions (28)–(30) are to be evaluated at the physical saddle-point of � + � + �.
We conclude from (29) and (30), in combination with (23) and (24), that for all (t, t ′)

Ktt ′ = iGtt ′ , Ltt ′ = 0. (31)

We now send the fields {ψi, φμ} to zero, and choose {θi} to be independent of i. The measure
Mi[{q, q̂, z}] then loses its dependence on i, and equations (22)–(25) simplify to

Ctt ′ = 〈σ [q(t), z(t)]σ [q(t ′), z(t ′)]〉� (32)

Gtt ′ = −i〈σ [q(t), z(t)]q̂(t ′)〉� (33)

Ĉtt ′ = lim
L→0

i∂�

∂Ctt ′
, K̂tt ′ = lim

L→0

i∂�

∂Ktt ′
, L̂tt ′ = lim

L→0

i∂�

∂Ltt ′
(34)

with

〈g[{q, q̂, z}]〉� =
∫
Dq Dq̂〈M[{q, q̂, z}]g[{q, q̂, z}]〉z∫

Dq Dq̂〈M[{q, q̂, z}]〉z
(35)

M[{q, q̂, z}] = p0(q(0)) ei
∑

t q̂(t)[q(t+1)−q(t)−θ(t)]−i
∑

t t ′ L̂tt ′ q̂(t)q̂(t ′)

× e−i
∑

t t ′ [Ĉtt ′σ [q(t),z(t)]σ [q(t ′),z(t ′)]+K̂tt ′σ [q(t),z(t)]q̂(t ′)]. (36)

3.3. Evaluation of �

We turn our attention to the function � (20), which, according to (34), we only need to know
for small L. We define the matrices I and D, with entries It t ′ = δtt ′ and Dtt ′ = 1 + Ctt ′ , and the
short-hands A = {A(t)}, Ae = {Ae(t)} and F [A] = {F [A(t)]}. This allows us to write

� = 1

N

∑
μ

log
∫

dA dξ P(ξ)δ[A − Ae + GF [A] − ξ]

× ei
√

2
∑

t φμ(t)A(t)−∑t t ′ Ltt ′F [A(t)]F [A(t ′)] (37)

6
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with1

P(ξ) =
∏

t (1/
√

2π)√
det
[

1
2 D
] e−ξ·D−1ξ. (38)

The derivation from (20) of the more intuitive form (37) for � is based on the identity∫
dÂ∏
t (2π)

eiÂ·ξ− 1
4 Â·DÂ = P(ξ). (39)

At the saddle-point, G must obey causality, so we can interpret the above expression in terms
of an effective stochastic process for the bid, with a zero-average Gaussian noise field ξ(t):

A(t) = Ae(t) −
∑
t ′<t

Gtt ′F [A(t ′)] + ξ(t) (40)

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = 1

2
Dtt ′ . (41)

The situation is clearly reminiscent of real history MGs [9], although the equations are simpler.
From now on we write averages over (40) and (41) simply as 〈. . .〉. We also define

�0 = α log
∫

dA dξ P(ξ)δ[A − Ae + GF [A] − ξ]. (42)

At the saddle-point we have �0 = 0. We expand � for small L and small φ:

� = �0 +
i
√

2

N

∑
μt

φμ(t)〈A(t)〉 − α
∑
t t ′

Ltt ′ 〈F [A(t)]F [A(t ′)]〉

− 1

N

∑
μtt ′

φμ(t)φμ(t ′)[〈A(t)A(t ′)〉 − 〈A(t)〉〈A(t ′)〉] + O(φ3, L2). (43)

Clearly, limφ→0,L→0 � = �0, and �0 depends on G only, not on C or L. From our expansion
of � we can extract all the quantities we are interested in. We only have to be careful that
causality can only be assumed after the differentiations:

Ĉtt ′ = lim
L→0,φ→0

i∂�

∂Ctt ′
= 0 (44)

K̂tt ′ = lim
L→0,φ→0

∂�

∂Gtt ′
= ∂�0

∂Gtt ′
= −α

∂

∂Ae(t)
〈F [A(t ′)]〉 (45)

L̂tt ′ = lim
L→0

i∂�

∂Ltt ′
= −iα〈F [A(t)]F [A(t ′)]〉. (46)

We define the bid response function Rtt ′ = ∂〈F [A(t)]〉/∂Ae(t
′) and the bid covariance function

�tt ′ = 2〈F [A(t)]F [A(t ′)]〉, so K̂tt ′ = −αRt ′t and L̂tt ′ = − 1
2 iα�tt ′ . Causality ensures that

Rtt ′ = 0 for t < t ′, and Rtt = 1. We can also calculate bid statistics:

〈Aμ[q(t), z(t)]〉 = − i√
2

lim
ψ,φ→0

∂Z[ψ, φ]

∂φμ(t)
= 〈A(t)〉 (47)

〈Aμ[q(t), z(t)]Aν[q(t ′), z(t ′)]〉 = −1

2
lim

ψ,φ→0

∂2Z[ψ, φ]

∂φμ(t)∂φν(t ′)
= 〈A(t)A(t ′)〉. (48)

1 The symbol ξ has been chosen here in order to follow conventions laid down in earlier papers, e.g. [9]. Since ξ

has so far in this paper been used only in a context that involved site indices, namely ξ
μ
i , and since the latter variables

stopped being used after equation (14), this cannot cause ambiguity.

7
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3.4. The effective single-agent equation

The above results lead to a further simplification of our saddle-point equations (32)–(34):

Ctt ′ = 〈σ [q(t), z(t)]σ [q(t ′), z(t ′)]〉� (49)

Gtt ′ = −i〈σ [q(t), z(t)]q̂(t ′)〉� (50)

with

〈g[{q, q̂, z}]〉� =
∫
Dq Dq̂〈M[{q, q̂, z}]g[{q, q̂, z}]〉z∫

Dq Dq̂〈M[{q, q̂, z}]〉z
(51)

M[{q, q̂, z}] = p0(q(0)) ei
∑

t q̂(t)[q(t+1)−q(t)−θ(t)+α
∑

t ′ Rtt ′σ [q(t ′),z(t ′)]]− 1
2 α
∑

t t ′ q̂(t)�tt ′ q̂(t ′). (52)

We eliminate {q̂(t)} by exploiting causality: the term
∑

t ′ Rtt ′σ [q(t ′), z(t ′)] in (52) involves
only values of q(t ′) with t ′ � t . This allows us to calculate the denominator of the fraction
(51) by integrating out the variables {q(t)} iteratively, first over q(tmax) (which gives us
δ[q̂(tmax − 1)]), followed by integration over q(tmax − 1), etc. The result is simply∫

Dq Dq̂ M[{q, q̂, z}] =
∫

dq(0)p0(q(0)) = 1. (53)

This, in turn, implies that

〈σ [q(t), z(t)]q̂(t ′)〉� = i
∂

∂θ(t ′)
〈σ [q(t), z(t)]〉�.

We do the remaining integrals over {q̂}, and write our equations in the simpler form

Ctt ′ = 〈σ [q(t), z(t)]σ [q(t ′), z(t ′)]〉� Gtt ′ = ∂〈σ [q(t), z(t)]〉�
∂θ(t ′)

(54)

with 〈g[{q, z}]〉� = ∫ [∏
t dq(t)

]〈M[{q, z}]g[{q, z}]〉z and

M[{q, z}] = p0(q(0))

∫ ∏
t

[
dη(t)√

2π

]
e− 1

2

∑
t t ′ η(t)(�−1)tt ′η(t ′)
√

det �

×
∏
t�0

δ

[
q(t + 1) − q(t) − θ(t) + α

∑
t ′

Rtt ′σ [q(t ′), z(t ′)] − √
αη(t)

]
. (55)

We recognize that (55) is the measure corresponding to a single-agent process of the form

q(t + 1) = q(t) + θ(t) − α
∑
t ′�t

Rtt ′σ [q(t ′), z(t ′)] +
√

αη(t) (56)

in which η(t) is a zero-mean Gaussian noise, with temporal correlations 〈η(t)η(t ′)〉 = �tt ′ .
The two kernels � and R are to be calculated from

Rtt ′ = ∂

∂Ae(t ′)
〈F [A(t)]〉, �tt ′ = 2〈F [A(t)]F [A(t ′)]〉 (57)

where the averages refer to the process (40), (41). The correlation and response functions
(12), (13), the order parameters of our problem, are to be solved from (54), in which 〈. . .〉� now
denotes averaging over (56) and the zero-average Gaussian noise {z(t)}, with 〈z(t)z(t ′)〉 = δtt ′ .
These results represent a fully exact and closed theory for N → ∞.

