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Abstract We introduce a statistical mechanics formalism for the study of constrained graph
evolution as a Markovian stochastic process, in analogy with that available for spin systems,
deriving its basic properties and highlighting the role of the ‘mobility’ (the number of al-
lowed moves for any given graph). As an application of the general theory we analyze the
properties of degree-preserving Markov chains based on elementary edge switchings. We
give an exact yet simple formula for the mobility in terms of the graph’s adjacency ma-
trix and its spectrum. This formula allows us to define acceptance probabilities for edge
switchings, such that the Markov chains become controlled Glauber-type detailed balance
processes, designed to evolve to any required invariant measure (representing the asymptotic
frequencies with which the allowed graphs are visited during the process). As a corollary
we also derive a condition in terms of simple degree statistics, sufficient to guarantee that, in
the limit where the number of nodes diverges, even for state-independent acceptance proba-
bilities of proposed moves the invariant measure of the process will be uniform. We test our
theory on synthetic graphs and on realistic larger graphs as studied in cellular biology, show-
ing explicitly that, for instances where the simple edge swap dynamics fails to converge to
the uniform measure, a suitably modified Markov chain instead generates the correct phase
space sampling.
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1 Introduction

The aim of this paper is to develop a mathematical framework for the study of stochastically
evolving graphs, defined in terms of generic Markov chains that describe constrained edge
re-wiring, and to analyze within this framework the Markovian edge swap dynamics as the
simplest non-trivial example of a constrained stochastic graph dynamics.

The formalism which we present can be seen as the analogue of the one available for
interacting spin systems. In the latter case, the elementary move is typically a single spin
flip, and constrained dynamics have been considered, e.g. by simultaneously flipping pairs
of oppositely oriented spins to preserve the total magnetization [1, 2]. In extending this
theory to evolving graphs we are motivated by the necessity to bridge an existing gap be-
tween the static and the dynamical treatment of graphs. While many statistical aspects of
random graph topology are now understood (like the influence of topology on processes
occurring on graphs, percolation and critical phenomena, loop statistics, or the entropies of
different topologies in various random graph ensembles [3—10]), much less work has been
invested in the mathematical study of the dynamics of graphical structures (see [11-14] for
recent examples). Besides their mathematical interest, dynamical problems are prominent
in application areas where the issue of sampling uniformly the space of graphs with certain
prescribed macroscopic properties is vital. Multiple examples of these are found in systems
biology, where different graph randomization protocols have for instance been tested and
used to identify the elementary bricks (‘motifs’) characterizing such networks, such as the
transcriptional regulation network of the bacterium E. coli [15-17]. Many other examples
can be found in economics, ecology and the social sciences, see e.g. [18-20]. At the level
where the constraints involve only the simplest quantities, i.e. the degree sequence, even gen-
erating such graphs is known to be a non-trivial problem that has produced much inspiring
work and some hard open questions [21-24]. It is known, for instance, that a Markov chain
based on degree-preserving edge swaps (‘switchings’) starting from a given graph does not
generically produce a uniform sampling of the space of graphs with the same degree se-
quence, since the number of allowed switchings (the graph’s ‘mobility’) may depend on the
particular graph (even, as we shall see, when the number of nodes diverges). Heuristics with
various degrees of sophistication and effectiveness have been employed to restore the uni-
form measure [25-33]. When more complicated observables than the degree sequence are
involved (like the degree correlations or the number of loops of a given length through each
node) the situation rapidly becomes more difficult, both mathematically and numerically.

Here we adopt a top-down approach, and treat the problem of constrained Markovian
graph evolution first as generally as possible before dealing with specific instances. Markov
chains describing Glauber-type controlled equilibrium graph dynamics for generic invert-
ible elementary moves are constructed and analyzed in Sect. 2, including their equilibration
properties. Section 3 then focuses on a particular class of moves, namely degree-preserving
edge swaps, both in view of their wide application in computer studies and because they are
the simplest degree-constrained moves. Among other results, we establish a simple formula
for a graph’s mobility and quantify the dynamical relevance of mobility-related entropic
effects. This formula allows us to derive the correct acceptance probabilities for randomly
drawn candidate edge swaps that guarantee degree-constrained stochastic evolution towards
any desired stationary measure, as well as a condition on degree statistics sufficient to en-
sure that for uniform acceptances of random edge-swaps the asymptotic measure over the
space of allowed graphs generated by the dynamics becomes uniform (implying absence of
mobility-related entropic effects). Our results are illustrated and validated via application to
various synthetic and biological graphs.
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2 Formalism and General Properties of Controlled Markovian Graph Dynamics
2.1 Basic Definitions

We study graphs consisting of N nodes (labeled by Roman indices i = 1...N) that can
be linked by undirected bonds. A graph is defined microscopically by its adjacency matrix
¢ = {c¢;;}, where ¢;; = 1 if and only if nodes i and j are connected and ¢;; = 0 otherwise,
and it is assumed that ¢;; = c¢j; and ¢;; = 0 for all (i, j). We denote the discrete set of all
such graphs as C = {0, 1}%1\’ (V=D _Our aim is to define and study constrained Markov chains
for the evolution of ¢ in some subspace §2 C C, i.e. discrete-time stochastic processes for

the probability p,(c) of observing graph c¢ at time ¢ of the type

VeeR: pui© =) Wl)p(c) 1)

e

with 7 € N, W(e|¢) >0 Ve, € £2, and ), W(e|e) =1 V¢’ € £2. Here the quantity
W (c|c’) denotes the single-step transition probability from graph ¢’ to graph ¢. We focus on
processes of the form (1) that have the following additional properties:

(i) The process (1) allows only for a given limited set @ of elementary moves F : 27 — £2,
which are constrained, in that each F can act only on a subset £2r C §2 of all possible
graphs.

(ii) The process (1) converges to the invariant measure po.(c) = Z~'e #© on £, in
which H is a prescribed function, for any choice of initial conditions py(c). Here
Z =3 .coe " to ensure normalization.

For each elementary move F € @ we define an indicator function /r(c) € {0, 1}, where
Ir(c) =1 if and only if the move ¢ — Fc is allowed. In addition to the above requirements
we will also demand that all elementary moves are invertible, i.e.

(iii) For each F € & there exists a unique F~' € @ such that FF~!' = F"'F =1.Both F
and F~! are taken to act on the same subset of states, i.e. Ir(c) = I—i(c) forall ¢ € £2.

Processes of the form (1) can be used to generate graphs with controlled properties, such as
built-in constraints (which can be encoded in the subset §2 of allowed graphs, and induce the
limitations on the applicability of moves that generate the subsets §2) and specific statistical
weights (which can be encoded in the invariant measure p..(c), i.e. in the function H (c)).
The scenario of having a limited set of elementary moves, which each can act only on
certain configurations ¢, describes many of the commonly studied dynamical processes for
graphs. In the examples that will be worked out explicitly in subsequent sections, @ is the
set of elementary moves that preserve the degree k; (¢) = Z_,' c;j of every node, the simplest
possible such move F being an edge-swap between two pairs of nodes.

Our next task is, for any given subset £2 C C of states, any given set @ of possible moves
with state-dependent application constraints that meet conditions (i, iii), and any given mea-
sure p (c) of the form (ii), to construct appropriate transition probabilities W (c|c’) such that
the state probabilities p,(c) generated by the Markov chain (1) are guaranteed to converge
to the desired values po(c).

2.2 The Markov Chain Transition Probabilities

In order to construct the transition probabilities W (c|c’), we can resort to the familiar ideas
behind Monte-Carlo (or Glauber-type) processes for the simulation of physical systems,
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provided these are properly adapted to build in the constraints on the applicability of the
allowed graph transitions F' € @. In particular, we will construct our transition probabilities
such that the corresponding process obeys detailed balance, i.e.

Ve, € R2: W(cle)poo(€) = W(C'|€) poo(C) (@)

Summation over ¢’ € £2 in (2) reveals in the usual manner that (2) implies stationarity of pu.,
ie.Vee 2:) uco W(elt) pso(€) = poo(c). We next define a new set @’ of moves which
excludes the identity operation:

@' = {F € ®|3c € 2 such that Fe # ¢} 3)

A generic detailed balance Markov chain is then obtained by choosing

Weld) =Y q(FIc)[8e re ACFC|C) + Seell — AFC|¢)]] “)

Feo'

The rationale and interpretation of this choice (4) is as follows. At each step a candidate
move F € @’ is drawn with some probability ¢ (F|c’), where ¢’ denotes the current state.
This move is accepted (and the transition ¢’ — ¢ = F¢’ is executed) with some probability
A(Fc|¢)) € [0, 1], which depends on both the current state ¢’ and on the proposed new
state F¢'. If the move is rejected, which happens with probability 1 — A(F¢'|¢'), the system
remains in the current state ¢’. Clearly (4) obeys Y .., W(e|e) =1 for all ¢’ € £2, as it
should. Working out the detailed balance condition (2), upon writing the equilibrium state
in the Boltzmann form p..(c) = Z~'exp[—H (c)], leads to the following conditions for
q(F|c) and A(c|c'):

(Vee 2)(YF € @'):  q(Fle)A(Feleye "9 = q(F~'[Fe)Ae|Fe)e "9 (5)

Now let n(c) denote the number of moves that can act on a state ¢ (to which we shall refer
as the ‘mobility’ of state ¢), defined as

n(e) = Z 15 (c). (6)

Fe®’

The fact that for constrained moves these numbers n(c) are generally state-dependent, forces
us to choose Monte-Carlo acceptance probabilities A(c|c¢’) that no longer depend on H (¢) —
H(c¢) only. If the candidate moves F are drawn randomly and with equal probabilities
from those that are allowed to act, we have g (F|c) = Ir(c)/n(c) and the detailed balance
condition becomes

(Vee 2)(VF e ®):  A(Fcle)e @ /n(c) = A(e|Fe)e 17O /n(Fe) 7

It is then clear that having a state-dependent n(c) is equivalent to modifying the state ener-
gies, viz. H(c) - H(c) + logn(c), so that the Monte-Carlo acceptance rates can be chosen
as

n(c)e 2H©O-HE)]
A(cld) =

®)

n(c)e SHO=HEOl 4 p(e)ebH©O-HE)]
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(note that move reversibility implies n(c¢) > 1) and the end result is the Markov chain defined
by the transition probabilities

1 /y— / 1 /N /
Wieley= 3 IO [ Buren@)e IO gy mperetinrnen
=, n(©) n(e)e SHFO=HOl 4 peryestHE-HE)
€

