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Abstract
We study the coupled dynamics of primary and secondary structures formation
(i.e. slow-genetic sequence selection and fast folding) in the context of a
solvable microscopic model that includes both short-range steric forces and
long-range polarity-driven forces. Our solution is based on the diagonalization
of replicated transfer matrices, and leads in the thermodynamic limit to
explicit predictions regarding phase transitions and phase diagrams at genetic
equilibrium. The predicted phenomenology allows for natural physical
interpretations, and finds satisfactory support in numerical simulations.

PACS numbers: 61.41.+e, 75.10.Nr

1. Introduction

The constituent monomers of protein-type hetero-polymers, the amino acids of which there
exist about 20 in nature, are composed of a common backbone and a differentiating side
chain, and are bound via a peptide bond. These units are connected sequentially to form
a polypeptide chain. The sequence of connected amino acids defines the so-called primary
structure of the chain. Given the primary structure, the mechanical degrees of freedom of
the polypeptide chain are rotation angles at the junctions of adjacent amino acids. They
allow proteins to fold into relatively simple repetitive local arrangements (the ‘secondary
structures’, such as α-helices or β-sheets) which then combine into more complicated global

1751-8113/08/285004+50$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/28/285004
mailto:s.rabello@imperial.ac.uk
mailto:ton.coolen@kcl.ac.uk
mailto:conrad@ffn.ub.es
mailto:franca.fraternali@kcl.ac.uk
http://stacks.iop.org/JPhysA/41/285004


J. Phys. A: Math. Theor. 41 (2008) 285004 S Rabello et al

arrangements in 3D (the ‘tertiary structure’). The folding process is controlled by various
combinations of forces, such as those induced by mutual interactions between the amino-acid
side chains (steric forces, Van der Waals forces), by interactions between side chains and the
polymer’s backbone (hydrogen and sulfur bonds) and by interactions between the amino-acid
side chains and the surrounding solvent (polarity-induced forces and hydrogen bonds). For
comprehensive reviews on the physics of the interactions governing the folding of proteins,
see e.g. [1, 2]. Apart from ‘chaperone’ effects (the influence of specialized proteins), it was
discovered [3] that the dynamics of the folding process is for most proteins determined solely
by their primary structure. Since polypeptide chains can vary in length from a few tens to
tens of thousands of monomers, there is an enormous number of possible sequences. Yet only
a tiny fraction of these (the actual biologically functional proteins) will represent chains that
fold into a unique reproducible tertiary structure, or three-dimensional ‘conformation’, which
determines its biological function.

The protein folding problem is how to predict this conformation (the native state) of a
protein, given its primary structure. It remains one of the most challenging unsolved problems
in biology. Its solution would have a big impact on medicine. The physicist’s strategy in
this field (as opposed to bio-informatics approaches based on simulation, see e.g. [4] for a
recent review) is to try to understand the main physical mechanisms that drive the one-to-one
correspondence between amino-acid sequence and the native state. Normally, this is attempted
via simple quantitative mathematical models that capture the essential phenomenology of
folding and lend themselves to statistical mechanical analysis [5–7] and/or are easily simulated
numerically [8–11]. In the language of thermodynamics and statistical mechanics, it is believed
that if a protein spontaneously reaches its native state at physiological conditions of temperature
and pressure, its free-energy landscape must possess a unique stable minimum [12]. However,
calculating free-energy landscapes for biologically functional proteins is non-trivial, because
of the frustration induced by the local steric constraints in combination with the effective
interactions via polarity and hydrogen bonds, especially in view of the heterogeneity of the
amino-acid sequences. In addition we would like to understand the folding pathway that
ensures a protein’s fast approach to its native state in physiological conditions, by avoiding
kinetic traps and minimizing the various potential frustration effects [13, 14]. Random
amino-acid sequences do not fold into unique conformations, i.e. they have more complicated
multi-valley free-energy landscapes, so one concludes that those sequences that correspond to
proteins have been selected genetically on the basis of their associated free-energy landscapes
[15, 16].

There is little consensus yet as to what is the main driving force in the folding process.
Some believe the hydrophobic–hydrophilic effect (i.e. hydrophobic side chains try to avoid
contact with the solvent, while hydrophilic side chains seek to be in contact with it) to be the
dominant factor in secondary and tertiary structure formation [15–18], with steric constraints
enforcing further microscopic specificity, and hydrogen bonds providing a locking mechanism
[19]. Others believe the folding to be mainly driven by the formation of intra-molecular (or
peptidic) hydrogen bonds on top of hydrogen bonding between side chains and the solvent
[20]. Most physicists’ studies either resort to models similar to self-avoiding walks on regular
lattices [21, 22] (usually via graph counting and numerical simulations), or focus on generic
properties of (free) energy landscapes [23–25], or try to exploit the one-dimensional nature
of the polypeptide chains [26–28]. In either case, in virtually all studies the amino-acid
sequences are regarded as frozen disorder, over which appropriate averages are calculated (in
statics of the free energy per monomer, in dynamics of the moment-generating dynamical
functional). This implies that the sequences at hand must be ‘typical’ within an appropriate
ensemble of sequences, which presents us with a serious fundamental problem. Amino-acid
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sequences of proteins are far from random: they have been carefully selected during evolution
on the basis of their functionality and their ability to lead to reproducible folds. Thus, one
either has to define an ensemble of amino-acid sequences on the basis of the known primary
sequences of real proteins that are being collected in biological databases, which removes the
possibility to carry out disorder averages in the mathematical theory analytically, or one has to
find a way to capture the essence of the observed biological sequences (as opposed to random
ones) in simple mathematical formulae. Although some analytical studies did involve non-
random sequences, the sequence statistics were usually not connected to folding quality as such
[29, 30].

There is an alternative strategy in the statistical mechanical modeling of interacting many-
particle systems with non-random disorder, which was followed successfully in the past, for
e.g. neural networks (where the synaptic connections between neurons represent the disorder)
[31–34] and for a simple mean-field hetero-polymer model [35]. Rather than averaging over
all amino-acid sequences (subject perhaps to experimentally determined constraints), one
combines the process of secondary structure generation (folding) with a slow-evolutionary
process for the amino-acid sequences (which represents the genetic selection of free-energy
landscapes) and one couples these two processes in a biologically acceptable way. One can then
try to solve for the ‘slow’ process upon assuming adiabatic separation of the two time scales,
using the so-called finite-n replica theory. This results in solvable models describing structure
generation in polypeptide chains with amino-acid sequences that are no longer random, but
selected in a manner that correlates with the folding process, without having been required
to capture the sequence statistics in a formula. It is encouraging that we know from previous
studies such as [31–35] that in such models the impact of the slow-genetic process is indeed
generally to drive the systems away from multi-valley energy landscapes toward single-valley
ones.

In the present paper we take the next step in this research programme, whereas [35]
involved a simplified model with only polarity-induced mean-field forces, here we develop
a theory for the coupled dynamics of (fast) folding and (slow) sequence selection on the
basis of the more precise Hamiltonian introduced in [26], which also includes short-range
steric forces along the chain. At a technical level our problem requires the diagonalization of
replicated transfer matrices, for which efficient methods have been developed only recently
[36–39]. We apply these diagonalization methods to the present model, within the ergodic
(i.e. replica symmetric, RS) ansatz, and show how they lead in the thermodynamic limit to
closed equations for non-trivial order parameters. In the context of protein folding one expects
the RS ansatz to be appropriate. In finite-dimensional replica calculations replica symmetry
is known to break down only for small values of the replica dimension n, i.e. at high genetic
noise levels, whereas here our interest is mostly in the regime of low-genetic noise levels.
Second, given the robustness and reproducibility of proteins’ secondary and tertiary structures
one must assume these systems to operate in an ergodic regime. Third, at a mathematical level,
our present order parameter equations will involve only quantities with a single replica index,
giving yet another indication that RS should hold. After first recovering the solutions of the
order parameter equations in various known limits, we focus on the biologically most realistic
regime of sequence selection at zero genetic noise levels, namely n → ∞, where we extract
the non-trivial phase phenomenology and derive phase diagrams analytically. We find many
interesting phase transitions, both continuous and discontinuous, and remanence effects, all of
which can be understood and explained on physical grounds. This is followed by a numerical
analysis of the order parameter equations for nonzero genetic noise levels, and by tests of
the theoretical predictions against numerical simulations of the coupled sequence selection
and folding processes. Within the limitations imposed by finite size and finite relaxation time
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Figure 1. Illustration of the chemical and mechanical degrees of freedom in our model. At each
site i of the chain we have a discrete variable λi which specifies the local amino acid type, and
a residue angle φi which defines its physical location relative to the one-dimensional polymer
chain axis (the ‘backbone’, drawn as a dashed line). In this example the number of possible
orientations of each residue is three. The black blobs represent locations occupied by residues.
The primary structure of the polymer (its chemical composition) is thus defined by (λ1, . . . , λN ),
and the secondary structure by (φ1, . . . , φN ). Both types of variables are assumed to evolve in
time, although on widely separated time scales.

effects, we find a satisfactory agreement between our theoretical predictions and the numerical
simulations.

2. Model definitions

2.1. The folding and sequence selection processes

Our model inherits much of its initial features from [26], and represents the amino-acid cores
as nodes in a one-dimensional chain. The global conformal state of the system is defined by
N successive angles φ = (φ1, . . . , φN) ∈ �N of amino-acid residues, relative to the chain’s
backbone. Here � = {0, 2π/q, 4π/q, . . . , (q − 1)2π/q} ⊂ [0, 2π), where q ∈ N. The
simplified picture is that of residues being able to rotate (with constraints, and limited to q
discrete positions) in a plane perpendicular to the chain’s axis. The primary structure (the
amino-acid sequence) is written as λ = (λ1, . . . , λN), with λi ∈ {1, . . . , �} denoting the
residue species at position i in the chain (with � = 20 for real proteins). See also figure 1. In
contrast to [26], however, the primary sequence will here not be drawn at random, but will be
generated by an appropriate genetic selection process; this improves the biological realism of
the model, but will change and complicate the mathematics significantly. We will therefore
only include monomer-solvent polarity forces and steric forces, leaving out hydrogen bonds
for now. Furthermore, we refine the Hamiltonian used in [26] to take into account the effect
of the polymer’s overall polarity balance on its ability to exhibit predominantly hydrophilic
surface residues and hydrophobic core residues; for models with fixed primary sequences as
in [26] this would add an irrelevant constant to the energy, but for models such as the present
where the monomer sequences evolve in time this energy contribution will exert sequence
selection pressure with significant consequences. In many of our calculations we will also
choose q = 2, i.e. limit the residue angles to φi ∈ {0, π}. This prevents us from having to
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generalize the diagonalization methods of [36, 37], which would probably require a separate
study in itself. Thus, for a given realization of the primary sequence λ, the folding process is
assumed to be governed by the following Hamiltonian:

Hf(φ|λ) = −Jp

N

∑
ij

ξ(λi)ξ(λj )δφi ,φj

− Js

∑
i

cos[(φi+1− φi) − (φi − φi−1) − a(λi)]. (1)

ξ(λ) ∈ R measures the polarity of residue λ (with ξ > 0 indicating hydrophobicity and ξi < 0
indicating hydrophilicity). The first term in (1) favors conformations where hydrophobic and
hydrophilic avoid identical orientations, since this makes it easier for the polymer to find a fold
that shields its hydrophobic residues from the solvent while exposing its hydrophilic ones. The
second term represents in a simplified manner the effects of steric forces, characterizing each
residue λ by a winding ‘distortion’ angle a(λ) for successive residue rotations. If a(λi) = 0,
then residue i will prefer to have an angle φi such that torsion along the chain is homogeneous,
i.e. φi+1 − φi = φi − φi−1. The energies Jp > Js > 0 control the relative impact of each
contribution. For a fixed sequence one can define the partition function Zf(λ) and the free
energy Ff(λ) for the equilibrium state of the folding process at temperature Tf = β−1 (in units
where the Boltzmann constant equals kB = 1):

Z f(λ) =
∑

φ

exp[−βHf(φ|λ)], (2)

Ff(λ) = −β−1 logZf(λ). (3)

It will be convenient to characterize the relevant chemical characteristics of amino acids by
the distribution

w(ξ, η) = 1

�

�∑
λ=1

δ[ξ − ξ(λ)]δ[η − cos[a(λ)]]. (4)

In principle, (4) reduces to a collection of 20 points in the (ξ, η) plane, but since it is impossible
to extract their precise locations directly from available data (see section 2.2) one has to rely
on sensible proxies5. As there is no obvious structural physical/chemical link between
residue polarity and geometric (steric) properties, we assume statistical independence, i.e.
w(ξ, η) = w(ξ)w(η) (this will also induce welcome simplifications later). Typical simple
choices for w(ξ) would be w(ξ) = εδ(ξ) + 1

2 (1 − ε)[δ(ξ − 1) + δ(ξ + 1)] or w(ξ) =
1
2θ [1 − ξ ]θ [1 + ξ ]. Note that we may always choose the maximum polarity to be one, since
alternative values can be absorbed into the definition of the parameter Jp. For w(η), natural
choices would be w(η) = π−1

∫ π

0 da δ[η−cos(a)] = π−1[1−arccos2(η)]−1/2θ [1−η]θ [1+η]
or w(η) = 1

2θ [1−η]θ [1+η]. Here the allowed value range [−1, 1] is enforced by the physical
meaning of η.

We now follow [35] and complement the folding process by an adiabatically slow-
stochastic evolutionary selection process for the amino-acid sequences. The assumption is
that this selection results from an interplay between the demands that (i) a sequence must
lead to a unique and easily reproducible equilibrium conformation for its associated folding
process, and (ii) the resulting structure is useful to the organism (e.g. it can act as a catalyst

5 We will in fact find that in the limit N → ∞ the only dependence of the system’s phase diagram on the amino-acid
characteristics {ξ(λ), a(λ)} is via the distribution w(ξ, η), and involves only qualitative properties of this distribution,
such as symmetries and its finite support.
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of some metabolic or proteomic cellular reaction). If one takes the further step to quantify
the quality of an equilibrium conformation by the value of the folding free energy Ff(λ) (i.e.
taking ‘low-free energy’ as a proxy for ‘more reproducible’), together with the direct energetic
cost V (λ) of not having strictly hydrophilic ‘surface residues’ and strictly hydrophobic ‘core
residues’, and if one assumes that biological usefulness can be measured by some utility
potential U(λ), then the evolutionary process can be viewed as the stochastic minimization of
an effective Hamiltonian for amino-acid sequences that takes the form

Heff(λ) = U(λ) + V (λ) − β−1 logZf(λ). (5)

If the stochastic minimization is of the Glauber or Monte Carlo type, the evolutionary process
will evolve itself to a Boltzmann-type equilibrium state, namely P∞(λ) ∝ exp[−β̃Heff(λ)],
where β̃ measures the (inverse) noise level in the genetic selection6. Our combined model
(fast-folding and slow-genetic sequence selection) is thus solved in equilibrium by calculating
the associated effective free energy per monomer

fN = − 1

β̃N
log

∑
λ

e−β̃Heff(λ)

= − 1

nβN
log

∑
λ

[Zf(λ)]n e−nβ[U(λ)+V (λ)] (6)

with the noise level ratio n = β̃/β. As in [31–35], this expression can be evaluated via the
replica formalism, where n is first taken to be integer and the result is subsequently continued
to non-integer values. Note that in this type of model the replica dimension has a clear
physical meaning as the ratio of temperatures. For n → 0 we recover the free energy of a
system with quenched random amino-acid sequences; for n = 1 we have that of an annealed
model, whereas for n → ∞ the sequence selection becomes strictly deterministic. In contrast
to previous coupled dynamics studies, however, here we have not only mean-field forces but
also short-range ones: the steric interactions in (1). The replica calculation will therefore be
quite different.

In this paper we limit ourselves for mathematical convenience to sequence functionality
potentials of the simple form U(λ) = ∑

i u(λi). Similarly we choose the energetic penalty
V (λ) on hydrophobic surface residues or hydrophilic core residues to be a function only of
the polarity balance k(λ) = N−1 ∑

i ξ(λi), putting V (λ) = JgNv(k(λ) − k) with a function
v(k) that is minimal for k = 0, where k represents the ‘optimal’ polarity balance that would
give a protein with strictly hydrophilic surface residues and strictly hydrophilic core residues
(which one expects to be close to zero). This form for V (λ) would emerge naturally if all
amino acids were to have similar values of |ξ(λi)|. The implicit assumption is that if a polarity
balance k(λ) is energetically favorable, i.e. close to k, then the protein will be able to find
a fold that realizes the desired geometric separation of core versus surface residues. We will
discuss the mathematical consequences of making alternative choices in section 8. Since for
N → ∞ chain boundary effects must vanish, we also choose periodic boundary conditions
and take N even (for mathematical reasons which will become clear later).

6 Another way to see why P∞(λ) ∝ exp[−β̃Heff(λ)] is a natural evolutionary equilibrium state is to image having
real-valued λ, evolving according to a Langevin equation in which the deterministic force is minus the gradient of the
energy Hf(λ) + U(λ) + V (λ). Given adiabatic separation of folding and evolution time scales, one can then integrate
out the fast variables (the conformation angles) and find the Boltzmann state for the sequences λ with effective
Hamiltonian (5). See e.g. [35] for details.
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Figure 2. Diagrams showing each of the 20 amino acids as a point in the plane, with the horizontal
coordinate giving its polarity value (taken from [43], and normalized to the range [−1, 1]), and
with the horizontal coordinate giving the cosine of an average conformation angle (averaged over
all proteins of a given class). Left: averages calculated for conformation angle φ; right: averages
calculated for conformation angle ψ . Top row: averaging over all α-proteins for which structures
are available; bottom row: averaging over all β-proteins for which structures are available. All
conformation data were extracted from [41, 42].