As a simple test we could go back to the standard MG. If we choose F [A] = A, the
effective bid process (40), (41) becomes linear, and is solved easily:

A(t) =
∑

t ′
(I + G)−1

t t ′ [Ae(t
′) + ξ(t ′)] (58)

8
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so that we can calculate the kernels � and R explicitly:

Rtt ′ = ∂

∂Ae(t ′)
〈A(t)〉 = ∂

∂Ae(t ′)

∑
s

(I + G)−1
ts Ae(s) = (I + G)−1

t t ′ (59)

�tt ′ = 2〈A(t)A(t ′)〉 = 2
∑
ss ′

(I + G)−1
ts (I + G)−1

t ′s ′ 〈[Ae(s) + ξ(s)][Ae(s
′) + ξ(s ′)]〉

= [(I + G)−1D[Ae](I + G†)−1]t t ′ (60)

with D[Ae]t t ′ = 2Ae(t)Ae(t
′) + 1 + Ctt ′ . One confirms readily that this is the correct solution.

4. Ergodic stationary states for Ae(t) = Ae

We now take Ae(t) = Ae for all t. In time-translation invariant stationary states without
long-term memory one has Gtt ′ = G(t − t ′), Ctt ′ = C(t − t ′), �tt ′ = �(t − t ′) and
Rtt ′ = R(t − t ′); all three operators {C,G,�} and their powers commute. We try to calculate
the four persistent order parameters, χ = ∑

t>0 G(t), χR = ∑
t�0 R(t), c = limt→∞ C(t)

and S2
0 = limt→∞ �(t), from the closed equations (54) and (57). We assume a stationary state

without anomalous response, i.e. both χ and χR are finite numbers. From now on we will
use the the following notation for time averages: x = limτ→∞ τ−1∑τ

t=1 x(t). Much of the
analysis is standard, and we will where appropriate skip those details that are familiar.

4.1. Equations for persistent order parameters—the effective agent process

We define q̃ = limt→∞ q(t)/t , assuming that this limit exists, and send t → ∞ in the
integrated version of (56). The result is

q̃ = √
αη + θ − αχRσ . (61)

Here σ = limτ→∞ τ−1∑
t�τ

∫
Dz σ [q̃t, z] and Dz = (2π)−1/2 e−z2/2 dz. Given the

properties of σ [q], in cases where q̃ 	= 0 we must have σ = sgn[q̃].σ [∞]; for q̃ = 0
we know that |σ | � σ [∞]. We inspect the possible solutions ‘fickle’ (q̃ = 0) versus ‘frozen’
(q̃ 	= 0), noting that in both cases we must have sgn[χRσ ] = sgn[η

√
α + θ ]. For the fickle

solution the situation is clear:

‘fickle’:
σ

σ [∞]
=

√
αη + θ

αχRσ [∞]
exists if |η√

α + θ | � σ [∞]|χR|α. (62)

For the frozen solution we must distinguish between the cases χR > 0 and χR < 0, representing
negative versus positive feedback in the effective agent equation.

• χR > 0. Here due to the absence of positive feedback in the system, we can write directly

|η√
α + θ | > σ [∞]χRα: ‘frozen’ solution, σ = σ [∞] sgn[η

√
α + θ] (63)

|η√
α + θ | � σ [∞]χRα: ‘fickle’ solution, σ = [

√
αη + θ ]/αχR. (64)

• χR < 0. As was found earlier in other MG versions with positive feedback, the effective
agent equation now allows for remanence effects, leading to the potential for multiple
solutions:

|η√
α + θ | > σ [∞]|χR|α: ‘frozen’ solution, σ = σ [∞] sgn[η

√
α + θ ] (65)

|η√
α + θ | � σ [∞]|χR|α:

{
‘frozen’ solutions, σ = ±σ [∞]
‘fickle’ solution, σ = [

√
αη + θ]/αχR.

(66)

9
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For |η√
α + θ | � σ [∞]|χR|α there are two stable solutions σ = ±σ [∞] separated by the

unstable ‘fickle’ one. The two branches σ = −σ [∞] sgn[η
√

α + θ ] in this region must
be remanent ones, and the Maxwell construction tells us to choose in the stationary state

χR < 0: ‘frozen’ solution, σ = σ [∞] sgn[η
√

α + θ ]. (67)

The variance of η is simply equal to S2
0 , since

〈η2〉 = lim
τ→∞

1

τ 2

τ∑
t t ′=0

�tt ′ = lim
t→∞ �(t) = S2

0 . (68)

We can now calculate equations for the persistent order parameters, sending θ → 0 as soon
as possible. As before we have to distinguish between χR > 0 and χR < 0.

• χR > 0. The persistent correlations follow from c = 〈σ 2〉�:

c =
∫

dη P (η)

{
θ [χRσ [∞]

√
α − |η|] η2

αχ2
R

+ θ [|η| − χRσ [∞]
√

α]σ 2[∞]

}

= 2S2
0

αχ2
R

⎧⎨
⎩1

2
Erf

⎡
⎣χRσ [∞]

√
α√

2S2
0

⎤
⎦− χRσ [∞]

√
α√

2πS2
0

e
− αχ2

R
σ2[∞]

2S2
0

⎫⎬
⎭

+ 2σ 2[∞]

⎧⎨
⎩1

2
− 1

2
Erf

⎡
⎣χRσ [∞]

√
α√

2S2
0

⎤
⎦
⎫⎬
⎭ . (69)

The frozen fraction φ and the susceptibility χ are calculated similarly:

φ =
∫

dη P (η)θ [|η| − χRσ [∞]
√

α] = 1 − Erf

[
χRσ [∞]

√
α

S0

√
2

]
(70)

χ =
∫

dη P (η)
∂

∂θ
σ = 1

αχR

Erf

[
χRσ [∞]

√
α

S0

√
2

]
. (71)

In terms of the usual short-hand v = χRσ [∞]
√

α/S0

√
2, we then arrive at

c = σ 2[∞]

{
1 +

1 − 2v2

2v2
Erf[v] − 1

v
√

π
e−v2

}
(72)

φ = 1 − Erf[v] (73)

χ = Erf[v]/αχR. (74)

• χR < 0. This situation is simpler: one has c = 〈σ 2〉� = σ 2(∞), and φ = 1. The
susceptibility χ for θ = 0 becomes

χ = lim
θ→0

∫
dη P (η)

∂

∂θ
σ = 2σ [∞]√

2παS2
0

. (75)

If χR < 0 the system is fully frozen, and nothing further happens. To close our persistent
order parameter equations for c and φ if χR > 0, we need the ratio χR/S0; to get also χ

we need χR and S0. We now take Ae(t) = Ae, and define the asymptotic time averages
A = limτ→∞ τ−1∑

t�τ A(t) and F = limτ→∞ τ−1∑
t�τ F [A(t)]. This allows us to write

χR = ∂〈F 〉/∂Ae, S0 = 2〈F 2〉. (76)

10
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4.2. Analysis of the effective overall bid process

Closing our stationary-state equations requires extracting the values of χR and S0 from the
effective process (40) and (41) for the overall bids. We separate in the bid noise ξ(t) and the
bids A(t) the persistent from the non-persistent terms:

A(t) = A + Ã(t), ξ(t) = z

√
1
2 (1 + c) + ξ̃ (t). (77)

Here z is a zero-average unit-variance frozen Gaussian variable, and ξ̃ (t) is also a zero-average
Gaussian variable, uncorrelated with z and with covariances 〈ξ̃ (t)ξ̃ (t ′)〉 = 1

2 C̃(t − t ′). Here
C̃(t) = C(t) − c. Our bid process (40) now becomes

A = Ae − χF + z

√
1

2
(1 + c) (78)

Ã(t) = ξ̃ (t) −
∑
s>0

G(s){F [A + Ã(t − s)] − F }. (79)

The two quantities A and F are both parametrized by z, so we write A(z) and F(z). Also the
non-persistent bid parts Ã(t) depend on z since A occurs in (79), so we write Ã(t, z). Our
static objects S0 and χR are known once we have F(z). In (78) we have already one relation
for the two objects, so we need one more equation connecting A(z) to F(z) to obtain closed
formulae. To get this second relation we work out F(z):

F(z) =
∫

dÃ W(Ã|z)F [A(z) + Ã], W(a|z) = lim
τ→∞

1

τ

∑
t�τ

δ[a − Ã(t, z)]. (80)

So far our analysis is direct and fully exact. What is left is to find the statistics W(a|z) of the
non-frozen bid contributions, which requires ansätze.

