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Abstract
We study the stochastic dynamics of Ising spin models with random bonds,
interacting on finitely connected Poissonian random graphs. We use the
dynamical replica method to derive closed dynamical equations for the joint
spin–field probability distribution, and solve these within the replica-symmetry
ansatz. Although the theory is developed in a general setting, with a view to
future applications in various other fields, in this paper we apply it mainly to
the dynamics of the Glauber algorithm (extended with cooling schedules) when
running on the so-called vertex cover optimization problem. Our theoretical
predictions are tested against both Monte Carlo simulations and known results
from equilibrium studies. In contrast to previous dynamical analyses based on
deriving closed equations for only a small number of scalar order parameters,
the agreement between theory and experiment in the present study is nearly
perfect.

PACS numbers: 02.50.Ey, 05.90.+m, 64.60.Cn, 89.20.Ff

1. Introduction

The interest in studying finitely connected (FC) spin systems on random graphs, as introduced
in [1] more than 20 years ago, has grown in recent years. For this there appears to be at
least two reasons. First, FC spin systems can be seen as an intermediate step between fully
connected mean-field spin models [2] and finite-dimensional spin models. Although they are
still of the mean-field type in the sense that random site permutations are irrelevant in the
mean-field limit, the finite connectivity introduces notions of site neighbourhood, distances,
etc. This attractive property has drawn many into this field, and we have by now achieved a
thorough understanding of the equilibrium behaviour of FC spin systems [3–7]. Second, many
optimization and decision problems in theoretical computer science can be mapped into the
models of FC spin systems. This mapping allowed such problems to be studied with analytic
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methods of statistical mechanics, and has been very fruitful especially in the study of K-SAT
[8, 9], vertex covering [10] and graph colouring [11, 12].

Although our understanding of the equilibrium properties of FC spin systems is now quite
advanced, that of the non-equilibrium behaviour of such systems is, despite recent progress
[13–19], still relatively limited in comparison. Dynamical studies are generally harder, by
definition, as they incorporate the equilibrium state as a special case. In the domain of
the dynamics of FC spin systems, the generating functional method (or the path integration
technique) of [20] is the only exact method available today. There has been some success in
applying this method to finitely connected soft spin systems [13, 14] and Ising spin systems
[16]. However, the generating functional method leads one in FC systems to a formalism
involving a rather complicated dynamical order parameter (describing the joint statistics of
single-site spin ‘paths’ and single-site field perturbation ‘paths’) which is generally difficult
to handle. Even for parallel dynamics [16] it is effectively equivalent to having a number
of scalar order parameters that grows exponentially with the number of discrete time steps
considered. For that reason, even in generating functional analysis studies one is in practice
forced to make further approximations to tame this explosion of order parameters.

An alternative approach to the dynamics of FC spin systems is the dynamic replica theory
(DRT) [21, 22], which was initially developed for fully connected systems. In contrast to
generating functional analysis, DRT in its present form is not (yet) exact; however, one can
increase its accuracy systematically by increasing the size of the chosen order parameter set
[22]. The great advantage of DRT in the study of FC spin systems, compared to generating
functional analysis, is that the effective number of order parameters does not grow with time.
Recently, the DRT method [17] and its equivalent [15] were used to study the dynamics of
FC Ising spin systems, but only for a relatively small number of dynamic order parameters.
Although its performance on regular random graphs was found to be very good [17, 15],
for random Poissonian graphs it was found to be quite poor [17]. In the present paper we
develop the DRT method further, and cure the previous limitations by increasing the size of
the order parameter set, following [22, 15], to the full joint spin–field distribution. We then
demonstrate the performance of the resulting improved theory by application to the so-called
minimal vertex cover problem [10] on Poissonian random graphs.

This paper is organized as follows. In section 2, we define our model and derive an exact
dynamical equation for the joint spin–field probability distribution. In section 3, we close this
equation using the standard assumptions and procedures of DRT. We simplify our dynamical
theory by making the standard replica-symmetry ansatz in section 3.2. In section 4, we apply
our resulting formalism to the dynamics of the Glauber algorithm, extended with simulated
annealing-type cooling schedules, when running on the minimal vertex cover problem. The
outcome of solving our dynamical equations numerically are compared to measurements taken
in the Monte Carlo simulations. Finally, in section 6 we summarize and discuss our results.