One easily confirms by direct substitution that the transition probabilities (9) indeed de-
fine a Markov process which leaves the measure p..(¢) = Z~! exp[— H (¢)] invariant, since
for any ¢ € £2 we find, using simple identities such as Ip(¢c) = Ip-1(c) = Ir(Fc) and
Y reo G(F) =Y ;o G(F'), that

D W(ele) poo(€)

e

1 /
= Z W(c|c)e

e

1 / 4 1 / /
_H(C) Z Z IF(C I:SF_ICC/n(c/)e—i[H(c)—H(Fc)J+8 /I’l(FC/)ele(Fc)_H(C)J]

et n(c) n(c)e LIH(Fe) H(C’)]+n(Fc/)e2[H(FC’) H(c)]
Ir(c) n(c)e” le(F le)y—H (o)
= Peo(©) Z ~ L H©-H(F 1) LH@©—H(F1e)]
Feo’ n(©) {p(F-leye 2l +n(c)ez!te c
n(Fe)eHFO-H©)
n(c)e JHFO-H@I 4y (pe)eblHFO-H @] }
Ir(c)
=pec(©) Y = Poc(©) (10)
Fed’ n(c)

2.3 Master Equation Representation of the Process

The process defined by (1, 9) allows for relatively easy numerical implementation, but for
mathematical analysis a real-time formulation in the form of a master equation is more
convenient. The formal method to go from a process of the form (1) to a master equation,
is to assume that the duration of each of the discrete iteration steps in (1) is a continuous
random number [34]. The statistics of these random durations are defined by the probability
7, (t) that at time ¢ > O precisely m iteration steps have been made. Our new real-time
process is now described by

Pi©) =) mu®pu(©) =Y mu(t) Y _(W")(ele)po(c) (11)

m=0 m=>0 e

where the time ¢ has now become a continuous variable. For ,, (f) we make the Poissonian
choice 7, (t) = (¢/1)"e~"/* /m!, with the properties

d

d
Eﬂm>0(t)=f_l[7tm—l(t)_ﬂm(t)]a —7T0(l)=—f_lﬂm(t) (12)

dr
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1040 A.C.C. Coolen et al.

From (m), =/t it follows that 7 is the average duration of a single discrete iteration step.
Our choice for 7, (t) allows us to write for the time derivative of P, (c):

d
T PO =D () Y WE)po(¢) = Y wn(®) Y (W(ele) pole)) (13)

m=>0 e m=>0 e
=—P(0)+ Y W(eclc)Pi(c) (14)
cef2

which has the form of a master equation. Applying this procedure to our present Markov
chain (1, 9) gives its corresponding master equation which (after re-arranging of terms)
takes the transparent form

1
d 1 n(Feyez#FO-HOIp (Fe)
@ = 2. ]F(c){n(Fc) —HHFO-H(@©] tl[H(Fc)—H(c)]
Fed’ n(c)e” 2 +n(Fe)e2
1 n(c)e 2HFO-HOIp (c)
o) n(c)e SHFO-H@I 4y (pe)eslH(FO-H@
wy (¢) w(¢)
= Z Ip(€)) ———P,(F¢) — ——=Pi(c) (15)
= n(Fe) n(c)

where, using the short-hand ArU(c) = U(Fc¢) — U(c), we have identified the transition
rates

wj;r(c) = % + %tanh[%AF[H(c) + logn(c)]} (16)

For N — oo there can be no difference between the process (15), describing random dura-
tions of the steps of the Markov chain, and one where the duration of each step would be ©
(rather than just their average). This follows from the moments of the Poisson process, viz.
(m?), = (m)% + (m), which guarantee that for finite real time ¢ the relative uncertainty in
the number of iterations will vanish according to /(m2), — (m)2 /(m), = O(N~'/?). If we
were to repeat the above derivation for a process where each randomly chosen and possible
edge swap was always accepted, we would again find equation (15), but now with the trivial
transition rates wf(c) =1forallce 2 andall F € @'.

From (15, 16) one can proceed to derive convenient dynamical equations for ensem-
ble averages. These are particularly compact and transparent for those situations where
F~!' = F for all F € @', which will, for instance, be true for edge swap graph dynam-
ics. To be specific, upon defining (f(c)) =) ..o P:i(c) f(c) for any arbitrary observable
f(c), we obtain, using identities such as Ir(Fc) = Ip(c), ApU(Fc¢) = —ArU(c) and
w}“(F ¢) = wy (¢) (which all follow directly from F T=F):

d 1
T ) = Z< 2O f(Feyu (Fo) - f(c)w;(c)}>

Fed’ n(c)
1
= Z( ,f((:)) Wy (©) Apf(C)> (17)
Fed’

@ Springer



Constrained Markovian Dynamics of Random Graphs 1041

2.4 Convergence Towards Equilibrium

Convergence of (15, 16) towards the equilibrium state generally implies that the same is
true for the underlying Markov chain (1, 9).! The physically most intuitive convergence
proofs are based on constructing a Lyapunov function F(¢). Here we choose for F(¢) the
Kullback-Leibler divergence between the equilibrium state p.,(¢) = Z~'exp[—H (c)] and
the instantaneous distribution P;(c), which obeys F(¢) > O for all ¢ by definition, and is zero
only if the measures P;(c) and ps(c) are identical:

F(t)=)_ P/(0)10g[P,(0)/poc(©)] =l0g Z + Y Pi(O)[H(¢) +log Pi(©)]  (18)

cef? ceR

The proof that F(¢) decreases monotonically is standard and relies only on the detailed
balance condition (2) and on the normalization ) .., W(c|c') =1 V¢’ € 2. We repeat it
here only for completeness, and to show that it can handle the constraints in the graph
dynamics in a straightforward manner:

d
—F()

d
" > _[H(©) +log Pi(©)] 1 Pi(c)

cef2

1 / ’
=D [H(©) +log P,(c)][z W (cle) P, (¢) — Pt(C)}

ceR e

]‘ / / /
== > [H(e) +log Pi(e)] Y _[W(clc)P(c) — W(c|c)Pi(c)]

ceR e

1
= E Z [[H(C)+10g Pt (c)] _ [H(C/) + IOg Pr (c’)]]

c,def

x [W(ele) Pi(c) — W(c'|e)P,(0)]

1
= Z Z [[H(C)-Hog P(0)] — [H(c’) + log P, (c/)]]

c, e

x [eH(c’)HogP:(C’)W(c|cf)efH(C’) _ eH©+log P’(C)W(c'|c)e7H(c)] (19)

We next use the detailed balance identity (2) and obtain

d 1 /
G FO==5-3" Wiel)e " [[H(e) +log P,()] - [H(€) + log P, ()]

c,ce

% [eH(c)+lOg Pi(c) _ eH(c/)+|0g P,(c’)] <0 (20)

The last step derives from the general identity (e* — e¢”)(x — y) > 0 for all (x, y), with
equality only if x = y. Since F(¢) is bounded from below, it is indeed a Lyapunov function
for the process (15). The distance between P, (c) and the equilibrium measure p(c) =
Z7te=H© decreases monotonically until dF(¢)/d¢ = 0. Inspection of the conditions for

1Exceptions to this would be e.g. periodic Markov chains.
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1042 A.C.C. Coolen et al.

equality in (20) shows that F(¢) stops decreasing only if P;(c) has reached a point P(c) =
¥ (€)e~H© with:

Ve, €2): W(elc)=0 or x(c)=yx(c) (21)

If we define 2. = {¢' € 2|3¢ e N : (W9 (c|e) > 0} (representing the set of all states that
are accessible from ¢ via repeated iteration of the Markov chain), then for all ¢’ € §2. we
must have x(c¢') = x(c). Each solution of (21) generates an invariant measure under the
dynamics, since substitution of P(c) = x (e)e~© in both sides of (14) shows, using (2),

D Wiele)x(@)e ) — x(e)e O = e7H© [Z X(€W(c|e) — x(c)]

e e

= e—H<°>X(c)[Z W(c|c) — 1] =0 (22

e

One such stationary solution P(c) is the equilibrium measure, corresponding to x(c) =
Z~! for all ¢ € £2. If our Markov chain is ergodic, i.e. if £2. = §2 for all ¢ € £2, then it is
the only such state to satisfy (21), and our process must always evolve towards p(€) =
Z Vexp[—H (0)].

We shall next focus our attention on a specific class of moves that preserve the values of
all node degrees k;(c) =Y ; €ij» and work out the details of the corresponding equilibrium
dynamics.

3 Degree-Constrained Dynamics
3.1 Elementary Moves Defined on the Basis of ‘Edge Swaps’

Here we use the results of the previous section to construct stochastic processes for evolving
graphs which preserve their full degree sequence k(c) = {k;(c)}, and in addition evolve
(within the subspace of graphs with fixed degree sequence k) to any desired prescribed
measure of the form p.(¢) = Z~ ' exp[—H (c)]. Let £2[k] denote the discrete set of all un-
directed graphs that have the specified degree sequence k:

2k ={ce {0, 1)2YV D)=k Vi=1...N} (23)

This set will play the role of our state space £2 in (1). For the elementary moves of our
Markov chain we choose the so-called ‘edge swaps’ (simple cases of the more general family
of Seidel switches [35]), which are the simplest possible graph transitions that conserve the
values of all degrees (see Appendix A). An edge swap is defined by the following protocol:

(a) draw four distinct nodes (i, j, k, £)
(b) check whether (¢, cji, cij, cke) = (1, 1,0, 0)
(c) if yes, invert these four variables: (ci¢, cji, cij, cke) = (0,0, 1, 1)

We generate the set @’ of such moves by summing uniquely over all quadruplets of nodes,
with validity checks for all possible edge swaps that could be carried out for each quadruple.
To do this carefully we define Q = {(i, j, k,£) € {1,....,N}*i < j < k < ¢}, and we no
longer allow for any permutations of the four nodes. The six potential edge swaps are then
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found to be the following, with thick lines indicating existing links, and thin lines indicating
absent links that will be swapped with the existing ones:

I II II1
i J i J i J
14 k ¢ k l k
together with their inverse edge swaps
v \Y% VI
i J i J i J
14 k ¢ k ¢ k

This leads to a natural grouping of edge swaps into the three pairs (I, IV), (I, V), and
(III, VI). We label all three resulting auto-invertible operations for each ordered quadruple
(i, j, k, £) by adding a subscript «, so that our set @’ of all auto-invertible edge swaps are
from now on written as Fjjx. Withi < j <k < £ and « € {1,2,3}. We define suitable
associated indicator functions I;jx¢.. (¢) € {0, 1} that detect whether (value 1) or not (value 0)
the edge swap Fjji,, can act on state ¢, so

