
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 255003 (24pp) doi:10.1088/1751-8113/41/25/255003

Spin models on random graphs with controlled
topologies beyond degree constraints
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Abstract
We study Ising spin models on finitely connected random interaction graphs
which are drawn from an ensemble in which not only the degree distribution
p(k) can be chosen arbitrarily, but which allows for further fine tuning of
the topology via preferential attachment of edges on the basis of an arbitrary
function Q(k, k′) of the degrees of the vertices involved. We solve these
models using finite connectivity equilibrium replica theory, within the replica
symmetric ansatz. In our ensemble of graphs, phase diagrams of the spin
system are found to depend no longer only on the chosen degree distribution,
but also on the choice made for Q(k, k′). The increased ability to control
interaction topology in solvable models beyond prescribing only the degree
distribution of the interaction graph enables a more accurate modeling of real-
world interacting particle systems by spin systems on suitably defined random
graphs.

PACS numbers: 75.10.Nr, 05.20.−y, 64.60.Cn

1. Introduction

The study of spin systems on finitely connected random graphs started nearly 30 years ago
[1–5], but in the last decade has enjoyed renewed popularity as a result of many successful
multi-disciplinary applications of the mathematical tools that it generates. The reason is
clear: interacting particle systems in the real world do not have full connectivity, but generally
involve an average number of interaction partners per unit that is indeed limited. Moreover,
apart from carefully prepared pure samples of magnetic materials or crystalline solids, the
graph that represents which elements interact with each other appears in most disciplines
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random in the first approximation, often with features that are remarkably universal across
fields, such as a power-law distribution of node degrees. The mathematical techniques used
to study such systems are consequently being refined and applied in areas as diverse as spin-
glass and glass modeling [6–11], error correcting codes [12–16], theoretical computer science
[17–23], recurrent neural networks [24–26], ‘small-world’ networks [27–29], socio-economic
modeling [30, 31] and CDMA communication [32–35]. Although the replica route is not
the only method available for analyzing finitely connected spin systems, see, e.g. [36], it has
the advantages of allowing for arbitrary bond distributions and more general graph statistics,
and being fully systematic. Following a first wave of equilibrium studies, based on the finite
connectivity replica method, we are now also beginning to acquire mathematical techniques
with which to bring the dynamics of spin systems on finitely connected random graphs under
control [37–44].

In modeling real-world systems of the above type one places the dynamical variables
(e.g. spins) on the vertices of a graph, with edges connecting the variables that interact. The
behavior of the model depends strongly on the choice made for the graph; however, this
graph has to be drawn randomly to make analytical progress using disordered systems theory.
So one tries to define a random graph ensemble with topological characteristics that are as
close as possible to those observed in the system to be modeled, while keeping the model
solvable. The state of the art in this respect is defining a random graph ensemble where
edges are drawn subject to the constraint that all vertex degrees are prescribed. Here the
only information on the topology of the system that is effectively carried over from the real
world (apart from irrelevant site permutations) is the graph’s degree distribution. Since for
most degree distributions there is still a large and diverse set of compatible microscopic graph
realizations, with possibly distinct macroscopic phenomenology for spin dynamics and statics,
one would like to increase the amount of topological information embedded in the random
graph ensemble, beyond prescribing just the degree distribution.

In this paper we present a simple class of Ising spin models on finitely connected random
graphs, where these graphs are drawn from ensembles in which not only the degree distributions
can be chosen arbitrarily and imposed as a constraint, but where in addition the edges are
drawn in a way that allows for preferential attachment on the basis of an arbitrary function
of the degrees of the two vertices concerned (similar in spirit to the so-called hidden variable
ensembles [45–49]). The graphs thus generated are no longer characterized by their degree
distribution alone, yet the associated spin models can still be solved in thermal equilibrium
using conventional finite connectivity replica techniques. The graphs in the proposed ensemble
remain effectively tree-like, and the clustering coefficients of randomly selected vertices are
zero with probability one (as in the standard finite connectivity ensembles with prescribed
degrees only). We solve our models with the replica symmetry (RS) ansatz, and show which
features of the phase diagrams and the dependences of observables on control parameters are
identical across all graphs with the same degree distribution, and which features depend more
specifically on the extra topological information that is included.

2. Definitions

We study a finitely connected and bond-disordered system of N interacting Ising spins
σi ∈ {−1, 1}, in thermal equilibrium characterized by the following Hamiltonian:

H(σ) = −
∑
i<j

cij σiJij σj σ = (σ1, . . . , σN). (1)
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The frozen variables cij ∈ {0, 1} define the connectivity of the system; they define a random
graph, with vertices labeled by i, j ∈ {1, . . . , N} and with cij = 1 if an only if i and j are
connected by a link. We define cij = cji and cii = 0 for all (i, j), and abbreviate c = {cij }.
The bonds Jij ∈ R are drawn randomly and independently from some distribution P(J ). To
characterize the topology of a graph c we define for each vertex i the degree ki(c) = ∑

j cij

(the number of links to this vertex), and the degree distribution p(k|c) = N−1 ∑
i δk,ki (c).

Thus the average connectivity of a graph c is 〈k〉 = ∑
k�0 kp(k|c), which we choose to be

finite, even in the limit N → ∞. We draw the graph c randomly from an ensemble defined
by a probability distribution Prob(c) in which not only the degrees are constrained to take
prescribed values {k1, . . . , kN }, but where the link probabilities are modified further according
to some function Q(·, ·) of the degrees of the two vertices involved

Prob(c) = 1

ZN

∏
i<j

[ 〈k〉
N

Q(ki, kj )δcij ,1 +

(
1 − 〈k〉

N
Q(ki, kj )

)
δcij ,0

]∏
i

δki ,ki (c) (2)

ZN =
∑

c

∏
i<j

[ 〈k〉
N

Q(ki, kj )δcij ,1 +

(
1 − 〈k〉

N
Q(ki, kj )

)
δcij ,0

]∏
i

δki ,ki (c). (3)

The N degrees are, in turn, drawn randomly from a prescribed distribution p(k). Clearly we
require Q(k, k′) � 0 for all k, k′. In order to ensure furthermore that for large N such graphs
can actually be found, we need to choose the function Q(·, ·) such that in formula (2) the partial
measure

∏
i<j [· · ·] is consistent with the average connectivity 〈k〉 = ∑

k kp(k) imposed by
the constraining factor

∏
i δki ,ki (c). Upon defining Q(k, k′) = Q(k′, k), this is achieved when

limN→∞ N−2 ∑
i �=j Q(ki, kj ) = 1, so the function Q(·, ·) is to be chosen subject to

Q(k, k′) � 0 ∀ k, k′ and
∑

k,k′�0

p(k)p(k′)Q(k, k′) = 1. (4)

In the appendix we list and derive several properties of the random graph ensemble (2), and
show that Q(k, k′) represents the probability that two randomly drawn vertices with degrees
k and k′ will be connected, divided by the overall probability for two randomly drawn links to
be connected (irrespective of their degrees).

Given the above definitions, our objective is to calculate for the system (1) the asymptotic
disorder-averaged free energy per spin f , in order to find the phase diagrams for spin systems
defined on typical graphs in the ensemble (2):

f = − lim
N→∞

1

βN
log

∑
σ

e−βH(σ) = − lim
N→∞

lim
n→0

1

βnN
log

[∑
σ

e−βH(σ)

]n

(5)

in which · · · denotes averaging over the disorder in the problem, namely the randomly drawn
graph c with statistics (2) and the random bonds {Jij }. This calculation is done with the
finite connectivity replica method, within the replica symmetric (RS) ansatz. We will be
particularly interested in the dependence of the phase diagrams on the choice made for Q(·, ·).
In the absence of the degree constraints, the function Q(·, ·) would have controlled the bond
probabilities fully, via 〈cij 〉 = Q(ki, kj )〈k〉/N . Here, in contrast, its role is to deform the
measure imposed by the degree constraints, biasing the probabilities in those cases where there
exist multiple graphs with the same degree distribution.

A relevant question to be asked at the beginning is whether the ensemble deformation
induced by Q(k, k′) can have sufficient impact in the thermodynamic limit on macroscopic
observables to justify the present calculation. For instance, upon calculating for the ensemble
(2) the joint distribution of degrees and clustering coefficients for N → ∞ one finds that, like
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ensembles with degree constraints only, the clustering coefficients are zero with probability
one, see appendix A.2. However, upon reflection it becomes clear that the proposed ensemble
deformation will generally affect the system’s phase diagram. A quick way to see this is
to compare the two choices Q(k, k′) = 1 and Q(k, k′) = δkk′

/∑
k′′ p2(k′′). In the first

case we return to the degree-constrained ensemble in [26]. In the second case our ensemble
describes graphs that are each composed of disconnected regular sub-graphs, of sizes p(k)N

for each k with p(k) > 0. The transitions away from the paramagnetic state will now be
those corresponding to the sub-graph with the largest degree allowed by p(k); these will only
coincide with those of Q(k, k′) = 1 when p(k) = δk,c, i.e. when the degree distribution itself
is that of a regular graph.