To calculate W(a|z) we assume the response function G to decay much more slowly than
the times over which Ã(t, z) are correlated, so that to the time summation in (79) we can apply
the central limit theorem. This tells us that also Ã(t, z) must be zero-average Gaussian. Let us
define the covariance matrix 
tt ′(z) = 〈Ã(t, z)Ã(t ′, z)〉; it must be time-translation invariant,
so we write 
(t, z) = 
s+t,s (z). In the appendix we show that


(t, z) = 1
2 C̃(t) + O(τC/τG). (81)

If, as in earlier MG analyses [8], we can rely on limN→∞ τC/τG = 0 in the ergodic regime
(this will be our present ansatz), then we have simply 
(t, z) = 1

2 C̃(t), and in particular

(0, z) = 1

2 (1 − c), which closes our equations:

A(z) = Ae − χF(z) + z

√
1

2
(1 + c), F (z) =

∫
Dx F [A(z) + x

√
1

2
(1 − c)] (82)

with the short-hand Dx = (2π)−1/2 e−x2/2 dx. We eliminate A(z) and get F(z) = f (z,Ae),
where f (z,Ae) is the solution of the fixed-point equation:

f =
∫

Dx F

[
Ae − χf + z

√
1

2
(1 + c) + x

√
1

2
(1 − c)

]
. (83)

This shows that F(z) = �
(
Ae + z

√
1
2 (1 + c)

)
, where �(u) is to be solved from

�(u) =
∫

Dx F

[
u − χ�(u) + x

√
1

2
(1 − c)

]
. (84)

11
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Clearly �(u) is anti-symmetric, since F [A] is anti-symmetric. Finally, we will solve the
nonlinear functional equation (84). To do this we define a new function �(z) via the identity
�(u) = [u − �−1(u)]/χ , insertion into (84) of which gives after some rewriting

�(z) = z + χ

∫
Dx F

[
z + x

√
1

2
(1 − c)

]
. (85)

Equation (85) is explicit, but shows that in the case of positive feedback (as for the majority
game, corresponding to F [A] = −A) there is again the possibility of multiple solutions,
which would here take the form of non-invertibility of the function �(z). Non-invertibility is
signalled by finding �′(z) = 0 for finite z, i.e. by

1 +
χ

√
2√

1 − c

∫
Dx xF

[
z + x

√
1

2
(1 − c)

]
= 0. (86)

4.3. Equations for χR and S0—closure of the stationary-state theory

Given the solution of (84), we obtain closure of our stationary-state equations:

χR =
√

2√
1 + c

∫
Dz z�

(
Ae + z

√
1

2
(1 + c)

)
(87)

S2
0 = 2

∫
Dz �2

(
Ae + z

√
1

2
(1 + c)

)
. (88)

When expressing these equations in terms of the function �−1(z) (which is parametrized by
c and χ ), we find that both are expressed in terms of the following Gaussian integrals:

I0(c, χ) =
∫

Dz �−1

(
Ae + z

√
1

2
(1 + c)

)
(89)

I1(c, χ) =
∫

Dz z�−1

(
Ae + z

√
1

2
(1 + c)

)
(90)

I2(c, χ) =
∫

Dz

[
�−1

(
Ae + z

√
1

2
(1 + c)

)]2

. (91)

We note that the validity of the last step depends crucially on non-invertibility issues being
absent or resolved. Substitution of (85) into (87) and (88), followed by re-arrangements, gives

χR = 1

χ

[
1 −

√
2√

1 + c
I1(c, χ)

]
(92)

S2
0 = 2

χ2

[
A2

e − 2AeI0(c, χ) +
1

2
(1 + c) + I2(c, χ) −

√
2(1 + c)I1(c, χ)

]
. (93)

For Ae = 0 one has I0(c, χ) = 0 and the above integrals simplify. Equations (92) and (93) are
to be solved in combination with (72) and (74) for c and χ . If this results in χR > 0, the problem
is solved and the observable φ follows from (73). As soon as χR � 0, we enter the fully frozen
state c = φ = 1 induced by positive feedback in the valuation dynamics. From (82) we can
also extract an expression for a static overall bid susceptibility χA(z) = ∂A(z)/∂Ae.

It will be helpful to develop intuition for the physical meaning of �(z) and its inverse.
According to (78) and the derivation leading from there on to (85) one has

12
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A(z) = Ae + z

√
1

2
(1 + c) − χF(z) (94)

F(z) = 1

χ

(
Ae + z

√
1

2
(1 + c)

)
− 1

χ
�−1

(
Ae + z

√
1

2
(1 + c)

)
(95)

which can be combined to give

A(z) = �−1
(
Ae + z

√
1
2 (1 + c)

)
. (96)

Careful retracing of our derivations shows that the Gaussian variable z originates from the
integer variable μ ∈ {1, . . . , p} in the averaging over strategies in the generating functional,
and hence represents the frozen variability in agents’ strategies in terms of their dependence
on the p = αN fake histories. We also note that for F [A] = 0, i.e. in the absence of
valuation updates, one basically studies the initial state of the model. It then follows from the
above relations that the function �−1(z) tells us how the ‘prior’ time-averaged market bids

A(z)prior = Ae + z

√
1
2 (1 + c), as found for individual fake histories μ before agent adaptation

has taken place, are modified as a result of the agent’s valuation updates (upon equilibration)

into the ‘posterior’ time-averaged market bids A(z)posterior = �−1
(
Ae + z

√
1
2 (1 + c)

)
. So

�−1(z) represents the collective impact of agent interaction on the overall bid. Non-
invertibility of �(z) implies a potential dependence on the route taken by the system from the
initial to the final state (i.e. overall market bid remanence).

4.4. Simple model examples

At this stage it is appropriate to inspect specific choices for F [A], to serve as tests. We set
Ae = 0 for simplicity; the external bids were needed to calculate the overall bid susceptibility
χR , but are no longer essential.

• F [A] = A, the standard minority game. Here �(z) = z(1 + χ), so �−1(z) = z/(1 + χ)

and the Gaussian integrals I�(c, χ) become

I0(c, χ) = 0, I1(c, χ) =
√

1 + c√
2(1 + χ)

, I2(c, χ) = 1 + c

2(1 + χ)2
. (97)

This then reproduces the correct relations

χR = 1/(1 + χ), S0 =
√

1 + c/(1 + χ). (98)

The onset of non-invertibility is according to (86) marked by 1 + χ = 0 (which never
happens in the ergodic phase of the standard MG, where χ � 0). Since always χR > 0
we never enter the fully frozen (remanent) state obtained via the Maxwell construction.

• F [A] = −A, the standard majority game. Here �(z) = z(1−χ), so �−1(z) = z/(1−χ)

and the Gaussian integrals I�(c, χ) become

I0(c, χ) = 0, I1(c, χ) =
√

1 + c√
2(1 − χ)

, I2(c, χ) = 1 + c

2(1 − χ)2
. (99)

The result for χR and S0 is

χR = 1/(χ − 1), S0 =
√

1 + c/|χ − 1|. (100)

If χR > 0 (no remanence) one extracts from (74) and (100) that χ = Erf(v)/[Erf(v)−α],
so for α < 1 we can be sure that χ < 0 and run into the contradiction χR < 0. Apparently,

13



J. Phys. A: Math. Theor. 43 (2010) 025005 P Papadopoulos and A C C Coolen

the general scenario is that where χR < 0 and the system is in the fully frozen remanent
state. Hence χ < 1, and its value is given by formula (75), which reduces to

χ =
[

1 +

√
2πα(1 + c)

2σ [∞]

]−1

∈ (0, 1). (101)

The condition for leaving the frozen remanent state, namely χ = 1, is seen to coincide with
the condition for having non-invertibility for the overall bid process, but this condition
will clearly never be met; the system is always in the fully frozen remanent state.

5. Applications—greedy versus cautious contrarians

We now apply our theory to specific choices for the function F [A], all corresponding to models
that so far could only be studied via numerical simulations. For simplicity we choose Ae = 0.

5.1. Preparation

Due to Ae = 0, equations (92) and (93) that close our equations for persistent order parameters
simplify to

χχR = 1 −
√

2I1(c, χ)/
√

1 + c (102)

|χ |S0 =
√

1 + c + 2I2(c, χ) − 2
√

2(1 + c)I1(c, χ) (103)

with

I1(c, χ) =
∫

Dz z�−1

(
z

√
1

2
(1 + c)

)
, I2(c, χ) =

∫
Dz

[
�−1(z

√
1

2
(1 + c))

]2

(104)

and with �(z) as given in (85). It will prove efficient to define the function

c(v) = σ 2[∞]

{
1 +

1 − 2v2

2v2
Erf(v) − 1

v
√

π
e−v2

}
. (105)

Combining our relations so far then allows us to conclude that ergodic solutions with χR > 0
follow from solving the following two coupled equations for the basic unknowns (v, χ), after
which the order parameters φ and c follow via φ = 1−Erf(v) and c = c(v) (so always v � 0):

σ [∞]
√

Erf(v)

v
√

2[1 + c(v)]
= sgn(χ)

{
1 + c(v) + 2I2(c(v), χ) − 2

√
2(1 + c(v))I1(c(v), χ)

1 + c(v) − √
2[1 + c(v)]I1(c(v), χ)

} 1
2

(106)

α = Erf(v)

1 − √
2I1(c(v), χ)/

√
1 + c(v)

. (107)

Only χ > 0 is possible, so we are allowed to introduce a further function U(v) � 0,

U(v) = σ 2[∞] Erf(v)

2[1 + c(v)]v2
(108)

and compactify our equations for (v, χ), describing solutions with χ > 0 and χR > 0, to

U(v) =
1 + I2(c(v),χ)

[1+c(v)]/2 − 2 I1(c(v),χ)√
[1+c(v)]/2

1 − I1(c(v),χ)√
[1+c(v)]/2

α = Erf(v)

1 − I1(c(v),χ)√
[1+c(v)]/2

. (109)
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One proves from the definitions of I1,2(c, χ) that always I2(c, χ) � 2|I1(c, χ)|√[1 + c(v)]/2,
so the numerator of the first of our compact equations is always nonnegative. To have a
solution with χR > 0 we must demand that the denominator is also positive.