Lijre;1(€) = cijere(1I — ci) (1 — cji) + (1 — ¢ij) (1 — cre)ciecjn 24)
Lijke2(€) = cijere(1I — cip) (1 — cje) + (1 — ¢ij) (1 — cre)cixcje (25)
Lijke;3(©) = cixcje(1 —cip)(1 —cjp) + (1 — cix) (1 — cjo)ciecjx (26)

If Fijre.« can indeed act, i.e. if Ijjr.o(€) = 1, the edge swap will operate as follows:

Fijke:a(©gr =1 —cqr  for(q,r) € Sijre.a 27
Fijre:a (€)gr = cyr for (q,7) & Sijke.a (28)
where
Sijkest = {(, ), (k, 0, (G, 0), (j, k)} (29)
Sijke2 = {(, ), (k, 0, (G, k), (7,0} (30)
Sijkes = {0 k), (1,0, (@, 0), (J, k)} €1y}

Each edge swap is its own inverse, so the property Ir(c) = I-1(c), that we relied upon
several times, is trivially valid. The link with the theory in the previous section thus becomes,
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1044 A.C.C. Coolen et al.

for arbitrary G(F),

F(¢) = Fijiea(c) (32)
Ir(©) = Iijke.a(€) (33)
21(0) = Qijka(©) ={e€f0, 11V Ly (0) = 1) (34)
Y GE) > D > G(Fyia) (35)
Fed’ i<j<k<t a<3

3.2 The Number of Possible Edge Swaps—Graph Mobility

Given the above definitions, the number n(c) of possible edge swaps that can act on a given
graph ¢ (its mobility) is given by the following expression

3
n©=>" > Ijwa(© (36)

a=li<j<k<t

However, it is possible to obtain a simplified formula for zn(c) in terms mainly of the degree
and loop statistics of ¢, by exploiting the fact that there are 4! = 24 possible orderings of the
four indices (i, j, k, £), which implies that for any fully permutation invariant quantity I7;x
one may always write (with the short-hand 5; i=1-=208;):

1 - - - -
D D=7 > 88udiebidiedu M (37)
i<j<k<t ijke
We can use this to write (36), using ¢;; =0 for all i, in the alternative form

n@= Y {cjoel—ci)(1 =)+ cipc(l = i) (1 = cxe)
i<j<k<t
+cijere(l — ci) (1 — cje) + cixeje(1 =€) (1 — cxe)
+cikcje(l —cig)(1 —cji) + cigcje (1 — cig) (1 — C_/z)}

1 o
= = 2 ubidud eyl = i)l = o)
ijke

l == - = -
BT %Siﬁfﬁjﬁucw%k(l —ci)(1 = cxe)

1 - - -
o3 D Subidjducic;e(l = il = ¢jo)
ijke

1
=15 2(1 — 8ik — Sie — Sjk — 80 + 8ixdje + 8iedji)cijcre(1 — i) (1 — cj)
ijke

1
+ T Z(l —8ij — Oix — 8j¢ — Se + 8ij0ke + SixSje)ciecjr (1 — ¢;j) (1 — cre)
ike

1
+ o Z(l —8ij — 8ig — 8k — Spe + 8ij6ke + 8108 ju)cincje (1 — cig) (1 — cj)
ijke
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Constrained Markovian Dynamics of Random Graphs 1045

1 1 1
=12 Zcijckl(l —ci))(I—cj) + 1 Zci_/‘ -3 Zci_/‘cik(l —Cjk)

ijke ij ijk

1 > I, | | IR GE
= Z(Zk,-) +7 ,Zki -5 Zki -5 le:kicijkj + 7 Tr(eh) + 5Tre) - (38)

where k; =Y i Cij is the degree of node i.

Formula (38) plays a key role in the construction of our controlled Markov chain,? since
we have seen earlier that any dependence of n(c) on the state ¢ that cannot be expressed in
terms of the degree sequence only will generate entropic preferences of certain graphs over
others. In Appendix B we extract from (38) the following rigorous bounds for n(c), with
Kkmax = max; k; and (k") = N~">" k"

12 2, 1 _l 2
n(C)Z4N (k) +4N(k> 4N(k ) Rkmax + 1) (39)
()<1N2k —l—lNk Ly (40)
n(e) = 4 (k) 1 <>_Z (k)

Let us test the full expression (38) and the strength of the two bounds (39, 40) against three
qualitatively different but explicitly verifiable cases:

— Fully connected graphs ¢;; =1 — §;;:
Here one should find n(c) = 0 (since no edge swaps are possible). The degrees of
care k; = N — 1 for all i, and its eigenvalues are A = N — 1 (with multiplicity 1) and
A = —1 (with multiplicity N — 1). Hence Tr(¢*) = (N — D[(N — 1)* + 1] and Tr(c?) =
N(N — 1)(N —2), and substitution of these properties shows that (38) indeed gives cor-
rectly n(c) = 0. In this example the bounds (39, 40) are found to be weak, reducing to
NN =D = (N =D’ <n(e) < gN(N = D1+ (N — D],

— Periodic chains Cij = 8,"/‘,1 + 8[,j+1 (mod N), N > 4.
Direct inspection of the possible edge swaps reveals that one should find n(c) = N(N —
4). In this ring-type graph k; = 2 for all i, (c3),-j =08 j43 + 38 j41 + 38 j—1 + 8 j-3
and ((34),']‘ = 5,"]‘4_4 + 48i.j+2 + 66,']' + 45,‘_]'_2 + 8,‘4’j_4. It follows that TI'(C4) = 6N and
Tr(c?) = 0, and our formula (38) is seen to reproduce n(c) = N(N — 4) correctly. The
bounds (39, 40) are now rather close, giving N(N — g) <n(c) < NN — %). In fact one
obtains the same leading two orders in N of this result for n(c) also in regular random
graphs with p(k) = & », where the eigenvalue distribution of the adjacency matrix is [36]

lim o(A) = 18@=1AD 41)
N=oo T JE—2

here one finds

n(c) = N> — EN+ lN/ou WA+ 2031+ o(N)
- 2Ty e

2The occurrence in (38) of the terms Tr(c3) and Tr(c4) implies a strong connection between a graph’s
mobility n(c) and its loop statistics, and it might be instructive to pursue this link somewhat further. If
we call L, (c) the number of loops of length n in ¢, one finds upon correcting for over-counting, that

L3(e) = § Yijk cijejkcki = §Tr(e®) and that La(©) = g Xy (1 =800 (1 = 8ip)cije jrckece; = g Tr(eh) -
3% Z(l ])612 + % >"i ki . Hence we may write (38) alternatively as n(c) = %(Zi k)2 — % Zij kicijkj+2L4(c)+
L3(c).
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, 11 dx  x*
=N ——N+8N/0 ;ﬁ+a(N):N(N—4)+o(N) (42)

2
— Two isolated links: ¢j» = 31 = ¢34 = c43 = 1, with all other ¢;; = 0:
Here one should get n(c) = 2. The degrees of ¢ are k; = k, = k3 = k4 = 1, with k; = 0 for
i > 4. The eigenvalues are A = %1 (each with multiplicity 2) and A = 0 (with multiplicity
N —4), so Tr(¢*) = 4 and Tr(c®) = 0. Again our formula (38) is confirmed to be correct,
reducing to n(c) = 2. The bounds (39, 40) now give 2 < n(c) < 4; here the lower bound
is satisfied with equality.

It is not generally possible to simplify our formula (38) for n(c) further in terms of the
degree sequence only (had it been possible, n(¢) would have dropped out of the transition
probabilities (9)), as this would require that the third and fourth moments of the eigenvalue
distribution p(A) of any graph can be written in terms of its degree sequence. Indeed, below
we will discuss several examples of graphs with the same degree sequence that have different
mobilities.

3.3 Markov Chain Transition Probabilities for Edge Swaps
Our next task is to simplify the general expression (9) for the transition probabilities of the

appropriate Markov chain, for the case where the set of moves @’ is defined as above. We
have

_1 L /Yy / 1 » /N ’
W(elc) = Z Z Lijko:a(€) [ O, Fijppae'® 2 EEjrta)=E@] 5 ye2lEEijktia®)=EE)]
C|C) =
n(c) e~ 2LEFjrea€)=E@)] | o 31E(Fijrta)~E(@)]

i<j<k<t a<3
(43)
where E(¢) = H(c) 4+ logn(c). We can also write this as

C#C/Z W(C|C)— Z Z l/kla(c CFI/klrxc (44)

n(c,) 1 +e l/kl «E()

i<j<k<t a<3

c=c: WH)=1- Z W (e|c) (45)
c#c

with
Ajjkea E(©) = E(Fijrpa€) — E(©) = Ajjrea H(€) +10g[1 4 Ajjrean(e)/n(e)]  (46)

Whether or not the entropic effects (the dependence of the mobility z(c) on the graph state ¢)
remain important in controlling the evolution of large graphs, i.e. for N — oo, will depend
crucially on the degree distribution and the spectral properties of ¢. They can only be ne-
glected if the relative changes A;jx¢,on(c)/n(c) in the number of possible moves due to a
single edge swap are always small. It is therefore important to evaluate the change in the
state mobility after an edge swap.

Only in the simplest case where all degrees are bounded, and the lowest moments of the
degree distribution and of the eigenvalue spectrum o(A) of ¢ remain finite for N — oo, we
would get

Aijk(;a E(C) = ljkl aH(c) + ljkl aTI'(C +2C ) + O(N )

1
N2(k)?
= AijreaH(©) + O(N") (47)
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However, for graphs with e.g. A;jxe.oTr(e*) = O(N?) it is less clear when these entropic
effects can be neglected. Imagine, for instance, a graph with a ‘dense core’, such as ¢;; =1 —
8;j fori, je{l,..., K} and ¢;; = 0 elsewhere. Here one has k; = K — 1 fori e {1,..., K}
and k; =0 for i > K so n(c) =0, since this specific state cannot be changed by any edge
swap. In addition, o(A) = N7'[§(A — K + 1) + (K — DS(L + 1) + (N — K)8()], which
gives

| | K(K —1)(K* = 3K +3)
2 2 4, n3 —
(k) + NU( —2k*) = —F[Tr(c +2¢’) —2 E errsks:| = N2

rs

(48)

This shows that the O(N?) terms in 7(c) cancel (in this example even the subsequent orders
do), and as a result the numerator and denominator of Ajje.n(c)/n(c) are of the same
order. Upon choosing K = (’)(\/N ), for instance, one would have a finite nonzero average
connectivity (k) for N — oo, but a diverging value of f dar*o()) such that N~2Tr(c*) =
O(1). We must therefore allow for the possibility that the entropic contribution in (46) will
remain non-negligible if one allows for small deviations from the above ‘dense core’ graphs
such as to render them mobile via edge swaps.