2. Model definitions and macroscopic laws

We consider a system of N Ising spins, σi ∈ {−1, 1}, which are placed on the vertices of
a random Erdös–Rényi graph [23]. Spins interact only when they are connected. Their
microscopic dynamics are governed by a Glauber-type stochastic algorithm. At each iteration
of this algorithm, a site i is drawn randomly from the set {1, . . . , N} of all sites, and spin σi is
subsequently flipped with probability

P(σi → −σi) = 1
2 [1 − σi tanh[βhi(σ)]], (1)
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where hi is a local field, defined as

hi(σ) =
∑
j �=i

cij Jij σj + θ, (2)

with σ = (σ1, . . . , σN). The inverse temperature β = T −1 controls the level of noise in
the system; the dynamics is fully random for β = 0 and fully deterministic for β → ∞.
The parameter θ defines a uniform external field. The set of random variables {cij Jij } is
regarded as a quenched disorder. The bonds Jij are symmetric, namely, Jij = Jji , and drawn
independently from a probability distribution P(J ). The independently distributed random
variables cij ∈ {0, 1} are the entries of a symmetric adjacency matrix with zeros on the main
diagonal, defining the random graph. In this paper, we consider finitely connected (FC)
random graphs of the Erdös–Rényi [23] type, where

∀ i < j : P(cij ) = c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0 (3)

with c = O(N0). In the N → ∞ limit, the average number of connections per spin (or vertex)
remains finite, and the distribution of connectivities (or vertex degrees) is given by a Poisson
distribution with mean c:

Pc(k) = ck e−c/k! (4)

Process (1) can be written in the form of a master equation for the evolution of the microscopic
state probability in continuous time1,

d

dt
pt (σ) =

N∑
i=1

[pt(Fiσ)wi(Fiσ) − pt(σ)wi(σ)], (5)

in which Fi is a spin–flip operator Fi�(σ) = �(σ1, . . . ,−σi, . . . , σN), and the quantities
wi(σ) are the transition rates given by

wi(σ) = 1
2 [1 − σi tanh[βhi(σ)]]. (6)

This process evolves towards the equilibrium Boltzmann probability distribution p∞(σ) ∼
exp[−βH(σ)], with the Hamiltonian

H(σ) = −
∑
i<j

σicij Jij σj − θ
∑

i

σi . (7)

In general, it is not possible to solve the 2N coupled equations (5) directly. Therefore, instead
of following the evolution of the microscopic distribution pt(σ), one turns to alternative
descriptions of the dynamics in terms of macroscopic observables.

For the reasons given in the introduction, we now follow the steps of the dynamic
replica theory [22], and consider the evolution in time of an arbitrary set of � macroscopic
observables Ω(σ) = (�1(σ), . . . , ��(σ)), where each individual �k(σ) is taken to be of order
O(N0). We derive a Kramers–Moyal expansion for the associated macroscopic probability
distribution Pt(Ω) = ∑

σ δ[Ω − Ω(σ)]pt(σ) by inserting the master equation (5) into the
time derivative of Pt(Ω), and expanding the result in powers of the ‘discrete derivatives’
�

µ

i (σ) = �µ(Fiσ) − �µ(σ). This gives

d

dt
Pt (Ω) = −

�∑
µ=1

∂

∂�µ

⎧⎨
⎩Pt(Ω)

〈∑
i

wi(σ)�
µ

i (σ)

〉
Ω;t

⎫⎬
⎭

+
1

2

�∑
µ,ν=1

∂2

∂�µ∂�ν

⎧⎨
⎩Pt(Ω)

〈∑
i

wi(σ)�
µ

i (σ)�ν
i (σ)

〉
Ω;t

⎫⎬
⎭ + O(N�3�3), (8)

1 This involves formally the introduction of random durations for the individual spin updates which are N−1 on
average, and which for finite N are drawn from a specific distribution [24].
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where we used the sub-shell (or conditional) average

〈f (σ)〉Ω;t =
∑

σ pt(σ)δ [Ω − Ω(σ)] f (σ)∑
σ pt(σ)δ [Ω − Ω(σ)]

. (9)

If the diffusion term in expansion (8) vanishes for N → ∞, then (8) acquires the Liouville
form, the solution of which describes the following deterministic flow:

d

dt
Ω =

〈∑
i

wi(σ)[Ω(Fiσ) − Ω(σ)]

〉
Ω;t

. (10)

This is then exact for N → ∞, but not necessarily closed, due to the presence of the
microscopic probability pt(σ) in (9). In DRT, in order to close equation (10), one assumes
equi-partitioning of probability within the Ω sub-shells, i.e. one takes pt(σ) to depend on ς

only through Ω(σ). The impact of this assumption on the accuracy of the theory depends
critically on the choice of observables Ω(σ).

