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Abstract— We study the dynamics of a simple message-passing
decoder for LDGM channel coding by using the generating
functional analysis (GFA). The decoder addressed here is one
of the simplest examples, which is characterized by a sparse
random graph with many short loops. The GFA allows us to
study the dynamics of iterative systems in an exact way in the
large codeword length limit.

I. INTRODUCTION

In order to improve the performance of message-passing
iterative decoders for channel coding, it is important to un-
derstand its dynamics. For low-density parity-check (LDPC)
codes, Richardson and Urbanke have studied the dynamics
of the message-passing decoder by means of their density
evolution method [1], [2] in the large codeword length limit.
In their case the bipartite graph, which defines the ensemble
of LDPC codes, can be regarded as a loop-free graph in the
large codeword length limit, because the length of the loop
is evaluated as O(logN) [1]. Therefore, it becomes valid to
assume that all messages are independent for finite iterative
steps.

However, it has not been discussed enough about the effect
of loops in sparse random graphs so far. So we here study
a simple message-passing iterative decoder, which is defined
on a sparse random graph with many short loops, for low-
density generator-matrix (LDGM) channel coding as a typical
example for this kind of problems. In more general settings we
should treat loops in the sparse random graphs. The generating
functional analysis (GFA) [3] used here can evaluate the
influence of loops exactly in the large codeword length limit.
When problems are defined on finite size graphs, we cannot
ignore loops. It is hard to treat finite size graphs directly,
however the asymptotic analysis discussed here might be
useful to evaluate the influence of loops as one of alternative
approaches.

Up to now, Hatchett et al. have studied the dynamics
of parallel update iterative equations on finitely connected
random graphs by the GFA in the context of statistical physics
[4]. They have treated the Poissonian graph, which is a sparse
Erdös-Rényi graph. We have extended Hatchett’s analysis to
the sparse random graph with an arbitrary degree distribution
[5]. In this paper we analyze the dynamics of iterative de-
coder on the sparse random graph with an arbitrary degree

distribution for LDGM channel coding.

II. BACKGROUND

First of all, we briefly summarize the Sourlas codes [6],
which is considered as a dense case of LDGM channel coding.
In r-body Sourlas codes, an original message ξ = (ξi) ∈
{−1, 1}N is encoded into a length-(N

r ) codeword y0
i1,··· ,ir

=
ξi1 · · · ξir (∀ i1 < · · · < ir), which are given by the products
of r bits. It’s sent to the receiver through noisy channels.
The receiver gets the received message y = (yi1,··· ,ir ) ∈
{−1, 1}(N

r ) with noise and decodes the original message based
on the Bayesian method. To simplify a problem, hereafter we
assume that the products of two bits (r = 2) are sent through
a binary symmetric channel (BSC) with bit flip probability p0,

p(yij |ξiξj) =
{

1 − p0 if yijξiξj = 1
p0 if yijξiξj = −1 =

eF0yijξiξj

2 coshF0
, (1)

where F0 = 1
2 ln 1−p0

p0
. Assuming a uniform prior for ξ, one

obtains the posterior probability by the Bayes formula as

p(ξ|y) ∝ p(y|ξ)p(ξ), (2)

where

p(y|ξ) =
N∏

i=1

N∏
j>i

p(yij |ξiξj) (3)

and p(ξ) = 2−N . The decoding is based on the marginal-
posterior-mode (MPM) estimator as

ξ̂i = argmax
ξi∈{−1,1}

∑
ξ\ξi∈{−1,1}N−1

p(ξ|y). (4)

We first derive a simple decoding algorithm for this de-
coder by means of an approximate belief-propagation (BP)
[7], which is a kind of message-passing algorithm. Defining
notations p1

k and p−1
k to represent the prior probability, the BP

algorithm is given by the following equations.

ρ±1
(ij)k =

∑
ξ\ξk

p(yij |ξk = ±1, {ξk′ �=k})
∏

k′ �=k

q
ξk′
(ij)k′ , (5)

q±1
(ij)k = d(ij)kp

±1
k

∏
(i′j′)∈L(k)\{(ij)}

ρ±1
(i′j′)k, (6)



where d±1
(ij)k denotes a normalization constant to hold q1(ij)k +

q−1
(ij)k = 1 and L(k) ≡ {(ik), (kj)|1 ≤ i < k < j ≤ N}. One

need p±1
k = q±1

(ij)k = 1/2 (∀ (ij), k) as an initial condition.
The pseudo-posterior can be calculated as

q±1
k = αkp

±1
k

∏
(ij)∈L(k)

ρ±1
(ij)k, (7)

where αk is a normalization constant. We now make the fol-
lowing two assumptions to derive a simple iterative decoding
algorithm.