3. Equilibrium replica analysis

3.1. Derivation of saddle-point equations

As usual, we calculate (5) upon writing the Kronecker δs of the degree constraints in integral
form, using δnm = (2π)−1

∫ π

−π
dω eiω(n−m). This gives, after some rearranging of summations,

factorization over the disorder variables. We define the short-hands σi = (σ 1
i , . . . , σ n

i ), so
that

f = lim
N→∞

lim
n→0

1

βnN

{
logZN − log

∑
σ1...σN

∫ π

−π

∏
i

[
dωi

2π
eiωiki

]

×
∏
i<j

(
1 +

〈k〉
N

Q(ki, kj )

[∫
dJP (J ) eβJσi ·σj −i(ωi+ωj ) − 1

])}

= lim
N→∞

lim
n→0

1

βnN

{
logZN − log

∑
σ1...σN

∫ π

−π

∏
i

[
dωi

2π
eiωiki

]

× exp

[ 〈k〉
2N

∑
ij

Q(ki, kj )

[∫
dJP (J ) eβJσi ·σj −i(ωi+ωj ) − 1

]
+ O(N0)

]}
. (6)

We proceed toward a steepest descent integration by introducing for σ ∈ {−1, 1}n and
k ∈ {0, 1, 2, . . .} the functions D(k, σ|{σi , ωi}) = N−1∑

i δk,ki
δσ,σi

e−iωi . They are
introduced via the substitution of integrals over appropriate δ-distributions, written in integral
form, namely

1 =
∫

dD(k, σ) dD̂(k, σ)

2π/N
eiND̂(k,σ)[D(k,σ)−D(k,σ|{σi ,ωi })]. (7)

Upon using also N−1 ∑
ij Q(ki, kj ) = N + O(

√
N) due to (4), and the short hand

{dD dD̂} = ∏
k,σ D(k, σ) dD̂(k, σ) we then obtain

f = lim
N→∞

lim
n→0

1

βnN

{
logZN − log

∫
{dD dD̂} eiN

∑
kσ D̂(k,σ)D(k,σ)− 1

2 N〈k〉+O(N1/2)

× exp

[
1

2
〈k〉N

∑
kk′

Q(k, k′)
∑
σσ′

D(k, σ)D(k′, σ′)
∫

dJP (J ) eβJσ·σ′
]

× exp

[
N
∑

k

p(k) log
∑

σ

∫ π

−π

dω

2π
eiωk−iD̂(k,σ) e−iω

]}
. (8)
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We next define z = limN→∞ N−1 logZN (anticipating this limit to exist), which allows us to
evaluate f by steepest descent and write

f = lim
n→0

1

n
extr{D,D̂}fn[{D, D̂}] (9)

fn[{D, D̂}] = − 1

β

{
i
∑
kσ

D̂(k, σ)D(k, σ) − 1

2
〈k〉 − z

+
1

2
〈k〉

∑
kk′

Q(k, k′)
∑
σσ′

D(k, σ)D(k′, σ′)
∫

dJP (J ) eβJσ·σ′

+
∑

k

p(k) log
∑

σ

∫ π

−π

dω

2π
eiωk−iD̂(k,σ) e−iω

}
. (10)

The extremization in (9) with respect to {D, D̂} gives the following saddle-point equations:

D̂(k, σ) = i〈k〉
∑
k′

Q(k, k′)
∑
σ′

D(k′, σ′)
∫

dJP (J ) eβJσ·σ′
(11)

D(k, σ) = p(k)
∫ π

−π
dω eiω(k−1)−iD̂(k,σ) e−iω∑

σ′
∫ π

−π
dω eiωk−iD̂(k,σ′) e−iω

. (12)

The second of these equations can be simplified using the identity∫ π

−π

dω eiω�−iD̂(k,σ) e−iω =
{

2π [−iD̂(k, σ)]�/�! if � � 0
0 if � < 0.

(13)

So, if we also re-define D̂(k, σ) = i〈k〉F(k, σ), we arrive at

F(k, σ) =
∑
k′

Q(k, k′)
∑
σ′

D(k′, σ′)
∫

dJP (J ) eβJσ·σ′
(14)

D(k, σ) = p(k)k

〈k〉
Fk−1(k, σ)∑
σ′ Fk(k, σ′)

. (15)

3.2. Simplified expression for free energy per spin

Formula (9) for the disorder-averaged free energy per spin, which is to be evaluated at
the relevant solution of the saddle-point equations (14) and (15), still contains the term
z = limN→∞ N−1 logZN , which measures the effective number of graphs in our ensemble
(2). Since z is independent of β we can use the identity limβ→0(βf ) = −log 2 to find it. With
(13), (14) and (15) we first write (9) as

f = lim
n→0

1

βn

{
z + 〈k〉 − 〈k〉 log〈k〉 −

∑
k

p(k) log

[
1

k!

∑
σ

Fk(k, σ)

]}
(16)

(with D and F taken at the relevant saddle point). Working out the saddle-point equations for
β → 0 shows that there the two-order parameter functions {D,F } become independent of σ,
namely D(k, σ) = 2−nD(k) and F(k, σ) = F(k), where the latter obey

F(k) =
∑
k′

p(k′)k′

〈k〉 Q(k, k′)F−1(k′), D(k) = p(k)k

〈k〉 F−1(k). (17)

5



J. Phys. A: Math. Theor. 41 (2008) 255003 C J Pérez Vicente and A C C Coolen

Insertion into the equation limβ→0(βf ) = − log 2, together with (16), then leads us after some
further simple manipulations to the following formula, where F(k) is the solution of (17):

z = 〈k〉 log〈k〉 − 〈k〉 +
∑

k

p(k) log

[
1

k!
Fk(k)

]
(18)

and hence

f = − lim
n→0

1

βn

∑
k

p(k) log

[∑
σ

[F(k, σ)/F (k)]k
]

. (19)

We note that for the non-deformed graph ensemble with degree constraints and finite
connectivity statistics only, namely Q(k, k′) = 1 for all (k, k′), the solution of (17) would be
F(k) = 1 and D(k) = p(k)k/〈k〉. If we now define π(k) = e−〈k〉〈k〉k/k!, i.e. Poissonnian
degree probabilities with average degree 〈k〉, we see that

z = znd +
∑

k

p(k)k log F(k) (20)

znd =
∑

k

p(k) log π(k) = −Hp − D(p‖π) (21)

with the entropy Hp = −∑k p(k) log p(k) � 0 of the degree distribution and the Kullback–
Leibler distance D(p‖π) = ∑

k p(k) log[p(k)/π(k)] � 0 between the actual degree
distribution p(k) and the Poissonnian π(k). Since z measures the effective number of graphs
that can be generated from our ensemble, and znd is its value in the absence of deformation, it
follows from (20) that we can define a simple measure �def of the graph specificity increase
resulting from the introduction of the deformation defined by a function Q(k, k′) as follows:

�def = −
∑

k

p(k)k log F(k). (22)

3.3. Replica symmetric theory

To take the required limit n → 0 in our formulae we make the ergodic or replica-symmetric
(RS) ansatz. The replica order parameter D(k, σ) must now be invariant under all replica
permutations, and therefore have the following form, with

∫
dhD(k, h) = ∑

σ D(k, σ):

D(k, σ) =
∫

dhD(k, h)
eβh

∑
α σα

[2 cosh(βh)]n
. (23)

We work out the implication of this ansatz for the order parameter F(k, σ), using the identity
f (σ) = eAσB, with A = 1

2 log[f (1)/f (−1)] and B = √
f (1)f (−1) (which holds for

σ = ±1), as well as the identity 1
2 log[cosh(x + y)/cosh(x − y)] = atanh[tanh(x) tanh(y)].

This results in

F(k, σ) =
∑
k′

Q(k, k′)
∫

dh′ dJD(k′, h′)P (J )
∏
α

cosh(β[Jσα + h′])
cosh(βh′)

=
∑
k′

Q(k, k′)
∫

dh′ dJD(k′, h′)P (J )Gn(h
′, J ) e

1
2 (
∑

α σα) log[cosh(β[J+h′])/cosh(β[J−h′])]

=
∫

dhF(k, h) eβh
∑

α σα (24)
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with

Gn(h, J ) = [cosh(β[h + J ]) cosh(β[h − J ])/cosh2(βh)]n/2 (25)

F(k, h) =
∑
k′

Q(k, k′)
∫

dh′ dJD(k′, h′)P (J )Gn(h
′, J )

× δ [h − β−1atanh[tanh(βJ ) tanh(βh′)]]. (26)

We will now have two new saddle-point equations, written in terms of the RS kernels F and
D. The first equation is (26). The second follows upon inserting (23) and (24) into (15)∫

dhD(k, h)
eβh

∑
α σα

[2 cosh(βh)]n
= p(k)k

〈k〉

∫ ∏
��k−1[dh�F (k, h�)] eβ

∑
α σα

∑
��k−1 h�∫ ∏

��k[dh�F (k, h�)][2 cosh(β
∑

��k h�)]n

= p(k)k

〈k〉
∫

dh eβh
∑

α σα

×
∫ ∏

��k−1[dh�F (k, h�)]δ[h −∑
��k−1 h�]∫ ∏

��k[dh�F (k, h�)][2 cosh(β
∑

��k h�)]n
. (27)