In this paper, our choice of observables Ω(σ) is, as in [22], the (infinite-dimensional) set
given by the joint spin–field distribution

D(s, h; σ) = 1

N

∑
i

δs,σi
δ [h − hi(σ)] . (11)

We assume that this distribution (11) is well behaved in the sense that it can be evaluated
first for a finite number � of field arguments hµ, and that the limit � → ∞ can be taken after
the thermodynamic limit N → ∞. For now on we thus have 2� observables D(s, hµ; σ)

with µ = 1, . . . , � and s ∈ {−1, 1}. In order to compute (10) we must work out the discrete
derivatives �

sµ

i (σ) = D(s, hµ;Fiσ) − D(s, hµ; σ):

�
sµ

i (σ) = 1

N

∑
j

δs,Fiσj
δ[hµ − hj (Fiσ)] − 1

N

∑
j

δs,σj
δ[hµ − hj (σ)]

= 1

N

∑
j �=i

δs,σj
cij

{
δσi ,1δ[hµ − hj (σ) + 2Jij ] + δσi ,−1δ[hµ − hj (σ) − 2Jij ]

− δ[hµ − hj (σ)]
}

+
1

N

{
δs,−σi

− δs,σi

}
δ[hµ − hi(σ)]. (12)

Thus, �
sµ

i (σ) = O(N−1), so for N → ∞ the diffusion term in (8) vanishes and the
macroscopic observables D(s, hµ; σ) evolve deterministically according to (10). Inserting
(12) into (10) gives us a diffusion equation for the joint spin–field distribution

∂

∂t
D(s, hµ) = 1

2
[1 + s tanh[βhµ]]D(−s, hµ) − 1

2
[1 − s tanh[βhµ]]D(s, hµ)

+
1

2

∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]

×
〈

1

N

∑
i �=j

δs ′,σi
δs,σj

cij δ[h′ − hi(σ)]δ[hµ − hj (σ) + 2Jij s
′]

〉
D;t

− 1

2

∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]

×
〈

1

N

∑
i �=j

δs ′,σi
δs,σj

cij δ[h′ − hi(σ)]δ[hµ − hj (σ)]

〉
D;t

, (13)
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with the sub-shell average

〈f (σ)〉D;t =
∑

σ pt(σ)f (σ)
∏

sµ δ[D(s, hµ) − D(s, hµ; σ)]∑
σ′ pt(σ′)

∏
sµ δ[D(s, hµ) − D(s, hµ; σ′)]

. (14)

The non-trivial objects in (13) are the two averages, with angular brackets. To compute these
efficiently we introduce the following kernel, where s̃ ∈ {0, s ′},

Ã[s, s ′;h, h′; s̃] =
〈

1

cN

∑
ij

δs ′,σi
δs,σj

cij δ[h′ − hi(σ)]δ[h − hj (σ) + 2Jij s̃]

〉
D;t

. (15)

For s̃ = 0, kernel (15) defines the joint spin–field probability of connected sites (a similar
object was used to study the dynamics of the Ising ferromagnet on a regular random graph
[15]). In the limit N → ∞, definition (15) allows us to write (13) as
∂

∂t
D(s, h) = 1

2
[1 + s tanh[βh]] D(−s, h) − 1

2
[1 − s tanh[βh]] D(s, h)

+
1

2
c
∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]Ã[s, s ′;h, h′; s ′]

− 1

2
c
∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]Ã[s, s ′;h, h′; 0]. (16)

This dynamical equation (16) is exact for large N, but not yet closed. Closure requires
eliminating pt(σ) from (15).

3. Replica analysis of the dynamics

3.1. Closure and disorder averaging

To evaluate the right-hand side of (16) we make the usual assumptions of the dynamic replica
method. The observables D(s, hµ; σ) are taken to be self-averaging with respect to the disorder
at any time, i.e. to depend only on the statistics of the

{
cij Jij

}
rather than their realization.