Assumption 1: Any single codeword bit has small effect,
namely, qξk

(ij)k � qξk

k for all k. �
Assumption 2: When we replace qξk

(ij)k in (5) with Θ(qξk

k −
q−ξk

k ), it doesn’t cause a big influence in inferring the original
message. �

Under these assumptions, the difference of qξk

(ij)k concerning
(ij) is ignored. Consequently, the graph on which the decoder
is defined becomes equivalent to a graph which has many short
loops. We here use the following relationship

Θ(qξk

k − q−ξk

k ) =
1 + ξk sgn (q1k − q−1

k )
2

= δξk,ξ̂k
, (8)

where Θ denotes a step function and δm,n denotes Kronecker’s
delta. Then, log-likelihood ratio of ρ1

(ij)k becomes

ln
ρ1
(ij)k

ρ−1
(ij)k

=
{

2F0yij ξ̂j , i = k, j �= k

2F0yij ξ̂i, i �= k, j = k
. (9)

We therefore have

ln
q1k
q−1
k

=
∑

(ij)∈L(k)

ln
ρ1
(ij)k

ρ−1
(ij)k

= 2F0

(k−1∑
k′=1

yk′kξ̂k′ +
N∑

k′=k+1

ykk′ ξ̂k′

)
.

(10)

If we put yji = yij for all i < j, the tentative decision ξ̂i for
ξi can be written by the following simple form:

ξ̂i = sgn (q1i − q−1
i ) = sgn

(
2F

N∑
j �=i

yij ξ̂j

)
, (11)

where F = 1
2 ln 1−p

p and p is a control parameter representing
the estimate of the true bit flip probability p0. We regard ξ̂i
as a random variable like this:

ξ̂i =
{ −1, with prob. (1 − xi)/2

1, with prob. (1 + xi)/2
, (12)

thus the log-likelihood ratio becomes ln q1
i

q−1
i

= 2 tanh−1 xi.
Replacing x̂i into xi and introducing the iterative step t, we
have

xi(t+ 1) = tanh
(
F

N∑
j �=i

yijxj(t)
)
. (13)

from (11). The initial condition xi(0) is randomly and in-
dependently generated from the distribution 1

2δ(xi(0) + 1) +
1
2δ(xi(0)−1) for all i. It should be noted that if an equilibrium
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Fig. 1. Performance of the simple BP-based decoder with p(k) = δk,3 and
d = 1. The codeword length is N = 10, 000. The code rate is R = 2/5.
The critical noise level pc � 0.146 is the Shannon limit for R = 2/5.

state of the decoder (13) is x, then −x also becomes an
equilibrium state. In this scheme, the code rate is R =
(N
2 )−1N � 2/N for large N .

III. LDGM CHANNEL CODING

LDGM codes for channel coding are considered as the
Sourlas codes whose codewords are thinned out sparsely [8],
[9]. In this paper, to treat the effect of short loops we consider
one of the simplest iterative decoder as follows.

Definition 1: The BP-based decoder duscussed here is de-
fined as

xi(t+ 1) = f(hi(x(t))), (14)

by extending the decoder (13), where

hi(x(t)) =
N∑

j �=i

cijyijxj(t) + θi(t) (15)

and f is an arbitrary function. The vector x(t) represents
(x1(t), · · · , xN (t)). We here introduce a connectivity param-
eter c = (cij) ∈ {0, 1}N2

which specify the realization of the
graph. and θi(t) ∈ R to represent more general settings. �

It should be noted that Assumption 1 can be valid only in
the large codeword length. Since we consider sparse codes
in the decoder of (14), Assumption 1 is not justified. Due to
this approximation, the encoder discussed here have not good
error correcting performance. However, since this decoder has
a very simple structure, we employ this decoder as the first
step to treat loops.

We’ll use f(x) = tanh(Fx), which may not be valid for
sparse settings, as the function f . The connectivity parameter
c = (cij) ∈ {0, 1}N2

are chosen randomly and independently
according to

pc(c) =

( N∏
i=1

N∏
j>i

p(cij)p(cji|cij)
)( N∏

i=1

δki,
P

N
j=1 cij

)

∑
c

( N∏
i=1

N∏
j>i

p(cij)p(cji|cij)
)( N∏

i=1

δki,
PN

j=1 cij

) ,

(16)



with

p(cij) =
c

N
δcij,1 +

(
1 − c

N

)
δcij ,0 (17)

and

p(cji|cij) = εδcji,cij + (1 − ε)
[
c

N
δcji,1 +

(
1 − c

N

)
δcji,0

]
.