2.2. Relation between model assumptions and biological reality

Here we discuss some of the assumptions and definitions of our model in the light of
experimental evidence from real proteins. Our choice for a single-angle representation of
the mechanical degrees of freedom of a monomer was motivated by our desire to limit the
mathematical complexity, although our methods would also apply if we were to work with the
conventional two conformation angles (φ,ψ). In fact, there is evidence [40] to suggest that
the conventional two-angle representation is redundant, and that only one newly defined torsion
angle is needed per amino acid to specify a protein’s conformation. If we insist on identifying
the single-site degrees of freedom in our model with one of the standard conformation angles
(φ,ψ), we have to choose the one that matches our statistical assumptions best. To do this, we
have calculated for individual amino acids the average of the observed conformation angles
(φ,ψ) over all occurrences of this amino acid in the database of known protein structures
(the SCOP database [41, 42]), which resulted in the graphs of figure 2, where we plot the
cosines of the average conformation angles of all 20 amino acids together with their polarity
values (according to the Eisenberg scale, taken from [43], and normalized linearly to the
range [−1, 1]). Both conformation angles (φ,ψ) give averages that have cosines of both
signs, both are biased toward positive values; however, the bias is more extreme in the case
of ψ . Since there is no such bias in our theory, the most suitable conformation angle to
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Figure 3. Diagrams showing all proteins in database [42], organized into the four main protein
families, as points in the plane, with the horizontal coordinate giving their inverse size N−1 and
with the vertical coordinate giving their average polarity value kraw = N−1 ∑

i ξi,raw along the
chain (where the polarities ξi,raw of the constituent residues are taken directly from [43], without
normalization to [−1, 1]). Dashed horizontal lines indicate the average overall polarity level found
within each protein class.

correspond to the orientation degrees of freedom in our model appears to be φ. In the same
figure we can also see that there is no obvious correlation between polarity characteristics and
steric characteristics. In our model this is assumed to be a property of the amino acids, and
we will find in our analysis that neither the primary structure generation nor the secondary
structure generation introduces any such correlations. Finally, let us turn to the postulated
preferred average polarity of any amino-acid chain (which was used in our phenomenological
Hamiltonian), purely on the basis of the energetic need to shield hydrophobic residues from
the solvent and to expose hydrophilic ones. There is certainly evidence for the link between
the average polarity of a sequence and the surface-exposure pattern of the associated protein
structure [44]. If we plot all those proteins for which primary structure data are available as
points in a plane, with the inverse size 1/N as a horizontal coordinate and the average polarity
as a vertical coordinate, we obtain figure 3. This figure supports strongly the existence of an
energetically preferred average polarity k, with a value close to zero in rescaled polarity units
ξ ∈ [−1, 1].
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3. Replica analysis of the model

For integer n one can write the nth power of the folding partition function Zf(λ) in (6) in
terms of n replicas of the original system, to be labeled by α = 1, . . . , n. If the sum over the
sequences λ is carried out before the sum over conformations, one finds an effective theory in
which the n replicas are coupled:

fN = − 1

nβN
log

∑
φ1,...,φn

e−βH(φ1,...,φn) (7)

H(· · ·) = − 1

β
log

∑
λ

e−β
∑

α Hf(φ
α |λ)−nβ[U(λ)+V (λ)]. (8)

For β → 0 (infinite temperature) we have βH(· · ·) → −N log � and the free energy retains
only entropic terms, namely limβ→0(βfN) = − log q − n−1 log �. Upon using (1), and
inserting

∑
φ δφ,φα

i
into the polarity term of the folding energy, we can work out the effective

Hamiltonian (8). If we introduce appropriate integrals over δ-functions (written in integral
representation) to isolate the quantities N−1 ∑

i ξ(λi)δφ,φα
i
, namely

1 =
∫

dzαφ dẑαφ

2π
eiẑαφ [zαφ−N−1 ∑

i ξ(λi )δφ,φα
i

] (9)

where φα = (φα
1 , . . . , φα

N), we can carry out the sum over λ in (8) and find, with the
abbreviation z = {zαφ},

− β

N
H(· · ·) = 1

N
log

∑
λ

e−nβ[
∑

i u(λi )+NJgv(k(λ)−k)]+
βJp

N

∑
φ

∑
α [
∑

i ξ(λi )δφ,φα
i

]2

× eβJs

∑
iα cos[φα

i+1+φα
i−1−2φα

i −a(λi )]

= 1

N
log

∫
dz dẑ

(2π/βN)qn
eβN[i

∑
αφ ẑαφzαφ+Jpz2−nJgv( 1

n

∑
αφ zαφ−k)]

×
∏

i

{∑
λ

e−nβu(λ)−iβξ(λ)
∑

αφ ẑαφδφ,φα
i

+βJs

∑
α cos[φα

i+1+φα
i−1−2φα

i −a(λ)]

}
. (10)

Inserting this into (7) leads to an expression for the asymptotic free energy per monomer
f = limN→∞ fN that can be evaluated by the steepest descent. Upon eliminating the conjugate
integration variables {ẑαφ} by variation of {zαφ}, giving iẑαφ = Jgv

′( 1
n

∑
αφ zαφ−k

)−2Jpzαφ ,
and upon defining the replicated single-site vectors φi = (

φ1
i , . . . , φ

n
i

)
the result takes the

form f = extrzϕn(z) with

nϕn(z) = Jp

∑
αφ

z2
αφ + nJg

⎡
⎣v

⎛
⎝1

n

∑
αφ

zαφ − k

⎞
⎠ −

⎛
⎝1

n

∑
αφ

zαφ

⎞
⎠ v′

⎛
⎝1

n

∑
αφ

zαφ − k

⎞
⎠
⎤
⎦

− 1

β
log � − lim

N→∞
1

βN
log

∑
φ1,...,φN

∏
i

M[φi−1, φi , φi+1|z], (11)

M[φi−1, φi , φi+1|z] = 1

�

�∑
λ=1

eβξ(λ)
∑

α[2Jpzαφα
i
−Jgv

′( 1
n

∑
αφ zαφ−k)]

× eβJs

∑
α cos[φα

i+1+φα
i−1−2φα

i −a(λ)]−nβu(λ). (12)

9
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We recognize in (11) and (12) a replicated transfer matrix product embedded within a mean-
field calculation, and conclude that this model is therefore in principle solvable. The only
amino-acid characteristics that affect the folding process are its polarity ξ(λ) and steric angle
a(λ), so we will from now on choose the single site functionality potential to have the form
u(λ) = µξ(λ) + ν cos[a(λ)] (where µ and ν are control parameters).

3.1. The case q = 2

Our calculations become significantly simpler and more transparent for q = 2. Here, after
a uniform basis rotation, the allowed residue angles are φi ∈ {−π/2, π/2}, which can be
written in terms of Ising spin variables σi ∈ {−1, 1} as φi = σiπ/2. We transform the
2n remaining replicated order parameters, which can be written as zα±, into new order
parameters mα = zα+ − zα− and kα = zα+ + zα−. Our equations will now involve the
replicated spin variables σi = (

σ 1
i , . . . , σ n

i

)
, and the cosine term in the exponent of the

transfer matrix simplifies to σα
i+1σ

α
i−1 cos[a(λ)]. With the short-hands m = (m1, . . . , mn)

and k = (k1, . . . , kn), 〈g(ξ)〉ξ = ∫
dξ w(ξ)g(ξ), and 〈g(η)〉η = ∫

dη w(η)g(η), our previous
expressions (11) and (12) take the form

nϕn(m, k) = 1

2
Jp(k2+ m2) + nJg

[
v

(
1

n

∑
α

kα − k

)
−
(

1

n

∑
α

kα

)
v′
(

1

n

∑
α

kα − k

)]

− 1

β
log � − lim

N→∞
1

βN
log

∑
σ1,...,σN

∏
i

M[σi−1, σi , σi+1|m, k], (13)

M[σi−1, σi , σi+1|m, k] = 〈
eβξ [Jp

∑
α(kα+mασα

i )−nµ−nJgv
′( 1

n

∑
αkα−k)]

〉
ξ

× 〈
eβη[Jsσi+1·σi−1−nν]

〉
η
. (14)

The disconnection inside M[· · · | · · ·] of the factor involving σi from that involving σi+1 ·σi−1

allows us to rewrite ϕn(m, ψ) into a more convenient form, with a new replicated transfer
matrix Γ(m, k) that involves only the two sites i − 1 and i + 1:∏

i

M[σi−1, σi , σi+1|m, k] =
∏

i

�σi−1,σi+1(m, k), (15)

where

�σσ′(m, k) = 〈
eβη[Jsσ·σ′−nν]

〉
η

〈
eβξ [Jp(

∑
αkα+m·σ)−nµ−nJgv

′( 1
n

∑
αkα−k)]

〉
ξ
. (16)

Since N is even and we have periodic boundaries, even sites thereby disconnect from odd sites.
The trace in ϕn is now in leading order for large N expressed in the usual manner in terms of
the largest eigenvalue λ(m, k) of the matrix Γ(m, k):

lim
N→∞

1

N
log

∑
σ1,...,σN

∏
i

M[· · · | · · ·]

= lim
N→∞

2

N
log Tr[ΓN/2(m, k)] = log λ(m, k). (17)

In fact, the specific dependence of ϕn(m, k) on k via (14) is such that all its saddle points will
have k = k(1, . . . , 1). This reduces the number of order parameters from 2n to n + 1. We
now have f = extrm,kϕn(m, k), with

ϕn(m, k) = 1

2
Jp

(
m2

n
+ k2

)
+ Jg[v(k − k) − kv′(k − k)] − 1

nβ
log �

− 1

nβ
log λ(m, k), (18)

10
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�σσ′(m, k) = 〈
eβη[Jsσ·σ′−nν]

〉
η

〈
enβξ [Jp(k+n−1m·σ)−µ−Jgv

′(k−k)]
〉
ξ
. (19)

Our problem has been reduced to the diagonalization of the 2n × 2n replicated transfer matrix
(19). This matrix can be simplified to a form analyzed in [36–39] upon making the so-
called replica symmetric (RS) ansatz, which is equivalent to assuming ergodicity. Since the
order parameters in the present model have at most one replica index, one expects RS to be
exact at all temperatures. Now one has mα = m for all α, which simplifies our solution to
f = extrm,kϕRS(m, k) in which

ϕn(m, k) = 1

2
Jp(m2 + k2) + Jg[v(k − k) − kv′(k − k)]

− log � + log λRS(m, k)

βn
, (20)

where λRS(m, k) is the largest eigenvalue of

�RS
σσ′(m, k) = 〈

eβη[Jsσ·σ′−nν]
〉
η

〈
enβξ [Jp(k+ m

n

∑
α σα)−µ−Jgv

′(k−k)]
〉
ξ
. (21)

Working out the saddle-point equations for {m, k} from (20) leads us to

m = 1

βnJp

∂

∂m
log λRS(m, k), (22)

k = 1

βn[Jp − Jgv′′(k − k)]

∂

∂k
log λRS(m, k). (23)

An alternative (but equivalent) form for our order parameter equations that does not require
differentiation of λRS(m, k) is obtained if we extremize ϕn(m, k) at the stage where it is still
expressed in terms of a trace of powers of the matrix �RS(m, k), namely

m = 2

βnJp

lim
N→∞

∂

∂m
log Tr

[
�

N/2
RS (m, k)

]

= 1

βnJp

lim
N→∞

Tr
[

∂
∂m

�RS(m, k) · �
N/2
RS (m, k)

]
Tr
[
�

N/2
RS (m, k)

] , (24)

k = 2

βn

limN→∞ ∂
∂k

log Tr
[
�

N/2
RS (m, k)

]
Jp − Jgv′′(k − k)

= 1

βn
lim

N→∞
Tr
[

∂
∂k

�RS(m, k) · �
N/2
RS (m, k)

]
[Jp − Jgv′′(k − k)]Tr

[
�

N/2
RS (m, k)

] . (25)

Upon working out the partial derivatives of �RS(m, k), and upon writing the left and right
eigenvectors of �RS(m, k) corresponding to the largest eigenvalue as

{
uL

σ

}
and

{
uR

σ

}
, the limit

N → ∞ can be taken. To avoid unwieldy equations we drop the explicit mentioning of the
arguments (m, k) for quantities such as λRS,

{
uL

σ

}
or
{
uR

σ

}
from now on; the formulae should

make this dependence clear. Using the replica permutation invariance of RS equations, the
result can be written as

m =
∑

σσ′ uL
σσ1Yσσ′uR

σ′

λRS
∑

σ uL
σuR

σ

, (26)

k =
∑

σσ′ uL
σYσσ′uR

σ′

λRS
∑

σ uL
σuR

σ

, (27)

11
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where

Yσσ′ = 〈
eβη[Jsσ·σ′−nν]

〉
η

〈
ξ enβξ [Jp(k+ m

n

∑
α σα)−µ−Jgv

′(k−k)]
〉
ξ
. (28)

Finally, the physical meaning of the order parameters m and k, expressed in terms of the
original variables {σi, λi} and averages over the equilibrated coupled relaxation processes, is
found to be (see appendix A):

m = lim
N→∞

1

N

∑
i

〈〈ξ(λi)σi〉〉, (29)

k = lim
N→∞

1

N

∑
i

〈〈ξ(λi)〉〉 (30)

(with double brackets 〈〈· · ·〉〉 denoting equilibrium averages over both the fast secondary
structure formation process and the slow-sequence selection process). Within the present
model we may interpret m = 0, where the equilibrium amino-acid residue orientations are
uncorrelated with amino-acid species, as describing a ‘swollen’ state where secondary structure
fails to develop (although, as we will find, for m = 0 there could still be phase transitions in
terms of the amino-acid statistics, as measured by the order parameter k). States with m 	= 0
would exhibit secondary, and by construction (via the polarity term in the folding Hamiltonian)
also tertiary structure, so should be described as ‘collapsed’ states.

3.2. Solution of the replicated eigenvalue problem

It was argued in [36] that the left and right eigenvectors
{
uL

σ

}
and

{
uR

σ

}
corresponding to the

largest eigenvalue of matrices of the class (21) are of the following form:

uR
σ =

∫
dx �(x) eβx

∑
α σα , (31)

uL
σ =

∫
dy �(y) eβy

∑
α σα . (32)

Inserting (31) and (32) into the right/left eigenvalue equations
∑

σ′ �
RS
σσ′u

R
σ′ = λRSu

R
σ and∑

σ′ �
RS
σ′σuL

σ′ = λRSu
L
σ, followed by use of the identity g(±1) = exp[β(B ± A)] with

A = 1

2β
log[g(1)/g(−1)], B = 1

2β
log[g(1)g(−1)] (33)

leads us to a re-formulation of our eigenvalue problems in terms of integral operators, where
the role of n has changed from controlling the dimension of the problem (limited to integer
values) to that of a simple parameter that can be continued to the real line:

λRS�(x) =
∫

dx ′��(x, x ′)�(x ′), (34)

λRS�(x) =
∫

dx ′��(x, x ′)�(x ′). (35)

With help of the short-hands

A(x, y) = 1

β
tanh−1[tanh(βx) tanh(βy)], (36)

12



J. Phys. A: Math. Theor. 41 (2008) 285004 S Rabello et al

B(x, y) = 1

2β
log[4 cosh[β(x + y)] cosh[β(x − y)]], (37)

one can write the kernels in (34) and (35) (of which again we seek the largest eigenvalue) as

��(x, x ′) = 〈〈
δ[x − ξJpm − A(x ′, ηJs)] enβ[B(x ′,ηJs )+ξ(Jpk−µ−Jgv

′(k−k))−νη]
〉〉

ξ,η
, (38)

��(x, x ′) = 〈〈
δ[x − A(x ′ + ξJpm, ηJs)] enβ[B(x ′+ξJpm,ηJs )+ξ(Jpk−µ−Jgv

′(k−k))−νη]
〉〉

ξ,η
. (39)

Both kernels ��(x, x ′) and ��(x, x ′) take only non-negative values, so the eigenvalue
problems (34) and (35) support solutions where �(x) � 0 and �(x) � 0 for all x ∈ R. We may
then normalize these functions according to

∫
dx �(x) = ∫

dx �(x) = 1 and interpret both, in
view of (31) and (32), as field distributions. A consequence of this normalization convention
is that we obtain two relatively simple (and equivalent) expressions for the eigenvalue λRS

upon integration of (34) and (35) over x:

λRS =
∫

dx �(x)
〈〈

enβ[B(x,ηJs )+ξ(Jpk−µ−Jgv
′(k−k))−νη]

〉〉
ξ,η

, (40)

λRS =
∫

dx �(x)
〈〈

enβ[B(x+ξJpm,ηJs )+ξ(Jpk−µ−Jgv
′(k−k))−νη]〉〉

ξ,η
. (41)

Given the normalized solutions �(x) and �(x) of (34) and (35) with the largest eigenvalue,
which will generally have to be obtained by numerical iteration, we can work out the remaining
contributions to our order parameter equations (26) and (27), such as

∑
σ

uL
σuR

σ = 2n

∫
dx dx ′ �(x ′)�(x) coshn[β(x + x ′)], (42)

∑
σσ′

uL
σYσσ′uR

σ′ = 2n

∫
dx dx ′ �(x ′)�(x)

〈〈
ξenβ[B(x ′,ηJs )+ξ(Jpk−µ−Jgv

′(k−k))−ην]

× coshn[β(x + ξJpm + A(x ′, ηJs))]
〉〉

ξ,η
, (43)∑

σσ′
uL

σσ1Yσσ′uR
σ′ = 2n

∫
dx dx ′ �(x ′)�(x)

〈〈
ξ tanh[β(x + ξJpm + A(x ′, ηJs))]

× enβ[B(x ′,ηJs )+ξ(Jpk−µ−Jgv
′(k−k))−ην]

× coshn[β(x + ξJpm + A(x ′, ηJs))]
〉〉

ξ,η
. (44)

3.3. Simplified form of the theory

Equations (26), (27), (34) and (35) (where we need the eigenfunctions with the largest
eigenvalue) together with the supporting expressions (38)–(44) constitute a closed set of
equations for the RS order parameters {m, k,�(x),�(x)} of our model. We now simplify
this set further. First we define the following polarity probability density:

p(ξ) = w(ξ) enβξ(Jpk−µ−Jgv
′(k−k))∫

dξ ′w(ξ ′) enβξ ′(Jpk−µ−Jgv′(k−k))
. (45)

It represents the amino-acid statistics that would have been observed in the absence of the
fast process (see appendix A). If we normalize the eigenfunctions {�(x),�(x)} according to

13
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dx �(x) = ∫

dx �(x) = 1 we find that they are to be solved from

�(x) =
∫

dξ p(ξ)

{∫
dx ′ �(x ′)

∫
dη w(η)δ[x − ξJpm−A(x ′, ηJs)] enβ[B(x ′,ηJs )−νη]∫

dx ′ �(x ′)
∫

dη w(η) enβ[B(x ′,ηJs )−νη]

}
, (46)

�(x) =
∫

dx ′ ∫ dξ p(ξ)�(x ′− ξJpm)
∫

dη w(η)δ[x − A(x ′, ηJs)] enβ[B(x ′,ηJs )−νη]∫
dx ′ ∫ dξ p(ξ)�(x ′− ξJpm)

∫
dη w(η) enβ[B(x ′,ηJs )−νη]

. (47)

The variables x in �(x) and �(x) have the dimension (in spin language) of fields, so �(x)

and �(x) must represent field distributions. In fact they are connected in a very explicit way:
they can be expressed in terms of each other via

�(x) =
∫

dx ′ �(x ′)
∫

dη w(η)δ[x − A(x ′, ηJs)] enβ[B(x ′,ηJs )−νη]∫
dx ′ �(x ′)

∫
dη w(η) enβ[B(x ′,ηJs )−νη]

, (48)

�(x) =
∫

dξ p(ξ)�(x − Jpmξ). (49)

One proves these statements by substituting (48) into (47) and (49) into (46), which shows in
either case that both sides of the respective equations are identical. The remaining eigenvalue
problem (47) is still non-trivial, but some properties of its solution(s) can be established easily.
First, it follows from |tanh(βA(x ′, ηJs))| = |tanh(βx ′) tanh(βηJs)| � tanh(β|η|Js) that any
solution �(x) must have �(x) = 0 for |x| > Js maxη,w(η)>0 |η|. Second, as soon as Js > 0
and Jpm 	= 0 there cannot be solutions of the trivial form �(x) = δ(x − x) for finite n.
This is clear upon inserting �(x ′) = δ(x ′ − x) into the right-hand side of (47): for Js > 0
and Jpm 	= 0 there will always be multiple values of A(x, ηJs) (since η and ξ take multiple
nonzero values), so it is impossible for the right-hand side of (47) to produce a δ-function.