Second, we assume equi-partitioning of the microscopic probability within the D(s, hµ; σ)

sub-shells of the conditional average (14). These assumptions and the equivalence of sites
after disorder averaging lead us to

A[s, s ′;h, h′; s̃] = lim
N→∞

N − 1

c

〈 ∑
σ

∏
τµ δ

[
D(τ, hµ) − D(τ, hµ; σ)

]
∑

σ′
∏

τµ δ
[
D(τ, hµ) − D(τ, hµ; σ′)

]
× δs ′,σ1δs,σ2c12δ[h′ − h1(σ)]δ[h − h2(σ) + 2J12s̃]

〉
{cij Jij }

. (17)

We eliminate the fraction from the above expression via the replica identity∑
σ �(σ)W(σ)∑

σ W(σ)
= lim

n→0

∑
σ1

· · ·
∑
σn

�(σ1)

n∏
α=1

W(σα), (18)

which leads to

A[s, s ′;h, h′; s̃] = lim
N→∞

lim
n→0

N − 1

c

〈∑
σ1

· · ·
∑
σn

× δs ′,σ 1
1
δs,σ 1

2
c12δ[h′ − h1(σ

1)]δ[h − h2(σ
1) + 2J12s̃]

×
n∏

α=1

∏
τµ

δ

[
D(τ, hµ) − 1

N

∑
i

δτ,σ α
i
δ[hµ − hi(σ

α)]

]〉
{cij Jij }

. (19)
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We can remove the disorder-dependent local fields {hi(σ
α)} from inside the delta functions

by inserting into (19) the following integral representation of unity: 1 = ∫ ∏
αi dHα

i δ[Hα
i −

hi(σ
α)]. Writing the latter delta functions in integral form gives

A[s, s ′;h, h′; s̃] = lim
N→∞

lim
n→0

N − 1

c

∑
σ1

· · ·
∑
σn

∫ ∏
αi

[
dHα

i dĥα
i exp

[
iĥα

i Hα
i

]]

×
n∏

α=1

∏
τµ

δ

[
D(τ, hµ) − 1

N

∑
i

δτ,σ α
i
δ[hµ − Hα

i ]

]

× δs ′,σ 1
1
δs,σ 1

2
δ[h′ − H 1

1 ]
〈
c12δ[h − H 1

2 + 2J12s̃] e−i
∑

αi ĥα
i hi (σ

α)
〉
{cij Jij }. (20)

After the average over the disorder is taken (see appendix A for details), we then find

A[s, s ′;h, h′; s̃] = lim
N→∞

lim
n→0

∑
σ1

· · ·
∑
σn

δs ′,σ 1
1
δs,σ 1

2

∫ ∏
αi

[
dHα

i dĥα
i

2π
eiĥα

i Hα
i

]

× δ[h′ − H 1
1 ]

∏
τµα

δ

[
D(τ, hµ) − 1

N

∑
i

δτ,σ α
i
δ[hµ − Hα

i ]

]

× e−i
∑

αi ĥα
i θ

∫
dJP (J )δ[h − H 1

2 + 2J s̃] e−iJ
∑

α[ĥα
1 σα

2 +ĥα
2 σα

1 ]

× exp

⎡
⎣ c

2N

∑
ij

(∫
dJP (J ) e−iJ

∑
α [ĥα

i σ α
j +ĥα

j σ α
i ] − 1

)
+ O(1)

⎤
⎦ . (21)

The O(1) term in the exponent of the last line is independent of {s, s ′, h, h′, s̃}, and can always
be recovered from the normalization

∑
s,s ′

∫
dh dh′A[s, s ′;h, h′; s̃] = 1. Next, we achieve

factorization over sites in (21) upon isolating the density

P(σ, ĥ; {σi}, {hi}) = 1

N

∑
i

δσ,σi
δ[ĥ − ĥi], (22)

where σ = (σ1, . . . , σn), σi = (
σ 1

i , . . . , σ n
i

)
and similarly for the replicated vectors ĥ, etc,

via insertion into (21) of the δ-functional unity representation

1 =
∫ ∏

σĥ

dP(σ, ĥ)δ[P(σ, ĥ) − P(σ, ĥ; {σi}, {hi})] (23)

which gives, with the short-hands 〈g(J )〉J = ∫
dJP (J )g(J ) and x · y = ∑

α xαyα ,

A[s, s ′;h, h′; s̃] = lim
N→∞

lim
n→0

∫ ∏
τµα

[
dD̂α(τ, hµ)

2π/N

]∫ ∏
σĥ

[
dP̂ (σ, ĥ) dP(σ, ĥ)

2π/N

]

× exp

{
N

[
i
∑
τµα

D̂α(τ, hµ)D(τ, hµ) + i
∑
σĥ

P̂ (σ, ĥ)P (σ, ĥ) + O

(
1

N

)

+
1

2
c
∑
σσ′

∫
dĥ dĥ

′
P(σ, ĥ)P (σ′, ĥ

′
)
〈
e−iJ [ĥ·σ′+ĥ

′
·σ] − 1

〉
J

]}

×
∑
σ1

· · ·
∑
σn

∫ ∏
i

[
dH i dĥi

2π
eiĥi ·[H i−θ]