3.4 Ergodicity

The question of ergodicity for switching dynamics, i.e. whether any two graphs sharing a
given degree sequence can be connected by a finite number of consecutive switchings, has
been studied by Taylor [37], where a formal proof by induction is given. Taylor’s arguments
focus on connected graphs,’ and this represents the harder case. Indeed, ergodicity for con-
nected graphs would immediately transfer to generic graphs by a simple argument. Given a
non-connected graph, add an auxiliary node connected to every other node. This extra node
creates a new, connected graph. However the new links can never be switched with any of
the pre-existing links. Hence they are not modified by the dynamics. Therefore, if ergod-
icity holds for the auxiliary connected graph, it is automatically valid also for the original
non-connected graph. A more rigorous proof of the latter fact can be found in e.g. [38].

4 Invariant Measure for Edge Swap Dynamics with Uniform Acceptance
Probabilities

Having established the precise connection between controlled stochastic switching dynam-
ics and the resulting equilibrium measures, we can use this in two ways. First, we can con-
struct for any desired equilibrium measure a canonical edge-swap Monte-Carlo process that
will evolve towards it. Alternatively, we can investigate edge-swap processes used by others,
and calculate the equilibrium states that would be generated. The simplest such processes
are those where at each step a candidate edge swap is drawn randomly and uniformly and,
when possible, executed. These are studied in this section.

3Actually, in [37] it is shown (Theorems 3.1 and 3.2) that ergodicity holds for generic connected pseudo-
graphs, a class of structures that allows for multiple links between edges and for loops of length 1, which
is much broader than just the simple graphs we consider here. The present case is covered by Theorem 3.3
in [37].
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1048 A.C.C. Coolen et al.

4.1 Relative Errors in Observables Upon Assuming Incorrectly a Uniform Measure

An edge swap graph shuffling process in which all randomly drawn candidate moves are
accepted and executed is mathematically equivalent (apart from an overall time re-scaling) to
our general Monte-Carlo process with transition probabilities (44, 45, 46), if in our formula
we make the choice H(c) = —logn(c). Since the general process (44, 45, 46) has been
constructed such as to evolve to the equilibrium measure p.,(c) = Z~'exp[—H(c)] we
know that the one where all randomly drawn allowed edge swaps are accepted, must evolve
to the stationary measure p..(c) = Z~'exp[logn(c)] = Z 'n(c), i.e. to

1 1 2 1
Poo(€) = 2{(k)2 ty <<k> —2(k?) — N ;kicijkj> + mTr(c4 + 203)} (49)

where Z is determined by the normalization condition } . Poo(€) = 1. We can now ex-
press the actual equilibrium expectation values (G(¢)) =) . 21k Poo (¢)G(c) of graph ob-
servables in terms of what would have been found for a strictly flat measure, i.e. in terms of
averages of the type (G (c))o = |2[k]| ! D e 21 G0, where all graphs with the prescribed
degree sequence k having equal weight:

(G@) = (G@) _ Lecom™©G© 1

(G(©))o S ecom©  (G©)
_ (n©G©) = (1©)o(G(©)
(n(©)0(G(©))o
_ 7(6@)?3(“2;02&))0 — (Tr(e*+2¢%))o =23, kikj[(?éc():;;go — {cij)ol
N2(k)2 + NL(k) — 2(k2)] + (Tr(c*+2¢3))o — 23, kik;{cij)o

(50)

According to (8), the correct dynamics leading to the uniform measure p(c) = |2[k]|~!

would have corresponded to the following acceptance probabilities for proposed edge swaps
¢ —c
A(elc) = n(c)/[n(c) +n(0)] (S

A sensitive marker of deviations from uniform sampling of graphs by p..(c) should be the
observable n(c) itself (38), for which one finds the relative error

(n(©) — (n©)o _ (@) — (n(©)5 _ 0
(n(e))o (n(©)} B

(52)

with equality if and only if n(c) = n(c’) for all ¢, ¢’ € 22[Kk], i.e. if the measure p..(c) is
flat. Let us next acquire some intuition for the degree sequences k = (ky, ..., ky) where
the incorrect assumption of a uniform equilibrium measure over £2[k] would lead to sig-
nificant errors in expectation values. These situations occur when the mobilities n(c) vary
significantly from one graph to another.

4.2 ‘Nearly Hardcore’ Graphs

As an example let us consider a choice for the degrees k = (ky, ..., ky) that corresponds to
a ‘nearly hardcore’ graph (see Fig. 1), involving a fully connected core of size K and two
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type A type B

K+1

K42

Fig. 1 Connected parts of ‘nearly hard-core’ graphs, as defined by a degree sequence (modulo node permu-
tations) of the form: k; = K —1fori < K,k; =1fori e {K +1,K +2},and k; =0 fori > K + 2. In the
present figure K = 10, and the nodes i > K + 2 with zero degree are not shown. Left: the graph of type A,
with cx 41 g42 =1, of which there is only one; here n(c) = K(K — 1). Right: the graphs of type B, with
¢k +1,k+2 = 0, of which there are K (K — 1) (one for each choice of k and £); here n(¢) = 2(K —1). An equi-
librated stochastic edge swap dynamics with randomly drawn candidate edge swaps and state-independent
acceptance rates would visit the graph A with probability p(c) = 1/[1+2(K — 1)], and each of the K (K — 1)
type B graphs with probability p(c) =2/[K (1 +2(K — 1))]

degree-1 nodes (note that for a fully ‘hardcore’ graph with K = N there would not be any
allowed edge swap):
i<K: k=K-1, i=K+1,K+2: k=1, i>K+2: k=0 (53)

Here we have p(k) = %5;(,1(71 + %Sk,l + N_fv(_zc?k,o, and hence formula (38) gives

4n(e) = K*(K — 1D +5K(K — 1) —2K(K — D>+ 2+ Tr(c* + 2¢%)

K K
—2(K = 1) cij — 4K~ DY leikn +xial —doxriker (54)

ij=1 i=1

There exist K (K —1) + 1 such graphs. Close inspection of their possible realizations reveals
only two types, A and B, which are characterized by whether or not the two degree-1 nodes
are connected to each other, see Fig. 1:

— Type A:
ck+ik+2 =1, cj=1 VG, j),i<j=<K, cij=0 elsewhere (55)

Here we have the two degree-1 nodes are connected to each other, plus one fully con-
nected core of K nodes. There is just one such type-A graph ¢, which we will call c4. It
allows only for edge swaps involving the two degree-1 nodes and any two nodes taken
from the core, so n(c) = K(K — 1). The eigenvalue distribution of ¢ is

N;Hg ) (56)

1 K 1
N=—8A—-D+—-8Qr+D+—8Qr—-K+1
o) =1 8G =1+ S8+ 1)+ —4( th+—F

and hence formula (54) indeed reproduces the correct mobility n(c) = K (K — 1).
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— Type B:
ck+1,k+2=0, 3k, €<K) suchthat c;xy1=cog2=1,

cij =0 elsewhere

(57)
Here we have de facto carried out an edge swap relative to c,, and replaced both the link
between the two degree-1 nodes and the link between two nodes (k, £) of the core by two
new links: one from node & to degree-1 node K + 1, and one from node ¢ to the other
degree-1 node K + 2. We will call the resulting graph cp.x . There are K(K — 1) such
type-B graphs, one for each choice of (k, £), but each of these allows only for 2(K — 1)
edge swaps. In fact, the two outlying edges can be switched among each other in two
ways, the one that brings us back to ¢, and the swap that is equivalent to replacing the
links cx x+1 and ¢, g2 by the links ¢k k12 and c¢g k4. In addition, each of the outlying
edges can be swapped separately in one way with every edge that has a node in common
with the other outlying edge (this is easily checked directly). There are K — 2 such edges.
Hence n(c) =2 + 2(K —2) =2(K — 1) for each state of type B. The spectrum of each
type-B state is

M= 50—+ oD+ Koy N2 K240 58)
Q()_N(_)_Fﬁ(_'—)—i_ﬁg()—i_T() (

in which the normalized distribution 9 (1) represents an eigenspace of dimension K with
three further eigenvalues, to be solved from (A + 1)(A> — 1) = (K —2)(A2 + 21 — 1).

We see explicitly that here the edge swap dynamics is indeed ergodic on the space of allowed
graphs. It follows from the possible graphs ¢ and from their associated mobility numbers
n(c) as identified above, that for the present choice of degrees one will find under edge
swap dynamics with state-independent acceptance probabilities the following equilibrium
measure:

() : Seep + 2 §K Sred (59)
Ooc = T A < C,C o1 A~ 1 C,CR:
p T4 2(K — D) % 7T KT+ 2(K — 1)) A oo

This measure is far from uniform. It will now depend crucially on which quantity one mea-
sures during the graph evolution process to which extent this probability inhomogeneity
will manifest itself. If we were to measure, for instance, the expectation value of the link
ck+1.k+2 (which is only present in the state c,) we would find from the true equilibrium
measure (59):

(exrk2) =[1+2(K = D] (60)

whereas for the uniform measure p(c) = |2[k]|~! = [K(K — 1) 4+ 1]7! one would have
found:

(cxsrxdo=[1+K(EK—-1]"! (61)
Expressions (60) and (61) are identical only for K = 2 (where the ‘dense core’ is indeed no
longer present, and the graph reduces to two disconnected links), and differ significantly for
increasing K :
(ck+1,k42) — (Ckt1.k42)0 (K —=2)(K — 1)
(ck+1.k42)0 14+2(K—1)

(62)
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Assuming (incorrectly) a uniform equilibrium measure on £2[k] would grossly underesti-
mate the true likelihood to observe the bond ck i k+2. Similarly, if we calculate for both
(59) (obtained for ‘accept all’ implementation of randomly proposed edge swaps) and for
the uniform measure on $2[K] (obtained for the correct acceptance rates (51)) the average
mobilities (n(c)) and (n(c))o, respectively, we find

_(K-1D(GK -4 K(K-1Q2K-1)

@) == @ =" (63)

Again these are identical only when K =2, whereas (n(c)) > (n(c))o in all other cases.

Degree statistics such as in the present example do not strike us as far-fetched. If we were
to add to the present K 4 2 nodes another N — K — 2 ‘dummy’ nodes with degree zero, then
our enlarged graph would have (k) = [K(K — 1) +2]/N and (k?) =[K (K — 1)*> +2]/N.
Choosing e.g. K = /¢ N would then give a finite average connectivity (k) = ¢ + O(N~1/?)
and a diverging width, (k%) = O(N'/?), identical to what one would have found for scale-
free graphs with p(k) ~ k~>/2. Nothing in the first two moments of the degree distribution
could therefore be regarded as severely pathological.