We can now eliminate the distribution �(x) and its eigenvalue problem from our theory,
and reduce our order parameter equations to a set involving {m, k,�(x)} only. The function �

is still to be solved from the eigenvalue equation (47), whereas our two scalar order parameter
equations can now be made to take the transparent form

m =
∫

dξ dhW(h, ξ)ξ tanh[βh], (50)

k =
∫

dξ dhW(h, ξ)ξ, (51)

with the joint equilibrium distribution W(h, ξ) of local effective fields and polarities:

W(h, ξ) = p(ξ) coshn[βh]
∫

dx �(x)�(h − x − Jpmξ)∫
dξ ′ dh′p(ξ ′) coshn[βh′]

∫
dx �(x)�(h′− x − Jpmξ ′)

. (52)

Upon calculating the equilibrium distribution

π(ξ, η) = lim
N→∞

1

N

∑
i

〈〈δ[ξ − ξ(λi)]δ[η − cos[a(λi)]]〉〉 (53)

(see appendix A) one finds that π(ξ, η) = π(ξ)π(η), and that π(ξ) = ∫
dhW(h, ξ). The

equilibrium distributions π(ξ) and π(η) will generally differ from the prior distributions w(ξ)

and w(η) that would be found upon simply drawing amino acids at each site randomly and
independently. However, the factorization π(ξ, η) = π(ξ)π(η) tells us that, although it
impacts on amino-acid statistics, in the present model the sequence selection process does not
induce correlations between polarity and steric angles.

Given a solution of equations (47), (50) and (51) we can evaluate whether it is the physical
one (i.e. that with the lowest free energy) by calculating (20), which now takes the simple
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form

ϕ = 1

2
Jp(m2 + k2) + Jg[v(k − k) − kv′(k − k)] − log �

βn

− 1

βn
log

∫
dξ w(ξ) enβξ(Jpk−µ−Jgv

′(k−k))

− 1

βn
log

∫
dx dξ p(ξ)�(x − Jpmξ)

∫
dη w(η) enβ[B(x,ηJs )−νη]. (54)

4. Solution of order parameter equations for special cases

4.1. The state without the secondary structure

Our equations always allow for solutions with m = 0, describing states where no secondary
structure develops. To see this we first note that now �(x) = �(x) for any x, that (36) and
(37) obey A(−x, y) = −A(x, y) and B(−x, y) = B(x, y), and that

��(x, x ′|0, k) = 〈
δ[x − A(x ′, ηJs)] enβ[B(x ′,ηJs )−νη]

〉
η

〈
enβξ(Jpk−µ−Jgv

′(k−k))
〉
ξ
. (55)

Due to the above symmetries of A(x, y) and B(x, y), one has ��(x, x ′) = ��(−x,−x ′),
so �� commutes with the parity operator. Its eigenfunctions are therefore either symmetric
or anti-symmetric. The anti-symmetric eigenfunctions are ruled out by the requirement
�(x) � 0, so we conclude that �(x) must be symmetric in x, and that therefore
W(−h, ξ) = W(h, ξ). From this it follows, via the saddle-point equation for m, that m = 0
indeed solves our equations for any choice of the control parameters.

The distribution �(x) is for m = 0 to be solved from

�(x) =
∫

dx ′ �(x ′)
∫

dη w(η)δ[x − A(x ′, ηJs)] enβ[B(x ′,ηJs )−νη]∫
dx ′ �(x ′)

∫
dη w(η) enβ[B(x ′,ηJs )−νη]

. (56)

This equation has the trivial solution �(x) = δ(x), which is in fact unique. To prove
uniqueness we use |tanh[βA(x ′, ηJs)]| = |tanh(βx ′)|tanh(βJs). Since �(x) = 0 for |x| > Js

we can define the largest interval [−u, u] ⊆ [−Js, Js] such that �(x) = 0 for x /∈ [−u, u].
Inside the numerator of (56) we now know that any nonzero contribution to the integral
must have |x ′| � u, so |tanh[βA(x ′, ηJs)]| � |tanh(βu)|tanh(βJs). Hence equation (56)
tells us that if �(x) 	= 0 then |tanh(βx)| � tanh(βJs)|tanh(βu)|, but now one must also have
|tanh(βu)| � tanh(βJs)|tanh(βu)|. Clearly the only u that satisfies the latter inequality is
u = 0, which completes the proof that �(x) = δ(x).

Furthermore, upon inserting �(x) = δ(x) equation (52) tells us that W(h, ξ) = p(ξ)δ(h),
with p(ξ) given by (45). This makes sense, since the contribution to the fields that depends
on the polarity does so via the mean-field forces, which are absent for m = 0, whereas in
the absence of long-range folding forces the remaining one-dimensional chain cannot order
(hence all effective fields are zero). The saddle-point equation for k can be simplified to

k =
∫

dξ ξw(ξ) enβξ [Jpk−µ−Jgv
′(k−k)]∫

dξ w(ξ) enβξ [Jpk−µ−Jgv′(k−k)]
. (57)

This equation shows that even for m = 0 (i.e. no secondary structure) there is still an effect of
the coupling between sequence selection and residue orientation: there will still be an effective
preference for homogeneous sequences, due to the increased potential for energy gain (via
Jp) if monomers are of the same type, which is however counter-acted by the energy cost of
polarity homogeneity as controlled by Jg .
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Finally, using the above results as well as B(0, ηJs) = β−1 log[2 cosh(βνJs)], the free
energy of the m = 0 state is seen to take the value

ϕ = 1

2
Jpk2 + Jg[v(k − k) − kv′(k − k)] − 1

βn
log

∫
dξ w(ξ) enβξ [Jpk−µ−Jgv

′(k−k)]

− log 2

β
− log �

βn
− 1

βn
log

∫
dη w(η) en[log cosh(βνJs )−βνη]. (58)

4.2. Analytical solution in verifiable limits

4.2.1. Infinite temperature. In the infinite temperature limit β → 0 one has A(x, y) =
βxy + O(β3) and B(x, y) = β−1 log 2 + 1

2β(x2 + y2) + O(β3). From this we can immediately
extract the following solution of our saddle-point equations (47), (50) and (51):

lim
β→0

�(x) = δ(x), lim
β→0

W(ξ, h) = w(ξ)δ(h), (59)

lim
β→0

m = 0, lim
β→0

k =
∫

dξ ξw(ξ). (60)

The corresponding value for the free energy (54) is

lim
β→0

βf = −n−1 log � − log 2. (61)

This is just the β → 0 limit of the m = 0 (swollen) state. We recognize the free energy
reducing to the entropic contributions from the angular (−β−1 log 2) and from the sequence
(−(βn)−1 log �) degrees of freedom, and the average polarity k reduces to that of the amino-
acid pool. All this is easily understood on physical grounds.

4.2.2. Random sequences: n → 0. According to n = β̃/β this limit describes the case where
monomer sequences are selected fully randomly, independent of the functionality potential
or the secondary structure they would generate. Our equations must for n → 0 therefore
reproduce the theory developed for random hetero-polymers in [26], provided we set the
hydrogen bond coupling in [26] to zero. Here we find for n → 0 that our equations indeed
simplify considerably. As expected we obtain p(ξ) = w(ξ), since sequences are selected
randomly from the amino-acid pool, and hence k = 〈ξ 〉ξ . We are then left with the following
eigenvalue problem for �(x):

�(x) =
∫

dy �(y)〈〈δ[x − A(y + Jpmξ, ηJs)]〉〉ξ,η (62)

with �(x) = 〈�(x − Jpmξ)〉ξ . But now the order parameter m (which measures the degree
of orientation specificity along the chain of hydrophobic versus hydrophilic residues) is to be
solved from

m =
〈
ξ

∫
dhW(h|ξ) tanh[βh]

〉
ξ

, (63)

W(h|ξ) =
∫

dx �(x)�(h − x − Jpmξ). (64)

Equivalently, upon using (62):

m =
∫

dx dx ′ �(x ′)�(x)〈〈ξ tanh[β(x + ξJpm + A(x ′, ηJs))]〉〉ξ,η. (65)
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The corresponding free energy per monomer is

lim
n→0

(
f +

log �

βn

)
= 1

2
Jp

(
m2− 〈ξ 〉2

ξ

)
+ µ〈ξ 〉 + ν〈η〉η + Jgv(〈ξ 〉ξ − k)

−
∫

dx �(x)〈B(x, ηJs)〉η. (66)

The theory for random sequences in [26] (based on random field techniques rather than the
replica formalism) involved as its main order parameter the distribution P∞(k|βJpm) of three
ratios k = (k1, k2, k3) of conditioned partition functions (condition on the values of the last
two spins of the chain). The link between our present equations and those in [26] is made via
the identification

P∞(k|βJpm) = δ(k3 − k1)

∫
dx dy �(x)�(y)δ(k1 − e2βy)δ(k2 − e2β(x−y)). (67)

Using �(x) = 〈�(x − Jpmξ)〉ξ , equation (62) and the relation A(x, y) =
(2β)−1 log[cosh(βx + βy)/ cosh(βx − βy)] one proves that (67) obeys

P∞(k|βJpm) =
∫

dk′P∞(k′|βJpm)

〈〈
δ

[
k −

( F1(k′|βJsη)

F2(k′|βJsη, βJpmξ)

F3(k′|βJsη)

)]〉〉
ξ,η

with

F1(k|x) = exk1k2 + e−x

e−xk1k2 + ex
, F2(k|x, y) = e−xk1k2 + ex

exk1k2 + e−x
k3e2y, (68)

F3(k|x) = exk2k3 + e−x

e−xk2k3 + ex
(69)

which is indeed the limit JHb → 0 of the equation derived for q = 2 in [26].

4.2.3. Mean-field limit. A second limit which can be verified using earlier work is that
where Js → 0 and Jg → 0, describing the coupled dynamics of sequence selection and
secondary structure generation in heteropolymers with (one type of) polarity energies only,
the simpler case studied in [35]. In this limit the model contains only mean-field forces,
and no longer involves transfer matrices. Using the identities A(x, 0) = 0 and B(x, 0) =
β−1 log[2 cosh(βx)] one extracts from (47) that �(x) = δ(x), and so

m =
∫

dξ dhW(h, ξ)ξ tanh[βh], (70)

k =
∫

dξ dhW(h, ξ)ξ, (71)

W(h, ξ) = coshn[βh]p(ξ)δ[h − ξJpm]∫
dh′ coshn[βh′]

∫
dξ ′p(ξ ′)δ[h′ − ξ ′Jpm]

. (72)

As could have been expected, the equations for the scalar order parameters (m, k) already
close onto themselves. In explicit form, they are

m = 〈ξ tanh(βξJpm) enβξ(Jpk−µ) coshn(βξJpm)〉ξ
〈enβξ(Jpk−µ) coshn(βξJpm)〉ξ , (73)
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k = 〈ξenβξ(Jpk−µ) coshn(βξJpm)〉ξ
〈enβξ(Jpk−µ) coshn(βξJpm)〉ξ . (74)

The amino-acid statistics in equilibrium are given by

p(ξ) = w(ξ) enβξ(Jpk−µ)∫
dξ ′w(ξ ′) enβξ ′(Jpk−µ)

, p(η) = w(η) e−nβνη∫
dη′w(η′) e−nβνη′ . (75)

Finally, using �(x) = ∫
dξ p(ξ)δ[x − ξJpm] we may work out the value of the free energy

per monomer for Js = 0:

lim
Js→0

f = 1

2
Jp(m2 + k2) − log �

βn
− log 2

β
− 1

βn
log

∫
dη w(η) e−nβνη

− 1

βn
log

∫
dξ w(ξ) coshn(βξJpm) enβξ(Jpk−µ). (76)

The specific model studied in [35] had ξ ∈ {−1, 1} and w(ξ) = 1
2 (δξ,1 + δξ,−1), i.e. no varying

degrees of hydrophobicity or hydrophilicity and a polarity-unbiased amino-acid pool. Steric
effects did not come into play in [35] (monomers were characterized only by their polarity), so
we may here simply take ν = 0. These choices simplify our two remaining order parameter
equations (73) and (74) to

m = tanh(βJpm), k = tanh[nβ(Jpk − µ)]. (77)

These equations are indeed identical to those of [35], given q = 2. Similarly, for
w(ξ) = 1

2 (δξ,1 + δξ,−1) and ν = 0 the free energy per monomer (76) now simplifies to

lim
Js→0

f = 1

2
Jpm2 − log(�/2)

βn
− 1

β
log[2 cosh(βJpm)]

+
1

2
Jpk2 − 1

βn
log[2 cosh(nβ(Jpk − µ))]. (78)

Apart from the excess entropy −log(�/2)/βn due to the extra chemical degrees of freedom
of our present monomers compared to those in [35] (and modulo a trivial typo in [35]) this is
indeed the free-energy expression found in [35] for q = 2.

5. Transitions and phase diagrams for deterministic sequence selection

We now turn to non-trivial regimes where an analytical solution is still possible, but where our
model does not map onto any existing model in the literature. The biologically most relevant
regime is that of low or even absent genetic noise levels, namely n → ∞. We still have to
select a form for the polarity balance potential. Since v(k − k) must be minimal at k = k

and increase monotonically with |k − k|, we choose a simple quadratic form v(u) = 1
2u2.

Thus from now on we will have v′(u) = u and v′′(u) = 1.
Since n = β̃/β, the limit n → ∞ corresponds to the case where monomer sequences

are selected fully deterministically, such as to minimize the effective Hamiltonian (5). Here,
in view of many exponents in our equations growing with n, we may evaluate virtually all
integrations by steepest descent. With a modest amount of foresight we define the canonical
polarity balance k0 as

k0 = k − µ/Jg

1 − Jp/Jg

. (79)

Clearly limJg→∞ k0 = k and limJg→0 k0 = µ/Jp. To keep our analysis as transparent as
possible we will not consider pathological parameter coincidences but restrict our discussion
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to the generic scenario where Jg 	= Jp, ν 	= 0, and k0 ∈ (−1, 1); the system behavior in
the pathological cases can always be understood as specific limits and/or degeneracies of the
more generic solutions. Here, the order parameters {m, k,�(x)} are to be found by analyzing
the solutions for n → ∞ of the following equations, where the complications are mainly in
the subtle dependence of the distribution �(x) on n:

�(x) =
∫

dx ′ ∫ dξ p(ξ)�(x ′)
∫

dη w(η)δ[x − A(x ′ + Jpmξ, ηJs)] enβ[B(x ′+Jpmξ,ηJs )−νη]∫
dx ′ ∫ dξ p(ξ)�(x ′)

∫
dη w(η) enβ[B(x ′+Jpmξ,ηJs )−νη]

,

(80)

m =
∫

dξ p(ξ)ξ
∫

dx dy �(x)�(y) tanh[β(Jpmξ + x + y)] coshn[β(Jpmξ + x + y)]∫
dξ p(ξ)

∫
dx dy �(x)�(y) coshn[β(Jpmξ + x + y)]

, (81)

k =
∫

dξ p(ξ)ξ
∫

dx dy �(x)�(y) coshn[β(Jpmξ + x + y)]∫
dξ p(ξ)

∫
dx dy �(x)�(y) coshn[β(Jpmξ + x + y)]

, (82)

with the abbreviations

p(ξ) = w(ξ) enβξ(Jp−Jg)(k−k0)∫
dξ ′w(ξ ′) enβξ ′(Jp−Jg)(k−k0)

, (83)

k0 = (k − µ/Jg)/(1 − Jp/Jg). (84)

Once the above equations have been solved for n → ∞, the associated values of the free
energy per monomer subsequently follows upon taking the n → ∞ limit in (54).

5.1. The two simple cases Js = 0 and Jpm = 0

In both these special cases our problem simplifies significantly due to �(x) = δ(x) (a property
which has been established earlier). If we define

L(ξ) = 1

β
log cosh(βJpmξ) + ξ(Jp − Jg)(k − k0), (85)

we see that our remaining equations for m and k reduce to a simple form in which for
n → ∞ the integration over ξ is dominated by the maximum of L(ξ), subject to the constraint
ξ ∈ [−1, 1] imposed by the measure w(ξ):

m = lim
n→∞

∫
dξ w(ξ)ξ tanh(βJpmξ) enβL(ξ)∫

dξ w(ξ) enβL(ξ)
, (86)

k = lim
n→∞

∫
dξ w(ξ)ξ enβL(ξ)∫
dξ w(ξ) enβL(ξ)

. (87)

If Jpm 	= 0 then L(ξ) is maximal either for ξ = sgn[(Jp − Jg)(k − k0)] (if limn→∞ k 	= k0),
or for ξ = ±1 (if limn→∞ k = k0). In either case one has ξ ∈ {−1, 1}, so we always find
for n → ∞ the simple Curie–Weiss law m = tanh(βJpm) which describes a transition to
secondary structure at T = Jp. Our equation for k, on the other hand, will produce for n → ∞
only solutions of

k = sgn[(Jp − Jg)(k − k0)] (88)

(this includes the case k = k0). Graphical inspection of this equation shows immediately
that for Jp < Jg the only solution is k = k0, whereas for Jp > Jg we have the additional
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solutions k = ±1. If Jpm = 0 then L(ξ) is either maximal for ξ = sgn[(Jp − Jg)(k − k0)]
(if limn→∞ k 	= k0), or it is a constant on ξ ∈ [−1, 1] (if limn→∞ k = k0). Here one has
ξ ∈ {−1, 1} only if k 	= k0.