]

6
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× e
−i

∑
τµα D̂α(τ,hµ)

∑
i δτ,σα

i
δ[hµ−Hα

i ]−i
∑

σ
ˆh

P̂ (σ,ĥ)
∑

i δσ,σi
δ[ĥ−ĥi ]

× δs ′,σ 1
1
δs,σ 1

2
δ[h′ − H 1

1 ]
〈
δ[h − H 1

2 + 2J s̃] e−iJ [ĥ1·σ2+ĥ2·σ1]
〉
J
. (24)

We rescale the conjugate integration variables according to P̂ (σ, ĥ) → dĥP̂ (σ, ĥ), which
converts the sum over ĥ in the exponent of (24) into a well-defined integral when dĥ → 0, and
D̂α(τ, hµ) → �hµD̂α(τ, hµ). We write the resulting path integral measure as {dP dP̂ dD̂}.
Next, we define an effective single-site measure M:

〈f [H, ĥ; σ]〉M =
∑

σ

∫
dH dĥM[H, ĥ, σ|θ ]f [H, ĥ; σ]∑

σ

∫
dH dĥM[H, ĥ, σ|θ ]

,

(25)
M[H, ĥ, σ|θ ] = eiĥ·[H−θ]−i

∑
sµα �hµD̂α(s,hµ)δs,σα δ[hµ−Hα ]−iP̂ (σ,ĥ)

and the function

�[{P, P̂ , D̂}] = i
∑
sµα

�hµD̂α(s, hµ)D(s, hµ) + i
∑

σ

∫
dĥP̂ (σ, ĥ)P (σ, ĥ)

+ log
∑

σ

∫
dH dĥM[H, ĥ, σ|θ ]

+
1

2
c
∑
σσ′

∫
dĥ dĥ

′
P(σ, ĥ)P (σ′, ĥ

′
)
〈
e−iJ [ĥ·σ′+ĥ

′
·σ] − 1

〉
J
. (26)

Using these definitions and changing the order of the limits N → ∞ and n → 0 allows us to
write (24) in the form

A[s, s ′;h, h′; s̃] = lim
n→0

lim
N→∞

∫
{dP dP̂ dD̂} eN�[{P,P̂ ,D̂}]+O(1)

× 〈
δs ′,σ1δs,σ ′

1
δ[h′ − H1]δ[h − H ′

1 + 2J s̃] e−iJ [ĥ·σ′+ĥ
′
·σ〉

J,M,M ′ , (27)

where the average 〈. . .〉M ′ corresponds to {H, ĥ; σ} → {H ′, ĥ
′; σ′} in the definition of

effective single-site measure (25). Finally, with the help of the normalization identity∑
ss ′

∫
dh dh′A[s, s ′;h, h′; s̃] = 1, we compute (27) by the steepest descent:

A[s, s ′;h, h′; s̃] = lim
n→0

〈
δs ′,σ1δs,σ ′

1
δ[h′ − H1]δ[h − H ′

1 + 2J s̃] e−iJ [ĥ·σ′+ĥ
′
·σ]

〉
J,M,M ′〈

e−iJ [ĥ·σ′+ĥ
′
·σ]

〉
J,M,M ′

, (28)

where {P, P̂ , D̂} are determined by extremization of �. The functional variation of � with
respect to P(σ, ĥ), P̂ (σ, ĥ) and D̂α(s, hµ) leads to the stationarity conditions

D(s, h) = 〈δs,σα
δ[h − Hα]〉M, (29)

P(σ, ĥ) = 〈δσ,σ′δ[ĥ − ĥ
′
]〉M ′ , (30)

P̂ (σ, ĥ) = ic
∑
σ′

∫
dĥ

′
P(σ′, ĥ

′
)
〈
e−iJ [ĥ·σ′+ĥ

′
·σ] − 1

〉
J
. (31)

The conjugate order parameters D̂α(s, h) and P̂ (σ, ĥ) are seen to play the role of Lagrange
multipliers, ensuring normalization of D(s, h) and P(σ, ĥ). The physical meaning of the
density P(σ, ĥ) is not yet clear, due to the presence of the vector ĥ.