In contrast, in states with χR < 0 one has c = σ 2(∞), φ = 1 i.e. the system is always
fully frozen. Here the only order parameter left to be calculated is χ , which follows from

2σ [∞]√
2πα[1 + σ 2(∞)]

= sgn(χ)

√
1 +

I2(σ 2(∞), χ)

[1 + σ 2(∞)]/2
− 2

I1(σ 2(∞), χ)√
[1 + σ 2(∞)]/2

. (110)

Again only χ > 0 is possible (which we may rely upon in the rest of this paper); hence

2σ 2[∞]

πα[1 + σ 2(∞)]
= 1 +

I2(σ
2(∞), χ)

[1 + σ 2(∞)]/2
− 2

I1(σ
2(∞), χ)√

[1 + σ 2(∞)]/2
. (111)

To confirm that indeed χR < 0 we must verify the outcome of

χR = χ−1

[
1 −

√
2√

1 + σ 2(∞)
I1(σ

2(∞), χ)

]
. (112)

5.2. Invertible overall bid impact functions

Here we focus on those models, which include the original MG, in which F [A] is
monotonically increasing. The ansatz χ > 0 now guarantees that �(z) is invertible. These
models have a remarkable universality property: all those which have an ergodic phase exhibit
an ergodicity-breaking transition, marked by χ → ∞, exactly at the value αc of the standard
minority game, irrespective of the precise form of the function F [A]. To demonstrate this we
first rewrite either (84) or (85):

u − �−1(u)

χ
=
∫

Dx F

[
�−1(u) + x

√
1

2
(1 − c)

]
. (113)

From this we conclude that, for all z ∈ R,

lim
χ→∞

∫
Dx F

[
�−1(z) + x

√
1

2
(1 − c)

]
= 0. (114)

Since F [A] is monotonic, the obvious solution �−1(z) = 0 (guaranteed by the anti-symmetry
of F [A]) must be unique, and hence we know that generally limχ→∞ �−1(z) = 0. It now
follows that limχ→∞ I1(c, χ) = limχ→∞ I2(c, χ) = 0, and therefore via (102) and (103) we
find

lim
χ→∞ χχR = 1, lim

χ→∞ |χ |S0 =
√

1 + c, lim
χ→∞

S0

χR

= sgn(χR)
√

1 + c. (115)

The ansatz χ > 0 guarantees sgn(χR) = 1 (with χR ↓ 0 as χ → ∞), and our persistent order
parameter equations (72)–(74) close at the transition χ → ∞ exactly in the same way as they
would for the conventional MG, i.e.

c = σ 2[∞]

{
1 +

1 − 2v2

2v2
Erf[v] − 1

v
√

π
e−v2

}
(116)

α = Erf[v], v = σ [∞]
√

α/
√

2(1 + c). (117)

So all systems with monotonically increasing anti-symmetric F [A] will, provided they have an
ergodic regime, always exhibit a χ → ∞ transition at the conventional MG value αc ≈ 0.3374,
irrespective of the actual form of F [A].
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Away from the transition one should expect a dependence of the values of the persistent
order parameters on the choice made for F [A]. However, for ‘sensible’ choices of F [A] one
generally finds this dependence to be weak. To illustrate this we now focus on a particular
class of models, with monotonic valuation update functions of the form

F [A] = sgn[A]|A|γ , γ � 0. (118)

These models are relatively straightforward generalizations of the original MG (which
corresponds to γ = 1); nevertheless, for γ 	= 1 the standard solution route (i.e. generating
functional analysis of the strategy selection process, without including the overall bid dynamics
explicitly in the formalism) would not have worked. For γ > 1 the agents with (118) place
more importance on making money by exploiting large fluctuations (|A| > 1), so can be
described as greedy high-risk contrarians, whereas for γ < 1 they prefer to exploit small
market fluctuations, and operate as cautious low-risk contrarians.

We know from the above argument that their χ → ∞ ergodicity breaking transition point
αc will be identical to that of the standard MG. Let us now calculate the persistent order
parameters in the ergodic region α > αc. On physical grounds one does not expect a negative
susceptibility and F [A] increases monotonically; hence �(z) will be invertible, and we can
transform the integrals (104) via the substitution z = �(x)

√
2/

√
1 + c, and find

I1(c, χ) =
∫

dx√
2π

e−�2(x)/(1+c) (119)

I2(c, χ) =
√

2√
1 + c

∫
dx√
2π

e−�2(x)/(1+c)x2�′(x). (120)

This removes the need for inversion of �(z). For the models (118) one then finds

�(z) = z + χ

∫
Dx sgn

[
z + x

√
1

2
(1 − c)

]∣∣∣∣z + x

√
1

2
(1 − c)

∣∣∣∣
γ

. (121)

For non-integer γ the integral has to be calculated numerically. For integer γ one finds

γ = 0: �(z) = z + χ Erf

[
z√

1 − c

]
(122)

γ = 1: �(z) = z + χz (123)

γ = 2: �(z) = z +

[
z2 +

1

2
(1 − c)

]
χ Erf

[
z√

1 − c

]
+

χz
√

1 − c√
π

e−z2/(1−c) (124)

γ = 3: �(z) = z + χ

[
z3 +

3

2
(1 − c)z

]
. (125)

Since on physical grounds one does not expect a negative susceptibility, invertibility is expected
to hold and the present family of models should behave qualitatively as the ordinary MG. One
also expects that as the susceptibility goes to zero for large alpha the behavior of the system
should be almost independent of the value of γ . For γ � 3 these predictions are borne out by
numerical simulations (all carried out with N = 4097, and measured during 1000 steps after a
2000 steps equilibration period), as shown in figures 1–4. For large γ (excessive agent greed),
however, in spite of the agents still operating as contrarians, the ergodic phase appears to be
destroyed by their increasing focus on big-gain big-risk decisions, and there is no longer an
efficient market regime with low volatility.
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Figure 1. Simulation results for the volatility σ of MG-type models with F [A] = sgn[A]|A|γ ,
for γ = 0, 1, 2, 3. Vertical dashed line: predicted location of the χ → ∞ transition. Empty/full
markers correspond to biased/unbiased initial conditions. The location of the phase transition
seems indeed independent of γ . Even for α > αc the volatility appears only weakly dependent
upon the greed exponent γ . However, for values of γ � 4 (excessive agent greed) the ergodic
region is destroyed and the efficient phase of the market vanishes (see figure 4).
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Figure 2. Simulation results for the fraction of frozen agents φ and correlations c for MG-type
models with F [A] = sgn[A]|A|γ , for γ = 0, 1, 2, 3. Vertical dashed line: predicted location of
the χ → ∞ transition. Empty/full markers correspond to biased/unbiased initial conditions. As
observed for the volatility, also φ and c appear to be only weakly dependent on γ in the ergodic
region α < αc .

6. Applications—dynamic switching between contrarian trading and trend-following

Next we inspect a class of models in which agents switch from trend-following to contrarian
behaviour, dependent on the absolute value |A| of the overall market bid. The rationale is to
create more realistic agent behaviour, based on interpreting A as a measure of the price returns
in the market. One example was proposed in [11], corresponding to F [A] = εA3 − A, with
ε > 0. This model, in which agents are trend-followers for |A| < 1/

√
ε but contrarians for

|A| > 1/
√

ε, cannot be solved analytically using the standard generating functional analysis
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Figure 3. Theory versus simulation results for MG-type models with F [A] = sgn[A]|A|γ , for
γ = 0, 1, 2, 3. Observed versus predicted values of the persistent correlations c and the fraction of
frozen agents φ, for the ergodic regime (i.e. for α > αc). Lines: theoretical prediction; markers:
simulation results. There is clearly excellent agreement between the theoretical predictions and
the computer simulations.

route. Here we generalize their model slightly, allowing also for the reverse tendency, where
agents become trend-followers for large instead of small |A|, and analyse the case

F [A] = τA
(
1 − A2

/
A2

0

)
, with τ = ±1, A0 > 0. (126)

The model of [11] corresponds to τ = −1 and A0 = 1/
√

ε. For τ = 1, in contrast, agents
behave as contrarians for modest deviations of the returns from their average value, but switch
to herding when they perceive the market to be anomalous, i.e. for |A| > Ai

0. For A0 → ∞,
the model (126) reduces either to the standard MG (for τ = 1) or to a majority-type game (for
τ = −1); for A0 → 0 one anticipates the opposite.