Working out the free energy per monomer (54) gives, using B(x, y) = B(|x|, |y|) and the
property that B(|x|, |y|) increases monotonically with both |x| and |y|,
ϕ = 1

2
Jpm2 +

1

2
Jgk

2 +
1

2
(Jp − Jg)k

2

− lim
n→∞

1

βn
log

∫
dη w(η)

∫
dξ w(ξ) enβ[ξ(Jp−Jg)(k−k0)+B(Jpmξ,ηJs )−νη],

= 1

2
Jpm2 +

1

2
Jgk

2 +
1

2
(Jp − Jg)k

2

− max
ξ,η∈[−1,1]

{ξ(Jp − Jg)(k − k0) + B(Jpmξ, ηJs) − νη},

= 1

2
Jpm2− B(Jp|m|, Js) +

1

2
Jgk

2− |ν| +
1

2
(Jp − Jg)k

2− |Jp − Jg||k − k0|, (89)

where the maximum corresponds to η = −sgn(ν) and ξ = sgn[(Jp − Jg)(k − k0)]. The last
line reveals that in cases where we have multiple solutions, namely Jp > Jg , the solution
k = k0 is always a local maximum of ϕ and k = ±1 are always local minima. Of the latter
two, the lowest free energy is found for k = −sgn(k0) (this is therefore the state that is not
only locally stable but also thermodynamically stable). Therefore

Jp > Jg : k = ±1, Jp < Jg : k = k0 (90)

This implies a discontinuous phase transition at Jp = Jg , where we go from k = ±1
(homogeneous polarity sequences) to k = k0 ∈ (−1, 1), where the sequence becomes
inhomogeneous in polarity.

If we calculate the distribution W(ξ, h) for the above solutions we always find W(ξ, h) =
π(ξ)δ(h), but with potentially different polarity statistics. For the k = ±1 states one has
π(ξ) = δ(ξ − k). For the k = k0 solution, however, we need to look beyond the leading order
and write k = k0 + n−1k1 + O(n−2). Here we find for n → ∞:

π(ξ) = w(ξ) eβξ(Jp−Jg)k1∫
dξ ′w(ξ ′) eβξ ′(Jp−Jg)k1

(91)

with k1 to be solved from

k0 =
∫

dξ w(ξ)ξ eβξ(Jp−Jg)k1∫
dξ w(ξ) eβξ(Jp−Jg)k1

. (92)

This concludes our solution for the simple cases Js = 0 and Jpm = 0. From now on we
consider the case where Js > 0 and Jpm 	= 0.

5.2. Summary of the n → ∞ theory

The full analysis of our order parameter equations in the limit n → ∞ via saddle-point
analysis, for arbitrary (Js, Jp), turns out to be non-trivial; details of this calculation would
interrupt the flow of the paper and have therefore been delegated to appendix B. The end result,
however, is surprisingly simple. We can summarize the final equations for our order parameters
(k,m) describing the system states as identified in the limit n → ∞ in the following compact
way:

Jg > Jp : k = k0, m = 0 or FβJp
(m) = −tanh(βJs), (93)

Jp > Jg : k = ±1, m = 0 or FβJp
(m) = sgn(ν) tanh(βJs), (94)
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in which the function Fx(m) is defined as

Fx(m) = tanh
[

1
2xm − 1

2 tanh−1(m)
]

tanh
[

1
2xm + 1

2 tanh−1(m)
] . (95)

Only the solutions with k = k0 as obtained for Jg > Jp correspond to hetero-polymers with
inhomogeneous polarity along the chain, i.e. to systems of the protein type. The solutions
with k = ±1 (with k = −sgn(k0) being also thermodynamically stable) describe a situation
where the sequence selection results in polymers with homogeneous polarity. For Jp > Jg

we have two further conditions (B.26) and (B.27); these are always satisfied for m = 0, but
may be violated by saddle points for which |m| is too large. We observe that for ν < 0
the homogeneous polarity states and the inhomogeneous polarity states exhibit fully identical
levels of the secondary structure (as measured by m), for any combination of βJp and βJs .
Here it is therefore also easy to show by comparing the two free-energy expressions (B.29) and
(B.45) that for Jp > Jg the free energy per monomer of the k = ±1 state is lower than that of
the state k = k0, whereas for Jg > Jp the free energy of the k = k0 state is lower. For ν > 0,
however, the two states no longer have identical values of m, with that of the k = ±1 state
being lower; here the system finds it increasingly difficult to combine homogeneous polarity
sequences with the secondary structure.

Let us inspect the bifurcation phenomenology for the order parameter m. Note that
F0(m) = −1 for all m ∈ [−1, 1], and that F∞(m) = 1 for all m ∈ [−1, 1]. For x > 0 the
function Fx(m) is symmetric in m, with Fx(±1) = −1 and with

Fx(m) = x − 1

x + 1
− m2 x(3 − x2)

3(x + 1)2
+ O(m4) (96)

(see also figure 4). In view of the symmetry Fx(−m) = Fx(m), we conclude that (depending on
the values of (x, y)), the equation Fx(m) = y has either zero, two (±m), or four (±m,±m0)

non-trivial solutions in m.
In the (x, y) plane, where x = βJp and y = tanh(σβJs) with σ = ±1 (so σ = sgn(ν)

for Jp > Jg and σ = −1 for Jg > Jp), the bifurcation scenarios for our saddle-point equation
Fx(m) = y can now be summarized as:

x <
√

3 : continuous transition at yc = (x − 1)/(x + 1)

y < yc : m ∈ {0,±m(x)}
y > yc : m = 0,

x >
√

3 : continuous transition at yc = (x − 1)/(x + 1)

y < yc : m ∈ {0,±m(x)}
y > yc : m ∈ {0,±m0(x),±m(x)}
discontinuous transition aty ′

c > (x − 1)/(x + 1)

y < y ′
c : m{0,±m0(x),±m(x)}

y > y ′
c : m = 0.

The result is shown in figure 5.

5.3. Phases, transition lines and phase diagrams

We can characterize the phases of our system for n → ∞ in terms of the values for the
order parameters (k,m), where k provides information on the primary structure (the average
polarity) and m provides information on the secondary structure (the extent of order in the
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Figure 4. The function Fx(m) for x ∈ { 1
2 , 1, 3

2 , 2, 5
2 , 3, 7

2 , 4, 9
2 , 5} (from bottom to top).

Solving the equation Fx(m) = y for m can give at most one positive solution if x <
√

3,
where [d2Fx(m)/dm2]|m=0 < 0. It may have two positive solutions if x >

√
3, where

[d2Fx(m)/dm2]|m=0 > 0, provided one also has y > Fx(0) = (x − 1)/(x + 1). For sufficiently
large y the equation Fx(m) = y will no longer have any solutions.

y

x <
√

3

m

1

−1

y

x >
√

3

m

1

−1

Figure 5. The bifurcation scenarios for the solutions m of the equation Fx(m) = y, with
x = βJp and y = sgn(ν) tanh(βJs) ∈ [−1, 1] for Jp > Jg and y = − tanh(βJs) ∈ [−1, 0]
for Jg > Jp . Solid lines correspond to stable solutions (local minima of the free energy),
whereas dashed lines correspond to unstable ones. The trivial solution m = 0 changes stability at
βJs = 1

2 sgn(ν) log(βJp) for Jp > Jg and at βJs = 1
2 log(βJp) for Jg > Jp .

side-chain orientations). The system is found to exhibit five phases:

HS (homogeneous and swollen): k = ±1,m = 0
primary structure but no secondary structure,
selected sequences are homogeneous in polarity.

HC (homogeneous and collapsed): k = ±1,m 	= 0
both primary and secondary structures,
selected sequences are homogeneous in polarity.

HM (homogeneous and mixed): k = ±1, coexistence of m = 0 and m 	= 0
primary structure, with secondary structure controlled by remanence,
sequences are homogeneous in polarity.

22



J. Phys. A: Math. Theor. 41 (2008) 285004 S Rabello et al

IS (inhomogeneous and swollen): k = k0,m = 0
primary structure but no secondary structure,
selected sequences are inhomogeneous in polarity.

IC (inhomogeneous and collapsed): k = k0,m 	= 0
both primary and secondary structures,
selected sequences are inhomogeneous in polarity.

There is no random (paramagnetic) phase m = k = 0. This is a consequence of the n → ∞
limit: since the noise in the genetic selection (representing mutations) is removed, there is at
least always a primary structure developing as measured by k 	= 0.

Similarly, we can summarize the transitions we have by now identified:

• HS → IS and HC → IC: discontinuous transitions, at

Jg = Jp. (97)

The HS → IS line is found in the regime of small values of Jp. The HC → IC line is
found for large values of Jp. Along the latter line, if ν < 0 only k is changed at the
transition, if ν > 0 both k and m are changed.

• HS → HC, IS → IC and HC → HM: continuous transitions, at

βJs =
{

1
2 sgn(ν) log(βJp) if Jp > Jg

− 1
2 log(βJp) if Jg > Jp.

(98)

The HC → HM line exists only when Jp > Jg and ν > 0 (where the coexistence phase
HM is found).

• HS → HM: discontinuous transition, to be solved from the coupled equations

tanh
[

1
2βJpm − 1

2 tanh−1(m)
]

tanh
[

1
2βJpm + 1

2 tanh−1(m)
] = tanh(βJp), (99)

1 − tanh2
[

1
2βJpm − 1

2 tanh−1(m)
]

1 − tanh2
[

1
2βJpm + 1

2 tanh−1(m)
] βJp(1 − m2) − 1

βJp(1 − m2) + 1
= tanh(βJs), (100)

where the second equation is obtained from combining FβJp
(m) = tanh(βJs) with

∂
∂m

FβJp
(m) = 0. This line starts at the triple point (βJp, βJs) = (√

3, 1
4 log 3

)
in

the (βJp, βJs) plane, and rises continually for βJp >
√

3. It emerges only for Jp > Jg

and ν > 0 (where the coexistence phase HM is found).

At the continuous transition (98) the m 	= 0 state always takes over the stability from the trivial
one. This can be seen upon expanding the two free-energy expressions (B.29) and (B.45) for
small m. For both expressions this gives

β(ϕ − ϕm=0) = 1

8
m2(βJp + 1)2

{
tanh2(βJs) −

(
βJp − 1

βJp + 1

)2}
+ O(m3).

Although both are co-located and are continuous in the fundamental order parameters (m, k),
there is an important difference between the HS → HC and the IS → IC transitions, which
involves the behavior of the polarity distribution π(ξ). As one crosses from HS into HC, π(ξ)

remains unchanged, taking the value π(ξ) = δ(ξ − k) in both states. In contrast, we know
from (91) that the IS state has a continuous polarity distribution π(ξ) = ∫

dhW(ξ, h), whereas
the IC state has the binary distribution π(ξ) = 1

2 (1 + k0)δ(ξ − 1) + 1
2 (1 − k0)δ(ξ + 1). Thus,

the transition IS → IC is in fact discontinuous, in spite of it involving no jump in the order
parameter m itself.
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Figure 6. Phase diagram cross-section for n → ∞ (deterministic sequence selection) for the
cases where either Jg > Jp (protein-like inhomogeneous polarity sequences, k = k0) or Jg < Jp

(homogeneous polarity sequences, k = ±1) but with ν < 0. Solid line: transition marking
the continuous bifurcation of collapsed (m 	= 0) states, although for Jg > Jp this transition is
discontinuous in the polarity statistics. Phases are defined and described in the main text.
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Figure 7. Phase diagram cross-section for n → ∞ (deterministic sequence selection) for the case
where Jp > Jg and ν > 0 (homogeneous polarity sequences, unlike proteins). Here the system is
unable to minimize steric and polar energies simultaneously. Solid line: the continuous transitions
between swollen (m = 0) and collapsed (m 	= 0) solutions. Dashed: the discontinuous transition.
Phases are defined and described in the main text.

Upon translating our results into the original control parameters βJp and βJs one obtains
the phase diagram cross-sections shown in figures 6 and 7. The phase where compact (m 	= 0)
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and swollen (m = 0) states coexist will be characterized by strong remanence effects. The
thermodynamic transition line (calculated by selecting the solution with the lowest free energy)
coincides with the second-order transition for βJp <

√
3, and will be found inside the

coexistence region for βJp >
√

3.
Without noise (i.e. random mutations) in the sequence selection process, β̃ = ∞, we can

summarize the behavior of the system as follows. For Jp > Jg it always finds itself in states
where any infinitesimal functional advantage of either the hydrophilic or the hydrophobic
monomers leads to amino-acid sequences that are, unlike proteins, fully homogeneous in their
polarity. The phenomenology described by the remaining equations for m and the resulting
phase diagram reflect the interplay between the tendencies of the polarity-homogeneous system
to have similarly oriented amino-acid residues (induced by the long-range forces) and low
steric energies (induced by the short-range forces). The system behaves as an Ising chain with
random short-range bonds and uniform long-range bonds. In those cases where the amino-
acids are forced by steric effects to have non-identical side chain orientations (i.e. for ν > 0)
there is a complex competition between long-range and short-range order, which leads to low
values of |m| and strong remanence effects, in sharp contrast to the situation in mean-field
models [35]. In contrast, for ν < 0 both the long-range and the short-range forces promote
similar side chain orientations; the absence of frustration is responsible for the absence of
remanence effects and for having large |m| (strong secondary structure). For Jg > Jp it is
no longer energetically advantageous to select chains with uniform polarity, and here we find
the protein-like states. The polarity inhomogeneity of the sequence reduces dramatically the
energetic impact of the long-range forces compared to the case k ± 1, and this decouples
the strength |m| of the secondary structure from any preference for aligning or anti-aligning
short-range forces, as controlled by ν.

6. Transitions and phase diagrams for non-deterministic sequence selection

In this section, we extract solutions, transition lines and phase diagrams from our order
parameter equations for non-deterministic selection of primary sequences, namely finite n.
Full analytical solution of our equations is generally ruled out, so we restrict ourselves to the
study of instabilities and to collecting further information on phases by solving our equations
numerically. As in the previous section we restrict ourselves to simple parameter choices, in
particular we take v(u) = 1

2u2 and k0 ∈ (−1, 1).

6.1. Continuous transitions away from m = 0

We first derive exact conditions marking continuous phase transitions away from the state
m = 0 without secondary structure as defined and studied earlier, for arbitrary n. For m = 0
one has �(x) = �(x) = δ(x), and k is to be solved from (57). We make in our order
parameter equations (45), (47), (50)–(52) the substitutions m → �m, k → k + �k and
�(x) → δ(x) + ��(x). We next expand these equations in {�m,�k,��(x)} and locate
their linear instabilities. In doing so we may use k = ∫

dξ p(ξ)ξ , which holds for m = 0.
In practice it turns out somewhat easier to involve also the auxiliary distribution �(x), and
replace (47) by the pair (48) and (49). First, substitution into and expansion of equations (45)
and (49) gives

�p(ξ) = nβ(Jp − Jg)(ξ − k)p(ξ)�k + O(�2), (101)

��(x) = ��(x) − Jpkδ′(x)�m + O(�2). (102)
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These results are then substituted into (48), which leads to an equation for ��(x):

��(x) =∫
dx ′[��(x ′)− Jpk�mδ′(x ′)]

∫
dη w(η){δ[x − A(x ′, ηJs)] − δ(x)} enβ[B(x ′,ηJs )− νη]∫

dη w(η) enβ[B(0,ηJs )−νη]
+O(�2).

(103)

We next separate ��(x) into its symmetric and anti-symmetric parts, ��(x) = ��S(x) +
��A(x), giving up to order �:

��S(x) =
∫

dx ′��S(x
′)
∫

dη w(η){δ[x − A(x ′, ηJs)] − δ(x)}enβ[B(x ′,ηJs )− νη]∫
dη w(η) enβ[B(0,ηJs )− νη]

, (104)

��A(x) =
∫

dx ′[��A(x ′) − Jpk�mδ′(x ′)]
∫

dη w(η)δ[x − A(x ′, ηJs)]enβ[B(x ′,ηJs )−νη]∫
dη w(η) enβ[B(0,ηJs )−νη]

.

(105)

The symmetric and anti-symmetric parts obey independent equations, and only the anti-
symmetric part �A(x) is coupled to the bifurcation of m 	= 0. Apparently, any nonzero
solution of equation (104) describes transitions from one m = 0 state to another, whereas
equation (105) controls the bifurcations away from m = 0.

In order to expand equations (50) and (51) for the scalar order parameters we need to vary
the distribution W(ξ, h) defined in (52), which we first rewrite as

W(ξ, h) = p(ξ) coshn(βh)
∫

dx dy �(x)�(y)δ(h − Jpmξ − x − y)∫
dξ ′p(ξ ′)

∫
dx dy �(x)�(y) coshn[β(Jpmξ ′ + x + y)]

.

Upon varying this equation around the m = 0 state we then find

�W(ξ, h) = �p(ξ)δ(h) + 2p(ξ) coshn(βh)��(h) − Jp�mξp(ξ) coshn(βh)δ′(h)

− 2p(ξ)δ(h)

∫
dy coshn(βy)��S(y) + O(�2),

= p(ξ)

{
nβ(Jp − Jg)(ξ − k)δ(h) + coshn(βh)[2��(h) − Jpξ�mδ′(h)]

− 2δ(h)

∫
dy coshn(βy)��S(y)

}
+ O(�2). (106)

Insertion into (50) and (51) then gives, using
∫

dh tanh(βh) coshn(βh)δ′(h) = −β:

�m = 2k

∫
dh tanh(βh) coshn(βh)��A(h) + βJp�m

∫
dξ p(ξ)ξ 2+ O(�2), (107)

�k = nβ(Jp − Jg)

[∫
dξ ξ 2p(ξ) − k2

]
�k + O(�2). (108)

As expected, the perturbations �m couple only to the anti-symmetric part of ��(x); the
m 	= 0 bifurcations are the instabilities of the coupled pair (105) and (107). Furthermore,
equation (108) for �k does not depend on the symmetric part of ��(x), so we may for the
purpose of studying continuous transitions away from the m = 0 state regard δ�(x) as strictly
anti-symmetric and extract instabilities involving k only from (108).