4.3 Conditions Under Which the Invariant Measure Will Become Uniform for N — oo

It is clear from the above example that any results obtained from measuring graph observ-
ables numerically during edge swap dynamics with state-independent acceptance probabil-
ities should be accompanied by an explicit proof that for the degree sequence under consid-
eration and for the relevant graph size the equilibrium measure on the space of graphs with
this given degree sequence can be taken as uniform. According to (44, 45, 46), our stochas-
tic process will evolve towards a state with uniform graph probabilities on §2[Kk] (the set of
graphs characterized by an imposed degree sequence) if it corresponds to H (¢) = constant
for all ¢ € 2[k]. From this it follows that for N — oo the canonical edge swap acceptance
probabilities lose their dependence on ¢ as soon as

. . Aijké:a”(c)
lim Ajjreelogn(e) = lim log| 1 + ———|=0 (64)
N—oo ’ N—oo n(c)

In Appendix B we prove bounds for n(c) and A;jie.on(c). In particular, we may use (95)
and (97), viz.

(c) > 1N2<k)2 + 1N(k) 1N<k2> Kmax + : (65)
mO=q 4 2 )
1
[Ajjre;an(©)] < EN(kz)kmax (66)
to establish
, 2 1
|A11kl;an(c)| < 2AN i AN — (k )(kmax+ 2) (67)
n(c) 1—-2AN N (k)2

This latter formula thus allows us to identify conditions under which the simple process
with state-independent acceptance probabilities of randomly drawn candidate edge swaps
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will lead to an effectively* uniform measure. Condition (64) will be satisfied if Ay < 1, i.e.
as soon as

(k*)kmax/ (k)2 < N (68)

Clearly, degree sequences of regular random graphs, viz. p(k) = §; 4« for some finite con-
nectivity k*, meet all the conditions for finding asymptotically a flat invariant measure. How-
ever, one has to be careful with scale-free degree sequences, where both (k%) and kpay di-
verge as N — o0.

It is instructive to inspect condition (68) for the ‘nearly hardcore’ graphs in the previous
subsection, where p(k) = X8, x| + 281 + Y=K=2§, o, and where for state-independent
acceptance rates one does not have a flat invariant measure for any K > 2. Here (k) =

K(K —1)/N+2/N, (k*) =K(K —1)2/N +2/N and kp.x =K — 1, s0

(k2>kmax _ [K(K - 1)2 +2](K — 1) 69
Nk~ [K(K—1)+2P (69)

For all K > 2 the ratio (69) stays finite, so (68) is indeed violated.

Note that in the previous example also K = 2 would violate (68), yet in this case one
would have found a flat measure even for state independent acceptance rates. It should
therefore be emphasized that condition (68) has been derived as sufficient for having ef-
fectively a uniform invariant measure. It is, however, not a necessary condition; there exist
indeed degree sequences that violate (68) but still give a flat invariant measure. This is eas-
ily seen upon inspecting simple examples such as the ‘star-like’ graphs. For instance, the
graph characterized by the degrees k; =1 fori <N —4, ky_s=ky_3=kny_2=kn_1 =2,
and ky = N — 1, corresponds to a central node N connected to N — 5 degree-1 nodes and
connected to two further loops of length three. This degree sequence has limy_, o, (k) = 2,
but (k?) = O(N) and kpex = O(N), and hence violates (68). Yet there are only three al-
lowed graphs which each have n(c) = 2, so the invariant measure is flat. For some graphs it
is in fact possible to sharpen the condition (68) further, by using alternative bounds for the
various terms in A;jx;on(c); examples of these are derived at the end of Appendix C.

5 Generating Random Graphs with Prescribed Degree Correlations via Edge Swaps

Our second application of the general formalism is the construction of Monte-Carlo
processes that evolve towards the equilibrium state corresponding to random graphs with
prescribed degree sequences and controlled non-uniform measures. For instance, one could
impose non-uniform measures in order to impose specific degree correlations, which is
achieved by the ensemble studied in [39, 40],

1 k k
Poo(€) = 7 H[% O ki, kj)ée;1 + (1 - %Q(knkj)>5qj,oi| Uaki,ki(c) (70)

i<j

4By ‘effectively uniform’ we mean that the canonical edge swap acceptance probabilities 1/[1 +

/
edijkta B )] in (44) that would give us a rigorously uniform invariant measure become for N — oo in-

distinguishable from 1/2 (i.e. from state-independent acceptance probabilities). This still does not rule out
the possibility that certain pathological observables could be defined for which the asymptotically vanishing
deviations from 1/2 could add up to a non-vanishing effect.
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with Q(k, k") > 0 for all (k,k’) and >_,,, p(k)p(k’)Q(k, k') = 1. This ensemble gives the
maximum entropy within the subspace of graphs with prescribed degrees and upon imposing
as a constraint the average values I7T(k, k') = (I1 (k, k’|c)) of the relative degree correlations,
where IT(k, k’|c) is defined as follows

D iz CiSkki @8k k; (@ (K)(N — 1)

k,k'>0: Mk, klc)=
Zi;éj ‘Sk,ki(C)‘sk’,kj(C) kk!

(71)

I1(k,k'|c) gives the probability that two randomly drawn nodes of ¢ with degrees (k, k)
are found to be connected, divided by the probability that this would be true in random
graphs drawn from p(c) = Z~! I'1; 8k, 4 (o) - For the ensemble (70) one finds for N — oo that
Ik, k'Y = Q(k,k")/[F(k)F (k")], where F (k) is to be solved from

Vk=0: YOk K)p(k)K /F(K') = (k) F (k) (72)

K

Conversely, for each desired function IT(k,k’) one may always choose Q(k, k') =
IT(k, k')kk'/ (k)? in (70) and find this ensemble subsequently generating graphs with the
required degree correlations. See [41] for proofs of these statements, and for further mathe-
matical properties of I7(k, k") and the ensemble (70).

The controlled non-uniform measure (70) can be generated via stochastic processes as
studied in the present paper. In the language of our processes (44, 45, 46), it simply corre-
sponds to the choice

H(e)= Zlg[ Q(k,,k>at,jl+( ()Q(k,,k)> } (73)

1<J

If we now work out the implications for (44, 45, 46) of choosing (73), we find this process
describing the random drawing of candidate edge swaps Fjjk.«, upon which the proposed
transition € — Cpew = Fijie,o € is then accepted (and executed) with the acceptance probabil-

ity
n(Cpew) -1
A(cnew|c) =1+ ﬁeH(cncw)—H(c) (74)
n(c)

With the sets Sk, introduced in (29, 30, 31) that specify which index pairs are affected by
the proposed edge swap, we find for the function (73) that

N CI | YO ke, kp)ear + (1= & Qkar k) (1 = cap)
= Q(ka,kb)cnew (1 _ _Q(kaa kb))(l _ Cnew

(@.b)ES;jke:a

= 1_[ [LapSenew 1 + L, Senew o] 75)

(a,b)ES;jke:a
(where we used the property c,, = 1 — c;5" for all (a, b) € S;jke.q), With
Loy = N/[{k)Q(ka, kp)] — 1 (76)

If we start from a physically realizable function I7(k,k’) (see [41] for the precisely
mathematical conditions for realizability) and if we use the canonical kernel Q(k, k") =
IT(k, k')kk'/ (k)? in our ensemble (such that for N — oo it will generate graphs with relative
degree correlations I7(k, k")), the latter parameters become L, = N (k)/[I1 (k, k")kk'] — 1.
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0.03 T T T T

» A(cld’) =1

Afele’) = [1+n(e)/n(c)] ™

0.01 ! ! ! !
0 100000 200000 300000 400000 500000

executed moves

Fig. 2 Re-scaled running averages n(c)/N 2 of the graph mobility (38), measured during numerical simula-
tions of Markov chains of the type (44, 45). The time unit is the number of executed edge swaps, and running
averages are measured over time windows of 10,000 successive states ¢. All data refer to the nearly hardcore
graphs shown in Fig. 1, with K =98 and N = 100. Full circles: observed graph mobility if a/l/ randomly pro-
posed edge swaps that are possible are executed, i.e. when A(c|¢’) = 1. Open circles: observed graph mobility
if randomly proposed edge swaps that are possible are executed with the canonical acceptance rates (51), i.e.
when A(c|¢)) =[1 +n(e)/n(c )]_1 . Dashed horizontal lines: the corresponding theoretical predictions (63)
for the equilibrium mobilities, which for K = 98 give (n (c))/N2 ~0.0242 (upper) and (n(c))O/N2 ~0.0195

6 Numerical Tests

We have conducted extensive numerical experiments on a variety of graphs to confirm the
validity of formula (38) for n(c) and found an impressive agreement. The calculation of the
terms Tr(c®) and Tr(c*) in n(c) at each time step, required in the calculation of the accep-
tance probabilities of the canonical Markov chain, is cpu-intensive. However, for finitely
connected graphs working out these traces can generally still be done in O(N) steps by
efficient use of arrays with indices of the neighbours of each node, as opposed to brutal ma-
trix multiplication. Alternatively one could calculate the traces only once at the start of the
simulation, and update their values on-line by using formulas (104, 105) in Appendix C.

6.1 Accept-all Edge Swap Dynamics Versus Edge-Swap Dynamics with Correct
Acceptance Rates

Our first simulations were carried out for the ‘nearly hardcore’ graphs of Fig. 1. We ran
two different Monte-Carlo processes as described by (44, 45). In the first we accepted all
randomly generated possible edge swaps, i.e. A(c|¢) = 1, whereas in the second process
we used the canonical acceptance rates (51), i.e. A(c|¢’) = [1 +n(c)/n(¢)]~". This allowed
us to verify the theoretical predictions that in the former process the system will evolve
towards the non-uniform measure po.(c) = n(c)/ Zc,eg[k] n(c) whereas in the latter the
system evolves towards the flat measure p.,(c) = |$2[k]|~'. This verification is easiest upon
measuring time averages of the mobility n(c) itself, for which we have derived the (exact)
expressions (63). In Fig. 2 we show for both processes the observed mobility time averages
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2
2

N-1

Type A Type B

Fig. 3 Graphs used in our second numerical experiment (the undirected versions of the graphs introduced
in [17]). Left panel: the graph chosen as the initial state of the Monte-Carlo process (44, 45) (to be called
type A), with K = N — 2 ‘central’ nodes of degree 2 and two nodes of degree K. This configuration has
n(c) = K(K — 1). A generic switching of a type A graph, e.g. one involving the four nodes {1, p, g, N},
leads to one of the K (K — 1) type B graphs, of which an example is shown in the right panel. Each of the
type B graphs has n(c) =2(K — 1)

n(c) as measured over successive time windows of 10* accepted moves (which gives us also
information on when the system can be regarded as in equilibrium), together with the pre-
dicted equilibrium values (63) (as dashed horizontal lines). We conclude that in these graphs
there is perfect agreement between theory and the simulations, and that indeed one cannot
generally assume ‘accept all’ edge swap randomization to lead to an unbiased sampling
of £2[K].