(18)

The degree of node i is defined as ki =
∑N

j=1 cij and
is randomly and independently drawn from the given de-
gree distribution p(k). The average connectivity becomes
1
N

∑N
i=1

∑N
j=1 cij = c. The parameter ε, which denotes

asymmetricity of cij , is introduced to evaluate bit error rate.
We’ll put ε = 1 later.

The received message can be represented by

yij = nijξiξj (19)

for all i < j. Here, the random variable ξi denotes an element
of the original message ξ, where its distribution is p(ξi) =
1
2δ(ξi + 1) + 1

2δ(ξi − 1). The random variable nij ∼ p(nij)
represents a channel noise with p(nij) = p0δ(nij + 1) + (1−
p0)δ(nij − 1). We put yji = yij and nji = nij for all i < j.
Taking the limit p → 0, i.e., F → ∞, this decoder with
f(x) = tanh(Fx) becomes equivalent to Ising systems with
the deterministic dynamics except for a normalization constant
in hi(x(t)) [4], [5].

To avoid appearing two estimates x and −x with equal
probability, we add the first dN bits of the original message
(0 ≤ d ≤ 1) into the codeword. This information is used
for the initial condition of (14). It’s not necessary information
essentially for the error correction. The length of the codeword
is M = (N

2 )c/N + dN , thus the code rate becomes R =
2/(c+ 2d) for large N .

The goal of the analysis is to obtain time evolution of bit
error rate (BER) Pb(t) as follows.

Definition 2: (bit error rate) The BER Pb(t) of hard-
decisions at the tth iteration is defined as

Pb(t) =
1 −m(t)

2
, m(t) =

1
N

N∑
i=1

ξi sgn [xi(t)], (20)

where the function sgn (x) denotes the sign function taking 1
for x ≥ 0 and -1 for x < 0. �
We’ll put θi(t) = 0 later, therefore we can put ξi = 1 (∀i)
without loss of generality.

Figure 1 shows the performance of this decoder with p(k) =
δk,3 and d = 1. The BERs are Pb(t) at t = 10. The simulations
were carried out with N = 10, 000, and all measurements were
averaged over 20 runs. In this case the code rate becomes
R � 2/5. The critical noise level pc � 0.146 represents the
Shannon limit R = 1 − h2(pc) = 2/5, where h2(x) denotes
the binary entropy function defined as h2(x) = −x log2 x −
(1 − x) log2(1 − x).

Figures 2 and 3 shows schematic examples of graphs where
this decoder is defined. These loops are originated from a
peculiarity of the decoder. It should be noted that the updated

short loop

long loop

Fig. 2. Example of a graph where the iterative decoder is defined. Any state
receives its own output two steps later.

ξ i ξ j

ijy jiy

Fig. 3. Example of a tanner graph representation of the decoder. Since the
decoder effectively has symmetry concerning the codeword, there are many
length-4 loops (solid line).

quantities are attached to single bits and not to directed edges
of the factor graph as the case of the usual message passing
decoders. However it can be considered that this decoder is
suitable as one of the simplest models in which we consider the
effect of retarded self-interactions. The theoretical treatment
addressed here makes clear how to treat loops and can be
applied to other problems based on iterative algorithms.

IV. GENERATING FUNCTIONAL ANALYSIS

Following [3] we assume that the macroscopic behaviour
of the decoder depends only on the statistical properties of
the random variables, i.e., the received message y and the
realization of the graph c. The decoder (14) is a kind of a
Markov chain, so the joint distribution of x(0), · · · ,x(tm) is
simply given by products of the individual transition proba-
bilities w[x(t+ 1);x(t)] of the chain:

p[x(0), · · · ,x(tm)] = p0[x(0)]
tm−1∏
t=0

w[x(t + 1);x(t)], (21)

where the transition probability is given by

w[x(t+ 1);x(t)] =
N∏

i=1

δ[xi(t+ 1) − f(hi(x(t)))]. (22)

Here, δ denotes Dirac delta funciton. The probability p0[x(0)]
denotes a initial probability. To analyze the decoding dynamics
we first define the following functional.