7
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We use equation (31) to eliminate the conjugate order parameters P̂ (σ, ĥ) from
the measure M. We assume that D̂(s, h) is sufficiently smooth in h, such that∑

µ �hµD̂α(s, hµ)f (hµ) → ∫
dHD̂α(s,H)f (H) for � → ∞. This leads to

M[H, ĥ, σ|θ ] = exp

{
iĥ · [H − θ] − i

∑
α

D̂α(σα,Hα)

+ c
∑
σ′

∫
dĥ

′
P(σ′, ĥ

′
)
〈
e−iJ [ĥ·σ′+ĥ

′
·σ] − 1

〉
J

}
(32)

in the definition of the measure M (25). The replica method requires finally that we take the
n → 0 limit in equations (28)–(30). To do this we need to make appropriate ansätze for the
density P(σ, ĥ) and for the conjugate order parameters D̂α(s,H).

3.2. Replica symmetry

We evaluate (28)–(30) upon assuming ergodicity, which translates mathematically into the
so-called replica-symmetry (RS) ansatz. First, the order parameters D̂α(s,H) depend only on
a single replica index and are expected to be imaginary, so we put

D̂α(s,H) = i log d(s,H). (33)

Second, the density P(σ, ĥ) depends on a discrete and continuous vector in replica space. The
RS ansatz demands its invariance under any joint permutation of their indices, which implies
[7] that it must be of the general form

PRS(σ, ĥ) =
∫

{dP }W [{P }]
n∏

α=1

P(σα, ĥα), (34)

where W [{P }] is a normalized functional distribution, i.e.
∫ {dP }W [{P }] = 1. The RS ansatz

(33), (34), via its implications for the effective measure (25), will enable us to take the replica
limit n → 0 in equations (28)–(30). We insert (33), (34) into (32) and subsequently expand
the exponential function containing PRS(σ, ĥ), leading to

MRS[H, ĥ, σ|θ ] =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�){dP�}W [{Pl}]}

×
n∏

α=1

⎧⎨
⎩d(σα,Hα) eiĥα [Hα−θ]

k∏
�=1

⎡
⎣∑

σα
�

∫
dĥα

� P�

(
σα

� , ĥα
�

)
e−iJ�[ĥασ α

� +ĥα
� σα ]

⎤
⎦
⎫⎬
⎭ .

(35)

We write averages with respect to the RS measure (35) as

〈f [H, ĥ; σ]〉MRS = 1

Mn
RS

∑
σ

∫
dH dĥMRS[H, ĥ, σ|θ ]f [H, ĥ; σ], (36)

where we defined the normalization constant Mn
RS = ∑

σ

∫
dH dĥMRS[H, ĥ, σ|θ ]. Clearly

limn→0 Mn
RS = 1. We use the above results to solve equation (30) for the functional distribution

W [{P }], upon substituting the various RS expressions:

8
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Mn
RS

∫
{dP }W [{P }]

n∏
α=1

P(σα, ĥα) =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�){dP�}W [{P�}]}

×
n∏

α=1

∫
dHαd(σα,Hα) eiĥα [Hα−θ]

k∏
�=1

⎡
⎣∑

σα
�

∫
dĥα

� P�

(
σα

� , ĥα
�

)
e−iJ�[ĥασ α

� +ĥα
� σα ]

⎤
⎦

=
∫

{dP }
n∏

α=1

P(σα, ĥα)
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�) {dP�} W [{P�}]}

×Zn[{P1, . . . , Pk}]

×
∏
σ ĥ

δ

[
P(σ, ĥ) −

∫
dHd(σ,H) eiĥ[H−θ] ∏k

�=1

{∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�[ĥσ�+ĥ�σ ]

}
Z[{P1, . . . , Pk}]

]
,

where

Z[{P1, . . . , Pk}] =
∑

σ

∫
dH dĥd(σ,H) eiĥ[H−θ]

×
k∏

�=1

{∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJl [ĥσ�+ĥ�σ ]

}

= 2π
∑

σ

k∏
�=1

{∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

}
d

(
σ,

k∑
�=1

J�σ� + θ

)
. (37)

In the limit n → 0, both the normalization term Zn[{P1, . . . , Pk}] and the constant Mn
RS reduce

to unity, and we find an equation for the functional distribution W [{P }]:

W [{P }] =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�){dP�}W [{P�}]}

×
∏
σ ĥ

δ

[
P(σ, ĥ) −

∫
dHd(σ,H) eiĥ[H−θ] ∏k

�=1{
∑

σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�[ĥσ�+ĥ�σ ]}

Z[{P1, . . . , Pk}]

]
. (38)

In a similar fashion (see appendix B for details), we can compute the probability distributions
D(s, h) and A[s, s ′;h, h′; s̃] in RS ansatz. To compactify our formulae we define the Fourier
transforms P̂ (σ |x) = ∫

dĥP (σ, ĥ) e−iĥx (these should not be confused with the conjugate
order parameter P̂ (σ, ĥ) which was eliminated in the previous section), in terms of which we
find