It turns out that the (anti-symmetric) functional perturbation ��A(x) that solves
equation (105) can be expressed in terms of �m. We show this by substituting for λ 	= 1 the
ansatz

��A(x) = λJpk

λ − 1
δ′(x)�m, (109)
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into the leading orders of (105). Using integration by parts and the properties ∂xB(x, y)|x=0 =
0 and ∂xA(x, y)|x=0 = tanh(βy) this is found to give

λδ′(x) = −
∫

dx ′δ′(x ′)
∫

dη w(η)δ[x − A(x ′, ηJs)] enβ[B(x ′,ηJs )−νη]∫
dη w(η) enβ[B(0,ηJs )−νη]

,

= −
∫

dx ′δ(x ′)
∫

dη w(η)
{
nβδ[x − A(x ′, ηJs)] ∂

∂x ′ B(x ′, ηJs)
}

enβ[B(x ′,ηJs )−νη]∫
dη w(η) enβ[B(0,ηJs )−νη]

,

+

∫
dx ′δ(x ′)

∫
dη w(η)

{
δ′[x − A(x ′, ηJs)] ∂

∂x ′ A(x ′, ηJs)
}

enβ[B(x ′,ηJs )−νη]∫
dη w(η) enβ[B(0,ηJs )−νη]

= δ′(x)

∫
dη w(η) tanh(βηJs) enβ[B(0,ηJs )−νη]∫

dη w(η) enβ[B(0,ηJs )−νη]
. (110)

This confirms that (109) indeed solves our bifurcation equation, with

λ =
∫

dη w(η) tanh(βηJs) enβ[B(0,ηJs )−νη]∫
dη w(η) enβ[B(0,ηJs )−νη]

. (111)

This result allows us to compactify our bifurcation conditions further. Upon substituting (109)
into (107) and carrying out the remaining integral, we obtain the following simple set of
bifurcation conditions:

�m 	= 0 : 1 = βJp

[ ∫
dξ ξ 2p(ξ) − 2λk2

λ − 1

]
, (112)

�k 	= 0 : 1 = nβ(Jp − Jg)

[∫
dξ ξ 2p(ξ) − k2

]
, (113)

where

p(ξ) = w(ξ) enβξ(Jp−Jg)(k−k0)∫
dξ ′w(ξ ′) enβξ ′(Jp−Jg)(k−k0)

. (114)

For β = 0, infinite temperature, the right-hand sides of (112) and (113) are zero. Hence
the physical transitions occur at the highest temperature for which the right-hand sides have
increased to the value 1. If the first transition to take place is (113), then m will remain zero
and equation (112) will still apply to predict a further m 	= 0 transition. If (112) is the first
transition to occur, then (113) will no longer apply.

As a simple but non-trivial test we can recover from (112) and (113) our earlier predictions
for the limit n → ∞. Taking n → ∞ in (111) gives the simple result limn→∞ λ =
−sgn(ν) tanh(βJs). In the HS, HC and HM phases we have Jp > Jg and k = ±1, so
limn→∞ p(ξ) = δ(ξ − k) and therefore limn→∞

∫
dξ ξ 2p(ξ) = 1. This simplifies condition

(112) for the continuous bifurcation of m 	= 0 in the k = ±1 phases to the expression found
earlier in analyzing the n → ∞ equations, as it should:

βJs = 1
2 sgn(ν) log(βJp). (115)

For the k = k0 states the m 	= 0 bifurcation is discontinuous, involving a jump in the polarity
statistics as measured by π(ξ); so there equations (112) and (113) do not apply.

As an application of (112) and (113) we have solved these equations numerically for
Jg/Jp = ν = 1

2 and k0 = 0, to investigate the effect of genetic noise on the phase diagram
in figure 7 (although this is the biologically less relevant case of polymers with homogeneous
polarity, it has the more interesting phase diagram). The result is shown in figure 8. Although
based on equations that only apply to continuous transitions, the figure allows us to predict on
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Figure 8. Continuous bifurcations from swollen (m = 0, HS) to collapsed (m 	= 0) states, for
several n values around n = 2, for the case where Jp > Jg and ν > 0 (homogeneous polarity
sequences, unlike proteins). The corresponding curve for n = ∞ is shown in figure 7. We see
that, if there were no discontinuous transitions, reentrance would occur upon lowering T for n > 2,
where for n < 2 the continuous transition temperature is monotonic in Js/Jp . This suggests
strongly that there is a discontinuous bifurcation to an HM phase for n > 2, but not for n < 2.

topological grounds that discontinuous transitions will occur for n � 2. This is a remarkable
result: the critical value n = 2 for the onset of first-order transitions was found persistently in
earlier coupled dynamics models [31–34], but since these did not involve short-range forces,
its re-appearance in the present model strongly suggests an unexpected universality which at
present we do not understand.

7. Numerical results

7.1. Numerical solution of order parameter equations via population dynamics

The goal of this section is to verify numerically the phases predicted in previous sections, and
to provide phase diagrams for those cases where solutions of equations (47), (50)–(52) for
the observables m, k and �(x) cannot be found analytically. To limit the number of control
parameters to be varied we choose Js = 0.1, Jp = 1, µ = Jpk (so k0 = k) and k = 0.7
throughout, since this still allows us to probe all the phases in figures 6 and 7. We followed
the mathematically related studies [36–39] and solved the functional equation (47) using a
so-called population dynamics algorithm (with a population of size 104), which exploits the
interpretation of such equations as fixed-point conditions for a suitably chosen stochastic
process for the local fields.

We turn first to the most important and realistic case of (near-)deterministic sequence
selection, where for n → ∞ we expect to recover the behavior shown in the phase diagrams
of figures 6 and 7. Here we face the practical problem that in our equations n appears usually
in exponents, which limits our numerical analysis to values n � 400. It turns out that to
observe the n → ∞ predictions one needs values of n that are significantly larger than this;
furthermore, for large but finite n the limiting values of transition temperatures and the nature
of the various transitions can vary significantly from one phase to another. In figure 9 we
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Figure 9. Left: dependence of order parameter m on the folding temperature T, obtained
by numerical solution of the order parameter equations, for control parameters (Js , Jp, Jg) =
(0.1, 1, 2), k0 = 0.7, µ = 0.2 and ν = 0.5. The relative genetic noise levels n = T̃ /T where
n = 100 (connected triangle), n = 200 (connected circles) and n = 400 (connected squares).
According to our earlier analysis, for n → ∞ the phases should be those shown in figure 7. For
the present values of control parameters this predicts for n → ∞ a continuous transition from
m 	= 0 (IS phase) to m = 0 (IC phase) at limn→∞ Tc = 1.183 (shown as a vertical dashed line).
Right: the IS → IC transition temperatures Tc shown versus 1/n, for the same values of the
remaining control parameters. The data are perfectly consistent with the analytically determined
value limn→∞ Tc = 1.183 (dashed).

present numerical results for positive ν, where the steric forces make it energetically favorable
for adjacent amino acids to have different side chain orientations. We plot the order parameter
m versus temperature (the left panel) to locate the IS → IC phase transition, which for n → ∞
was predicted to be continuous, and which for the present control parameters should occur at
Tc = 1.183. It turns out that for large but finite n the transition is in fact discontinuous and at a
lower temperature than the n → ∞ one. However, a study of the asymptotic scaling with n of
the transition temperature, within the numerically accessible regime, confirms that for n → ∞
the correct value is found, see figure 9 (the right panel). The observed strong dependence on
n of the exact location of the transition is remarkable; the system appears to be very sensitive
to the ratio of temperatures of the two coupled processes, and the deterministic regime is
achieved only asymptotically. For n = 100 the location of the transition point differs by more
than 10% from its n → ∞ value. If one carries out a scaling analysis of the magnitude of the
jump in m found at the transition temperature for large but finite n, one finds that for n → ∞
this jump will indeed vanish, in agreement with our previous asymptotic analysis.

Upon carrying out a similar analysis for negative values of ν, where steric forces are
such that adjacent amino acids prefer identical chain orientations, the resulting graphs and the
physical picture are similar to those of ν > 0. For large but finite n the phase transition is
again discontinuous, and a scaling analysis shows once more good agreement with the theory
in the limit n → ∞. However, there is an important difference between the cases ν > 0
and ν < 0 which concerns the sub-leading orders in n−1 for the state k = k0, as n → ∞,
which is reflected in both the field distribution �(x) and in the order parameter k close the
transition. This is an important success of the population dynamics algorithm, which allows
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Figure 10. Dependence of order parameter m (connected squares) and k (connected circles) on
the folding temperature T, obtained by numerical solution of the order parameter equations, for
control parameters (Js , Jp, Jg) = (0.1, 1, 2), k0 = 0.2 and µ = 0.7. In both graphs the relative
genetic noise level is n = T̃ /T = 200. Left graph: ν = 0.5 (promoting different orientations for
adjacent amino acids). Right graph: ν = −0.5 (promoting identical orientations). The large n
theory of the previous section predicted that the sub-leading order in n for the k = k0 solution (as
shown here) is O(n−1) when ν < 0, but O(n−1/2) when ν > 0. The numerical data shown here
are consistent with this prediction.

us to evaluate in a simple and straightforward way the distribution �(x) of the short-range
contributions to the local effective fields. In addition, it is a crucial test to verify the scaling of
the sub-leading orders in n−1 predicted by our theory. Figure 10 shows how m and k behave
close to the transition. One notes that the (discontinuous) behavior of m is qualitatively similar
in both cases, whereas the polarity k behaves in a very different way: in contrast to ν < 0,
for ν > 0 there is a noticeable (small) jump in k at the transition. This can be explained if
we assume that for ν > 0 the solution scales in a different way with n−1. Close inspection of
the jump shows that this jump for ν > 0 is indeed of order 1/

√
n, again in perfect agreement

with the theory. The difference between the regimes ν < 0 and ν > 0 is also observed
in the distribution �(x) of the short-range contributions to the local effective fields; see
figure 11.

Although less relevant from a biological point of view, it is interesting to compare the phase
diagrams of n → ∞ (or at least large), describing (near-)deterministic sequence selection,
to those one would have found for very noisy sequence selection. An example is shown in
figure 12, for n = 1. Compared to the phase diagram of figure 6, we see that in the presence
of high genetic noise the impact of the short-range forces, as measured by Js is reduced
drastically (note the different vertical scales), with as expected a corresponding reduction of
sequence selection specificity.

7.2. Numerical simulations

The theory presented in this paper makes a large number of predictions about the cooperative
long-time behavior of the polymeric chain. In some asymptotic limits it is possible to work out
the expressions for the relevant order parameters of the system and find simplified algebraic
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Figure 11. Distribution �(x) of the short-range contributions to the local effective fields, for
(Js , Jp, Jg) = (0.1, 1, 2), n = 200, k0 = 0.2, µ = 0.7 and T = 1.07, as obtained via a population
dynamics algorithm. Left: ν = 0.5. Right: ν = −0.5. Since for n → ∞ the function �(x) is
symmetric, so these results confirm that finite-n effects are more profound for ν > 0 (where they
are predicted to be O(n−1/2)) than for ν < 0 (where they should be O(n−1)).
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Figure 12. Phase diagram cross-sections for n = 1 (strongly noisy sequence selection), µ = 0.7
and Jg/Jp = 2. Top curve: ν = −1 (promoting identical orientations of adjacent amino acids).
Bottom curve: ν = 1 (promoting opposite orientations). Solid line: transition marking the
continuous bifurcation of m 	= 0 states. Phases are defined and described in the main text.

equations which allow us to plot phase diagrams. In other cases, we had to rely on population
dynamics algorithms to solve our functional order parameter equations and detect the relevant
transition lines.

In order to have independent tests of our formulae we have also performed Monte Carlo
simulations of the stochastic processes that would lead to equilibration with the Hamiltonians
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Figure 13. Results of numerical simulations of the coupled stochastic processes of (fast) folding
and (slow) primary sequence selection, for N = 1000, at T = 0.3 and n = 200. Further
system parameters: ν = Jg = 1

2 , Jp = 1 and k = 0.7. For n → ∞ one expects to find the
phenomenology of figure 7, with k = −1 and with a region where m = 0 (swollen) and m 	= 0
(folded) states are simultaneously stable; for n = 200 one expects this to remain true but with
shifted values of Js/Jp . The left picture shows the equilibrated values of m, found upon increasing
Js in stages from below (full circles) and alternatively upon decreasing Js in stages from above
(open circles). It confirms that there is a coexistence region at the predicted range of values for
Js/Jp . The right picture, measured at Js/Jp = 0.25, shows the evolution in time of m (upper)
and k (lower), upon initializing the system in the folded state that is stable for lower values of
Js . It suggests that the chosen duration of 5 × 104 iterations per monomer suffices in the present
parameter regime to achieve equilibration.

(1) and (5). This is of course the cleanest way to check the theory. However, due to
the special character of the coupled dynamics which requires nested equilibrations of two
complex processes at widely separated time scales, these simulations are highly non-trivial
and extremely time consuming, and one is severely limited in both the number and the precision
of simulation experiments that can be completed reliably. A systematic scan of all possible
parameter regimes is certainly ruled out. Instead we focused on the regime n → ∞ (genetic
evolution of sequences at low noise levels). This is not only the most relevant one biologically,
but is also the regime where our predictions take their most explicit form, as here we could
go beyond population dynamics analyses. In particular, we chose to invest our computing
resources in verifying the existence and location of the predicted coexistence region in the
phase diagram shown in figure 7.

We simulated the coupled Monte Carlo dynamics associated with (1) and (5) for n = 200,
with ν = Jg = 1

2 , Jp = 1 (so figure 7 is predicted to apply at least in the limit n → ∞) and
k = 0.7, for a system of N = 1000 monomers at folding temperature T = 0.3. We employed
careful online tests to ensure equilibration of folding angles before carrying out monomer
substitutions (i.e. genetic updates), and we allowed for 5 × 104 iterations per monomer. For
these parameter choices our n → ∞ theory predicts that always k = −1, and that there are two
critical values for Js : one should find m 	= 0 (a folded state) for Js < 0.181,m = 0 (a swollen
state) for Js > 0.209, with coexistence of the m = 0 and m 	= 0 states for 0.181 < Js < 0.209.
For large but finite n (here: n = 200) one should expect on the basis of the earlier data in, e.g.
figure 9 to observe a shift of about 10% in these critical values relative to those of n → ∞.
The results of the simulation experiments are shown in figure 13. Each individual point in the
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left figure represents the outcome of a simulation where both the fast and the slow processes
have equilibrated. The figures confirm the existence of a coexistence region, with critical Js

values compatible with the predicted 10% shift relative to those calculated for n → ∞. The
associated value of the order parameter k is indeed k = −1. The graph showing the evolution
in time of the scalar observables illustrates for Js/Jp = 0.25 how the m 	= 0 destabilizes
if Js has become too large, and supports the claim that in the present parameter regime our
simulations have equilibrated sufficiently. The remaining fluctuations in m are finite size
effects, of the expected order �m ∼ N−1/2.

8. Discussion

In this paper we have studied the coupled stochastic dynamics of primary and secondary
structures formation (i.e. slow-genetic sequence selection and fast folding) in the context
of a solvable microscopic model that includes both short-range steric forces and long-range
polarity-driven forces. The rationale behind our approach is that it allows us to circumvent the
basic obstacle in the application of disordered system techniques to protein folding, which is
the need to specify in a mathematical formula the statistics of the disorder, i.e. the statistics of
the amino-acid sequences. Here this is not necessary, the sequences are themselves allowed
to evolve in time, albeit slowly (to model genetic selection) and in a manner that takes account
of the folding properties of the associated chain, and the statistics of sequences are now an
implicit output of the model rather than an input. Our solution is based on exploiting recent
mathematical progress [36, 37] in the diagonalization of replicated transfer matrices, and
leads in the thermodynamic limit to explicit predictions regarding phase transitions and phase
diagrams at genetic equilibrium.

In order to apply the methodology of replicated transfer matrices (which require a
formulation in the form of a pseudo-one-dimensional system) we limited ourselves to effective
Hamiltonians of a type that represents the physical feasibility and energetic gain of three-
dimensional folds indirectly, as in e.g. [26]. Even then, in order to keep the remaining
mathematics manageable, we chose to limit ourselves further by retaining only polarity forces
and steric forces, we reduced the orientation degrees of freedom of individual monomers,
and we made the simplest statistical assumptions regarding polarity and steric properties of
amino acids. However, in contrast to the above limitation to pseudo-one-dimensional models,
these latter restrictions and choices are not strictly required and can in principle be lifted
if one is willing to accept the inevitable associated quantitative increase in mathematical
complexity. Even in its reduced form, our model and its solution still have a large number of
control parameters to be varied, and a full exploration of its phase phenomenology would have
required more than double the present page numbers. Instead we have largely focused on the
regime which we believe to be the most relevant one biologically: the large n regime, where
the genetic noise is low. We have tried to explain the phases observed and their transitions,
and understand these qualitatively.

Our model was found to exhibit a parameter regime where protein-like behavior is
observed, i.e. where the genetic selection results in inhomogeneous polarity sequences,
and where the folding process describes transitions between swollen and collapsed phases.
There was also a parameter regime where the genetic dynamics leads to polymers which
are homogeneous in polarity. However, this unbiological behavior requires unphysical
values of the control parameters. There is a simple argument to see this. The reason for
the energetic advantage of homogeneous polarity sequences is the mean-field contribution
−(Jp/N)

∑
ij ξ(λi)ξ(λj )δφi ,φj

to (1), which even for completely random angles {φi}, where
〈δφi ,φj

〉 = q−1, retains on average a value −JpN(N−1 ∑
i ξ(λi))

2. In random heteropolymer
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models with frozen sequences this term is irrelevant, but here the sequences {λi} evolve, so the
system can reduce its energy by increasing |N−1 ∑

i ξ(λi)|. A rational alternative definition
would be to replace the mean-field term in (1) by −(Jp/N)

∑
ij ξ(λi)ξ(λj )[δφi ,φj

− q−1],
expressing energy gain via folding in terms of correlation between side-chain orientations and
polarity, rather than covariance. This would generate a term similar to the polarity balance
energy, and result in the replacement Jgv(k − k) → Jgv(k − k) + Jpk2/q. For the simple
choices q = 2, v(x) = 1

2x2, and k = 0, in particular, the change would translate into
the simple parameter re-scaling Jg → Jg + Jp. The natural parameter regime is apparently
Jg > Jp, that with inhomogeneous polarities.