Definition 3: (averaged generating functional) The gener-
ating functional Z[ψ], which is averaged over the random
variables, is defined by

Z[ψ] =
〈

exp
[
−i

N∑
i=1

tm∑
t=0

ψi(t)xi(t)
]〉

(23)



where [· · · ] denotes average over {ξ, c, n}, 〈· · · 〉 =
∫

RN(tm+1)

dx(0) · · · dx(tm) p[x(0), · · · ,x(tm)] (· · · ) and dx(0) =∏N
i=1 dxi(t). �

We here change the notation from x(t) = (x1(t), · · · , xN (t))
to xi = (xi(0), · · · , xi(tm)). Introducing the definition of
hi(x(t)) by using δ fucntion, we then have

Z[ψ] =
( N∏

i=1

∫
R2tm

dhidĥi

(2π)tm

)( N∏
i=1

∫
R(tm+1)

dxi

)

× exp
[
−i

N∑
i=1

tm∑
t=0

ĥi(t)
N∑

j �=i

cijnijxj(t)
]

× exp
[ N∑

i=1

tm−1∑
t=0

{iĥi(t)[hi(t) + θi(t)] − iψi(t)xi(t)}
]

×
N∏

i=1

tm−1∏
t=0

δ[xi(t+ 1) − f(hi(t))], (24)

with dhi =
∏tm

t=0 dhi(t), dĥi =
∏tm

t=0 dĥi(t) and dxi =∏tm

t=0 dxi(t). We here use yij = nij because of ξi = 1 (∀i).
To perform the average of the random variables in (24), we
introduce the following integral expressions of Kronecker’s
delta

δki,
PN

j=1 cij
=

∫ 2π

0

dωi

2π
exp

[
iωi

(
ki −

N∑
j=1

cij

)]
, (25)

which represents the constraint of the degree. Introducing the
following functions

P (x, ĥ) =
1
N

N∑
i=1

δ(x− xi)δ(ĥ− ĥi)e−iωi , (26)

Q(x, ĥ) =
1
N

N∑
i=1

δ(x− xi)δ(ĥ − ĥi), (27)

(24) can be factorized concerning the index i. The averaged
generating functional becomes

Z[ψ] =
∫
{dPdP̂}{dQdQ̂}eNΨ[{P,P̂ ,Q,Q̂}] (28)

with

Ψ[{P, P̂ ,Q, Q̂}] =
c(ε− 2)

2

+ i

∫
dx

∫
dĥP̂ (x, ĥ)P (x, ĥ) + i

∫
dx

∫
dĥQ̂(x, ĥ)Q(x, ĥ)

+
c

2

∫
dx

∫
dĥ

∫
dx′

∫
dĥ′Â(x, ĥ;x′, ĥ′)

+
∞∑

k=0

p(k) ln
∫
dxp0[x(0)]

∫(tm−1∏
t=0

dh(t)dĥ(t)
2π

eiĥ(t)[h(t)−θ(t)]

× δ[x(t+ 1) − f(h(t))]
)

1
k!

[−iP̂ (x, ĥ)]ke−iQ̂(x,ĥ) (29)

and

Â(x, ĥ;x′, ĥ′) = P (x, ĥ)P (x′, ĥ′)〈εe−iy(x·ĥ′+x′·ĥ)〉y
+Q(x, ĥ)P (x′, ĥ′)〈(1 − ε)e−iyx·ĥ′〉y
+ P (x, ĥ)Q(x′, ĥ′)〈(1 − ε)e−iyx′·ĥ〉y, (30)

where {dP, d̂P} =
∏

x,ĥ(N/
√

2π)dP (x, ĥ)dP̂ (x, ĥ) and
{dQ, d̂Q} =

∏
x,ĥ(N/

√
2π)dQ(x, ĥ)dQ̂(x, ĥ). Unspecified

integrals are over the range R
tm+1 concerning dx and dx′

and over the range R
tm concerning dh, dĥ, dh′ and dĥ′.

The bracket 〈· · · 〉n denotes the average over n. This can be
evaluated by steepest descent. Functional variation of Ψ with
respect to P (x, ĥ), P̂ (x, ĥ), Q(x, ĥ) and Q̂(x, ĥ) gives the
following saddle-point equations:

P̂ (x, ĥ) = ic

∫
dx′

∫
dĥ′P (x′, ĥ′)〈εe−iy(x·ĥ′+x′·ĥ)〉y

+ ic

∫
dx′

∫
dĥ′Q(x′, ĥ′)〈(1 − ε)e−iyx′·ĥ〉y,

P (x′, ĥ′) =
∞∑

k=1

kp(k)
〈
δ[x− x′]δ[ĥ− ĥ′]

−iP̂ (x, ĥ)

〉∗

θ,k

,

Q̂(x, ĥ) = ic

∫
dx′

∫
dĥ′P (x′, ĥ′)〈(1 − ε)e−iyx·ĥ′〉y,

Q(x′, ĥ′) =
∞∑

k=0

p(k)〈δ[x− x′]δ[ĥ− ĥ′]〉∗θ,k,

with a measure 〈· · · 〉∗θ,k which is defined as

〈f(x, ĥ)〉∗θ,k =
∫
dx

∫
dĥf(x, ĥ)M̂k(x, ĥ|θ)∫
dx

∫
dĥM̂k(x, ĥ|θ) , (31)

M̂k(x, ĥ|θ) = [−iP (x, ĥ)]ke−iQ(x,ĥ)p0[x(0)]

×
tm−1∏
t=0

∫
dh(t)dĥ(t)

2π
eiĥ(t)[h(t)−θ(t)]δ[x(t+ 1) − f(h(t))].