6.1. Non-invertible overall bid impact functions

For (126) one finds

�(z) = z
[
1 + χ̃ − 3

2 (1 − c)χ̃
/
A2

0

]− χ̃z3/A2
0 (127)

where χ̃ = τχ . Whether �(z) is invertible will depend on A0. If A2
0(1+χ̃−1) > 3

2 (1−c), there
will always be a region of non-invertibility, with three solutions z of the equation �(z) = �.
The latter are the roots of a cubic equation and can therefore be calculated analytically,

z3 − z

[
A2

0(1 + χ̃ )/χ̃ − 3

2
(1 − c)

]
+

A2
0�

χ̃
= 0. (128)

Following [14] we write the cubic equation in the form z3 + 3qz − 2r = 0 by defining

q = 1

2
(1 − c) − A2

0(1 + χ̃)/3χ̃ , r = −A2
0�/2χ̃ . (129)

We can then classify the solution(s) of the equation �(z) = � as follows:

q3 + r2 > 0: one soln, z = [
r +

√
q3 + r2

]1/3
+
[
r −

√
q3 + r2

]1/3
(130)

q3 + r2 < 0: three solns, z1 = 2|q| 1
2 cos

(
1

3
arccos

(
r√
|q|3

))
(131)
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Figure 4. Fraction of frozen agents φ and volatility σ , measured in simulations of MG-type
systems with F [A] = sgn[A]|A|γ , for γ = 4, 5. Dashed line: predicted location of the χ → ∞
transition. Empty/full markers correspond to biased/unbiased initial conditions. For γ � 4 we
no longer appear to have the usual ergodic phase, and more extensive simulations with different
durations and system sizes are required to determine the nature of the macroscopic state(s).

z2 = −|q| 1
2 cos

(
1

3
arccos

(
r√
|q|3

))
+

√
3|q| 1

2 sin

(
1

3
arccos

(
r√
|q|3

))
(132)

z3 = −|q| 1
2 cos

(
1

3
arccos

(
r√
|q|3

))
−

√
3|q| 1

2 sin

(
1

3
arccos

(
r√
|q|3

))
. (133)

Our solution must respect the symmetry �−1(−z) = −�−1(z), which translates into searching
for a root with z(−r) = −z(r). Inspection reveals that for q3+r2 > 0 the solution (130) has the
desired symmetry. For q3 + r2 < 0 we find that z2(−r) = −z2(r), and that z3(−r) = −z1(r).
Hence z1,3(r) represent two ‘extremal’ solution branches (related to each other by inversion
symmetry), and z2(r) represents a middle branch. The region of multiple solutions is defined
by |r| < |q|3/2, where we have infinitely many options for assigning a value to �−1(z). The
conventional one is the Maxwell construction, based on assuming the multiplicity of solutions
to be caused by remanence. Here the middle branch z2(r) is taken to be dynamically unstable,
and one takes for 0 < r < |q|3/2 the continuation z1(r) of the r > |q|3/2 solution, and for
−|q|3/2 < r < 0 the continuation z3(r) of the r < −|q|3/2 solution, with a discontinuity at
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z(r)

− q|| 3/2q|| 3/2 − q|| 3/2q|| 3/2

Maxwell option

z(r)

alternative option

Figure 5. The options for constructing an anti-symmetric solution z(r) of the cubic equation
z3 + 3qz − 2r = 0 for q < 0, shown as a function of r. Dashed: all solutions. Left: the Maxwell
construction, which assumes the middle solution for |r| < |q|3/2 to be unstable, and the others to
reflect remanence. Right: the consequence of assuming the middle solution to be stable. Only the
one on the right turns out to have the correct A0 → ∞ limit (see the main text).

r = 0. Our second option implies assuming the middle branch to be stable, i.e. choosing z2(r)

for |r| < |q|3/2. The two options are illustrated in figure 5. Assessing which of these choices
(if any) is correct would in principle require a stability analysis of the asymptotic solution of
the overall bid dynamics.

Upon translating the above arguments into the language of �−1(z), the resulting picture
is the following, where still q = 1

2 (1 − c) − 1
3A2

0(1 + χ̃)/χ̃ but now with r(z) = − 1
2A2

0z/χ̃ :

q > 0 or q < 0, |r(z)| > |q|3/2 :

�−1(z) = [
r(z) +

√
q3 + r2(z)

] 1
3 +
[
r(z) −

√
q3 + r2(z)

] 1
3 . (134)

Here �(z) is fully invertible. In the alternative scenario we have the Maxwell option:

q < 0, |r(z)| < |q|3/2: �−1(z) = 2 sgn[r(z)]|q| 1
2 cos

(
1

3
arccos

(
|r(z)|√

|q|3

))
. (135)

But we also have the non-Maxwell solution, which can be rewritten as

q < 0, |r(z)| < |q|3/2: �−1(z) = −2|q| 1
2 sin

(
1

3
arcsin

(
r(z)√
|q|3

))
. (136)

Only for A0 → ∞ can we decide between our candidate solutions for q < 0 and |r(z)| < |q|3/2

without analysing dynamic stability in the underlying bid process. There (126) reduces to the
standard MG for τ = 1 and to the standard majority game for τ = −1, both of which we
analysed in section 4.4. The correct solution must reproduce limA0→∞ �−1(z) = z/(1 + χ̃ ).
For A0 → ∞, χ̃ /∈ (−1, 0), and finite z one has q < 0 and |r(z)| < |q|3/2 (in fact
limA0→∞ r(z)/|q|3/2 = 0), so we do indeed probe the region of ambiguity. Our test reveals,
using

√
3 sin

(
1
3 arccos(x)

)− cos
(

1
3 arccos(x)

) = − 2
3x + O(x3), that for A0 → ∞:

Maxwell soln: �−1(z) = A0|1 + χ̃−1|1/2 sgn(z) + O
(
A0

0

)
, incorrect (137)

alternative soln: �−1(z) = z/(1 + χ̃ ) + O
(
A−1

0

)
, correct. (138)
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For χ̃ ∈ (−1, 0) we have q > 0, so there is no ambiguity: �−1(z) is given by (134), which
for A0 → ∞ reproduces correctly �−1(z) = z/(1 + χ̃) + O

(
A−1

0

)
. Hence, for A0 → ∞ the

only acceptable solution is (134) and (136)2. We resolve the remaining ambiguity as follows:
since the pure majority and minority games always exhibit limz→0

d
dz

�−1(z) > 0, we take
this property to hold generally. In view of the physical meaning of �(z) as relating posterior
overall market bids to prior overall market bids, via (96), this means we are assuming that for
weak random bids the effect of agent interaction is to push these bids back to zero (contrarian
action) or to amplify them (trend-following), but there is no change of sign. For τ = −1 we
now have either 3

2 (1 − c)/A2
0 > 1 − χ−1 and the unambiguous solution (134), or we have

3
2 (1 − c)

/
A2

0 < 1 − χ−1 and the Maxwell option (135). For τ = 1 we must always demand
3
2 (1 − c)

/
A2

0 < 1 + χ−1 and the non-Maxwell option (136).

6.2. Conventional χ → ∞ transitions

We can now calculate transition lines. In the present model we can have a traditional χ → ∞
transition, a transition where χR changes sign (switching from a minority to a majority-
type game), and a transition marking the emergence of jumps in �−1(z). We start with the
calculation of the χ → ∞ transitions.

For τ = 1, χ → ∞ and finite z one has r(z) = O(χ−1) and q = 1
2 (1−c)− 1

3A2
0 +O(χ−1),

from which it follows that if limχ→∞ 3
2 (1 − c) 	= A2

0 then

�−1(z) = − z

χ

[
3

2
(1 − c)

/
A2

0 − 1

]−1

+ O(χ−2). (139)

From this one extracts limχ→∞ I1(c, χ) = limχ→∞ I2(c, χ) = 0, and via the same arguments
that applied to models with invertible bid impact functions one is led to

lim
χ→∞ χχR = 1, lim

χ→∞ χS0 =
√

1 + c, lim
χ→∞

S0

χR

= sgn(χR)
√

1 + c. (140)

If χR > 0, our equations (72)–(74) close for χ → ∞ exactly as they would for the
conventional MG, with the standard χ → ∞ transition at the value αc ≈ 0.3374. If
χR < 0, on the other hand, no χ → ∞ transition is possible. Taking into account the
requirement limz→0

d
dz

�−1(z) > 0 implies that for τ = 1 the χ → ∞ transition exists only if
A2

0 > 3
2 (1 − c). Here q < 0 and r(z) = O(χ−1), so we are in the remanent region.

For τ = −1, χ → ∞ and finite z one still has r(z) = O(χ−1) and q =
1
2 (1 − c) − 1

3A2
0 + O(χ−1). So if limχ→∞ 3

2 (1 − c) 	= A2
0 then for q < 0 we will have

|r(z)| � |q|3/2. Hence

A2
0 < 3

2 (1 − c): �−1(z) = z
χ

[
3
2 (1 − c)/A2

0 − 1
]−1

+ O(χ−2) (141)

A2
0 > 3

2 (1 − c): �−1(z) = sgn(z)

√
A2

0 − 3
2 (1 − c) + O(χ−1). (142)

If A2
0 < 3

2 (1− c) we return as expected to the conventional MG transition line at αc ≈ 0.3374;
however, in contrast to τ = 1 this line is now in the non-remanent region. If A2

0 > 3
2 (1 − c),

2 It is surprising that in this problem the Maxwell construction is not always the correct way to handle the multiplicity
of solutions, given its track record in physical many-particle systems. However, minority games do not obey
detailed balance, so intuition developed on the basis of bifurcation analyses obtained via free energy minimization in
equilibrium systems may be misleading.