From this result we can read off the second-order parameter equation. Upon taking the limit
n → 0 in the latter result and our first equation (26), we arrive at the transparent expressions

F(k, h) =
∑
k′

Q(k, k′)
∫

dh′ dJD(k′, h′)P (J )δ

[
h − 1

β
atanh[tanh(βJ ) tanh(βh′)]

]
(28)

D(k, h) = p(k)k

〈k〉

∫ ∏
��k−1[dh�F (k, h�)]δ

[
h −∑

��k−1 h�

]
[ ∫

dh′F(k, h′)
]k . (29)

Upon defining finally D(k) = ∫
dhD(k, h) and F(k) = ∫

dhF(k, h), we discover that these
last two integrals are exactly the quantities in (17), since upon integrating over h in both
equations (28) and (29) they reduce precisely to (17). This does not seem to be a trivial
result, since (17) was derived from the properties of the random graph ensemble alone.
Given these relations one is prompted automatically to define D(k, h) = D(h|k)D(k) and
F(k, h) = F(h|k)F (k), where now

∫
dhD(h|k) = ∫

dhF(h|k) = 1. Our RS order parameter
equations thereby take the form

F(h|k) =
∑
k′

Q(k, k′)p(k′)k′

〈k〉F(k)F (k′)

∫
dh′ dJD(h′|k′)P (J )

× δ

[
h − 1

β
atanh[tanh(βJ ) tanh(βh′)]

]
(30)

D(h|k) =
∫ ∏

�<k

[dh�F (h�|k)]δ

[
h −

∑
�<k

h�

]
(31)

F(k) = 〈k〉−1
∑
k′

p(k′)k′Q(k, k′)F−1(k′), (32)

where D(k) subsequently follows from the second identity in (17), and where (32)
automatically ensures that the solutions of (30) and (31) are normalized. If we write the
free energy (19) for our present RS solution in terms of the quantities in (30), (31) and (32)

7
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and take the limit n → 0, using relations such as
∑

k D(k)F (k) = 1, we find in a similar
manner the remarkably simple result

f RS = − 1

β
log 2 − 1

β

∑
k

p(k)

∫ ∏
��k

[dh�F (h�|k)] log cosh

⎛
⎝β

∑
��k

h�

⎞
⎠ . (33)

3.4. Physical observables

To find formulae for observables like m = limN→∞ N−1 ∑
i 〈σi〉 and q =

limN→∞ N−1 ∑
i 〈σi〉2, it will be convenient to calculate for an n-replica system where

σi = (
σ 1

i , . . . , σ n
i

)
, i.e. before the limit n → 0, the expectation value P(k, σ) =

limN→∞ N−1 ∑
i

〈
δk,ki

δσ,σi

〉
. We can calculate P(k, σ) using steps similar to those taken

in the evaluation of the free energy, using (10)

P(k, σ) = lim
N→∞

N−1
∑

i

[∑
σ1...σN

δk,ki
δσ,σi

e−β
∑

α H(σα)∑
σ1...σN

e−β
∑

α H(σα)

]

= lim
n′→−n

lim
N→∞

1

N

∑
i

δk,ki

∑
σ1...σn+n′

δ(σ1,...,σn),(σ
1
i ,...,σ n

i ) e−β
∑n+n′

α=1 H(σα)

= lim
n′→−n

lim
N→∞

1

N

∑
i

δk,ki

∫
{dD dD̂} e−βNfn+n′ [{D,D̂}]

×
⎡
⎣∑σn+1,...,σn+n′

∫
dω eiωk−iD̂(k,σ1,...,σn+n′ ) e−iω

∑
σ ′

1,...σ
′
n+n′

∫
dω eiωk−iD̂(k,σ ′

1,...,σ
′
n+n′ ) e−iω

⎤
⎦

= lim
n′→−n

p(k)

⎡
⎣∑σn+1,...,σn+n′

∫
dω eiωk+〈k〉F(k,σ1,...,σn+n′ ) e−iω

∑
σ ′

1,...σ
′
n+n′

∫
dω eiωk+〈k〉F(k,σ ′

1,...,σ
′
n+n′ ) e−iω

⎤
⎦ , (34)

where in the last line we now have to take F(k, σ1, . . . , σn+n′) at the saddle point of fn+n′ [· · ·],
with D̂[· · ·] = i〈k〉F [· · ·], and where we have used limn→0 extr{D,D̂}fn[{D, D̂}] = 0. Once
more we can carry out the ω-integrations and find

P(k, σ) = lim
n′→−n

p(k)

[∑
σn+1,...,σn+n′ F

k(k, σ1, . . . , σn+n′)∑
σ ′

1,...σ
′
n+n′ F

k(k, σ ′
1, . . . , σ

′
n+n′)

]
. (35)

In replica symmetric states, where F(k, σ) = ∫
dhF(k)F (h|k) eβh

∑
α σα , we can carry out the

remaining spin summations, giving

PRS(k, σ) = lim
n′→−n

p(k)

⎡
⎣∫ ∏��k[dh�F (h�|k)]

[
2 cosh

(
β
∑

��k h�

)]n′
eβ(

∑
��k h�)(

∑
α�n σα)∫ ∏

��k[dh�F (h�|k)]
[
2 cosh

(
β
∑

��k h�

)]n+n′

⎤
⎦

= p(k)

∫ ∏
��k

[dh�F (h�|k)]
eβ(

∑
��k h�)(

∑
α�n σα)[

2 cosh
(
β
∑

��k h�

)]n
= p(k)

∫
dhW(h|k)

eβh
∑

α�n σα

[2 cosh(βh)]n
(36)

with the degree-conditioned effective field distribution

W(h|k) =
∫ ∏

��k

[dh�F (h�|k)]δ

[
h −

∑
��k

h�

]
. (37)

8
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The order parameters m and q can now be written in their usual form

m =
∫

dhW(h) tanh(βh), q =
∫

dhW(h) tanh2(βh) (38)

W(h) =
∑

k

p(k)W(h|k) (39)

and the free energy formula (33) becomes simply

f RS = − 1

β
log 2 − 1

β

∫
dhW(h) log cosh(βh). (40)

3.5. Simple solutions for special cases

The simplest limit is β → 0, where we expect a paramagnetic state. Setting β = 0 in our
order parameter equations (30), (31) and (32) indeed gives F(h|k) = D(h|k) = δ(h), and
limβ→0(βf ) = − log 2 as well as m = q = 0. As always in such systems one notes that
F(h|k) = D(h|k) = δ(h) is in fact always a solution of (30), (31) and (32), at any temperature.

A less trivial special case is the choice Q(k, k′) = 1 for all (k, k′) (non-deformed graph
ensemble), where we should be able to connect the present theory to earlier results in the
literature. Here one has F(k) = 1 and D(k) = p(k)k/〈k〉, and F(h|k) is no longer dependent
on k. We may thus simply write F(h|k) = F(h) (not to be confused with F(k)), so that upon
eliminating D(h|k) from (30) via (31), we are left with the order parameter equation

F(h) =
∑

k

p(k)k

〈k〉
∫

dJP (J )

∫ ∏
�<k

[dh�F (h�)]

× δ

[
h − 1

β
atanh

[
tanh(βJ ) tanh

(
β
∑
�<k

h�

)]]
. (41)

To establish the connection with earlier results for the Ising system on graphs taken from the
non-deformed ensemble we define a new field distribution W̃ (h)

W̃ (h) =
∑

k

p(k)k

〈k〉
∫ ∏

�<k

[dh�F (h�)]δ

[
h −

∑
�<k

h�

]
. (42)

According to (37), the latter cavity field distribution W̃ (h) is expressed in terms of the degree-
conditioned effective field distributions W(h|k) via W̃ (h) = ∑

k p(k)k〈k〉−1W(h|k − 1).
Equation (41) now tells us that

F(h) =
∫

dJ dh′P(J )W̃ (h′)δ
[
h − 1

β
atanh[tanh(βJ ) tanh(βh′)]

]
(43)

and hence we find the following RS order parameter equation in terms of W̃ (h), which we
recognize from earlier studies on Ising systems with random graph ensembles that are given
prescribed degree distributions

W̃ (h) =
∑

k

p(k)k

〈k〉
∫ ∏

�<k

[dJ�dh�P (J�)W̃ (h�)]δ

[
h − 1

β

∑
�<k

atanh[tanh(βJ�) tanh(βh�)]

]
.

(44)

9
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Similarly we can write the free energy (33) for non-deformed ensembles in terms of W̃ (h)

f RS = − 1

β
log 2 − 1

β

∑
k

p(k)

∫ ∏
��k

[dh� dJ�P (J�)W̃ (h�)]

× log cosh

(∑
��k

atanh[tanh(βJ�) tanh(βh�)]

)
. (45)

We should emphasize that the two field distributions W(h) = ∑
k p(k)W(h|k) and W̃ (h) =∑

k p(k+1)(k+1)〈k〉−1W(h|k) are generally different. The obvious exceptions are Poissonnian
degree distributions, where p(k + 1)(k + 1)〈k〉−1 = p(k), and systems where W(h|k) does not
vary with the degree k.