There is certainly significant scope for improvement and expansion of this study. All
our simplifying choices, made for the sake of mathematical convenience, should however be
judged in the light of the complexity of the resulting equations even for the presently studied
simplified model. The obvious directions to move into next are clear. First, there is the
search for more realistic Hamiltonians describing the fast process, by improving the energetic
description of the effects of 3D folding (possibly via a formulation involving contact maps,
which would replace the long-range all-to-all forces by a sparse connectivity version), and
by including hydrogen bonds. Second, we would like to work out our formulae for the case
where the monomers’ mechanical degrees of freedom consist of two angles, that furthermore
can each take more than just two values (preferably a continuum, which would replace the
replicated transfer matrices by replicated kernels). Third, one would like to find more realistic
alternatives for the sequence selection Hamiltonian, that is more precise in terms of quantifying
a sequence’s biological functionality, and that employ a better proxy for the unique foldability
of a sequence than just its folding free energy.

We see this paper as a proof of principle, demonstrating that it is in principle possible
to construct solvable microscopic models of primary and secondary structures formation in
heteropolymers, with both long- and short-range forces, in which there is no need to assume
(and average over) random amino-acid sequences or to find a formula for suitably non-random
sequence statistics. This study represents a small step, but we believe it to be a step in a
promising direction.
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Appendix A. Identification of observables

A.1. ‘Slow’ free energy as generator of observables

In the stationary state, where both the fast degrees of freedom (φ, giving the secondary
structure) and the slow degrees of freedom (λ, giving the primary structure) have equilibrated,
expectation values of observables are given by two nested Boltzmann averages. Using
definition (5) and β̃ = nβ the result can be written as

〈〈G(φ, λ)〉fast〉slow =
∑

λ e−β̃Heff(λ)〈G(φ, λ)〉fast∑
λ e−β̃Heff(λ)

,

= eβ̃NfN

∑
λ

e−β̃Heff(λ)

{∑
φ e−βHf(φ|λ)G(φ, λ)∑

φ e−βHf(φ|λ)

}
,
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= eβ̃NfN

∑
λ

e−β̃[U(λ)+V (λ)]

Z1−n
f (λ)

∑
φ

G(φ, λ) e−βHf(φ|λ),

= eβ̃NfN

∑
λ

∑
φ1,...,φn

G(φ1, λ) e−β
∑

α [Hf(φ
α|λ)+U(λ)+V(λ)], (A.1)

with α = 1, . . . , n. This latter expression is also obtained as the derivative of the ‘slow’ free
energy fN , provided we add a suitable generating term to the ‘fast’ Hamiltonian Hf(φ|λ). To
be precise, upon replacing

Hf(φ|λ) → Hf(φ|λ) + χNG(φ, λ), (A.2)

one obtains

〈〈G(φ, λ)〉fast〉slow = lim
χ→0

∂

∂χ
fN. (A.3)

The validity of (A.3), which allows us to use the free energy as a generating function for
expectation values, follows immediately upon substituting (A.2) into (6):

lim
χ→0

∂

∂χ
fN = − lim

χ→0

1

nNβ

∂

∂χ
log

∑
λ

∑
φ1,...,φn

e−β
∑n

α=1[χNG(φα,λ)+Hf(φ
α |λ)+U(λ)+V (λ)]

= lim
χ→0

1

n

n∑
γ=1

∑
λ

∑
φ1,...,φn G(φγ , λ) e−β

∑n
α=1[χG(φα,λ)+Hf(φ

α |λ)+U(λ)+V (λ)]∑
λ

∑
φ1,...,φn e−β

∑n
α=1[χG(φα,λ)+Hf(φ

α |λ)+U(λ+V (λ))]
,

=
∑

λ

∑
φ1,...,φn G(φ1, λ) e−β

∑n
α=1[Hf(φ

α |λ)+U(λ)+V (λ)]∑
λ

∑
φ1,...,φn e−β

∑n
α=1[Hf(φ

α |λ)+U(λ)+V (λ)]
,

= eβ̃NfN

∑
λ

∑
φ1,...,φn

G(φ1, λ) e−β
∑n

α=1[Hf(φ
α |λ)+U(λ)+V (λ)],

= 〈〈G(φ, λ)〉fast〉slow. (A.4)

A.2. Identification of order parameters for q = 2

We next apply the general relations (A.2) and (A.3) for q = 2 to observables of the form
G(σ, λ) = N−1 ∑

i g(σi, ξi, ηi). Here equations (A.2) and (A.3) translate into

Hf(σ|λ) → Hf(σ|λ) + χ
∑

i

g(σi, ξi, ηi), (A.5)

1

N

∑
i

〈〈g(σi, ξi, ηi)〉fast〉slow = lim
χ→0

∂

∂χ
fN. (A.6)

We repeat our previous derivation of the free energy per amino acid (20) but now with the new
contribution χ

∑
i g(σi, ξi, ηi) included in the fast Hamiltonian Hf(σ), in leading order in χ .

The new term changes (14) into

M[σi−1, σi , σi+1|m, k] = 〈〈
eβξ [Jp

∑
α(kα+mασα

i )−nµ]

× e−βξnJgv
′( 1

n

∑
α kα−k)+βη[Jsσi+1·σi−1−nν]−βχ

∑
α g(σα

i ,ξ,η)
〉〉

ξ,η
. (A.7)

From this we can immediately recover the identifications (29) and (30). For instance, choosing
g(σ, ξ, η) = σξ gives

M[σi−1, σi , σi+1|m, k] = M

[
σi−1, σi , σi+1

∣∣∣∣m − χ

Jp

(1, . . . , 1), k
]
. (A.8)
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From this we extract, due to M[σi−1, σi , σi+1] only affecting the transfer matrix eigenvalue
λ(m, k), within the replica symmetric ansatz:

lim
N→∞

1

N

∑
i

〈〈ξiσi〉fast〉slow = lim
χ→0

∂

∂χ
fN = − 1

βn
lim
χ→0

∂

∂χ
log λRS

max

(
m − χ

Jp

, k

)
,

= 1

βnJp

∂

∂m
log λRS

max(m, k)|χ=0 = m (A.9)

according to (22). Similarly, making the alternative choice g(σ, ξ, η) = ξ gives in leading
order in χ :

M[σi−1, σi , σi+1|m, k] = M

[
σi−1, σi , σi+1

∣∣∣∣m, k − χ

Jp

(1, . . . , 1)

]
v′(·)→v′(·)−χv′′(·)/Jp

.

(A.10)

From this we extract, within the replica symmetric ansatz:

lim
N→∞

1

N

∑
i

〈〈ξi〉fast〉slow = lim
χ→0

∂

∂χ
fN

= − 1

βn
lim
χ→0

∂

∂χ
log λRS

max

(
m, k − χ

Jp

)∣∣∣∣
v′(·)→v′(·)−χv′′(·)/Jp

,

= − 1

βn
lim
χ→0

∂

∂χ
log λRS

max

(
m, k − χ

Jp

+
χ

Jp

[
Jg

Jp

v′′(k − k)

])
,

= 1

βnJp

[
1 − Jg

Jp

v′′(k − k)

]
∂

∂k
log λRS

max(m, k)|χ=0 = k, (A.11)

according to (23). The above identification of the scalar order parameters m and k was
relatively easy since we could absorb the extra generating terms into those already present.
This will generally not be the case.

A.3. Joint distribution of primary structure variables

We next turn to the calculation of the equilibrium amino-acid statistics as measured by
π(ξ̂ , η̂) = limN→∞ N−1 ∑

i〈〈δ(ξ̂ − ξi)δ(η̂ − ηi)〉fast〉slow. This distribution follows from
(A.5) and (A.6) upon making the choice g(σ, ξ, η) = δ(ξ − ξ̂ )δ(η − η̂):

Hf(σ|λ) → Hf(σ|λ) + χ
∑

i

δ(ξi − ξ̂ )δ(ηi − η̂) (A.12)

π(ξ̂ , η̂) = lim
N→∞

lim
χ→0

∂

∂χ
fN. (A.13)

The calculation is now complicated by the fact that the convenient decomposition identity (15)
no longer holds. Instead we now find, in replica symmetric ansatz:

M[σi−1, σi , σi+1|m, k] = M[σi−1, σi , σi+1|m, k]|χ=0

− nβχ
〈
δ(ξ − ξ̂ ) eβξ [Jp

∑
α(k+mσα

i )−nµ−nJgv
′(k−k)]

〉
ξ

〈
δ(η − η̂) eβη[Jsσi+1·σi−1−nν]

〉
η

+O(χ2), (A.14)
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so that∏
i

M[σi−1, σi , σi+1|m, k] =
∏

i

�σi−1,σi+1(m, k) + O(χ2)

− nβχ
∑

j

{〈
δ(ξ − ξ̂ ) eβξ [Jp

∑
α(k+mσα

i )−nµ−nJgv
′(k−k)]

〉
ξ

× 〈
δ(η − η̂) eβη[Jsσj+1·σj−1−nν]

〉
η

∏
i 	=j

M[σi−1, σi , σi+1|m, k]

}

=
[∏

i

�σi−1,σi+1(m, k)

]

×
[

1 − nβχ
∑

j

Vσj
(m, k)Wσj−1σj+1(m, k) + O(χ2)

]
, (A.15)

with

Vσ(m,k) =
〈
δ(ξ − ξ̂ ) enβξ [

Jp

n

∑
α(k+mσα

i )−µ−Jgv
′(k−k)]

〉
ξ〈

enβξ [
Jp

n

∑
α(k+mσα

i )−µ−Jgv′(k−k)]
〉
ξ

, (A.16)

Wσσ′(m,k) =
〈
δ(η − η̂) enβη[ Js

n
σ·σ′−ν]

〉
η〈

enβη[ Js
n

σ·σ′−ν]
〉
η

. (A.17)

This leads us to

lim
N→∞

1

N
log

∑
σ1,...,σN

∏
i

M[· · · | · · ·] = log λRS
max(m, k)|χ=0 (A.18)

−nβχ lim
N→∞

1

N

∑
j

∑
σ1,...,σN

[∏
i �σi−1σi+1(m, k)

]
Vσj

(m, k)Wσj−1σj+1(m, k)∑
σ1...σN

[∏
i �σi−1σi+1(m, k)

] + O(χ2)

(A.19)

and hence, with Γ(m, k) denoting the replica symmetric version (21) of the transfer matrix
Γ(m, k), with λRS

max(m, k) denoting the largest eigenvalue of Γ(m, k), and using the periodicity
of the chain:

lim
N→∞

fN = extrm,k

{
1

2
Jp(m2+ k2) + Jg[v(k − k) − kv′(k − k)]

+ χ lim
N→∞

∑
σ1...σN

[∏
i �σi−1σi+1(m, k)

]
Vσ1(m, k)WσN σ2(m, k)

(Tr[ΓN/2(m, k)])2

− 1

βn
log � − 1

βn
log λRS

max(m, k) + O(χ2)

}
, (A.20)

π(ξ̂ , η̂) =
[

lim
N→∞

∑
σ1σ3

ΓN/2−1
σ3σ1

(m, k)�σ1σ3(m, k)Vσ1(m, k)

Tr[ΓN/2(m, k)]

]

×
[

lim
N→∞

∑
σ2σN

ΓN/2−1
σ2σN

(m, k)�σN σ2(m, k)WσN σ2(m, k)

Tr[ΓN/2(m, k)]

]
. (A.21)
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In the latter expression one must substitute for (m, k) the solution of the original χ = 0
saddle-point problem. We find once more a convenient effective decoupling of the odd sites
from the even sites, as well as statistical independence of the single-site polarity and steric
angle statistics, giving π(ξ̂ , η̂) = π(ξ̂ )π(η̂) with the individual distributions

π(ξ̂ ) = lim
N→∞

∑
σσ′ Γ

N/2−1
σ′σ (m, k)

〈
δ(ξ − ξ̂ ) eβξ [Jp(nk+m

∑
α σα

i )−nµ−nJgv
′(k−k)]

〉
ξ

〈
eβη[Jsσ·σ′−nν]

〉
η

Tr[ΓN/2(m, k)]
,

(A.22)

π(η̂) = lim
N→∞

∑
σσ′ Γ

N/2−1
σ′σ (m, k)

〈
eβξ [Jp(nk+m

∑
α σα

i )−nµ−nJgv
′(k−k)]

〉
ξ

〈
δ(η − η̂) eβη[Jsσ·σ′−nν]

〉
η

Tr[ΓN/2(m, k)]
.

(A.23)

The limit N → ∞ can now be taken upon using the fact that for N → ∞ one may write in
leading order ΓN

σσ′(m, k) → λN(m, k)uR
σuL

σ′
/∑

σ′′ u
L
σ′′u

R
σ′′ , where

{
uL

σ

}
and

{
uR

σ

}
denote the

left and right eigenvectors of Γ(m, k) associated with the largest eigenvalue. In the result we
can then substitute our expression (41) for the largest eigenvalue and the replica symmetric
forms (31) and (32) for the eigenvectors. For the polarity distribution π(ξ̂ ) this gives, after
some further manipulations and with help of the definitions (45) and (52):

π(ξ̂ ) =
∑

σσ′ uL
σuR

σ′
〈
δ(ξ − ξ̂ ) eβξ [Jp(nk+m

∑
α σα

i )−nµ−nJgv
′(k−k)]

〉
ξ

〈
eβη[Jsσ·σ′−nν]

〉
η

λ(m, k)
∑

σ uL
σuR

σ

,

= p(ξ̂ )
∫

dh coshn(βh)
∫

dx �(x)�(h − x − ξ̂ Jpm)〉ξ∫
dξ p(ξ)

∫
dh coshn(βh)

∫
dx �(h − x − ξJpm)�(x)

,

=
∫

dhW(ξ̂ , h). (A.24)

For the steric angle distribution π(η̂) one finds an expression with a similar structure:

π(η̂) =
∑

σσ′ uL
σuR

σ′
〈
eβξ [Jp(nk+m

∑
ασα)−nµ−nJgv

′(k−k)]
〉
ξ

〈
δ(η − η̂) eβη[Jsσ·σ′−nν]

〉
η

λ(m, k)
∑

σ uL
σuR

σ

,

=
∫

dx dx′ �(x′)�(x)〈〈δ(η−η̂) enβ[B(x′,ηJs )+ξ(Jpk−µ−Jgv′(k−k))−ην] coshn[β(x+ξJpm+A(x′,ηJs))]〉〉ξ,η∫
dx �(x)〈〈enβ[B(x,ηJs )+ξ(Jpk−µ−Jgv′(k−k))−νη]〉〉ξ,η

∫
dx dx′ �(x′)�(x) coshn[β(x+x′)]

,

π(η̂) =
∫

dh coshn(βh)
∫

dx �(x)�(h − A(x, η̂Js))〈δ(η − η̂) enβ[B(x,ηJs )−ην]〉η∫
dh coshn(βh)

∫
dx �(x)�(h − A(x, η̂Js))

〈
enβ[B(x,ηJs )−ην]

〉
η

. (A.25)

Both in the limit n → 0 (fully random sequence selection) and in the limit β → 0 one sees
both equilibrated distributions reducing to the prior statistics w(ξ̂) and w(η̂), as it should.
In general, however, one will find non-trivial distributions π(ξ̂ ) and π(η̂), which reflect
the complicated interplay between the secondary and primary structures generation. Finally
we observe that π(ξ) 	= p(ξ), except when Jpm = 0; this suggests that, rather than the
polarity distribution in the equilibrated system, the physical interpretation of p(ξ) is that of
a prior distribution which would have been found in the absence of the secondary structure
formation.

Appendix B. Saddle-point treatment of order parameter equations in the limit n → ∞
B.1. Saddle-point treatment of the equation for �(x)

Since we know that �(x) = 0 for |x| > Js , we may write without loss of generality
�(x) = enβψ(x) for x ∈ � ⊆ [−Js, Js] and �(x) = 0 for x /∈ �, where

∫
�

dxenβψ(x) = 1. We
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also define for |x| � y and y > 0 the function

C(x, y) = 1

β
tanh−1[tanh(βx)/ tanh(βy)]. (B.1)

It is the inverse of the function A(x, y) with respect to the variable x, since C(A(x, y), y) = x

for all |x| < |y|. We note that C(0, y) = 0 and sgn[C(x, y)] = sgn(x). We can now insert our
expression for p(ξ) and the definition �(x) = enβψ(x) (for x ∈ �, with �(x) = 0 elsewhere)
into our equation for �(x), and use the function C(x, y) to subsequently transform variables
inside the δ-distribution on the right-hand side. Since the Jacobian of this transformation will
not be exponential in n as n → ∞, as a result of these manipulations we find for all x ∈ � an
equation for ψ(x) that is for n → ∞ evaluated by the steepest descent:

lim
n→∞ ψ(x) = lim

n→∞
1

βn
log

{
∫
�

dy
∫

dξ dη w(η)w(ξ)δ
[
C(x, ηJs) − y − Jpmξ

]
enβ[ψ(y)+ξ(Jp−Jg)(k−k0)+B(y+Jpmξ,ηJs )−νη]∫

�
dy

∫
dξ dηw(η)w(ξ) enβ[ψ(y)+ξ(Jp−Jg)(k−k0)+B(y+Jpmξ,ηJs )−νη]

}

(B.2)

= max
y∈�,y=C(x,ηJs )−Jpmξ,|ξ |�1,|η|�1

{ψ(y) + ξ(Jp − Jg)(k − k0) + B(y + Jpmξ, ηJs) − νη}
− max

y∈�,|ξ |�1,|η|�1
{ψ(y) + ξ(Jp − Jg)(k − k0) + B(y + Jpmξ, ηJs) − νη}. (B.3)

Solving the optimization problem (B.3) means calculating both the set � ⊆ [−Js, Js] and
the function limn→∞ ψ(x) for x ∈ �. Let us inspect some properties of this optimization
problem in more detail. Since the maximization in the first line of (B.3) is over a subset of
the set in the second line (instead of allowing for all y ∈ �, in the first line we impose y =
C(x, ηJs) − Jpmξ ), it is inevitable that limn→∞ ψ(x) � 0 for all x ∈ �. We now know that
ψmax = limn→∞ maxx∈� ψ(x) � 0. This leaves two options: ψmax < 0 versus ψmax = 0. In
the first case, however, we would get limn→∞ �(x) = limn→∞ enβψ(x) � limn→∞ enβψmax = 0
for all x ∈ �; this function can never be normalized. We conclude that ψmax = 0.