21



J. Phys. A: Math. Theor. 43 (2010) 025005 P Papadopoulos and A C C Coolen

on the other hand, the χ → ∞ line will be in the remanent region. With some foresight we
now write A2

0 = 3
2 (1 − c) + 1

2 (1 + c)
2 with 
 � 0, and obtain

I1(c, χ) = 


√
1 + c

π
+ O(χ−1), I2(c, χ) = 1

2
(1 + c)
2 + O(χ−1) (143)

which leads to

U(v) − 1 = 
2 − 

√

2/π

1 − 

√

2/π
, α = Erf(v)/[1 − 


√
2/π ]. (144)

Upon solving the first equation for 
,


±(v) = 1√
2π

{
2 − U(v) ±

√
[2 − U(v)]2 + 2π [U(v) − 1]

}
(145)

we then arrive at a convenient parametrization of the transition line in the (α,A0) plane, with
v � 0 as a parameter. The line turns out to have two branches (indicated by ±):

A±
0 (v) =

√
3
2 [1 − c(v)] + 1

2 [1 + c(v)]
2±(v) (146)

α±(v) = Erf(v)
/[

1 − 
±(v)
√

2/π
]
. (147)

We must demand 0 � 
±(v) �
√

π/2, to guarantee χR > 0, and [2−U(v)]2+2π [U(v)−1] �
0, to ensure 
±(v) ∈ R. We have now found the χ → ∞ transition line for both
A2

0 < 3
2 (1 − c) (in the non-remanent region, where it is independent of A0), and for

3
2 (1 − c) < A2

0 < 3
2 (1 − c) + 1

4π(1 + c) (in the remanent region, where it depends on
A0). At the moment where A2

0 = 3
2 (1 − c) + 1

4π(1 + c), the bid susceptibility χR goes through
zero, marking a switch to majority game behavior; we find below that this occurs for the +
branch at v = 0.

To aid and test numerical evaluation it will be helpful to assess the limits v → 0
and v → ∞ of the above parametrized branches. For small v one finds, using Erf(v) =
(2v/

√
π)
[
1 − 1

3v2 + O(v4)
]

and the fact that 
(v) cannot be negative,

c(v) = σ 2[∞]

[
1 − 4v

3
√

π

]
+ O(v3), U(v) = σ 2[∞]

v[1 + σ 2[∞]]
√

π
+ O(1) (148)


+(v) =
√

π

2
− v[1 + σ 2[∞]]π(π − 2)

2σ 2[∞]
√

2
+ O(v2). (149)

Hence

lim
v→0

A+
0(v) =

√
3

2
[1 − σ 2[∞]] +

π

4
[1 + σ 2[∞]] (150)

lim
v→0

α+(v) = 4σ 2[∞]

[1 + σ 2[∞]]π(π − 2)
. (151)

For σ [∞] = 1 (no decision noise) this gives limv→0 α+(v) = 2/π(π − 2) ≈ 0.5577
and limv→0 A+

0(v) = √
π/2 ≈ 1.2533. For v → ∞, in contrast, we observe due to

limv→∞ U(v) = 0 that the 
±(v) are no longer real-valued; both branches terminate and
meet at the value vmax such that [U(vmax) − 2]2 = 2π [1 − U(vmax)], i.e. where

U(vmax) = √
π − 2

[√
π − √

π − 2
]
. (152)
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6.3. Onset of remanence-induced discontinuities in the χR > 0 region

It is clear that discontinuities emerge in our equations as soon as q � 0. Even if it is not yet
clear which precise observables will be affected by these discontinuities, it implies that there
exists an alternative transition marked by the condition q = 0, i.e. by

c = 1 − 2
3A2

0(1 + χ̃−1). (153)

When (153) holds, we find upon expanding for small q that limq→0 �−1(z) = −(A2
0z
/
χ̃
)1/3

,
and so along the line (153) the integrals (104) reduce to gamma functions:

I1(c, χ) = −
(

A2
0

√
2(1 + c)

2χ̃

)1/3 ∫
Dz|z|4/3 = −

(
A2

0

√
1 + c

2χ̃
√

2

)1/3 1

3
√

π
�

(
1

6

)
(154)

I2(c, χ) =
(

A2
0

√
2(1 + c)

2χ̃

)2/3 ∫
Dz|z|2/3 =

(
A2

0

√
1 + c

χ̃

)2/3 1√
π

�

(
5

6

)
. (155)

This leads to

U(v) − 1 = 6�
(

5
6

)

2 + �

(
1
6

)



3
√

π + �
(

1
6

)



α = Erf(v)

/[
1 + �

(
1

6

)

/3

√
π

]
(156)

in which now 
 = [
A2

0

/
χ̃[1 + c(v)]

]1/3
. Solving the first equation for 
 gives


±(v)= �
(

1
6

)
12�

(
5
6

)
{
U(v)− 2 ±

√
[2 − U(v)]2 − 72[1 − U(v)]

√
π�

(
5

6

)/
�2

(
1

6

)}
. (157)

Again, after combination with the q = 0 condition, we thereby arrive at a parametrization of
the transition line in the (α,A0) plane, with v � 0 as a parameter, with two ± branches:

A±
0 (v) =

√
3

2
[1 − c(v)] − [1 + c(v)]
3±(v) (158)

α±(v) = Erf(v)

/[
1 +

�
(

1
6

)
3
√

π

±(v)

]
. (159)

The corresponding value of χ then follows from

χ = τ

[
3[1 − c(v)]

2[1 + c(v)]
3±(v)
− 1

]
. (160)

To have 
±(v) ∈ R we must demand [U(v) + 2(ξ − 1)]2 � 4ξ(ξ − 1), where ξ =
18

√
π�
(

5
6

)/
�2
(

1
6

) ≈ 1.1623. Since U(v) � 0 this implies U(v) � 2
√

ξ − 1(
√

ξ −√
ξ − 1) ≈ 0.5441. Secondly, to have A0 ∈ R and α > 0 we must demand, respectively,


±(v) �
[

3
2 [1 − c(v)]/[1 + c(v)]

]1/3
and 
±(v) � −3

√
π/�

(
1
6

)
. The third condition is

χ � 0, which translates into: 
±(v) � 0 for τ = 1, and 
±(v) � 0 for τ = −1. The second
and third conditions can be combined into

τ = 1: 0 � 
±(v) �
[

3
2 [1 − c(v)]/[1 + c(v)]

]1/3
(161)

τ = −1: − 3
√

π/�
(

1
6

)
� 
±(v) � 0. (162)

For small v we may use expansion (148), which tells us that U(v) diverges at v = 0, to find


+(v) = U(v)�
(

1
6

)
6�
(

5
6

) + O(1) = σ 2[∞]�
(

1
6

)
6v[1 + σ 2[∞]]

√
π�
(

5
6

) + O(1) (163)
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−(v) = −3
√

π

�
(

1
6

) +
3πv[1 + σ 2[∞]]

σ 2[∞]�
(

1
6

) [
18

√
π�
(

5
6

)
�2
(

1
6

) − 1

]
+ O(v2). (164)

Hence

lim
v→0

α−(v) = 2σ 2[∞]�2
(

1
6

)
π [1 + σ 2[∞]]

(
18

√
π�
(

5
6

)− �2
(

1
6

)) (165)

lim
v→0

A−
0 (v) =

√
3

2
[1 − σ 2[∞]] + 27[1 + σ 2[∞]]π3/2/�3

(
1

6

)
. (166)

For σ [∞] = 0 (i.e. no decision noise) this result gives limv→0 α−(v) =
�2
(

1
6

)
/π
[
18

√
π�
(

5
6

)−�2
(

1
6

)] ≈ 1.9611 and limv→0 A−
0 (v) = 3

√
6π3/4/�3/2

(
1
6

) ≈ 1.3204.
For the ‘ + ’ branch the limit v → 0 does not exist; instead when v is decreased the
line terminates at the value vmin such that A+

0(vmin) = 0. Finally, the two branches
terminate and meet at the value vmax such that [U(vmax) − 2]2 = 2λ[1 − U(vmax)], in which
λ = 36

√
π�
(

5
6

)/
�2
(

1
6

)
, i.e. where

U(vmax) = √
λ − 2[

√
λ − √

λ − 2] (167)

(note: via the relation �(z)�(1−z) = π/ sin(πz) one could simplify our expressions further).