4. Continuous phase transitions

4.1. Bifurcations away from the paramagnetic state

Continuous bifurcations away from the paramagnetic (P) state F(h|k) = δ(h) are found
in the usual manner, by expansion in moments of F(h|k). We assume the existence of a
small parameter ε with 0 < |ε| � 1 such that

∫
dh h�F (h|k) = O(ε�). Let us first define

εk = ∫
dh hF(h|k). Multiplication of (30) and (31) by h, followed by integration over h gives

the lowest nontrivial order

εk = 1

β

∑
k′

Q(k, k′)p(k′)k′

〈k〉F(k)F (k′)

∫
dJP (J )

∫ ∏
�<k′

[dh�F (h�|k′)]

× atanh

[
tanh(βJ ) tanh

(
β
∑
�<k′

h�

)]

=
∫

dJP (J ) tanh(βJ )
∑
k′

Q(k, k′)p(k′)k′(k′ − 1)

〈k〉F(k)F (k′)
εk′ + O(ε2). (46)

Thus a continuous transition to a ferromagnetic (F) state occurs when the matrix with entries
Mkk′

∫
dJP (J ) tanh(βJ ) has an eigenvalue one, where k, k′ ∈ {0, 1, 2, . . .} and where

Mkk′ = Q(k, k′)p(k′)k′(k′ − 1)

〈k〉F(k)F (k′)
. (47)

In a ferromagnetic state one will have a nonzero magnetization m = β
∑

k p(k)kεk + O(ε2).
Similarly we can check what happens if

∫
dh hF(h|k) = 0 for all k, so m = 0, and the first

nontrivial order to bifurcate is ε2. This corresponds to a transition from a paramagnetic to a
spin-glass (SG) state. Now we define εk = ∫

dh h2F(h|k) = O(ε2). Multiplication of (30)
and (31) by h2, followed by integration over h now gives

εk =
∫

dJP (J ) tanh2(βJ )
∑
k′

Q(k, k′)p(k′)k′

〈k〉F(k)F (k′)

∫ ∏
�<k′

[dh�F (h�|k′)]
∑

�,�′<k′
h�h�′ + O(ε3)

=
∫

dJP (J ) tanh2(βJ )
∑
k′

Q(k, k′)p(k′)k′(k′ − 1)

〈k〉F(k)F (k′)
εk′ + O(ε3) (48)

(where we have used
∫

dh hF(h|k) = 0 to eliminate terms with � �= �′). Thus a
continuous transition to a spin-glass (SG) state occurs when the matrix with entries
Mkk′

∫
dJP (J ) tanh2(βJ ) has an eigenvalue one. The previous P → F transitions mark

bifurcations away from (m, q) = (0, 0) to states with (m �= 0, q �= 0), and the P → SG
transitions mark bifurcations away from (m, q) = (0, 0) to states with (m = 0, q �= 0)

10
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P → F:
∑
k′

Mkk′εk′ = 
Fεk 
−1
F =

∫
dJP (J ) tanh(βJ ) (49)

P → SG:
∑
k′

Mkk′εk′ = 
SGεk 
−1
SG =

∫
dJP (J ) tanh2(βJ ) (50)

with the matrix elements Mkk′ as given in (47) and with F(k) to be solved from (32)

F(k) = 〈k〉−1
∑
k′

p(k′)k′Q(k, k′)F−1(k′). (51)

The physical transition occurs at the largest eigenvalue of the matrix M. It will be of the type
P → F if

∫
dJP (J ) tanh(βJ ) >

∫
dJP (J ) tanh2(βJ ), and otherwise it will be P → SG. If for

the bond distribution we choose the binary form P(J ) = 1
2 (1+η)δ(J −J0)+ 1

2 (1−η)δ(J +J0),
we can already deduce that the triple point (where the phases P, F and SG come together) is
found along the line η = tanh(βJ0), with the P → F transition being the physical one for
η > tanh(βJ0) and P → SG transition being the physical one for η < tanh(βJ0). This will be
true irrespective of the choice made for the ensemble deformation function Q(k, k′).

4.2. Analysis of the eigenvalue problems

We will now analyze the bifurcation eigenvalue problem for the matrix (47), to be solved
in conjunction with (51), for a number of graph ensembles, which in this paper are
characterized by an ensemble deformation function Q(k, k′) and a degree distribution
p(k). The deformation function must always obey Q(k, k′) � 0,Q(k, k′) = Q(k′, k) and∑

kk′ p(k)p(k′)Q(k, k′) = 1. Upon writing the largest eigenvalue of the matrix (47) as
λmax(Q, p), the continuous bifurcations away from the paramagnetic state occur for

P → F: 1 = λmax(Q, p)

∫
dJP (J ) tanh(βJ ) (52)

P → SG: 1 = λmax(Q, p)

∫
dJP (J ) tanh2(βJ ). (53)

4.2.1. Type I: Separable deformation functions. The simplest family of deformation
functions are of the separable form Q(k, k′) = g(k)g(k′)/〈g〉2, with g(k) � 0 for all k,
and 〈g〉 = ∑

k p(k)g(k) > 0. The special choice g(k) = 1 gives the ensemble without
deformation. For this family it follows immediately from (51) that F(k) = g(k)/〈g〉, and (47)
reduces to

Mkk′ = p(k′)k′(k′ − 1)/〈k〉. (54)

There is just one eigenvector, namely εk = 1 for all k, with eigenvalue λ = 〈k2〉/〈k〉 − 1.
Hence the continuous transition lines are

P → F: 1 = [〈k2〉/〈k〉 − 1]
∫

dJP (J ) tanh(βJ ) (55)

P → SG: 1 = [〈k2〉/〈k〉 − 1]
∫

dJP (J ) tanh2(βJ ). (56)

The function g(k) has dropped out of our equations, so the transition lines will be identical
to those of the non-deformed ensemble, i.e. to those found when Q(k, k′) = 1. For a
Poissonian degree distribution one has 〈k2〉 = 〈k〉2 + 〈k〉, so λ = 〈k〉 and we recover the
standard results for Erdös–Rényi graphs. Moreover, the solution F(k) = g(k)/〈g〉 of (51)
gives Q(k, k′)/F (k)F (k′) = 1 for all (k, k′), which implies that g(k) also drops out of the
order parameter equations (30) and (31). It follows that for separable deformation functions

11
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Q not only the transition lines, but the complete solution of the model, including the values of
the physical observables anywhere in the phase diagram, is independent of g(k) and therefore
identical to that of the ensemble with degree constraints only. This is true for any degree
distribution, and has a simple explanation: upon substituting Q(k, k′) = g(k)g(k′)/〈g〉2 into
the graph probabilities (A.2) one obtains

Prob(c) = eN{ 1
2 〈k〉 log[〈k〉/〈g〉2N]+N−1 ∑

i ki (c) log g(ki (c))+O(N−1)}∏
i δki ,ki (c)∑

c′ eN{ 1
2 〈k〉 log[〈k〉/〈g〉2N]+N−1

∑
i ki (c′) log g(ki (c′))+O(N−1)}∏

i δki ,ki (c′)

= eO(N0)
∏

i δki ,ki (c)∑
c′ eO(N0)

∏
i δki ,ki (c′)

. (57)

For Q(k, k′) = g(k)g(k′)/〈g〉2 the Q-dependent factors in Prob(c) depend in leading order on
c via the degrees ki(c) only. Since the degrees are constrained, these factors drop out, leaving
only subdominant terms with a vanishing impact on the thermodynamics in the limit N → ∞.

4.2.2. Type II: Additive deformation functions. The second class of deformation functions
we will study is Q(k, k′) = [g(k) + g(k′)]/2〈g〉, with g(k) � 0 for all k and 〈g〉 > 0. Again
the simplest choice g(k) = 1 gives the non-deformed graph ensemble. Now it follows from
(51) that F(k) = Ag(k) + B, with

A = 1

2〈k〉〈g〉
〈

k

Ag(k) + B

〉
B = 1

2〈k〉〈g〉
〈

kg(k)

Ag(k) + B

〉
. (58)

We can rewrite B to get a simple relation between A and B

AB = 1

2〈k〉〈g〉
〈

Akg(k)

Ag(k) + B

〉
= 1

2〈k〉〈g〉
〈
k − Bk

Ag(k) + B

〉
= 1

2〈g〉 − AB. (59)

Thus AB = 1/4〈g〉, i.e. B = 1/4A〈g〉. Upon eliminating B from our equations and upon
defining A = x/〈g〉 with x � 0, we then find that x is to be solved from F(x) = 1, where

F(x) = 2

〈k〉
〈

k

1 + 4x2g(k)/〈g〉
〉
. (60)

We note that dF(x)/dx � 0 for x � 0, with F(0) = 2 and F(∞) = 0, so there is indeed
a unique and well-defined solution x � 0 of F(x) = 1. For the trivial case g(k) = 1 (i.e.
Q(k, k′) = 1, no ensemble deformation) we obtain F(x) = 2/(1 + 4x2), giving x = 1

2 and
the correct simple solution F(k) = 1 encountered earlier.