Let us turn to those values of x for which one has limn→∞ ψ(x) = ψmax = 0. We call the
set of those values � ⊆ �:

x ∈ �: max
y∈�,|ξ |,|η|�1,x=A(y+Jpmξ,ηJs )

{ψ(y) + ξ(Jp − Jg)(k − k0) + B(y + Jpmξ, ηJs) − νη}

= max
y∈�,|ξ |,|η|�1

{ψ(y) + ξ(Jp − Jg)(k − k0) + B(y + Jpmξ, ηJs) − νη}. (B.4)

We see that with every combination (y, ξ, η) that gives the maximum value in the second line
there corresponds a value of x ∈ �. If the maximum is obtained for a unique combination
(y, ξ , η), which apart from symmetries one must expect to be the generic case, then the set
� contains just one element x = A(y + Jpmξ, ηJs). It follows that one must generally
anticipate limn→∞ �(x) to be a sum of a small number of δ-peaks.

We can finally also use saddle-point arguments to express the limit n → ∞ of the free
energy per monomer (54) in terms of the function ψ(x), the scalar order parameters (k,m),
and the set �:

lim
n→∞ ϕ = 1

2Jp(m2+ k2) − 1
2Jg(k

2− k2) − |Jp − Jg||k − k0|
− max

x∈�,ξ,η∈[−1,1]
{ψ(x) + ξ(Jp − Jg)(k − k0) + B(x + Jpmξ, ηJs) − νη}. (B.5)

In the remainder of this section we will not attempt to solve problem (B.3) in its full
generality, but rather construct two qualitatively different specific solutions of (B.3), for which
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indeed �(x) is found to reduce to either one or two δ-peaks, and which both reduce exactly
to the unique solutions that we established earlier in the two limits Js → 0 or Jpm → 0.

B.2. Homogeneous polarity states k = ±1

Here we construct solutions of (B.3) where � = {x}, and show that these represent the
continuation to arbitrary Js > 0 and Jpm 	= 0 of the homogeneous polarity states k = ±1.
Now we must have � = � and limn→∞ ψ(x) = ψmax = 0, and (B.4) becomes

max
ξ,η∈[−1,1],x=A(x+Jpmξ,ηJs )

L(ξ, η) = max
ξ,η∈[−1,1]

L(ξ, η), (B.6)

L(ξ, η) = ξ(Jp − Jg)(k − k0) + B(x + Jpmξ, ηJs) − νη. (B.7)

In both sides of (B.6) we maximize exactly the same object, but on the left-hand side we
have the additional constraint that the values (ξ, η) for which the maximum is found must
allow the equation x = A(x + Jpmξ, ηJs) to have a solution x ∈ [−Js, Js]. If the
maximum on the (less constrained) right-hand side is obtained for a (ξ, η) such that the
equation x = A(x + Jpmξ, ηJs) has no solution x ∈ [−Js, Js], then the extra constraint
apparently interferes with the maximization and the two sides cannot be the same, so no
solution with � = {x} can exist. We conclude that the present type of solution exists if and
only if both sides of (B.6) find their maximum at the same value (ξ̂ , η̂) (values that will depend
on x, since x appears in the function to be maximized), with the value of x subsequently
following from solution of the nonlinear equation x = A(x + Jpmξ̂, η̂Js):

(ξ̂ , η̂) = argmaxξ,η∈[−1,1]L(ξ, η), (B.8)

x = A(x + Jpmξ̂, η̂Js). (B.9)

Since B(x, y) = B(|x|, |y|), and is monotonically increasing with both |x| and |y| we can
immediately maximize with respect to η ∈ [−1, 1], giving η̂ = −sgn(ν). This simplifies our
remaining problem to solving

x = −sgn(ν)A(x + Jpmξ̂, Js), (B.10)

ξ̂ = argmaxξ∈[−1,1]L(ξ), (B.11)

L(ξ) = ξ(Jp − Jg)(k − k0) + B(x+ Jpmξ, Js). (B.12)

To resolve the remaining extremization we inspect the properties of B(x, y), in particular its
second partial derivative in x. We find that the function L(ξ) is convex:

∂2L(ξ)

∂ξ 2
= J 2

pm2

{
1 − 1

2
tanh2[β(x+ Jpmξ + Js)] − 1

2
tanh2[β(x+ Jpmξ − Js)]

}
� 0.

(B.13)

L(ξ) can therefore only be maximal at the boundaries ξ ∈ {−1, 1}. Next we can rule out
states with x = 0, since substitution into (B.10) shows that they would be incompatible with
ξ̂ = ±1. Due to Jpm 	= 0, x 	= 0, and the monotonicity and symmetry of B(x, y), the
function L(ξ) is not symmetric in ξ , hence its maximum is unique:

ξ̂ = sgn

{
(Jp − Jg)(k − k0) +

1

2
[B(x+ Jpm, Js) − B(x− Jpm, Js)]

}
. (B.14)
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Having solved the extremization problem for solutions with � = {x}, resulting in the
two coupled equations (B.10) and (B.14) we turn to the n → ∞ limit of the order parameter
equations (81) and (82) for m and k. We define

R(ξ) = ξ(Jp − Jg)(k − k0) +
1

β
log cosh[β(Jpmξ + 2x)]. (B.15)

This is again a convex function, which is asymmetric in ξ (due to x 	= 0), and therefore takes
its maximal value on the interval [−1, 1] at the boundary

ξ̄ = sgn

{
(Jp − Jg)(k − k0) +

1

2β
log

[
cosh[β(Jpm + 2x)]

cosh[β(Jpm − 2x)]

]}
. (B.16)

Our equations for m and k can now be written as

m = lim
n→∞

∫
dξ w(ξ)ξ tanh[β(Jpmξ + 2x)]enβR(ξ)∫

dξ w(ξ) enβR(ξ)
,

= tanh[β(Jpm + 2xξ̄ )], (B.17)

k = lim
n→∞

∫
dξ w(ξ)ξ enβR(ξ)∫
dξ w(ξ) enβR(ξ)

= ξ̄ . (B.18)

We have now confirmed that the present family of solutions with � = {x} are indeed the
generalization to arbitrary values of Js and Jpm of the solutions k = ±1 with homogeneous
polarity, as claimed. Putting all our final equations together, replacing ξ̄ by k ∈ {−1, 1} and
using the full definition of B(x, y), gives the new set

x = −sgn(ν)A(x + Jpmξ̂, Js), (B.19)

m = tanh[β(Jpm + 2xk)], (B.20)

k = sgn

{
(Jp − Jg)(k − k0) +

1

2β
log

[
cosh[β(2x + Jpm)]

cosh[β(2x − Jpm)]

]}
, (B.21)

ξ̂ = sgn

{
(Jp − Jg)(k − k0)

+
1

4β
log

[
cosh[β(x+ Jpm + Js)] cosh[β(x+ Jpm − Js)]

cosh[β(x− Jpm + Js)] cosh[β(x− Jpm − Js)]

}
. (B.22)

In both of the limits Js → 0 and Jpm → 0 we recover correctly the equations of the k = ±1
states as derived earlier for these special cases, namely x = 0,m = tanh(βJpm), and
k = ξ̂ = sgn[(Jp − Jg)(k − k0)].

Finally we try to compactify and simplify our equations. We first solve x from (B.20),
which gives

x = k

[
1

2β
tanh−1(m) − 1

2
Jpm

]
. (B.23)

Subsequent insertion into (B.19) leaves us with

tanh
[

1
2 arctanh(m) − 1

2βJpm
]

tanh
[

1
2 arctanh(m) − 1

2βJpm(1 − 2kξ̂ )
] = −sgn(ν) tan(βJs). (B.24)

Furthermore, we note that with kξ̂ ∈ {−1, 1} only the choice k = ξ̂ will allow the above
equations to reduce to the equations for m → 0 that were found earlier, and that the alternative
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k = −ξ̂ would make it extremely difficult to satisfy both (B.21) and (B.22) simultaneously.
Upon choosing ξ̂ = k and after additional rearranging and manipulation we can reduce our
set of equations further to

sgn(ν) tan(βJs) = tanh
[

1
2βJp|m| − 1

2 tanh−1 |m|]
tanh

[
1
2βJp|m| + 1

2 tanh−1 |m|] , (B.25)

(Jp − Jg)(1 − k0k) >
1

2β
log

[
cosh[tanh−1 |m| − 2βJp|m|]

cosh[arctanh|m|]
]
, (B.26)

(Jp − Jg)(1 − k0k) >
1

4β
log

[
cosh[arctanh|m| − 3βJp|m|] + cosh(2βJs)

cosh[arctanh|m| + βJp|m|] + cosh(2βJs)

]
. (B.27)

The joint distribution W(h, ξ) of effective fields and polarities for the present solution is
very simple:

W(h, ξ) = δ[h − kβ−1 tanh−1(m)]δ(ξ − k) (B.28)

Working out the free energy per monomer (B.5) for the above solution gives, using k0 ∈ (−1, 1)

and equation (B.23) to eliminate x:

lim
n→∞ ϕ= 1

2
Jp(m2+ 1) − 1

2
Jg(1− k2) − |Jp − Jg|(1 − kk0) − (Jp − Jg)(1 − kk0)

− |ν| − B

(
1

2β
tanh−1(m) +

1

2
Jpm, Js

)
(B.29)

Equation (B.25) gives a single transparent law from which to solve our order parameter
m. Equations (B.20) and (B.21) give conditions for the solution of (B.25) to be acceptable;
they are guaranteed to be satisfied for small m if Jp > Jg (due to |k0| < 1), whereas for larger
m their validity needs to be checked explicitly. Equations (B.20) and (B.21) also suggest that,
as was found explicitly in the simple cases Js = 0 and Jpm = 0, the most stable solution (and
hence the thermodynamic state) will generally be the one with k = −sgn(k0). This completes
our analysis of solutions with � = {x}. We always find k = ±1, namely sequences with
homogeneous polarity, provided Jp > Jg .

B.3. Inhomogeneous polarity states k = k0

In the same manner we now construct the continuation to arbitrary values of Js and Jpm of
the inhomogeneous polarity states, where k = k0. For this case, where � no longer contains
just one point, our equation (B.3) from which to solve limn→∞ ψ(x) takes the following form:

ψ(x) = max
ξ,η∈[−1,1],y∈�,y=C(x,ηJs )−Jpmξ

L(ξ, η, y) − max
ξ,η∈[−1,1],y∈�

L(ξ, η, y), (B.30)

L(ξ, η, y) = ψ(y) + B(y + Jpmξ, ηJs) − νη (B.31)

(provided x ∈ �). In contrast to the k 	= k0 case, this equation has symmetries that can be
exploited: it allows for solutions with ψ(−x) = ψ(x) for all x ∈ �, with � being symmetric
around the origin. This is easily confirmed by working out the right-hand side of (B.30) under
the assumption of this symmetry (via transformations like y → −y and ξ → −ξ , which are
allowed by the constraints) upon making the replacement x → −x on the left-hand side and
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using L(−ξ, η,−y) = L(ξ, η, y) and C(−x, y) = C(x, y):

ψ(−x) − ψ(x) = max
ξ,η∈[−1,1],y∈�,y=C(−x,ηJs )−Jpmξ

L(ξ, η, y)

− max
ξ,η∈[−1,1],y∈�,y=C(x,ηJs )−Jpmξ

L(ξ, η, y),

= max
ξ,η∈[−1,1],y∈�,y=C(x,ηJs )−Jpmξ

L(−ξ, η,−y)

− max
ξ,η∈[−1,1],y∈�,y=C(x,ηJs )−Jpmξ

L(ξ, η, y) = 0. (B.32)

We will now construct solutions for k = k0 with this reflection symmetry. Inside (B.30) it
allows us to transform without punishment y → y sgn(η) and ξ → ξ sgn(η), which gives a
new expression that shows (using C(x,−y) = −C(x, y) and B(x, y) = B(|x|, |y|)) that both
terms are maximized for sgn(η) = −sgn(ν), and the second term more specifically for the
value η = −sgn(ν). Upon abbreviating �(x, ξ, η) = {y ∈ �|y = C(x, ηJs) − Jpmξ}:

max
ξ,η∈[−1,1],y∈�(x,ξ,η)

L(ξ, η, y) = max
ξ,η∈[−1,1],y∈�(x,ξ,η)

{ψ(y) + B(y + Jpmξ, |η|Js) − νη}

= max
|ξ |,|η|�1,y∈�(x,ξ,|η|)

{ψ(y) + B(y + Jpmξ, |η|Js) + |νη|},
and

max
ξ,η∈[−1,1],y∈�

L(ξ, η, y) = max
ξ,η∈[−1,1],y∈�

{ψ(y) + B(y + Jpmξ, |η|Js) − νη}

= max
|ξ |�1,y∈�

{ψ(y) + B(y + Jpmξ, Js)} + |ν|.
We observe the potential consistency of assuming ψ(x) to increase monotonically for x � 0.
An increase in x leads via the constraint y ∈ �(x, ξ, |η|) to an increase of y inside the first
maximization, so that ψ(y) will increase. The term with B(., .) will also increase if the sign
of ξ is chosen right. So we make the ansatz that ψ(x) is differentiable, and that ψ ′(x) � 0
on x � 0. This implies that � = [−u, u], with maxx∈� ψ(x) = ψ(u) = 0. The second
maximization in (B.30) now reduces to

max
y∈�,|ξ |�1

{ψ(y) + B(y + Jpmξ, Js)} + |ν| = ψ(u) + B(u + Jp|m|, Js) + |ν|

= B(u + Jp|m|, Js) + |ν|. (B.33)

This simplifies our equation (B.30) for ψ(x). For all x ∈ [0, u] we now have

ψ(x) = max
|y|�u,y=C(x,|η|Js )−Jpmξ,|ξ |,|η|�1

{ψ(y) + B(C(x, |η|Js), |η|Js) + |ν|(|η| − 1)}

− B(u + Jp|m|, Js),

= max
|y|�u,|y−C(x,|η|Js )|�Jp |m|,|η|�1

{ψ(y) + B(C(x, |η|Js), |η|Js) + |ν|(|η| − 1)}

− B(u + Jp|m|, Js),

= max
|η|�1

max
y∈[−u,u]∩[C(x,|η|Js )−Jp |m|,C(x,|η|Js )+Jp |m|]

× {ψ(y) + B(C(x, |η|Js), |η|Js) + |ν|(|η| − 1)} − B(u + Jp|m|, Js). (B.34)

Since ψ(y) is monotonic in |y|, we need |y| to be as large as possible for any given |η|.
Since the intersection interval (if it exists) is always biased to the right, we must find the
largest allowed value y in the intersection interval. The intersection is seen to be empty if
C(x, |η|Js) > u + Jp|m|, whereas the remaining possible scenarios are

u − Jp|m| < C(x, |η|Js) < u + Jp|m| : ymax = u,

C(x, |η|Js) < u − Jp|m| : ymax = C(x, |η|Js) + Jp|m|.
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Consistency with the premise x ∈ [0, u] demands that we must identify the point where x
becomes so large that the intersection interval is empty for any value of |η| should be the
boundary x = u. This, together with min|η|�1 C(x, |η|Js) = C(x, Js), immediately gives us
an equation for u: C(u, Js) = u + Jp|m|, or equivalently

u = A(u + Jp|m|, Js). (B.35)

Graphical inspection shows that this equation always has one unique non-negative solution u.
Within our present construction we can always achieve a non-empty intersection set in (B.34)
for suitable (ξ, η), and we may proceed with maximization over |η|. For each x ∈ � we now
have

ψ(x) = max
|η|�1,C(x,|η|Js )�u+Jp |m|

⎧⎪⎪⎨
⎪⎪⎩

ψ(C(x, |η|Js) + Jp|m|) + B(C(x, |η|Js), |η|Js) + |ν||η|
if C(x, |η|Js) < u − Jp|m|

B(u + Jp|m|, |η|Js) + |ν||η|
if C(x, |η|Js) > u − Jp|m|

− B(u + Jp|m|, Js) − |ν|,

= max
z∈[0,Js ],C(x,z)�u+Jp |m|

⎧⎪⎪⎨
⎪⎪⎩

ψ(C(x, z) + Jp|m|) + B(C(x, z), z) + |ν|z/Js

if C(x, z) < u − Jp|m|
B(u + Jp|m|, z) + |ν|z/Js

if C(x, z) > u − Jp|m|
− B(u + Jp|m|, Js) − |ν|,

= max
z∈[C(x,u+Jp |m|),Js ]

⎧⎪⎪⎨
⎪⎪⎩

ψ(C(x, z) + Jp|m|) + B(C(x, z), z) + |ν|z/Js

if z > C(x, u − Jp|m|)
B(u + Jp|m|, z) + |ν|z/Js

if z < C(x, u − Jp|m|)
− B(u + Jp|m|, Js) − |ν|. (B.36)

Since both C(x, z) and B(C(x, z), z) decrease monotonically with increasing z (see
appendix C) we are sure that for sufficiently small values of ν we always find the maximum
in (B.36) by substituting the smallest allowed value for z. We now proceed by assuming
this property to hold for any value of ν. If indeed we always need the smallest z, namely
z = C(x, u + Jp|m|), we obtain for all x ∈ [0, u]:

ψ(x) = B(u + Jp|m|, C(x, u + Jp|m|)) − B(u + Jp|m|, Js)

+
|ν|C(x, u + Jp|m|)

Js

− |η|. (B.37)

This expression meets our requirements: it increases monotonically on [0, u], and (using the
general identity C(x,C(x, y)) = y in combination with our previously established relation
C(u, Js) = u + Jp|m|) one verifies that ψ(u) = 0. We take this as sufficient support for our
ansatz; in addition we will find that for the purpose of evaluating the scalar order parameters
(m, k) and the phase diagrams we do not need the full shape of ψ(x) but only the property
that ψ(−u) = ψ(u) = maxx∈� ψ(x) with u = A(u + Jp|m|, Js).