D(s, h) = d(s, h)
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�) {dP�} W [{P�}]}

×
∏k

�=1

{∑
σ�

P̂ �(σ�|J�s)
}
δ[h − ∑k

�=1 J�σ� − θ ]

Z[{P1, . . . , Pk}] , (39)

A[s, s ′;h, h′; s̃] =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�){dP�}W [{P�}]}

×
∑
m�0

cm

m!
e−c

∫ m∏
r=1

{dJ ′
rP (J ′

r ) {dQr} W [{Qr}]}

9
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×
〈

k∏
�=1

{∑
σ�

P̂ �(σ�|J�s
′)

}
δ

[
h′ −

k∑
�=1

J�σ� − θ − J s

]
d(s ′, h′)

×
m∏

r=1

{∑
σr

Q̂r (σr |J ′
r s)

}
δ

[
h −

m∑
r=1

J ′
rσr − θ − J s ′ + 2J s̃

]
d(s, h + 2J s̃)

×
[∑

σσ ′

k∏
�=1

{∑
σ�

P̂ �(σ�|J�σ )

}
d

(
σ,

k∑
�=1

J�σ� + θ + Jσ ′
)

×
m∏

r=1

{∑
σr

Q̂r (σr |J ′
rσ

′)

}
d

(
σ ′,

m∑
r=1

J ′
rσr + θ + Jσ

)]−1〉
J

. (40)

Our theory requires the solution of the saddle-point equations (38) and (39) for the functional
distribution W [{P }] and the function d(s, h). These are functional relations, and is generally
not possible to solve them analytically. Furthermore, the imaginary arguments in (38) induce
further complications in the numerical solution. To simplify matters we assume that for x ∈ R

the Fourier transforms P̂ (σ |x) are real-valued, and we define a corresponding functional
distribution

W̃ [{P̂ }] =
∫

{dP }W [{P }]
∏
σx

δ

[
P̂ (σ |x) −

∫
dĥP (σ, ĥ) e−iĥx

]
. (41)

W̃ is normalized by construction, but the P̂ (σ |x) need not be. We transform our problem into
the language of W̃ by inserting (38) into (41) and integrating over {P }:

W̃ [{P̂ }] =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{
dJ�P (J�){dP̂ �}W̃ [{P̂ �}]

}

×
∏
σx

δ

[
P̂ (σ |x) −

∏k
�=1

{∑
σ�

P̂ �(σ�|J�σ )
}
d
(
σ,

∑k
�=1 J�σ� + θ + x

)
Z
[{P̂ 1, . . . , P̂ k}

]
]

, (42)

where Z[{P̂ 1, . . . , P̂ k}] = ∑
σ

∏k
�=1

{∑
σ�

P̂ �(σ�|J�σ )
}
d
(
σ,

∑k
�=1 J�σ� + θ

)
.

Our previous results (39) and (40) under W → W̃ take the form

D(s, h) = d(s, h)
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�){dP̂ �}W̃ [{P̂ �}]}

×
∏k

�=1

{∑
σ�

P̂ �(σ�|J�s)
}
δ
[
h − ∑k

�=1 J�σ� − θ
]

Z[{P̂ 1, . . . , P̂ k}]
(43)

and

A[s, s ′;h, h′; s̃] =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�){dP̂ �}W̃ [{P̂ �}]}

×
∑
m�0

cm

m!
e−c

∫ m∏
r=1

{dJ ′
rdP (J ′

r ){dQ̂r}W̃ [{Q̂r}]}

×
〈

k∏
�=1

{∑
σ�

P̂ �(σ�|J�s
′)

}
δ

[
h′ −

k∑
�=1

J�σ� − θ − J s

]
d(s ′, h′)

10
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×
m∏

r=1

{∑
σr

Q̂r (σr |J ′
r s)

}
δ

[
h −

m∑
r=1

J ′
rσr − θ − J s ′ + 2J s̃

]
d(s, h + 2J s̃)

×
[∑

σσ ′

k∏
�=1

{∑
σ�

P̂ �(σ�|J�σ )

}
d

(
σ,

k∑
�=1

J�σ� + θ + Jσ ′
)

×
m∏

r=1

{∑
σr

Q̂r (σr |J ′
rσ

′)

}
d

(
σ ′,

m∑
r=1

J ′
rσr + θ + Jσ

)]−1〉
J

. (44)

Equations (42)–(44) are the final analytic results within the replica-symmetry theory. They
complement and close the diffusion equation (16). We may now proceed to the solution of
(16) by iterating the following recipe from time t = 0 onwards: at any time point t, we
use the instantaneous distribution Dt(s, h) to solve equations (42) and (43) numerically for
W̃ [{P̂ }] and d(s, h) via a population dynamics algorithm [6], the result of which is then used
to compute kernel (44), and to iterate (16) over the next infinitesimal time step t → t + dt .