As our second synthetic example system, we choose as our starting point the undirected
version of the graph studied in [17], shown in Fig. 3, to be called graph A (or ¢4). It consists
of N nodes, two of which (labeled 1 and N) have degree N — 2, whereas the remaining
N — 2 nodes have two connections each. We note that n(cs) = (N — 2)(N — 3), since
it is possible to switch in one way every two links joining opposite sides of the central
‘wall’ provided they don’t have a node in common (this mobility value can of course also
be calculated from (38)). Any possible edge swap executed on ¢, will bring us to a graph
of type B, see right diagram in Fig. 3, of which there are (N — 2)(N — 3). It follows that
|R2[K]] =14 (N — 2)(N — 3). Looking at Fig. 3, we see that to compute the mobility of
type B graphs one has to take into account the facts that: (i) we can switch in one way the
links such as (1, p) and (g, N), and (ii) the link (g, p) can be switched in one way with
each of the links (1,7) and (j, N) such thati ¢ {p, N} and j ¢ {1, q}. There are N — 4
such links in each group. Hence including the switch that brings us back to type A we have
n(cg) =1+2(N —4)+1=2(N — 3) (again, one could also have used formula (38) to find
this result). If one carries out an ‘accept all” edge swap process starting from ¢4, our theory
predicts that upon equilibration this would give the following measure on the space $2[k] of
graphs with degrees sequences identical to that of ¢4:

() = n(ca) _ ! (77
PectCa) = e+ (N —2)(N — 3)n(cs) 2N —5
and for each type B graph
PoolCn) = n(€s) 2 (78)

n(ea) + (N —2)(N = 3)n(es) (N —2)(2N —5)
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Fig. 4 Distribution Q( f) re-scaled frequencies at which the accessible graphs are visited during switching
dynamics of the type (44, 45) over 2 - 10 time steps, starting from a type A graph of Fig. 3 with N = 10.
Here |£2[k]| = 57. A uniform measure p(c) = \.Q[k]rl would give Q(f) =8(f — 1). In the left panel, we
see the results for an ‘accept all’ switching dynamics, viz. A(c|¢’) = 1, with the arrow pointing to the peak
corresponding to the time spent in the type A graph. In the right panel, the same quantity is reported for a
switching dynamics with the canonical acceptance probabilities A(c|¢’) =[1 + n(c)/n(c’ )]_1

Hence, if we measure during the ‘accept all” edge swap process the relative frequency graph
distribution

1
= S[f — [21K]| pes 79
o(f) W[k]'ce;m [f — 12[K]|p(©)] (79)
we should find
B 1+ (N=2)(N-3)
Q(f)_1+(N—2)(N—3)8[ 2N -5 ]

(80)

(N —=2)(N -3) 8|:f— 2[1 4+ (N —=2)(N —3)]:|
1+ (N—=-2)(N-3) (N—-2)2N -5)

(as opposed to the result Q(f) =&(f — 1) that would be obtained for a flat measure on
£2[k]). We have carried out numerical simulations of the edge swap dynamics (44, 45),
first on an ‘accept all moves’ basis and second using the canonical acceptance probabilities
A(c|¢)) =[1 4+ n(c)/n(c))]7", for graphs as in Fig. 3 with N = 10. Here one expects to find
Q(f)=48(f — 1) for canonical acceptance probabilities, but for the ‘accept all’ edge swap
dynamics we should get:

1 19 56 57

N =10: Q(f)_576|:f 5}+578|:f 60} (81)
The results are shown in Fig. 4. The distribution p,(c) generated by the ‘accept all’ edge
swap dynamics is indeed not uniform: the smaller peak in Q(f) appearing at the predicted
value f = 19/5 = 3.8 reflects the visits to the type A graph, which occur more frequently
due to its larger mobility. Conversely, with the canonical acceptance probability A(c|c’) =
n(c’)/[n(c)+n(c’)] (which here takes the three possible values A(ca|cg) = 0.2, A(cplep) =
0.5, and A(cglcs) = 0.8) the resulting equilibrium measure p,(c) of the process is indeed
flat,i.e. Q(f) =48(f — 1).

In order to assess to what extent the differences between ‘accept all” and correct edge
swap dynamics manifest themselves in large and realistic graphs as studied intensively in
biology and bio-informatics, we have also carried out edge swap simulations (similar to
those described above for synthetic graphs) in protein interaction networks. We chose the
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Fig. 5 Left: re-scaled running averages n(c)/N 2 of the graph mobility (38), measured during edge swap
dynamics of the type (44, 45) in the human protein interaction network [42] with N = 9463 nodes and
average connectivity (k) &~ 7.402. The time unit is the number of executed edge swaps, and running averages
are measured over time windows of about 3800 successive states ¢. Full circles: ‘accept all’ edge swap
dynamics, i.e. A(c|¢’) = 1. Open circles: randomly proposed and possible edge swaps are executed with the
canonical acceptance rates (51), i.e. A(c|c¢)) =[1 + n(c)/n(c’)]_l. Right: corresponding measurements of
Tr(c?) /N, which is proportional to the average number of length-3 loops per node in the network

most recent data for the human protein interaction network [42], giving a graph of N =
9463 nodes and degree statistics (k) & 7.402 and (k?) A 248.7 (with kp,, = 247). For this
data set the simple condition (68) does not yet permit us to rely on ‘accept all’ edge swap
randomization as a safe algorithm for unbiased randomization, since here one finds

(k*)kmax / (k)*N ~ 0.12 (82)

As with the synthetic graphs, we ran two different Monte-Carlo processes as described by
(44, 45): ‘accepted all’ edge swaps dynamics, i.e. A(c|c’) = 1, and edge swap dynamics with
acceptance rates (51), i.e. A(c|e’) =[1+n(e)/n(c)]! (to guarantee a uniform equilibrium
measure). The results are shown in Fig. 5. Here the differences between the two types of
dynamics are seen to be negligible, both in terms of the observed mobility n(c) and in terms
of quantities such as Tr(c®) (which is equivalent to counting the number of length-3 loops
in the network). One finds similar results for the available protein interaction data of other
organisms. This is a relevant observation, since graph randomization via ‘accept all’ edge
swapping has in the past been used to quantify the relative frequency of small network mod-
ules of ‘motifs’ in biological networks, of which length-3 loops are just a primitive example,
or to quantify the relevance of observed degree-degree correlations; see e.g. [43—45]. It fol-
lows that those who have in the past used ‘accept all’ edge swap dynamics to randomize
protein interaction networks have been fortunate, in that for the available data the incor-
rect sampling resulting from this dynamics does not appear to interfere with observation.
However, since it is now generally agreed that the presently available incomplete protein in-
teraction data are biased samples of the full proteome, there is no guarantee that when data
have become more complete and representative the simple but in principle incorrect ‘accept
all’ edge swap randomization will continue to work in practice.

6.2 Simulations to Produce Controlled Non-uniform Measures

Our final simulations involved Markov chains of the form (44, 45, 46) tailored to evolve
towards controlled non-uniform equilibrium measures. Here we tested the prediction that
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the edge swap process with edge swap acceptance rates defined by (74, 75, 76) will evolve
towards the nontrivial measure (70). To test this, we measured the relative degree correla-
tions I1(k, k'|c) as defined in (71) upon equilibrating the edge swap dynamics (44, 45, 46)
with acceptance rates (74, 75, 76), and compared the result with the theoretical prediction
extracted from (70). For the kernel Q(k, k') in (70) we took Q(k, k') = C~'(k — k')?, with
normalization dictating that C = 2((k?) — (k)?). For sufficiently large N, and given that the
measure is indeed (70), the predicted values for IT(k, k') are

Mk, k') =C™" (k = k') /LF (k) F (k)] (83)

where F (k) is to be solved from (72), which here gives F (k) = (a3 — 202k +a1k2) //Tk) C,
in which the three coefficients o, are to be solved numerically from

Kk p(k)
=S — = 84
o ;O{3—2012k+0{1k2 ( )

The predicted relative degree correlations are then given by

(k) (k — k')
[z — 2000k + a1k ][z — 2000k’ + o1 k2]

Mk, k)= (85)
We generated a simple synthetic initial graph ¢y with N = 4000 and (k) =5, with the non-
Poissonian degree distribution shown in Fig. 6 (top left). Its relative degree correlations
I1(k,k'|cy) were found to be all close to one (being the value for all IT(k, k") that one
would have found for the flat ensemble p(c) = Z~! ]_[l- 8k, ki (0)); see Fig. 6 top right. After
iterating the Markov chain (44, 45, 46), with canonical acceptance rates (74, 75, 76) tailored
to approaching (70) as an equilibrium measure, and upon reaching what appeared to be
equilibration (after 75,000 accepted edge swaps), we found indeed values for the degree
correlations that were in very good agreement with those corresponding to the nontrivial
target ensemble (70) (shown in the bottom panels of Fig. 6). Note that perfect agreement is
expected only for N — oo.