6.4. The χR = 0 transition lines

We saw earlier that χR can change sign at the χ = ∞ line. Here we inspect the possibility of
having a χR = 0 transition for finite χ and finite α. The effective agent equation (61) would
now give q̃ = η

√
α + θ , leading to c = σ 2[∞] and φ = 1. The susceptibility would become

χ = 1√
α

〈
∂

∂η
σ

〉
�

= 2σ [∞]√
2παS2

0

. (168)

The χR transition line is hence to be solved from the following coupled equations for (χ, α,A0):

I1(σ
2(∞), χ) =

√
1

2
[1 + σ 2(∞)], α = σ 2[∞]/π

I2(σ 2(∞), χ) − 1
2 [1 + σ 2(∞)]

. (169)

One can use χ > 0 as a parameter, solve the first equation for A0(χ), and then calculate α(χ)

via the second. For σ(∞) = 1 (no decision noise) the two equations simplify further to

1 =
∫

Dz z�−1(z)1 +
1

απ
=
∫

Dz[�−1(z)]2. (170)

We will explore this latter case, where �(z) = z(1 + τχ) − z3
/
A2

0 and r(z) = 1
2z
(
A2

0 + 3q
)
,

in more detail. This requires working out the function �−1(z) for the two model instances.
If τ = 1 we have q = − 1

3A2
0(1 + χ−1) � − 1

3A2
0; here we must in the remanent

regime always select the non-Maxwell option (136). We replace χ as a parameter by
λ = 2|q|3/2

/(
3|q| − A2

0

)
� 0. This implies that r(z)/|q|3/2 = −z/λ, and hence

�−1(z) = sgn(z)
√

|q|�(|z|/λ) (171)

�(x) = 2θ [1 − x] sin
(

1
3 arcsin(x)

)− θ [x − 1]
{[

x +
√

x2 − 1
] 1

3 +
[
x −

√
x2 − 1

] 1
3
}
. (172)
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The first equation of (170) then gives
√|q| = [∫

Dz|z|�(|z|/λ)
]−1

, and we obtain the
following explicit parametrization of the χR = 0 line:

A0(λ) = 1∫
Dz|z|�(|z|/λ)

√
3 − 2

λ
∫

Dz|z|�(|z|/λ)
(173)

α(λ) = 1

π

[ ∫
Dz�2(|z|/λ)

[
∫

Dz|z|�(|z|/λ)]2
− 1

]−1

. (174)

Let us determine the extremal points. For λ → ∞ we use �(x) = 2
3x + 8

81x3 + O(x5) and get

lim
λ→∞

A0(λ) =
√

3, lim
λ→∞

α−1(λ) = 0. (175)

For small λ we note that the χR = 0 line terminates at the value λc where A0 ceases to be
real-valued. This value λc is the solution of

3

2
λ

∫
Dz|z|�(|z|/λ) = 1 (176)

and corresponds to the following point in the (α,A0) plane:

A0 = 0, α = 1

π

[
9

4
λ2

c

∫
Dz �2(|z|/λc) − 1

]−1

. (177)

If τ = −1 we have q = − 1
3A2

0(1−χ−1) and r(z) = 1
2A2

0z
/
χ . Here 3q +A2

0 = A2
0

/
χ � 0

so q � − 1
3A2

0, and in the remanent region we select the Maxwell option (135). If now we
define as our line parameter λ = 2|q|3/2

/(
3q + A2

0

)
� 0 we will have r(z)/|q|3/2 = z/λ, and

hence

�−1(z) = sgn(z)
√

|q|�(|z|/λ) (178)

q > 0: �(x) = [
x +

√
1 + x2

] 1
3 +
[
x −

√
1 + x2

] 1
3 (179)

q < 0 : �(x) = θ [x − 1]
{[

x +
√

x2 − 1
] 1

3 +
[
x −

√
x2 − 1

] 1
3
}

+ 2θ [1 − x] cos
(

1
3 arccos(x)

)
. (180)

Again we find the first equation of (170) giving
√|q| = [ ∫

Dz|z|�(|z|/λ)
]−1

, but now our
parametrization becomes

A0(λ) = 1∫
Dz|z|�(|z|/λ)

√
2

λ
∫

Dz|z|�(|z|/λ)
− 3 sgn(q) (181)

α(λ) = 1

π

[ ∫
Dz�2(|z|/λ)[ ∫

Dz|z|�(|z|/λ)
]2 − 1

]−1

. (182)

In the limit λ → ∞ we use the expansions �(x) = 2
3x − 8

81x3 + O(x5) for q > 0, and

�(x) = √
3 + 1

3x −
√

3
18 x2 + O(x3) for q < 0. We then find

q > 0: lim
λ→0

A0(λ) =
√

3 ≈ 1.7321, lim
λ→∞

α−1(λ) = 0 (183)

q < 0 : lim
λ→∞

A0(λ) =
√

π

2
≈ 1.2533, lim

λ→∞
α(λ) = 2

π(π − 2)
≈ 0.5576 (184)
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Figure 6. Phase diagrams for the models with F [A] = τA[1 − A2/A2
0], τ = ±1. Solid lines:

χ = ∞ transition; dashed lines: remanence onset transition; dotted lines: χR = 0 (minority-to-
majority) transition. The MinGame phase is characterized by χR > 0 (contrarian trading), the
MajGame phase by χR < 0 (trend-following). R indicates remanence. In the left picture (τ = −1,
giving trend-following for |A| < A0 and contrarian trading for |A| > A0), the phase diagram
is reasonably complete and reliable. For small A0 we have only the MinGame phase, with the
standard χ → ∞ transition at αc ≈ 0.3374. As A0 is increased a small remanent region is formed,
until we switch to a MajGame state for large A0. In the right picture (τ = 1, giving contrarian
trading for |A| < A0 and trend-following for |A| > A0), we find the MinGame phase, with the
standard χ → ∞ transition at αc ≈ 0.3374, for large A0 (as expected). However, the overall
picture is now more uncertain since most of the diagram is remanent. Since we can never be sure of
picking the right solution in the remanent phase, the location of the χR = 0 line cannot be taken as
certain, and indeed intuition suggests that it should have connected to the point where the χ = ∞
and the remanence onset lines meet. In both diagrams we cannot draw the line separating the non-
ergodic MinGame phase from the MajGame phase for small α; as this line involves non-ergodic
phases, we have no access to it with a theory that assumes ergodicity.

The latter point coincides with the termination point of the χ → ∞ transition line for τ = −1.
The χR = 0 line for τ = −1 can only have a finite λ termination point with A0 = 0 if
q > 0, i.e. in the remanent region. In practice we find no such points for τ = −1, irrespective
of q.

6.5. Phase diagrams

We can now summarize the picture obtained by analysing time-translation invariant states in
terms of a phase diagram. The control parameters are α � 0, A0 � 0 and τ = ±1. We have
so far identified three transition types: χ → ∞, χR → 0 and q → 0. The result is shown
in figure 6, and discussed in detail in the corresponding figure caption. Most of the technical
subtleties in the present models are generated by remanence, so the phase diagram for τ = −1
(giving the model of [11]) is the most complete and reliable, since the remanent region is
relatively contained. The situation is different for τ = 1, where most of the phase diagram
is remanent, and consequently we cannot be certain of the location of the χR = 0 line. The
reason for this fundamental difference would appear to be that in the latter case we are always
led to the non-Maxwell option for the relevant saddle-point, which (see figure 5) involves two
discontinuities as opposed to one. A proper resolution of the remaining uncertainties here
would require going beyond the asymptotic limit of the effective agent and the effective overall
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Figure 7. Simulation results for the persistent correlations c, the fraction of frozen agents φ, and
the volatility σ , for τ = −1 (i.e. F [A] = −A + A3/A2

0). The chosen values of A−1
0 should,

according to the phase diagram, probe the MajGame phase of the model, without any χ = ∞
transition. Full markers: tabula rasa initial conditions; empty markers: biased initial conditions.

bid processes, in order to determine dynamic stability and dependence on initial conditions of
the values of the persistent order parameters.

6.6. Simulations

We have tested our predictions for the values of persistent order parameters and the locations
of phase transition lines, for the models (126) and for both values of τ . All simulations
were carried out without decision noise, for systems of size N = 4097 and for both unbiased
(qi(0) = ±10−4) and biased (qi(0) = ±1) random initializations. Observables were measured
during 1000 batch steps, following an equilibration stage of 2000 batch steps.

We begin with τ = −1 (the model of [11]). In figure 7 we present results for the
volatility σ , the persistent correlations c, and the fraction of frozen agents φ, for values of A−1

0
corresponding to the MajGame regime, without remanence. The simulations indeed reproduce
a majority-game-type state for large A0 (top row), but as A0 is reduced (middle and bottom
rows) the system exhibits behaviour that is less clear-cut than what is suggested by the phase
diagram. We are still in the non-remanent region, so this cannot be explained by remanence
effects. Close to the remanent region R of the τ = −1 phase diagram, the simulations are in
rough agreement with the predictions, see figure 8. The vertical dashed line marks the χ = ∞
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Figure 8. Simulation results for the persistent correlations c, the fraction of frozen agents φ, and
the volatility σ , for τ = −1 (i.e. F [A] = −A + A3/A2

0). The chosen values of A−1
0 should,

according to the phase diagram, probe the region close where a A0-dependent χ = ∞ transition
occurs (indicated with a vertical dashed line), with a MinGame phase for large α. Full markers:
tabula rasa initial conditions; empty markers: biased initial conditions.

transition, and seems to agree with simulations within the finite size limitations. In figure 9
we probe the region where we expect MG-type behaviour. This is borne out in the ergodic
region, for α > αc (and the transition is found in the right place, in agreement with the phase
diagram). However, for α < αc the behaviour is found to be far from typical; in contrast to
the standard MG, the differences between the biased and unbiased initial conditions are small,
and more likely to result of instabilities than long-term memory. In fact one notes similarities
in behavior with figure 4 for F [A] = sgn(A)|A|γ with γ = 4, 5; this suggest as a possible
explanation that if A−1

0 gets larger, the first term of the present F [A] = A3/A2
0 − A plays a

role similar to sgn(A)|A|γ with γ � 4.
In figure 10 we present simulation results for the most difficult case τ = 1, i.e.