We proceed with the analysis of nontrivial choices for g(k). Let us define the short-hand
G(k) = g(k)/〈g〉, so 〈G(k)〉 = 1,Q(k, k′) = 1

2 [G(k) + G(k′)] and F(k) = xG(k) + 1/4x.
The matrix (47) to be diagonalized then takes the following form:

Mkk′ = 8x2

〈k〉
[G(k) + G(k′)]p(k′)k′(k′ − 1)

[4x2G(k) + 1][4x2G(k′) + 1]
. (61)

Its eigenvalue equation becomes (with brackets denoting averages over the degree distribution)

λεk = 8x2G(k)

〈k〉[4x2G(k) + 1]

〈
k′(k′ − 1)εk′

4x2G(k′) + 1

〉
+

8x2

〈k〉[4x2G(k) + 1]

〈
G(k′)k′(k′ − 1)εk′

4x2G(k′) + 1

〉
. (62)

We see that the components εk of any eigenvector must always be of the form

εk = cos(φ)G(k) + sin(φ)

4x2G(k) + 1
, (63)

12
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where

λ cos(φ) = 8x2

〈k〉
〈
k(k − 1)[cos(φ)G(k) + sin(φ)]

[4x2G(k) + 1]2

〉
(64)

λ sin(φ) = 8x2

〈k〉
〈
G(k)k(k − 1)[cos(φ)G(k) + sin(φ)]

[4x2G(k) + 1]2

〉
(65)

or, in the matrix form

λ

(
cos(φ)

sin(φ)

)
= 8x2

〈k〉

(〈 k(k−1)G(k)

[4x2G(k)+1]2

〉 〈
k(k−1)

[4x2G(k)+1]2

〉
〈
k(k−1)G2(k)

[4x2G(k)+1]2

〉 〈
k(k−1)G(k)

[4x2G(k)+1]2

〉
)(

cos(φ)

sin(φ)

)
. (66)

The two eigenvalues are now calculated easily. We need the largest one, giving us the following
expression for λmax(Q, p) for the present family of graph ensembles, with y = 4x2/〈g〉:

λmax(Q, p) = 2y

〈k〉

{〈
k(k − 1)g(k)

[yg(k) + 1]2

〉
+

√〈
k(k − 1)

[yg(k) + 1]2

〉 〈
k(k − 1)g2(k)

[yg(k) + 1]2

〉}
(67)

where y is the solution of〈
k

yg(k) + 1

〉
= 1

2
〈k〉. (68)

It is a trivial matter to check that for the simple choice g(k) = 1, where y = 1, one indeed
recovers from (67) the correct eigenvalue 〈k2〉/〈k〉 − 1 of the non-deformed ensembles. It
will also be clear from (67) that for the present non-separable family of ensemble deformation
functions Q(k, k′), the phase diagram will generally indeed be affected by the deformation.

4.2.3. Type III: Simple binary deformation functions. Our third class of deformation
functions are those where Q(k, k′) takes only two values. Here the deformation can even
strictly forbid links that otherwise would have been allowed. We will focus on the simple
example Q(k, k′) = γ0 + γ δkk′ , where γ0 = 1 − γ

∑
k p2(k) and 0 � |γ | �

[∑
k p2(k)

]−1
.

The problem (51) now reduces to a quadratic equation for F(k), of which the nonnegative
solution is

F(k) = 1

2
y +

1

2

√
y2 + 4γp(k)k/〈k〉 (69)

y = 1 − γ 〈p(k)〉
〈k〉

〈
2k

y +
√

y2 + 4γp(k)k/〈k〉

〉
. (70)

The right-hand side of (70) decreases monotonically from [1 − γ 〈p(k)〉]〈√k/p(k)〉/√γ 〈k〉
at y = 0 to zero as y → ∞, so (70) always has a unique non-negative solution y. One also
quite easily established the useful bounds√

1 − γ 〈p(k)〉
〈

k/〈k〉√
1 + 4γp(k)k/[〈k〉[1 − γ 〈p(k)〉]]

〉
� y �

√
1 − γ 〈p(k)〉 (71)

(which are seen to become tight both for γ → 0, where y = 1, and for γ → 〈p(k)〉−1,
where y = 0). The matrix (47) will always have an eigenvalue λ = 0, corresponding to the
eigenspace εk = 0 for all k > 1. The eigenvectors of (47) with nonzero eigenvalue λ are seen
to be

εk = 1

λF(k) − γp(k)k(k − 1)/〈k〉F(k)
, (72)
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where λ then follows upon solving

1 = [1 − γ 〈p(k)〉]
〈

k(k − 1)

λF 2(k)〈k〉 − γp(k)k(k − 1)

〉
. (73)

Upon inserting (69) this equation takes the following explicit form, with y (which is itself not
a function of λ) to be solved from (70)

1 = [1 − γ 〈p(k)〉]
〈

4k(k − 1)

λ〈k〉[y +
√

y2 + 4γp(k)k/〈k〉]2 − 4γp(k)k(k − 1)

〉
. (74)

The right-hand side diverges to −∞ for λ↓0 and decays to zero for λ → ∞. Furthermore,
provided there exists k > 1 with p(k) > 0, it has singularities for each k with p(k) > 0 at the
special values λ = λc(k), where

λc(k) = 4γp(k)k(k − 1)

〈k〉[y +
√

y2 + 4γp(k)k/〈k〉]2
� 0. (75)

Let us define maxk,p(k)>0 λc(k) = λc(k
�). We know that the right-hand side of (74)

decreases monotonically on the interval [λc(k
�),∞〉 from ∞ down to zero. Hence there

is always a positive solution λ of (74), and the largest solution λmax(Q, p) lies in [λc(k
�),∞〉.

Furthermore,

λmax(Q, P ) � max
k

λc(k) = max
k

4γp(k)k(k − 1)

〈k〉[y +
√

y2 + 4γp(k)k/〈k〉]2
. (76)

A second simple but effective bound on solutions λ > 0 is established easily

λ = 1 − γ 〈p(k)〉
〈k〉

〈
4k(k − 1)

[y +
√

y2 + 4γp(k)k/〈k〉]2 − 4γp(k)k(k − 1)/λ〈k〉

〉

� 1 − γ 〈p(k)〉
〈k〉

〈
4k(k − 1)

[y +
√

y2 + 4γp(k)k/〈k〉]2

〉
� 1 − γ 〈p(k)〉

〈k〉
〈

k(k − 1)

y2 + 4γp(k)k/〈k〉
〉

and hence

λmax(Q, P ) � [1 − γ 〈p(k)〉]
〈

k(k − 1)

y2〈k〉 + 4γp(k)k

〉
. (77)

For the trivial choice γ = 0, where Q(k, k′) = 1, we recover the correct results for the
non-deformed ensemble, namely F(k) = 1 and limγ→0 λmax(Q, p) = 〈k2〉/〈k〉 − 1. Here
the second bound (77) is satisfied with equality. In the opposite limit γ → 〈p(k)〉−1,
where Q(k, k′) → δkk′/〈p(k)〉, we obtain F(k) = √

p(k)k/
√〈p(k)〉〈k〉 + O(ε) and

y = ε〈√k/p(k)〉/√〈k〉/〈p(k)〉 + O(ε2), with ε = 1 − γ 〈p(k)〉. Our equation for λ thereby
becomes

1 =
〈

k(k − 1)〈p(k)〉
p(k)k(λ − k + 1)/ε + λ

√
p(k)k〈p(k)〉〈√k/p(k)〉 − p(k)k(λ − k + 1) + O(ε2)

〉
. (78)

It follows that for γ → 〈p(k)〉−1 all nonzero eigenvalues are of the form λ = k� − 1 + O(1 −
γ 〈p(k)〉) with k� ∈ {1, 2, . . .} such that p(k�) > 0. The largest such eigenvalue corresponds
to the largest k� with p(k�) > 0, so limγ→〈p(k)〉−1 λmax(Q, p) = k� − 1. Thus in the latter limit
we obtain the transition lines corresponding to a regular random graph with degree k�, which is
consistent with our earlier observation that for Q(k, k′) = δkk′/〈p(k)〉 our graphs decompose
into a collection of disconnected regular graphs, one for each degree k that is allowed by p(k).
Here we find that the first bound (76) is satisfied with equality.
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4.3. Phase diagrams

Our order parameter equations apply in principle to arbitrary choices of the bond distribution
P(J ), the degree distribution p(k) and the ensemble deformation function Q(k, k′). Here we
will limit ourselves for brevity to the deformation functions analyzed in the previous section,
and to the binary bond distribution P(J ) = 1

2 (1 + η)δ(J − J0) + 1
2 (1 − η)δ(J + J0), with

η ∈ [−1, 1] and J0 > 0. Equations (52) and (53) can now be written as

P → F: TF/J0 = 2/log

[
ηλmax(Q, p) + 1

ηλmax(Q, p) − 1

]
(79)

P → SG: TSG/J0 = 2/log

[√
λmax(Q, p) + 1√
λmax(Q, p) − 1

]
. (80)

The P → F transition is the physical one for η > tanh(βJ0) and the P → SG transition is the
physical one for η < tanh(βJ0), with a triple point at η = tanh(βJ0). We will consider only
two types of degree distributions, both with average connectivity 〈k〉 = c

Poissonnian: p(k) = ck e−c/k!, 〈k2〉/c = c + 1 (81)

power law: p(k) =
(

1 − cζ(3 + α)

ζ(2 + α)

)
δk0 + (1 − δk0)

ck−3−α

ζ(2 + α)
, 〈k2〉/c = ζ(1 + α)

ζ(2 + α)
.