7 Conclusions

The mathematical analysis of stochastic processes occurring in the space of graphs with pre-
scribed properties presents a number of intriguing and challenging features, that have just
started to be addressed in the language of statistical mechanics. From a physical viewpoint,
understanding graph dynamics is important in particular when seeking to discern the basic
features of graphs (the constraints) from the ones that are induced by them, which gener-
ically characterize the ensemble of graphs satisfying the constraints. It turns out that the
mobility, namely the number of allowed moves away from a given state, is a central quantity
for unraveling several properties specific of such processes. In particular, the very depen-
dence of the mobility on the specific state (which in principle can persist even in an infinite
graph) is responsible for important entropic effects that may prevent a simple switching dy-
namics (simple in the sense that all randomly generated and possible moves are executed)
from sampling uniformly the space of graphs compatible with given constraints. Uniform
sampling is especially desirable in applications where one is either interested in testing the
robustness of certain graphical properties against graph “randomization” or where one aims
to generate random graphs that satisfy a given set of constraints but are otherwise unbiased.
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Fig. 6 (Color online) Results of edge-swap simulations tailored to generating equilibrium random graph
ensembles with the non-uniform measure (70). Top left: degree distribution of the graph, with N =4000 and
(ky = 5. Top right: color plot of the relative degree correlations I7(k, k’|ep) as measured in the (randomly
generated) initial graph ¢g. Bottom left: color plot of the predicted relative degree correlations (85), corre-
sponding to Q(k, k') = (k — K)? /C, which is found for N — oo in the ensemble (70) (the target of our edge
swap process). Bottom right: color plot of the relative degree correlations I7(k, k’|cfina1) in the final graph
Cfinal, Measured after 75,000 accepted moves of the Markov chain (44, 45, 46) with canonical acceptance
rates (74, 75, 76). The latter is indeed in good agreement with the prediction (bottom left) corresponding to
the target measure (70)

In this paper we have constructed a general framework for constrained stochastic graph
dynamics, and derived an explicit and relatively simple expression for the graph mobility in
the case where the dynamics is based on randomly generated ‘edge swaps’ or ‘switchings’.
This latter expression allowed us to: (i) define Monte-Carlo processes that are guaranteed to
converge to any desired measure on the space of graphs with a prescribed degree sequence,
(ii) calculate explicitly the equilibrium measure that would be found for ‘accept all’ edge
swap dynamics (which will generally not be uniform), and (iii) identify practical conditions
on the graph topology that are sufficient to ensure that even the equilibrated simple ‘accept
all’ edge swap dynamics will give a uniform dynamical sampling of the accessible graphs
in the limit where the number of nodes N — oc.

We have carried out Monte-Carlo simulations of both synthetic graphs and of biologi-
cal networks describing protein-protein interactions, in which we compared the results of
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executing ‘accept all’ edge swap dynamics versus edge swap dynamics with correct accep-
tance probabilities tailored to producing unbiased equilibrium measures. We also carried out
simulations of stochastic edge swap dynamics that are tailored to generating random graph
ensembles with controlled non-uniform measures, characterized by nontrivial imposed de-
gree correlations. All numerical simulations lend convincing support to our theoretical pre-
dictions, and underline the importance of the graph mobility in the construction of correct
Monte-Carlo acceptance probabilities in constrained graph dynamics.

We have taken the approach of formulating stochastic graph dynamics within a gen-
eral statistical mechanics framework, where the constrained Markov dynamics of graphs is
treated similarly to a spin-flip dynamics in magnetic systems (albeit that in the latter the
issue of state mobility does not arise, not even in the case of constrained Kawasaki-type
dynamics [1]). This suggests that future studies of graph dynamics, including generaliza-
tions to pseudographs (where multiple edges bewteeen the same pair of nodes and loops
of length 1 are allowed; such structures could play an important role in understanding the
origin of network assortativity [11, 46]) may well reveal a rich and possibly unexpected
phenomenology paralleling that of magnetic spin systems.
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would like to thank the Engineering and Physical Sciences Research Council (UK) for support in the form of
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Appendix A: Edge Swaps as Minimal Degree-Preserving Moves in Graphs

For the benefit of the reader, we review in this appendix briefly in the language of the present
study the arguments leading to the identification of edge swaps as the minimal degree pre-
serving moves. Let us first characterize all possible moves F : ¢ — ¢’ # c that leave the
degrees k;(c) = Zj ¢;j of all N nodes in a graph invariant. Since ¢;; € {0, 1} for all (i, j),
and ¢;; = cj;, each move F is characterized fully by specifying the set Sr = {(i, j)|i < J,
Fcij =1 — ¢;;} of node pairs that are affected by F'. If all degrees are conserved, then also
the average connectivity is conserved, so each link removed by F must be compensated
elsewhere in the graph by a link created. Hence |Sr| is even. We define [a, b] = (a, b) if
a <band [a,b] = (b,a) if b <a, and Sp; = {j|[i, j] € Sr} (i.e. the set of those nodes j
that share with i a link that is either removed or created by the move F'). Our first question
is then: for which sets Sy of node pairs will the collective inversion of all links ¢;; — 1 —¢;;
preserve all degrees, i.e. obey

1 1 1

foralli: 0= T Z [cij — (1 —cij)] = ol Z =5 (86)
JESF.i JESF.i

For each node i, there is an even number of pairs (i, j) affected by F, of which half see a
link removed (c;; = 1 — F¢;; =0) and half see a link created (¢;; =0 — Fc¢;; = 1). Hence
also |Sr ;| must be even for each i with bonds created or removed by F. Since It is clear
that whether or not a set Sr (i.e. a move F') meets the N conditions (86) must depend on the
graph c at hand.

The minimal moves that satisfy (86) are defined as those involving the smallest set Sg.
Let i be a site with bonds created or removed by F. Since |Sr ;| is even, there will be at least
two further nodes (j, k) with bonds created or removed by F. Each of these must have their
own sets Sr ; and Sg of even size, so it impossible for the action of F' to be restricted to
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the node pairs [7, j] and [i, k] alone. Thus the smallest possible size for S¢ (which we know
to be even) is |Sr| = 4. Let us inspect the properties of moves with |Sg| =4 in detail:

(i) Each node i involved in F has |SF ;| = 2, i.e. participates in precisely two of the four

node pairs in Sr.
Proof: According to (86) each such i participates in at least two of the four node pairs
in Sg. If we had |Sg ;| > 2, then there would be at least four other nodes involved in F
(since |SF ;| is even), each in turn participating in at least two pairs in Sr. The minimal
set S would then contain Sr = {[i, j], [i, k], [i, €1, [, m], [k, ], ...} (where x is some
node not equal to i or k), which contradicts |Sg| = 4.

(ii) F involves exactly four distinct nodes (i, j, k, £), and Sr = {[i, jl, [i, k], [ j, €], [k, £]}.
Proof: Starting from any involved node i, with Sg; = {j, k}, we know that S con-
tains Sp = {[i, j1, [i, k], [k, ], ...}, where x is a node such that Sp; = {i,*} (so
* ¢ {i, k}). The first possibility is x = j. But if this were the case then either Sy =
{li, j1. [i, k1, [k, j1} (contradicting |Sr = 4|), or Sr = {[i, jl, [i, k], [k, j]1, [£,m], ...}
for some new indices (¢, m). In the latter case, however, since |Sr ¢| = |SF..| = 2, the
set Sy must contain additional node pairs involving £ and m, giving |Sr| > 4. It follows
that » = j is not allowed. This leaves us with S = {[i, j1, [i, k], [k, €], [j, €]} for some
£ ¢{i, j, k} as the only option.

Since we know that F acts as ¢;; — 1 — ¢;; for all (7, j) € Sp, and that before the move
exactly half of the pairs (i, j) € S¢ have ¢;; = 1, the minimal moves are (modulo node
permutations) of the form of so-called ‘edge swaps’ as shown below (where thick lines
indicate c¢,;, = 1 and thin lines indicate c,;, = 0):

i J i J
F
-

14 k L k

It is clear that these transitions preserve all degrees of a graph. We now know also that
these are the simplest nontrivial transitions with this property. It is fairly straightforward to
generalize the above representation, and show that each allowed move F with |Sg| = m cor-
responds to a set Sy that describes a closed path (iy — iy — --- — i,, — i;) connecting m
nodes, such that all ¢;,_,;, = 1 — ¢;,;,,.; (with £ mod m). A path is allowed to cross itself, with
%|S r.i] — 1 giving the number of crossings at node 7, but is not allowed to have overlapping
segments. The action of F is then the inversion ¢;; — 1 — ¢;; of all bond variables along the
path.

Appendix B: Upper and Lower Bounds for the Graph Mobility n(c)

Here we establish simple bounds on the quantity n(c) defined in (38), expressed solely in
terms of the degree moments (k) and (k?) and the maximum degree kp,, = max; k;. First we
inspect the term with Tr(c?). The only possible general lower bound is the trivial Tr(c®) > 0,
since this is satisfied by all tree-like graphs with arbitrary degree distributions. To obtain an
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upper bound we use the inequality cjrcy; < %[c ik cril:

1
Tr(e)) =) e <5 ) cylep+eul =Y ki =NK?) (87)
i

ijk ijk

Next we turn to Tr(c*). A suitable lower bound can be constructed as follows:

TI'(C ) - chjcjkckéclt = chjcjkcklcél jt = th/c/k - Zk2 > (88)

ijke ijke ijk

An upper bound follows from c¢;jcxe < %(c,- i+ Cre):

1
Tr(e!) = 5 Y ley +culescn = Zk cijk; (89)

ijke

It follows from the four bounds constructed so far that

N (k%) < 1Tr(c4) + Tr(c )< N k%) + Zk ciikj (90)

Inserting into formula (38) subsequently gives

1 1 1 1

n(©) = TN (k) + N k) — TN () — ;kicl,—k,- 1)

n(e) < l1\/2<k>2 + lN(k) - le-c-zk- 92)
i 4 4 4 ij t=1ytvyg

To proceed we need bounds for the term Z kicijk;. A simple lower bound follows from
the fact that if ¢;; = 1 then k; > 1. An upper bound follows from k; < kpax, and so we get

Y kicyk; = Y cyk; =) kG =N(K) ©3)
ij ij j

Zkicijkj < Kmax Zcijkj = Nkmax (K*) 94)

ij ij

This then leads to the following remarkably tight bounds for the mobility (note that always
(k%) = (k)):

LN (k) = SN ) Qi+ ) (95)

4 4

nc) < lN2<k> + 1N(k) — lN(k2) (96)
~ 4 4 4

()>1N2k + -
nC_Z <>

A further corollary from this is an absolute bound on the mobility change A;jipon(c) =
Fijie.on(€) — n(c) due to a single edge swap:

1
|Aijke;an(c)| = §N<k2)kmax (97)
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Appendix C: Effect of Single Edge Swaps on Tr(c?) and Tr(c*)

Here we study the terms in (38) that involve traces. We limit ourselves to states ¢ on which
the edge swap operator Fjjx., can act, since only those are required in (46). First we intro-
duce some further notation. We define [a, b] = (a,b) if a < b and [a,b] = (b,a) if b < a,
and we denote the relevant sets of index pairs as follows:

Spqv = {[P7 6]], [617 v], [v, P]}, Spqv;ijkl;oc = Spqu n Sijkl:ot (98)
S pqow — {[P fZ] [q 'U] [U 'I.U] [w P]} Spqvw;ijkl;ot = Spqvw N Sijké;ct (99)

with in the first line p # ¢, ¢ # v and v # p, and in the second line p # ¢, ¢ # v, v # w,
and w # p.