F [A] = A − A3
/
A2

0. These show that the anticipated transition from a MinGame phase
at small values of A−1

0 to an MajGame phase for larger A−1
0 indeed occurs, but for some value

0.25 � A−1
0 � 0.5, which differs from the prediction in the phase diagram. Furthermore,

one notes instabilities of multiplicities of states in the remanent regime, to the right of the
χ = ∞ transition. These deviations for τ = 1 are of course not unexpected, since the
τ = 1 phase diagram is plagued by remanence. They could be caused by many things,
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Figure 9. Simulation results for the persistent correlations c, the fraction of frozen agents φ, and
the volatility σ , for τ = −1 (i.e. F [A] = −A + A3/A2

0). The chosen values of A−1
0 should,

according to the phase diagram, probe the region close where a χ = ∞ transition should occur at
the conventional MG value αc ≈ 0.3374 (indicated with a vertical dashed line), with an ergodic
MinGame phases for large α and a non-ergodic MinGame phase for small α. Full markers: tabula
rasa initial conditions; empty markers: biased initial conditions. We note that the behavior in the
non-ergodic regime is not typical of the standard MG.

possibly in combination: incorrect selection of mathematical solutions in the remanent phase,
insufficiently equilibrated simulations made worse by remanence, alternative transitions (e.g.
onset of weak long-term memory), etc.

7. Discussion

Minority-game-type models have an amazing ability to describe new phenomena within an
accessible mathematical framework, and to throw up new mathematical surprises and puzzles.
In this paper we have studied generalized agent-based market models of the MG-type (in their
so-called ‘fake history’ batch version), in which the agents’ strategy valuation update rule is
allowed to depend on the overall market bid, via an impact function F [A] (which would be
F [A] = ±A for the standard minority and majority games, respectively). The function F [A]
allows us to model the effect of agents’ interpretation of the state of the market (the magnitude
of the fluctuations), assuming that whether price fluctuations are perceived to be large or small
should somehow influence how agents trade in financial markets. Our motive is to incorporate
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Figure 10. Simulation results for the persistent correlations c, the fraction of frozen agents φ, and
the volatility σ , for the troublesome case τ = 1 (i.e. F [A] = A−A3/A2

0). According to the phase
diagram, one should for small A−1

0 find a conventional χ = ∞ phase separating an ergodic from
a non-ergodic MinGame phase. For larger A−1

0 we should at some point enter a MajGame phase.
Full markers: tabula rasa initial conditions; empty markers: biased initial conditions. Although
the observed behaviour agrees with the theory for small A−1

0 , and indeed a MajGame phase appears
as A−1

0 is increased, the point where this happens does not agree with the phase diagram. This
underlines the problems in the identification of transition lines in the remanent region of the phase
diagram, which are indeed much more profound for τ = 1.

into solvable market models such behavioral elements. In this study we focus on two model
classes: one in which agents are always contrarians, but where we can control their greed and
willingness to take risks, namely F [A] = sgn(A)|A|γ , and one in which agents can switch
between trend-following and contrarian trading, namely F [A] = ±A

[
1 −A2

/
A2

0

]
, somewhat

reminiscent of how they would adapt to booming and ‘bear’ markets.
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At a mathematical level, the generating functional analysis of the present class of models
requires studying the overall bid evolution explicitly, similar to how one would study models
with real market history. It turns out that a key issue in working towards closed self consistent
equations for persistent order parameters is whether the overall bid process is remanent. In
non-remanent cases, such as F [A] = sgn(A)|A|γ , solution is direct and relatively easy, and
the agreement between theory and simulations is excellent (for this particular model: unless
γ becomes too large, where we lose the ergodic phase altogether). In remanent cases, such
as F [A] = τA

[
1 − A2

/
A2

0

]
with τ = ±1, we need to rely on ansätze and Maxwell-type

approximations to select a solution from the possible stationary states, especially for τ = 1,
and the agreement between theory and experiment is consequently limited.

Once more, what appears at first sight to be simple modifications of the standard MG lead
to highly non-trivial and unexpected behaviour (even in batch models with fake histories). As
soon as agents are allowed to adapt their trading style to the magnitude of the fluctuations,
in the spirit of [11], one introduces a non-trivial effective overall bid process, with new
instabilities and new transitions. We are now approaching the point where theories based only
on persistent order parameter equations, the ones that benefit most from the simplifications
induced by having ‘frozen agents’, are no longer giving us the information we need. In models
dominated by remanence, which are the type one needs when including more realistic agent
behaviour, we can no longer avoid solving the full dynamics more explicitly.

Appendix. Scaling of overall market bid covariances

We defined the overall bid covariance matrix as 
tt ′(z) = 〈Ã(t, z)Ã(t ′, z)〉. It must be time-
translation invariant, so we write 
(t, z) = 
s+t,s (z), i.e. 
(t, z) = 〈Ã(s, z)Ã(t +s, z)〉. From
(79) we extract:


(t, z) = 1

2
C̃(t) −

∑
s

G(s){〈F [A(z) + Ã(t − s, z)]Ã(0, z)〉 + 〈F [A(z) + Ã(−s, z)]Ã(t, z)〉}

−
∑
ss ′

G(s)G(s ′)〈{F [A(z) + Ã(t − s, z)]F [A(z) + Ã(−s ′, z)] − F
2
(z)}〉.

(A.1)

Since the non-persistent bids are Gaussian this equation gives an explicit relation from which
to solve their covariances; along the lines of [16] we apply the general relation

〈G[Ã(t, z), Ã(t ′, z)]〉 =
∫

Dx Dy G

[
x√
2

√
S1(t − t ′)

+
y√
2

√
S2(t − t ′),

x√
2

√
S1(t − t ′) − y√

2

√
S2(t − t ′)]

]
(A.2)

where S1(t − t ′) = 
(0, z) + 
(t − t ′, z),S2(t − t ′) = 
(0, z) − 
(t − t ′, z). In particular
we need the two quantities

〈F [A(z) + Ã(u, z)]Ã(v, z)〉 = 
(u − v, z)F ′(z) (A.3)

and

〈F [A(z) + Ã(u, z)]F [A(z) + Ã(v, z)]〉
=
∫

Dx Dy F

[
A(z) +

x√
2

√
S1(u − v) +

y√
2

√
S2(u − v)

]

×F

[
A(z) +

x√
2

√
S1(u − v) − y√

2

√
S2(u − v)

]
(A.4)
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For u = v this gives simply 〈F 2[A(z)+ Ã(u, z)]〉 = F 2(z). The first average above is of order

. The second average can for u 	= v be expanded in powers of 
(u − v, z) (which should
decay to zero quickly), using

I (ξ) =
∫

Dx Dy F

[
A +

x√
2

√

(0) + ξ +

y√
2

√

(0) − ξ

]

×F

[
A +

x√
2

√

(0) + ξ − y√

2

√

(0) − ξ

]

=
{∫

Dx F [A + x
√


(0)]

}2

+ ξ

{∫
Dx F ′[A + x

√

(0)

]}2

+ O(ξ 2). (A.5)

Thus, we conclude that

〈F [A(z) + Ã(u, z)]F [A(z) + Ã(v, z)]〉 − F
2
(z) = δuv[F 2(z) − F

2
(z)]

+ (1 − δuv)
(u − v, z)[{F ′(z)}2 + O(
(u − v, z))] (A.6)

which leads to


(t, z) = 1

2
C̃(t) − F ′(z)

∑
s>0

G(s){
(−s − t, z) + 
(−s + t, z)}

− [F 2(z) − F
2
(z)]

∑
s>0

G(s)G(s − t)

− [F ′(z)]2
∑
s>0

∑
v>t−s,v 	=0

G(s)G(s − t + v)
(v, z)[1 + O(
)]. (A.7)

At this point we inspect how various terms scale. We know from earlier MG work (especially
from approximate calculations of the volatility, see e.g. [8]) that the relaxation of the response
function G is very slow. Upon making an ansatz of the form G(t) = χ(eμ − 1) e−μt one can
show that in the stationary state one must put μ → 0 (the relaxation time seems to diverge
with N in an as yet undetermined way). For such an exponential ansatz one would find∑

s>0 G(s)G(s − t) = χ2e−μ|t |(eμ − 1)/(eμ + 1) = O(μχ2). Thus if μ → 0 the second term
in (A.7) vanishes in the ergodic regime. In the final term we use our earlier ansatz that the
correlations 
(s) decay on short times; formula (A.7) suggests that this relaxation time will
be that of C̃(t). If this relaxation time is τC , we may estimate the scaling of the last term in
(A.7) as O(μτCχ2). So, upon writing the relaxation time of the response function as τG, we
may replace μ → 1/τG and write (A.7) as


(t, z) = 1
2 C̃(t) − F ′(z)O(τC/τG) − [F 2(z) − F

2
(z)]O(1/τG) − [F ′(z)]2O(τC/τG). (A.8)
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