(82)

Here ζ(x) denotes the Riemann zeta function ζ(x) = ∑
k>0 k−x [50], and we take α ∈ [0, 1] to

ensure that c = 〈k〉 exists (limiting ourselves to c � ζ(2+α)/ζ(3+α), so that p(0) � 0, which
means that c will remain modest), but with the possibility to take the scale-free limit α → 0. In
practice, however, in calculating averages over p(k) numerically one has to truncate the values
of k; here we used k � kmax = 108. For Poissonnian p(k) this has no noticeable implications,
but for power law p(k) the slow divergence of

∑
k k−1 ≈ log kmax manifests itself in transition

temperatures for α → 0 that should have been infinite but are finite. On the other hand, in
any finite real system or simulation one will have k < N , so one expects also to see there the
same effects of bounded degrees (e.g. finite transition temperatures). The ‘ideal’ situation of
unbounded degrees and truly scale-free graphs is never realized in practice. The power-law
distribution (82) has the property p(k)|c = cp(k)c=1 for k > 0. Hence for any function ψ(k)

with ψ(0) = 0 one will have 〈ψ(k)〉 = c〈ψ(k)〉c=1. As a consequence one finds immediately
upon checking the various formulae of the previous section that the bifurcation lines for type
I and type II ensemble deformations are completely independent of the connectivity c for
power-law distributed degrees. For type III deformations this is not the case. Note, finally,
that there is no point in choosing regular graphs p(k) = δkc, since there the function Q(k, k′)
is always equal to one due to the normalization requirement

∑
kk′ p(k)p(k′)Q(k, k′) = 1.

We will compare phase diagrams for the previously analyzed families of deformation
functions Q(k, k′), namely the separable ones, the additive ones, and the binary ones. In the
separable case (type I), where one always has the simple eigenvalue λmax(Q, p) = 〈k2〉/〈k〉−1,
we have fully explicit expressions for the transition lines that are identical to those describing
non-deformed ensembles with degree constraints only

Poissonnian p(k): TF/J0 = 2/log

[
ηc + 1

ηc − 1

]
, TSG/J0 = 2/log

[√
c + 1√
c − 1

]
(83)

power lawp(k): TF/J0 = 2/log

[
ηζ(1 + α) + (1 − η)ζ(2 + α)

ηζ(1 + α) − (1 + η)ζ(2 + α)

]
, (84)
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Figure 1. Continuous bifurcation lines for P → SG (dotted) and P → F (solid, with
η ∈ {0.25, 0.5, 0.75, 1} from bottom to top), for type II deformed ensembles (with Q(k, k′) =
[g(k) + g(k′)]/2〈g(k)〉), P(J ) = 1

2 (1 + η)δ(J − J0) + 1
2 (1 − η)δ(J + J0), and Poissonnian

degree distributions p(k) = ck e−c/k!. Left to right: g(k) ∈ {1, k, k2}. The left picture
represents the non-deformed ensemble, to serve as a reference. The effect of a deformation with
Q(k, k′) = [km + (k′)m]/2〈km〉 in graphs with Poissonnian p(k) is seen to be a slight reduction of
all critical temperatures with increasing m.

TSG/J0 = 2/log

[√
ζ(1 + α) − ζ(2 + α) +

√
ζ(2 + α)√

ζ(1 + α) − ζ(2 + α) − √
ζ(2 + α)

]
(85)

(in non-deformed graphs of the type considered here, the transition temperatures for power-
law distributed degree distributions are independent of the average connectivity). Clearly, in
non-deformed Poissonnian graphs we can only have an SG phase if c > 1 and an F phase
if c > 1/η, whereas in non-deformed power-law graphs we can only have an SG phase if
ζ(1+α)/ζ(2+α) > 2 (giving α < αc ≈ 0.479) and an F phase if ζ(1+α)/ζ(2+α) > 1+1/η.
We will not show these lines describing the non-deformed ensembles in a separate figure, but
will include them as a benchmark when showing data for the type II and type III deformations,
since in type II models the non-deformed ensemble is recovered for the special choice g(k) = 1
whereas in the type III models it corresponds to γ = 0.

For the additive functions Q(k, k′) (type II) the eigenvalue λmax(Q, p) depends in a
nontrivial way on Q(k, k′) and p(k), and must be solved from (67) and (68) numerically.
Here we will choose either g(k) = k or g(k) = k2 in the function Q(k, k′). For Poissonnian
distributed degrees this gives G(k) = k/c and G(k) = k2/c(c + 1), respectively. For the
power-law distributed degrees one finds G(k) = k/c and G(k) = k2ζ(2 + α)/cζ(1 + α),
respectively. Upon solving (67) and (68) numerically for Poissonnian graphs, we obtain the
bifurcation lines as shown in figure 1. We also show the lines for the non-deformed case
g(k) = 1, as a benchmark. The deformation causes only minor changes to the phase diagram,
mainly a slight reduction of all transition temperatures for small values of the connectivity c.
When applied to graphs with power-law degrees, in contrast, the impact of the deformation
is much more drastic, as shown in figure 2. This can be understood mathematically on the
basis of equations (67) and (68). If we consider the case α → 0 we only need to inspect
what happens to the divergent sums over k: one finds for both g(k) = k and g(k) = k2 that
λmax(Q, p) ∼ √

log kmax as α → 0+ (rather than λmax(Q, p) ∼ log kmax, as was the case for
the non-deformed ensemble).

Finally, we have solved numerically equations (70) and (74) for the case of the binary
functions Q(k, k′) (type III), for γ 〈p(k)〉 ∈ {0, 0.4, 0.8} (with the first value γ = 0, the
non-deformed case, serving as a benchmark) and c = 1. Positive values of γ imply increased
connections between links with identical degree, which favors especially the formation of
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Figure 2. Continuous bifurcation lines for P → SG (dotted) and P → F (solid, with
η ∈ {0.25, 0.5, 0.75, 1} from bottom to top), for type II deformed ensembles (with Q(k, k′) =
[g(k) + g(k′)]/2〈g(k)〉), P(J ) = 1

2 (1 + η)δ(J − J0) + 1
2 (1 − η)δ(J + J0), and power-law

degree distributions p(k) ∼ k−3−α . Left to right: g(k) ∈ {1, k, k2}. The left picture
represents the non-deformed ensemble, to serve as a reference. The effect of a deformation
with Q(k, k′) = [km + (k′)m]/2〈km〉 in graphs with power law p(k) is now seen to be a dramatic
reduction of all critical temperatures with increasing m.

c c c

T
J0

T
J0

T
J0

0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5

γ = 0 γ= 2
5 〈p(k)〉−1 γ= 4

5 〈p(k)〉−1

Figure 3. Continuous bifurcation lines for P → SG (dotted) and P → F (solid, with
η ∈ {0.25, 0.5, 0.75, 1} from bottom to top), for type III deformed ensembles (with Q(k, k′) =
γ0 + γ δkk′ ), P(J ) = 1

2 (1 + η)δ(J − J0) + 1
2 (1 − η)δ(J + J0), and Poissonnian degree distributions

p(k) = ck e−c/k!. Left to right: γ 〈p(k)〉 ∈ {0, 0.4, 0.8}. The left picture represents the non-
deformed ensemble, to serve as a reference. The effect of a deformation with Q(k, k′) = γ0 +γ δkk′
in graphs with Poissonnian p(k) is seen to be a significant increase of all critical temperatures with
increasing γ .

regular graphs with large values of k. Here we always observe a significant increase of all
critical temperatures, both for Poissonnian and for power-law distributed graphs, see figure 4.
The effect becomes stronger as c increases. Choosing negative values of γ , i.e. discouraging
the formation of links between nodes with identical degree, is found to decrease all transition
temperatures. Note that without the degree cut-off kmax = 108, one would have diverging
critical temperatures at all c > 0 and all α � 0 in the limit γ 〈p(k)〉 → 1.