What remains in our present analysis is to work out the order parameter equations for
m and k, and confirm that these support the premise limn→∞ k = k0. For large but finite
n one would expect to have k = k0 + k1/n + O(n−2) for n → ∞, which implies that
nβξ(Jp − Jg)(k − k0) = βξ(Jp − Jg)k1 + O(n−1). Similarly one would expect for large but
finite n that log �(x) = nβψ(x)+ψ1(x)+O(n−1), with ψ(x) as given by (B.37). Insertion of
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these forms into (81) and (82) gives integrals over (x, y) that can be evaluated by the steepest
descent, with the relevant saddle point obtained for x = y = u sgn(mξ):

m = lim
n→∞

×
∫

dξ w(ξ)ξ
∫ u

−u
dx dy tanh[β(Jpmξ+x+y)] en[log cosh[β(Jpmξ+x+y)]+βψ(x)+βψ(y)]+ψ1(x)+ψ1(y)+βξ(Jp−Jg)k1∫

dξ w(ξ)
∫ u

−u
dx dy en[log cosh[β(Jpmξ+x+y)]+βψ(x)+βψ(y)]+ψ1(x)+ψ1(y)+βξ(Jp−Jg)k1

,

= lim
n→∞

∫
dξ w(ξ)|ξ |sgn(m) tanh[β(Jp|mξ |+2u)] en log cosh[β(Jp |mξ |+2u)]+2ψ1(u sgn(mξ))+βξ(Jp−Jg)k1∫

dξ w(ξ) en log cosh[β(Jp |mξ |+2u)]+2ψ1(u sgn(mξ))+βξ(Jp−Jg)k1
,

(B.38)

so

|m| = tanh[β(Jp|m| + 2u)]. (B.39)

Similarly we must solve

k0 = lim
n→∞

∫
dξ w(ξ)ξ

∫ u

−u
dx dy en[log cosh[β(Jpmξ+x+y)]+βψ(x)+βψ(y)]+ψ1(x)+ψ1(y)+βξ(Jp−Jg)k1∫

dξ w(ξ)
∫ u

−u
dx dy en[log cosh[β(Jpmξ+x+y)]+βψ(x)+βψ(y)]+ψ1(x)+ψ1(y)+βξ(Jp−Jg)k1

,

= lim
n→∞

∫
dξ w(ξ)ξen log cosh[β(Jp |mξ |+2u)]+2ψ1(u sgn(mξ))+βξ(Jp−Jg)k1∫
dξ w(ξ) en log cosh[β(Jp |mξ |+2u)]+2ψ1(u sgn(mξ))+βξ(Jp−Jg)k1

,

= e2ψ1(u sgn(m))+β(Jp−Jg)k1 − e2ψ1(−u sgn(m))−β(Jp−Jg)k1

e2ψ1(u sgn(m))+β(Jp−Jg)k1 + e2ψ1(−u sgn(m))−β(Jp−Jg)k1
. (B.40)

As soon as a solution for the non-leading order ψ1(x) exists, there will be a value of k1 that
gives the desired value k = k0. However, careful inspection of the sub-leading orders in
the functional saddle-point equation for �(x) reveals that the above construction works for
ν < 0, but no finite solution ψ1(x) exists when ν > 0. In the latter case it turns out that the
solution of the problem scales with n as log �(x) = βnψ(x) + ψ1(x)

√
n + O(n0) and k =

k0 + k1/
√

n + · · · . For a detailed analysis of the different sub-leading orders see appendix D.
The final result is that k = k0 solutions always exist (although they will be locally stable

only for Jg > Jp), and that the associate value of the order parameter m is to be solved from
the two coupled equations

|m| = tanh[β(2u + Jp|m|)], (B.41)

tanh(βu) = tanh[β(u + Jp|m|) tanh(βJs). (B.42)

The sign of m is arbitrary, both solutions m = ±|m| are allowed and equally likely. We
solve the first equation for u, giving u = 1

2β−1 tanh−1(|m|) − 1
2Jp|m|, and obtain an equation

involving |m| only:

tanh
[

1
2 tanh−1(|m|) − 1

2βJp|m|]
tanh

[
1
2 tanh−1(|m|) + 1

2βJp|m|] = tanh(βJs). (B.43)

The joint distribution W(h, ξ) of effective fields and polarities for the present solution, where
Jpm 	= 0, is found to be

W(h, ξ) = 1
2 (1 + k0)δ(ξ − 1)δ[h − Jpm − 2u sgn(m)]

+ 1
2 (1 − k0)δ(ξ + 1)δ[h + Jpm + 2u sgn(m)] (B.44)

The free energy per monomer (B.5) for the present type of solution is found to reduce to

lim
n→∞ ϕ = 1

2Jp

(
m2+ k2

0

) − 1
2Jg

(
k2

0 − k2
) − |ν| − B

(
1
2β−1 tanh−1(|m|) + 1

2Jp|m|, Js

)
. (B.45)
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Appendix C. Properties of the functions C(x,y) and B(C(x,y),y)

The functions B(x, y) and C(x, y) are defined as

B(x, y) = 1

2β
log[4 cosh[β(x + y)] cosh[β(x − y)]], (C.1)

C(x, y) = β−1 tanh−1[tanh(βx)/ tanh(βy)]. (C.2)

We are only interested in the regime where y � 0 and |x| < y. The function C(x, y) is
monotonic and anti-symmetric in x, and obeys sgn[C(x, y)] = sgn(xy) and |C(x, y)| � |x|.
It is the x inverse of A(x, y), since

A(C(x, y), y) = β−1 tanh−1[tanh(βC(x, y)) tanh(βy)]

= β−1 tanh−1[tanh(βx)] = x,

C(A(x, y), y) = β−1 tanh−1[tanh(βA(x, y))/ tanh(βy)]

= β−1 tanh−1[tanh(βx)] = x.

Furthermore C(x, y) obeys the general identity

C(x,C(x, y)) = β−1 tanh−1

[
tanh(βx)

tanh(βx)/ tanh(βy)

]

= β−1 tanh−1[tanh(βy)] = y. (C.3)

The function B(x, y) is symmetric in x; thus also the function B(C(x, y), y) is symmetric in
x. The partial derivatives of C(x, y) are

∂

∂x
C(x, y) = tanh(βy)[1 − tanh2(βx)]

tanh2(βy) − tanh2(βx)
, (C.4)

∂

∂y
C(x, y) = − tanh(βx)[1 − tanh2(βy)]

tanh2(βy) − tanh2(βx)
. (C.5)

Next we work out and simplify the quantity B(C(x, y), y) with the help of identities such as

2 cosh[tanh−1(m) + βy] = eβy

(
1 + m

1 − m

) 1
2

+ e−βy

(
1 + m

1 − m

)− 1
2

2 cosh

[
tanh−1

(
tanh(βx)

tanh(βy)

)
+ βy

]
cosh

[
tanh−1

(
tanh(βx)

tanh(βy)

)
− βy

]

= tanh2(βy) + tanh2(βx)

tanh2(βy) − tanh2(βx)
+ cosh(2βy).

This results in

B(C(x, y), y) = 1

2β
log

{
4 cosh

(
tanh−1

[
tanh(βx)

tanh(βy)

]
+ βy

)

× cosh

(
tanh−1

[
tanh(βx)

tanh(βy)

]
− βy

)}

= 1

β
log[2 cosh(βy)] − 1

β
log cosh(βx) − 1

2β
log

[
1 − tanh2(βx)

tanh2(βy)

]
. (C.6)
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Hence we have
∂

∂x
B(C(x, y), y) = tanh(βx)[1 − tanh2(βy)]

tanh2(βy) − tanh2(βx)
. (C.7)

Thus, in the region |x| < |y| we have ∂
∂x

B(C(x, y), y) < 0 for x < 0 and ∂
∂x

B(C(x, y), y) > 0
for x > 0. The function B(C(x, y), y) is symmetric in x, diverges at x = ±y, and has a
unique minimum B(C(0, y), y) = β−1 log[2 cosh(βy)] at x = 0.

Appendix D. Analysis of sub-leading orders for the state k = k0 as n → ∞
Here we analyze in more detail the sub-leading terms in n of the non-trivial solution of our
equations (80)–(82) for the case where Jg > Jp, i.e. where m 	= 0 and k = k0, as n → ∞.
Given the exponential scaling with n of the kernel in (80), we may without loss of generality
for n → ∞ always write �(x) in one of the following two forms:

either : �(x) = enψ(x)+ψ1(x)+O(n−1), (D.1)

or : �(x) = enψ(x)+
√

nψ1(x)+O(n0). (D.2)

Since ψ(x) was found to be maximal at x = ±u (where u > 0), we find in both cases

lim
n→∞ �(x) = αδ(x − u) + (1 − α)δ(x + u), (D.3)

where

scaling (D.1) : α = eψ1(u)

eψ1(u) + eψ1(−u)
, (D.4)

scaling (D.2) : α = θ [ψ1(u) − ψ1(−u)]. (D.5)

We will show below that for ν < 0 the solution is of the form (D.1), with k = k0 + k1/n + · · · ,

k1 = 0, α =
√

1 + sgn(m)k0(
√

1 + |k0| − √
1 − |k0|)

2|k0| , (D.6)

and with limn→∞ p(ξ) = w(ξ), whereas for ν > 0 the solution is of the form (D.2), with
k = k0 + k1/

√
n + · · · ,
k1 = ψ1(−u) − ψ1(u)

βsgn(m)(Jp − Jg)
, α = θ [ψ1(u) − ψ1(−u)], (D.7)

and with limn→∞ p(ξ) = δ[ξ + sgn(k1)].

D.1. First scaling ansatz: O(n0) sub-leading terms

If we simply substitute (D.3) and k = k0 + k1/n + · · · into equation (80), we find

lim
n→∞ p(ξ) = w(ξ) eβξ(Jp−Jg)k1∫

dξ ′w(ξ ′) eβξ ′(Jp−Jg)k1
, (D.8)

and

αδ(x − u) + (1−α)δ(x + u)

= lim
n→∞

α
∫

dξ dη p(ξ)w(η)δ[x−A(Jpmξ+u, ηJs)] enβ[B(Jpmξ+u,ηJs )−νη]∫
dξ dη p(ξ)w(η){α enβ[B(Jpmξ+u,ηJs )−νη] + (1−α) enβ[B(Jpmξ−u,ηJs )−νη]}

+ lim
n→∞

(1−α)
∫

dξ dη p(ξ)w(η)δ[x−A(Jpmξ−u, ηJs)] enβ[B(Jpmξ−u,ηJs )−νη]∫
dξ dη p(ξ)w(η){α enβ[B(Jpmξ+u,ηJs )−νη] + (1−α) enβ[B(Jpmξ−u,ηJs )−νη]} . (D.9)
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Since η ∈ [−1, 1] and B(., .) is symmetric and monotonically increasing in both arguments,
the leading exponentials are maximal for η = −sgn(ν) and ξ = ±sgn(m), so

αδ(x − u) + (1 − α)δ(x + u)

= αp(sgn(m))δ[x+sgn(ν)A(Jp|m|+u,Js)]+(1−α)p(−sgn(m))δ[x−sgn(ν)A(Jp|m|+u,Js)]
αp(sgn(m))+(1−α)p(−sgn(m))

.

(D.10)

There are two possibilities for solution, dependent on how we match the two δ-peaks on either
side of this equation. One always ends up with u to be solved from

u = A(Jp|m| + u, Js), (D.11)

but, since u > 0, the specific matching depends on ν. For ν < 0 one is forced to choose

α = α eβsgn(m)(Jp−Jg)k1

α eβsgn(m)(Jp−Jg)k1 + (1−α) e−βsgn(m)(Jp−Jg)k1
, (D.12)

whereas for ν > 0 the only option is

α = (1−α)e−βsgn(m)(Jp−Jg)k1

α eβsgn(m)(Jp−Jg)k1 + (1−α) e−βsgn(m)(Jp−Jg)k1
. (D.13)

To proceed with equations (81) and (82) for m and k we first calculate∫
dξ W(h, ξ)ξf (h)

= lim
n→∞

∫
dξ dx dy w(ξ) eβξ(Jp−Jg)k1�(x)�(y)f (x + y + Jpmξ)ξ en log cosh[β(x+y+Jpmξ)]∫

dξ dx dy w(ξ) eβξ(Jp−Jg)k1�(x)�(y) en log cosh[β(x+y+Jpmξ)]
,

= sgn(m)
α2f (2u+Jp|m|) eβsgn(m)(Jp−Jg)k1 − (1−α)2f (−2u−Jp|m|) e−βsgn(m)(Jp−Jg)k1

α2 eβsgn(m)(Jp−Jg)k1 + (1−α)2 e−βsgn(m)(Jp−Jg)k1
.

(D.14)

Application of this formula to f (h) = tanh(βh) and f (h) = 1 gives

|m| = tanh[β(2u + Jp|m|)], (D.15)

k0 = sgn(m)
α2 eβsgn(m)(Jp−Jg)k1 − (1−α)2 e−βsgn(m)(Jp−Jg)k1

α2 eβsgn(m)(Jp−Jg)k1 + (1−α)2 e−βsgn(m)(Jp−Jg)k1
(D.16)

So far we have successfully recovered the equations for u and m are as derived earlier; the
next question is whether we can find a corresponding solution for k1 and α.

Both (D.12) and (D.13) are quadratic equations for α, so we expect at most two solutions.
In fact for ν > 0 only one of these is in the interval [0, 1]:

ν < 0: α ∈ {0, 1}, (D.17)

ν > 0: α = 1

1 + eβsgn(m)(Jp−Jg)k1
, (D.18)

For ν < 0, combination with (D.4) and (D.16) subsequently gives

k1 = 0, α =
√

1+sgn(m)k0
(√

1+|k0| − √
1−|k0|

)
2|k0| . (D.19)

For ν > 0, on the other hand, the solution breaks down. Upon writing k1 in terms of α and
substituting the result into (D.16), we find the trivial k0 = 0. Thus, only for the degenerate
special case k0 = 0 is the solution of our equations for ν > 0 of the form (D.1). We conclude
that the generic solution for ν > 0 scales differently with n.
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D.2. Second scaling ansatz: O(
√

n) sub-leading terms

If we substitute (D.3) and k = k0 + k1/
√

n + · · · into equation (80) (where k1 	= 0, since
otherwise we return to the previous scaling case) we get

lim
n→∞ p(ξ) = δ[ξ + sgn(k1)] (D.20)

and

αδ(x − u) + (1−α)δ(x + u)

= lim
n→∞

α
∫

dξ dη p(ξ)w(η)δ[x−A(Jpmξ+u, ηJs)] enβ[B(Jpmξ+u,ηJs )−νη]∫
dξ dη p(ξ)w(η)

{
α enβ[B(Jpmξ+u,ηJs )−νη] + (1−α) enβ[B(Jpmξ−u,ηJs )−νη]

}
+ lim

n→∞
(1−α)

∫
dξ dη p(ξ)w(η)δ[x−A(Jpmξ−u, ηJs)] enβ[B(Jpmξ−u,ηJs )−νη]∫

dξ dη p(ξ)w(η)
{
α enβ[B(Jpmξ+u,ηJs )−νη] + (1−α) enβ[B(Jpmξ−u,ηJs )−νη]

} . (D.21)

Once more the dominant exponent is maximal when η = −sgn(ν) and ξ = ±sgn(m), so

αδ(x − u) + (1−α)δ(x + u)

= lim
n→∞

e
√

n[ψ1(u)+βsgn(m)(Jp−Jg)k1]δ[x + sgn(ν)A(Jp|m| + u, Js)]

e
√

n[ψ1(u)+βsgn(m)(Jp−Jg)k1] + e
√

n[ψ1(−u)−βsgn(m)(Jp−Jg)k1]

+ lim
n→∞

e
√

n[ψ1(−u)−βsgn(m)(Jp−Jg)k1]δ[x − sgn(ν)A(Jp|m| + u, Js)]

e
√

n[ψ1(u)+βsgn(m)(Jp−Jg)k1] + e
√

n[ψ1(−u)−βsgn(m)(Jp−Jg)k1]
. (D.22)

Again we have to match the two δ-peaks on both sides. Since we know that the equation
u = −A(Jp|m|+u, Js) has no non-negative solutions u (for Jpm 	= 0), we are forced to match
δ(x ± u) to δ[x ± A(Jp|m| + u, Js)]. From this we recover equation (D.11), as required, but
now with

ν < 0 : α = lim
n→∞

e
√

n[ψ1(u)+βsgn(m)(Jp−Jg)k1]

e
√

n[ψ1(u)+βsgn(m)(Jp−Jg)k1] + e
√

n[ψ1(−u)−βsgn(m)(Jp−Jg)k1]
, (D.23)

ν > 0 : α = lim
n→∞

e
√

n[ψ1(−u)−βsgn(m)(Jp−Jg)k1]

e
√

n[ψ1(u)+βsgn(m)(Jp−Jg)k1] + e
√

n[ψ1(−u)−βsgn(m)(Jp−Jg)k1]
. (D.24)

Our present equations can be obtained from those of the previous scaling regime upon
substituting k1 → √

nk1 and ψ1(x) → √
nψ1(x). This allows us to take over the previous

evaluation of the order parameter equations for m and k, provided we make the appropriate
substitutions. For m we then recover equation (D.11) (as required), whereas the equation for
k gives

k0 sgn(m) = lim
n→∞

e
√

n[2ψ1(u)+βsgn(m)(Jp−Jg)k1] − e
√

n[2ψ1(−u)−βsgn(m)(Jp−Jg)k1]

e
√

n[2ψ1(u)+βsgn(m)(Jp−Jg)k1] + e
√

n[2ψ1(−u)−βsgn(m)(Jp−Jg)k1]
. (D.25)

We have now successfully recovered the expressions for u and m derived earlier; the remaining
question is whether we can find a corresponding solution for k1 and α from the coupled
equations (D.5), (D.23)–(D.25). Since |k0| < 1 we conclude from (D.25) that the following
must be true, so that the O(

√
n) terms cancel and the O(n0) terms can indeed give us |k0| < 1:

k1 = ψ1(−u) − ψ1(u)

βsgn(m)(Jp − Jg)
. (D.26)

This solution for k1 we can insert into our previous equations for α, which gives

ν < 0 : α = lim
n→∞

e
√

nψ1(−u)

e
√

nψ1(−u) + e
√

nψ1(u)
= 1 − α, (D.27)
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ν > 0 : α = lim
n→∞

e
√

nψ1(u)

e
√

nψ1(−u) + e
√

nψ1(u)
= α. (D.28)

Apparently, for ν > 0 the present scaling ansatz gives self-consistent solutions. For ν < 0
we find α = 1

2 , and hence k1 = 0 which is forbidden since it effectively brings us back to
the previous scaling regime. We conclude that, apart from degenerate limits, the two scaling
ansatz (D.1) and (D.2) are complementary: for ν < 0 the system is in a state of the type (D.1),
whereas for ν > 0 it is in a state of the type (D.2).
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