Also, we recall that always i < j < k < £, and we associate to every set of index pairs
Sijke;e @ closed path P,[Jakﬁ’]a with [a, b] € S;ju, starting from a, along the 4 possible bonds
through each pair of indices in the set S;jx.«, and passing through the link [a, b] in the order

a to b. Index pairs with one index in common are visited sequentially. Hence, e.g. Pilj':'k’llj;]
is uniquely determined as the closed path i — j — k — £ — i. Finally, we indicate by
b[“ 1 and al“ 1 the index that follows b, and the index that precedes a, respectively, along

the closed path Pl[;’k;’]a For instance, ][’ =k and l[l 1 = ¢, by periodicity (note that by

definition b = a*! and a = b7

C.1 Full Expressions for A;jxe. Tr(e®) and A;jxeo Tr(c*)
We recall that the edge swap operator Fjji... can only affect the presence or absence of

bonds in the set S;jx.« (Where |Sijre.«| = 4), and that its action is always to create two new
bonds and destroy two present ones. Hence

3
3
AijktaTHE) = Y 815, 0italn Diktian €p.g1Clg 01Clo. 1) (100)
n=1 pqv
4
4
AijieaTrC€) = D7 Y 815, uuiialon iiktia (Clp.1Cla. 01,01l 1) (101)
n=1 pquw

In fact, it turns out that all terms with n > 1 must be zero:

— For each n = 2 term there are two index pairs (x, y) € {[p. ¢ql. [¢, v], [v, p]} in the case
of Tr(c?) and two index pairs (x,y) € {[p,ql, g, v], [v, w], [w, p]} in the case of Tr(c*)
such that Fjji,Cyy = 1 — cy,. If both pairs have c,, = 1, or both pairs have ¢, =0, then
the conditions (24, 25, 26) for Fjjx.« to act dictate that these two pairs have no indices in
common. So the options for the action of Fjjy., are (modulo permutations):

TI'(CS)Z {C[p,q]7 C[qu], C[v.p]} = {1, 1, 0} — {1, O, 1}
{¢tp.g1> Ctgons .} = {1, 0,04 = {0, 1, 0}

TI‘(C4)Z {C[p,q], C[qu], C[v,w], C[w‘p]} = {1, l, 1, 1} —> {], 0, 1, 0}
{C[p,q],C[q.u], Clv,w]» C[w’p]} = {1, 1, 1,0} — {0, 1,0, 0} or {1, 1, 0, 1}
{C[p’q],C[qu],C[v.w],C[w,p]}Z{I,O, 1,0}—) {0, O, O, 0} or {1, 1,0, 0} or

{1,1,1,1}

{C[p,q], C[q,v], C[v,w]a C[w‘p]} = {1, 0, 0, 0} —> {], 1, O, ]} or {0, 1,0, 0}
{C[p,q], C[q.v], C[v,w]a C[w’p]} = {0, 0, 0, 0} g {1, 0, 1, 0}
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All but two cases have at least one c,, = 0 before the swap and at least one c,, =
0 after the swap; for those we know immediately that A;jreq(Cipq1C1q,01C0,p1) =
Ajjke:a(Clp.q1C1q,v1C,wICw,p1) = 0. Only two moves in the list remain to be investigated:
{1,1,1,1} — {1,0,1,0} and {1,0,1,0} — {1, 1,1, 1}. These last two moves involve
all indices in S,4,,, but are both incompatible with the action of any edge swap.

— For each n = 3 term, there are three index pairs (x, y) € {[p, q], [¢, v], [v, p]} in the case
of Tr(¢?) and three index pairs (x, y) € {[p, q], [g, v], [v, w], [w, p]} in the case of Tr(c*)
such that Fjji.qCxy = 1 — cxy. Since Fjjj., removes two bonds and adds two new ones,
of these pairs (x, y) at least one must have c,, = 0 and at least one must have c,, = 1. So
the options for the action of Fjji,, are (modulo permutations):

TI'(CS)Z {C[p,qjv C[qA,vJs C[u.p]} = {1, 1, 0} — {0, 0, 1}
{cip.q1 €tg 1 o} = {1, 0,0} = {0, 1, 1}

TI'(C4)Z {C[[,’q], C[q’v], Clv,w]» C[w’p]} = {1, 1, 1, 0} —> {l, 0, 0, 1}
{¢tp.q1> Clg.v1> Clo,wls Cw,p1} = {1,1,0,0} = {1,0,1,1} or {0,0,1,0}
{C[p,qjv C[qA,vJs C[v.w]a C[w,p]} = {1, 0, 0, 0} —> {0, 1, 1, 0}

In all cases one has at least one c,, = 0 before the swap and at least one c,, = 0 after the
swap, hence all n = 3 terms have A,‘jkz;m(C[p’q]C[q,v]C[v’p]) = Aijkz;a (C[p’q]C[q,v]C[v’w]C[w.p])
=0.

— For each n = 4 term, which occur only in Tr(c*), all four index pairs (x,y) €
{lp,ql,1g,v], [v,w], [w, p]} refer to links mapped according to FjjaCry =
1 — cyy. Since Fjjy., removes two bonds and adds two new ones, we must
have cipq1 + Cigv] + Clowl + Cw,p) = 2 both before and after the swap, so
Cp.q1€1q.v1Cv,w)Clw, p] = F,‘jk[;a(C[p’q]C[q’U]C[U’w]C[w’p]) =0 and hence all n = 4 terms have
Aijke:a(C1p.g1C1q,v1C0,w] Clw, p1) = 0.

It follows therefore that we may write, with the short-hands A/B = {x € A|x ¢ B} and
Cry=1—cyy,

3
Ajjkee Tr(e’) = ZS\Spqv;iju:u\,lAijkl;a(C[p,qjc[qA,vJC[v,pJ)

pqv
= E S\Sl;qv;ijkl;a\sl < 1_[ cxy>Aijkl;0(< 1—[ Cx)')
pqv (. Y)ESpgv/Spqusijkt;e (VESpgusijkt;e
= § S\Shqv;ijkﬁ:u‘-l < 1_[ ny)
pqv (xs}')equv/quv:ijkl;u
X < 1_[ Cay — 1_[ Cw) (102)
(x,y)eSqu;ijk(;a (X«,y)equv;ijkl:a

and

4
Ak Tr(€) = ) 815, iissolit Aijitsa (C1p.g1C1g,01Clo w1 p)

pqow
= Z 8|Spqvm;ijkl;a"1 ( ]_[ CX,V)
pquw (. )ESpgow /Spquw;ijkt;a
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X Ai_jkl;a( l_[ ny)

(X V)ESpguwsijkesa

= E 1S stz 1 < l_[ Cx.v)

pqvw (x-y)equuw/quuw;ijké;a
x ( [T &o- I cxy> (103)
(X, ) ES pguw;ijkt;a (X, ) ES pguw;ijkt;a

The above expressions can be simplified once more, taking into account the number of ways
we can select the common index pair (a, b) from S,,, or S,,,w, respectively, and the fact
that each such pair will be picked up twice (as [a, b] and [b, a], respectively) in the above
summations, due to ¢, = Cpq:

AijpeaTr(@) =23 Y (1=2cw) D ChCua

la.b1€Sijktsa vgla.b b0 alb)
=6 Y (1-2cw) Y. ChCu (104)
la.bl€S;jke:a ve{i,j.k.t}

AijreaTre) =24 Y~ (1= 2cq)

la.b1€S;jke;

x Z ( Z cbvcvwcwa) (105)

vila.b b0} Nwgla.b.al D) @) b0

The constraints over the sums in (104) and (105) implement the s in (102) and (103), and
guarantee that no link other than [a, b] can be picked up from S;jie., (note that (b, a[f;’é’])

and (a, b)) & Sijesa Vo).
We can verify briefly our results (104, 105) for the nearly hardcore graphs, where the
variation in the mobility term can be calculated explicitly. Referring back to Fig. 1, the

difference between the mobilities of a B type graph and graph A is
Ajjrean(€) =np(e) —na(€) =K — K —2K +2=K* - 3K +2 (106)

If we identify sites K + 1 = j and K + 2 =i, we see that graph A is obtained from graph
B by application of the edge swap Fjji¢.;. Hence, the variation in the mobility produced by
the application of Fjjx.; to graph B must be equal, via (38), to

1 1 1
Ajjre;1in(€) = ZAijkl;lTr(c4) + EAijkl;lTr(cs) 3 ZkvkwAiij;lcvw (107)

vw

with A,’jk[;lTr(C4) and Aijk[;lTr(c3) given by (104) and (105) for o = 1.

For the nearly hardcore case one can see that the only link [a, b] € S;j;1 contributing to
the sums in (104) and (105) is [, £], because if v ¢ {a, b'"}"} then ¢;, = 0 for b € {i, j}, and
if w # b then ¢, = 0 for a = j; so the links [a, b] € {[i, j1. [/, k1, [£, i]} never contribute.
Using ¢ =0, we have

Aijk[;ln(c) =2 Z ( Z Clvcvwcwk>

vilk,Li} welk.lj} (v w) (D)
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+3 Z CopCok — 3 Z Ajjke;1Cow

ve{ijke} {v,wi={i, j}v#w

1 K
—2. —(K—l) > ZA,,kucvw—E(K—l)z( > Aijkz;lcvw>
{

veli,j w=I1 v,wlAk, L} vEw

=2K-2D(K-3)+3K—-2)—1+2(K—-1)—(K—1)*=K*—3K +2
(108)

where in the last equality we used the fact that A;jxe.1Cpw = 1 — 2¢yy if (v, w) € Sjju, With
Ajjke;1Cow = 0 otherwise, as well as ¢jx = ¢, =1 and ¢;; =0.

C.2 Bounds for Aijkz;D(Tr(c3) and Aijk[;aTr(c“)

It is easy to construct bounds from (104, 105), based on the property 1 — 2¢,;, = %1, on the
fact that always precisely two of the four bonds in S;ji, are zero, and on the inequality
xy < 1(x+y)forx,yef0,1}:

| Ao Tr(E) ] £ 12max ) cancup < 6Max Y | (Cav+ up) = 12Kiman (109)

4
IAijkl;aTr(c )| < 161}11;1;( Z CavCowCuwb = SI?QX Z va(cav +Cwb)
v,wé{a,b} v,wéf{a,b}

< 16max<zcijkj> (110)
J

with kmax = max; k;. We can finally simplify (110) in two ways. First, we may use k; <
max k;, which gives max; [ jcijkil < k2. Second, we could simply put max; [Z Ci Jk 1<
[Zj k;j1= N (k). The result is:

| AijkeaTr(eh)| < 16 min{kg,,y, N (k) (111)
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