5. Discussion

The rationale behind studying interacting particle models on complex random graphs is that
the latter can be used as solvable proxies for models on specific graphs of a topology for
which either no exact solution is available (e.g. spin models on cubic lattices), or on which we
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Figure 4. Continuous bifurcation lines for P → SG (dotted) and P → F (solid, with
η ∈ {0.25, 0.5, 0.75, 1} from bottom to top), for type III deformed ensembles (with Q(k, k′) =
γ0 + γ δkk′ ), P(J ) = 1

2 (1 + η)δ(J − J0) + 1
2 (1 − η)δ(J + J0), and power-law degree distributions

p(k) ∼ k−3−α with c = 1. Left to right: γ 〈p(k)〉 ∈ {0, 0.4, 0.8}. The left picture
represents the non-deformed ensemble, to serve as a reference. The effect of a deformation
with Q(k, k′) = γ0 + γ δkk′ in graphs with power law p(k) is now seen to be a dramatic increase
of all critical temperatures with increasing γ .

lack precise information (e.g. proteomic networks). We then have to choose an appropriate
ensemble of random graphs, which is sufficiently simple to allow for analytical progress, while
incorporating as much as possible the topology of the specific system one aims to understand.
Specifying just the degree distribution p(k) of a complex connectivity graph for an interacting
spin system will clearly not yet permit reliable predictions on the system’s phase diagram.
For instance, the critical temperature of the D-dimensional Ising model on a cubic lattice,
where p(k) = δk,2D , is different from that of a regular random graph with p(k) = δk,2D .4 The
question is then which further topological information on a graph beyond p(k) could be added
to reduce the entropy of the underlying graph ensemble and make more specific and more
accurate predictions of phase transitions, while at the same time maintaining the vital property
that the resulting spin models can be solved analytically. In this paper we have established that
the proposed deformation of random graph ensembles can be a useful step in this direction: it
generally allows us to differentiate between models with the same p(k) (which can be chosen
freely) but different microscopic realizations of these degree statistics, the resulting models
are still solvable, and its impact on the transition lines can be non-negligible5. In practice,
when seeking to model a complicated real system with some specific given interaction graph
c� (and hence a known set of degree {k�

1, . . . , k
�
N } and a known degree distribution p(k))

by a solvable system on a random graph, we could now incorporate at least some of the
extra topological information by using our ensemble (2) with constrained degrees ki = k�

i

for all i, and with a function Q(k, k′) that is tailored to the graph c�. This can be done by
maximizing the log-likelihood of c� for the ensemble (2), i.e. by minimizing over Q (subject
to
∑

kk′ p(k)p(k′)Q(k, k′) = 1) the quantity

�[Q] = 1

N
logZN − 1

N

∑
i<j

log

[ 〈k〉
N

Q(k�
i , k

�
j )δc�

ij ,1 +

(
1 − 〈k〉

N
Q(k�

i , k
�
j )

)
δc�

ij ,0

]

4 For a ferromagnetic Ising model on a square lattice in D = 2 one has Onsager’s famous result Tc/J0 =
4/log[(

√
2 + 1)/(

√
2 − 1)] ≈ 2.26919, whereas Tc/J0 = 2/log 2 ≈ 2.88539 in the degree-4 regular random

graph. Yet both models have the same degree distribution p(k) = δk,4.
5 The only graphs where ensemble deformation is not possible are the regular graphs, with p(k) = δkc , where the
constraint

∑
kk′ p(k)Q(k, k′)p(k′) = 1 leaves only the trivial choice Q(k, k′) = 1.
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= z +
1

2
〈k〉 − 1

2
〈k〉 log[〈k〉/N] − 1

N

∑
i<j

c�
ij log Q(k�

i , k
�
j ) + O(N−1)

= const +
∑

k

p(k)k log F(k|Q) − 1

N

∑
i<j

c�
ij log Q(k�

i , k
�
j ) + O(N−1), (86)

where F(k|Q) is the solution of

F(k) = 〈k〉−1
∑
k′

p(k′)k′Q(k, k′)F−1(k′). (87)

This will be the subject of a subsequent study. In addition one would like to study certain
technical aspects of the present model in more detail, such as the precise physical meaning of
the function F(k), and the impact of possible replica symmetry breaking (RSB). In the present
type of model RSB does not change the locations of the P → F or P → SG transition lines,
but will alter the nature of the solution in the ordered phases and the location of the F → SG
transition line.
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Appendix. Statistical properties of the random graph ensemble

A.1. Interpretation

We note that an alternative but mathematically equivalent way to write the graph probabilities
is obtained by applying to (2) the general identity∏

i<j

[Aij δcij ,1 + Bij δcij ,0] =
(∏

i<j

Bij

)
e
∑

i<j cij [log Aij −log Bij ] (A.1)

which gives

Prob(c) = 1

ZN

e
∑

i<j cij {log[〈k〉Q(ki ,kj )/N]−log[1−〈k〉Q(ki ,kj )/N]}∏
i

δki ,ki (c) (A.2)

ZN =
∑

c

e
∑

i<j cij {log[〈k〉Q(ki ,kj )/N]−log[1−〈k〉Q(ki ,kj )/N]}∏
i

δki ,ki (c). (A.3)

To see the connection with ensembles considered in previous studies we note that the latter
factor ZN is identical to the graph partition function Z1 = ∑

c exp
[∑

i<j hij cij

]∏
i δki ,ki (c)

in, e.g. [51] (rewritten in our present notation), but with a specific choice for the fields hij ,
namely

hij = log[〈k〉Q(ki, kj )/N ] − log[1 − 〈k〉Q(ki, kj )/N ]. (A.4)

Moreover, in studies such as [51] hij are only allowed infinitesimal values and serve solely to
generate observables in the ‘unperturbed’ ensemble characterized by Z = ∑

c

∏
i δki ,ki (c). In

contrast, the present study is focused explicitly on finite deformations of the graph statistics.
In the ensemble (2) all degrees are fully constrained, and the probability for any two

randomly drawn vertices to be connected is P[conn] = c/N . The physical meaning of
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Q(k, k′) follows from calculating the conditional probability P[conn|k, k′] that two randomly
drawn links with degrees k and k′ are connected

P[conn|k, k′] =
∑

c Prob(c)
∑

i<j cij δk,ki (c)δk′,kj (c)∑
c Prob(c)

∑
i<j δk,ki (c)δk′,kj (c)

=
∑

i<j δk,ki
δk′,kj

∑
c Prob(c)cij∑

i<j δk,ki
δk′,kj

=
∑

i<j δk,ki
δk′,kj

cQ(k, k′)/N∑
i<j δk,ki

δk′,kj

= c

N
Q(k, k′). (A.5)

Hence

Q(k, k′) = P[conn|k, k′]
P[conn]

, (A.6)

i.e. Q(k, k′) is the probability for two randomly drawn vertices with degrees k and k′ to be
connected, divided by the overall probability of two randomly drawn vertices to be connected
(irrespective of their degrees).

A.2. Joint distributions of degree and clustering coefficients

To characterize a graph’s local topology we can define for each vertex i the degree ki(c) =∑
j cij (the number of links to this vertex) and the number of length-three loops going through

this vertex, as measured by ri(c) = ∑
jk cij cjkcki . The clustering coefficient Ci is then given

by Ci = ri/ki(ki − 1). We write their joint distribution as P(k, r|c) = N−1∑
i δk,ki (c)δr,ri (c),

and the asymptotic expectation value of this distribution over the ensemble (2) as

P(k, r) = lim
N→∞

1

N

∑
i

∑
c

Prob(c) δk,ki (c)δr,ri (c) =
∫

dψ

2π
eiψr lim

N→∞
1

N

∑
i

δk,ki
P̂i(ψ) (A.7)

with

P̂i(ψ) =
∑

c

Prob(c) e−iψ
∑

j� cij cj�c�i . (A.8)

It will turn out that here we have to expand to higher orders in N than in previous calculations.
We now re-name all links to/from site i as sj = cij ∈ {0, 1}, while writing all those that do
not involve site i as τj� ∈ {0, 1}, where j, � ∈ {1, . . . , i − 1, i + 1, . . . , N}. This gives

P̂i(ψ) = 1

ZN

∑
sτ

e−iψ
∑

j��=i sj τj�s�

∏
j �=i

[ 〈k〉
N

Q(ki, kj )δsj ,1+

(
1− 〈k〉

N
Q(ki, kj )

)
δsj ,0

]
δki ,

∑
j �=i sj

×
∏

�<j |�,j �=i

[ 〈k〉
N

Q(k�, kj )δτ�j ,1 +

(
1 − 〈k〉

N
Q(k�, kj )

)
δτ�j ,0

]∏
� �=i

δk�,
∑

j �=i,� τ�j

= 1

ZN

∑
s

∫ π

−π

dφ

2π
eiφki

∏
j �=i

[ 〈k〉
N

Q(ki, kj )δsj ,1 +

(
1 − 〈k〉

N
Q(ki, kj )

)
δsj ,0

]
e−iφ

∑
j �=i sj

×
∫ π

−π

∏
� �=i

[
dφ�

2π
eiφ�k�

]
e

〈k〉
2N

∑
�j (�=i) Q(k�,kj )[e

−i(2ψs�sj +φ�+φj )−1]+O(N−1)

× e− 〈k〉2
4N2

∑
�j (�=i) Q2(k�,kj )[e

−i(2ψs�sj +φ�+φj )−1]2− 〈k〉
2N

∑
j �=i Q(kj ,kj )[e

−2i(ψs2
j

+φj )−1]
. (A.9)
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At this point we are led to the introduction of the observables

Wsk(φ) = 1

N − 1

∑
j �=i

δssj
δkkj

δ(φ − φj ). (A.10)

Clearly
∑

s∈{0,1}
∑

k�0

∫
dφWsk(φ) = 1. We also introduce the short-hand pk = N−1 ∑

i δk,ki

(namely the empirical degree frequencies, which will only be identical to p(k) for N → ∞).
Upon introducing Wsk(φ) in the usual manner via suitable δ-functions we can then write