(32)

Performing an inverse Fourier transformation, i.e., P (x|θ′) ≡∫
dĥe−iθ′·ĥP (x|ĥ) and Q(x|θ′) ≡ ∫

dĥe−iθ′·ĥQ(x|ĥ),
gives

P (x|θ′) =
∞∑

k=1

kp(k)
〈
δ[x− x′]

−iP̂ (x, ĥ)

〉∗

θ+θ′,k
, (33)

Q(x|θ′) =
∞∑

k=0

p(k)〈δ[x− x′]〉∗θ+θ′,k. (34)

Thus, P (x|θ′) and Q(x|θ′) are the averaged probability
of finding a trajectory x for the given actual parameter θ
complemented by an amount θ′. This situation is similar to
the other corresponding cases [4], [5], [10]. Putting θ(t) = 0,



we arrive at the following compact form:

P (x|θ′) =
∞∑

k=0

k + 1
c

p(k + 1)

×
〈( k∏

l=1

∫
dxl

[
εP (xl|nlx) + (1 − ε)Q(xl|0)

])
p0[x(0)]

×
tm−1∏
t=0

δ

[
x(t+ 1) − f

(
θ′(t) +

k∑
l=1

nlxl(t)
)]〉

{nl}
, (35)

Q(x|θ′) =
∞∑

k=0

p(k)

×
〈( k∏

l=1

∫
dxl

[
εP (xl|nlx) + (1 − ε)Q(xl|0)

])
p0[x(0)]

×
tm−1∏
t=0

δ

[
x(t+ 1) − f

(
θ′(t) +

k∑
l=1

nlxl(t)
)]〉

{nl}
. (36)

These equations are closed and exact, however it is no
longer possible to simplify. For the discrete state case, i.e.,
the estimated bit flip probability p→ 0, the required field are
also discrete, therefore the space is finite dimensional. The
symmetric parameter is set to ε = 1 due to the definition of the
decoder. Defining the new parameters U(x|x′) = P (x|x′) and
V (x) = Q(x|0), we then arrived at the following proposition.

Proposition 1: The bit error rate Pb(t) at the tth iteration
of (14) with p = 0 is evaluated as

Pb(t) =
1 −m(t)

2
, m(t) =

∑
x∈{−1,1}tm+1

x(t)V (x). (37)

The function V (x|0) can be obtained by

V (x) =
∞∑

k=0

p(k)

×
〈∑

x1

· · ·
∑
xk

U(x1|n1x) · · ·U(xk|nkx)p0[x(0)]

×
tm−1∏
t=0

δ

[
x(t+ 1); sgn

( k∑
l=1

nlxl(t)
)]〉

{nl}
(38)

from the solution of

U(x|x′) =
∞∑

k=0

k + 1
c

p(k + 1)

×
〈∑

x1

· · ·
∑
xk

U(x1|n1x) · · ·U(xk|nkx)p0[x(0)]

×
tm−1∏
t=0

δ

[
x(t + 1); sgn

(
x′(t) +

k∑
l=1

nlxl(t)
)]〉

{nl}
. (39)

The initial probability is given by

p0[x(0)] =
1 + x(0)m(0)

2
, (40)
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Fig. 4. Comparison between theoretical predictions and computer simulation
results in the case of p(k) = δk,3.

where m(0) = (1 − 2p0)d. Here δ[m;n] denotes Kronecker’s
delta δm,n. �
Equation (39) can be solved numerically by iteration. Figure
4 shows a comparison between theoretical predictions and
computer simulation results in the case of p(k) = δk,3. The
GFA predictions exhibit good consistency with a computer
simulation results.

V. CONCLUSION

We analyze the dynamics of a simple message-passing iter-
ative decoder, which is defined on a sparse random graph with
many short loops, for low-density generator-matrix (LDGM)
channel coding as a typical example. We have derived an exact
equation to represent time evolution of the bit error rate in the
large codeword length limit. It can be considered that this kind
of analysis contributes to providing a basis to evaluate effects
of short loops. It is important to treat various length of loops.
Thit is part of our future work.
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