P̂i(ψ) = 1

Zc

∫ π

−π

dφ

2π
eiφki

∫
{dW dŴ } ei(N−1)

∑
s′k′

∫
dφ′Ŵs′k′ (φ′)Ws′k′ (φ′)+O(N−1)

× e
1
2 (N−2)〈k〉∑s′k′s′′k′′

∫
dφ′ dφ′′Ws′k′ (φ′)Ws′′k′′ (φ′′)Q(k′,k′′)[e−i(2ψs′s′′+φ′+φ′′)−1]

× e− 1
4 〈k〉2 ∑

s′k′s′′k′′
∫

dφ′ dφ′′Ws′k′ (φ′)Ws′′k′′ (φ′′)Q2(k′,k′′)[e−i(2ψs′s′′+φ′+φ′′)−1]2

× e− 1
2 〈k〉∑s′k′

∫
dφ′Ws′k′ (φ′)Q(k′,k′)[e−2i(ψs′+φ′)−1]

×
∏
j �=i

{∑
s

∫ π

−π

dφ′

2π

[ 〈k〉
N

Q(ki, kj )δs,1

+

(
1 − 〈k〉

N
Q(ki, kj )

)
δs,0

]
e−iφs+i[φ′kj −Ŵskj

(φ′)]

}

= 1

Zc

∫ π

−π

dφ

2π
eiφki

∫
{dW dŴ } ei(N−1)

∑
s′k′

∫
dφ′Ŵs′k′ (φ′)Ws′k′ (φ′)+O(N−1)

× e
1
2 (N−2)〈k〉∑s′k′s′′k′′

∫
dφ′ dφ′′Ws′k′ (φ′)Ws′′k′′ (φ′′)Q(k′,k′′)[e−i(2ψs′s′′+φ′+φ′′)−1]

× e− 1
4 〈k〉2 ∑

s′k′s′′k′′
∫

dφ′ dφ′′Ws′k′ (φ′)Ws′′k′′ (φ′′)Q2(k′,k′′)[e−i(2ψs′s′′+φ′+φ′′)−1]2

× e− 1
2 〈k〉∑s′k′

∫
dφ′Ws′k′ (φ′)Q(k′,k′)[e−2i(ψs′+φ′)−1]

×
∏
j �=i

{[
e− 〈k〉

N
Q(ki ,kj )

∫ π

−π

dφ′

2π
ei[φ′kj −Ŵ0kj

(φ′)]
]

×
[

1 +
〈k〉
N

Q(ki, kj )

∫ π

−π
dφ′ ei[φ′kj −Ŵ1kj

(φ′)−φ]∫ π

−π
dφ′ ei[φ′kj −Ŵ0kj

(φ′)]

]}

= 1

Zc

∫ π

−π

dφ

2π
eiφki

∫
{dW dŴ } ei(N−1)

∑
sk

∫
dφ′Ŵsk(φ

′)Wsk(φ
′)−〈k〉∑k pkQ(ki ,k)+O(N−1)

× e
1
2 (N−2)〈k〉∑s′k′s′′k′′

∫
dφ′ dφ′′Ws′k′ (φ′)Ws′′k′′ (φ′′)Q(k′,k′′)[e−i(2ψs′s′′+φ′+φ′′)−1]

× e− 1
4 〈k〉2 ∑

s′k′s′′k′′
∫

dφ′ dφ′′Ws′k′ (φ′)Ws′′k′′ (φ′′)Q2(k′,k′′)[e−i(2ψs′s′′+φ′+φ′′)−1]2

× e− 1
2 〈k〉∑s′k′

∫
dφ′Ws′k′ (φ′)Q(k′,k′)[e−2i(ψs′+φ′)−1]+N

∑
k pk log

∫ π

−π

dφ′
2π

ei[φ′k−Ŵ0k (φ′)]

× exp

{
〈k〉

∑
k

pkQ(ki, k)

∫ π

−π
dφ′ ei[φ′k−Ŵ1k(φ

′)−φ]∫ π

−π
dφ′ ei[φ′k−Ŵ0k(φ′)]

− log
∫ π

−π

dφ′

2π
ei[φ′ki−Ŵ0ki

(φ′)]

}

= 1

Zc

∫ π

−π

dφ

2π
eiφki

∫
{dW dŴ } eN�(W,Ŵ ,ψ)+�(W,Ŵ ,ψ)+�(Ŵ,ki ,φ)+O(N−1) (A.11)

with

�(W, Ŵ ,ψ) = i
∑
sk

∫ π

−π

dφŴsk(φ)Wsk(φ) +
∑

k

pk log
∫ π

−π

dφ

2π
ei[φk−Ŵ0k(φ)]

+
1

2
〈k〉

∑
sks ′k′

∫
dφ dφ′Wsk(φ)Ws ′k′(φ′)Q(k, k′)[e−i(2ψss ′+φ+φ′) − 1] (A.12)
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�(W, Ŵ ,ψ) = −〈k〉
∑
sks ′k′

∫
dφ dφ′Wsk(φ)Ws ′k′(φ′)Q(k, k′)[e−i(2ψss ′+φ+φ′) − 1]

− 1

4
〈k〉2

∑
sks ′k′

∫
dφ dφ′Wsk(φ)Ws ′k′(φ′)Q2(k, k′)[e−i(2ψss ′+φ+φ′) − 1]2

− 1

2
〈k〉

∑
sk

∫
dφWsk(φ)Q(k, k)[e−2i(ψs+φ) − 1] − i

∑
sk

∫
dφŴsk(φ)Wsk(φ)

(A.13)

�(Ŵ , ki, φ) = 〈k〉
∑

k

pkQ(ki, k)

[∫ π

−π
dφ′ ei[φ′k−Ŵ1k(φ

′)−φ]∫ π

−π
dφ′ ei[φ′k−Ŵ0k(φ′)]

− 1

]

− log
∫ π

−π

dφ′

2π
ei[φ′ki−Ŵ0ki

(φ′)]. (A.14)

Using the normalization identity P̂i(0) = 1 we may then also write

P̂i(ψ) =
∫ π

−π
dφ eiφki

∫ {dW dŴ } eN�(W,Ŵ ,ψ)+�(W,Ŵ ,ψ)+�(Ŵ,ki ,φ)+O(N−1)∫ π

−π
dφ eiφki

∫ {dW dŴ } eN�(W,Ŵ ,0)+�(W,Ŵ ,0)+�(Ŵ ,ki ,φ)+O(N−1)
(A.15)

and, upon defining P(r|k) = P(k, r)/pk

P (r|k) =
∫ π

−π

dψ

2π
eiψrLk(ψ) (A.16)

Lk(ψ) = lim
N→∞

∫ {dW dŴ } eN�(W,Ŵ ,ψ)+�(W,Ŵ ,ψ)
∫ π

−π
dφ eiφk+�(Ŵ,k,φ)∫ {dW dŴ } eN�(W,Ŵ ,0)+�(W,Ŵ ,0)

∫ π

−π
dφ eiφk+�(Ŵ,k,φ)

. (A.17)

We next need to find the saddle point(s) of the function (A.12), by variation of {W, Ŵ }.
Functional differentiation with respect to W and Ŵ gives the following equations, respectively:

iŴsk(φ) = −〈k〉
∑
s ′k′

∫
dφ′Ws ′k′(φ′)Q(k, k′)[e−i(2ψss ′+φ+φ′) − 1] (A.18)

Wsk(φ) = δs0pk

ei[φk−Ŵ0k(φ)]∫ π

−π
dφ′ ei[φ′k−Ŵ0k(φ′)]

. (A.19)

Upon eliminating Ŵ and defining Wsk(φ) = δs0pkχk(φ), we obtain an equation for χk(φ)

only

χk(φ) = eiφk+〈k〉∑k′ pk′Q(k,k′) e−iφ
∫

dφ′χk′ (φ′) e−iφ′

∫ π

−π
dφ′ eiφ′k+〈k〉∑k′ pk′Q(k,k′) e−iφ′ ∫ dφ′′χk′ (φ′′) e−iφ′′ . (A.20)

One defines ak = ∫
dφ′χk(φ

′) e−iφ′
and bk = 〈k〉∑k′ pk′Q(k, k′)ak′ , and finds after some

simple manipulations that a0 = 0 and ak>0 = k/bk . This leaves a closed equation for bk ,
which shows that limN→∞ bk = 〈k〉F(k), see (32), and a corresponding formula for χk(φ)

bk = 〈k〉
∑
k′>0

pk′Q(k, k′)k′/bk′ (A.21)

χk(φ) = k!

2π
(bk e−iφ)−k exp[bk e−iφ]. (A.22)
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At the relevant saddle point, we find as a direct consequence of the form Wsk(φ) = δs0pkχk(φ)

that the functions �(W, Ŵ ,ψ) and �(W, Ŵ ,ψ) are both independent of the variable ψ . This
ensures that expression (A.17) is well defined, but it also gives us Lk(ψ) = 1, and hence

P(r|k) = δr0. (A.23)

We conclude that in our ensemble (2) the fraction of nodes in a loop of length three vanishes in
the limit N → ∞, independent of the degree distribution p(k) and independent of the choice
made for the deformation function Q(k, k′).
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