The numerical implementation of this theory is dependent on the nature of local fields
(2). In the models with discrete fields (e.g. the FC Ising ferromagnet), the dynamical
equation (16) reduces to the system of ordinary differential equations and the population
dynamics can be implemented as in the vertex cover model (section 4) along the lines of
appendix E. In a general case, where the fields can take any real value, one has to solve a PDE,
by any standard method, and the population dynamics equations (42) and (43) can be solved,
e.g. using the methods outlined in [25].

4. Application of the theory to the vertex cover problem

In this section, we show how the theory developed in the previous sections allows us to
study analytically the Monte Carlo dynamics (extended with appropriate stochastic cooling
schedules of the simulated annealing type) of the so-called minimum vertex cover optimization
problem.

4.1. The minimal vertex cover problem

We start with the definitions. Let G = (V ,E) be a graph defined by a set of N vertices
V = {1, . . . , N} and a set of undirected edges E = {(i, j)}, where i, j ∈ V and there is no
distinction between (i, j) and (j, i). A vertex cover (VC) of a graph G is a subset VVC ⊆ V

of vertices, such that for all edges (i, j) ∈ E either i ∈ VVC or j ∈ VVC or both. The vertices
in VVC are called covered, and those in V \VVC uncovered. Similarly, an edge (i, j) is said to
be covered if at least one of the vertices {i, j} is in VVC. The minimum vertex cover problem
is the following optimization problem: find a vertex cover set VVC of minimal cardinality, for
a given graph G, and compute the fraction xc(G) = |VVC|/N . The corresponding decision
problem, to find whether for a given graph G a VC of fixed cardinality x = |VVC|/N exists,
is known to belong to the class of NP-complete problems [26]; i.e., it is conjectured that no
algorithm of polynomial time complexity in N (or in the number of edges M) exists to solve it.
All algorithms known to date indeed have exponential time complexity. The introduction of
graph ensembles allows us to study typical instances of the minimal VC problem, and quantify
the average properties. For instance, it was found that for large Poissonian random graphs
(3) the fraction of covered vertices in a minimal vertex cover xc(G) depends on the average
connectivity c only, i.e. xc(G) = xc(c). Rigorous lower and upper bounds for xc(c) were
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derived in [27]

xl(c) < xc(c) < 1 − ln(c)/c, (45)

where xl(c) is a solution of

x ln x + (1 − x) ln(1 − x) − 1
2c(1 − x)2 = 0. (46)

The lower bound coincides with the annealed bound calculated within statistical mechanics,
see, e.g. [28]. The asymptotic form of xc(c) for large c was given in [29]

xc(c) = 1 − 2[1 + ln(c) − ln(ln(c)) − ln(2)]/c + o(c−1). (47)

Since in VC problems a vertex is either covered or uncovered, one can map the VC problem
in to an Ising model [10]:2 for any subset U ⊆ V we define σi = 1 if i ∈ U , and σi = −1 if
i /∈ U . We define a corresponding Hamiltonian for the state σ = (σ1, . . . , σN) which simply
counts the number of uncovered edges:

H(σ) =
∑
i<j

cij δσi ,−1δσj ,−1. (48)

Solving the VC problem for a given relative cardinality x then reduces to minimizing H(σ)

under the constraint
∑

i δσi ,1 = xN , which in terms of the Ising spins implies

1

N

∑
i

σi = 2x − 1. (49)

The study of VC has thereby been connected to the study of the ground states of an Ising spin
system, within equilibrium statistical mechanics. This enabled the computation of the relative
size of minimal VCs for typical large graph instances of FC ensembles, by averaging the free
energy of the spin system over all graphs in the ensemble. Within the RS ansatz, this resulted
for the Poissonian graphs in [10, 30]

xc(c) = 1 − 2W(c) + W 2(c)

2c
. (50)

Here, W(c) is the Lambert W -function [31], defined as the real solution of c = W eW . This
result implies that almost all graphs are coverable with xN vertices for x > xc(c) and not
coverable for x < xc(c). It was proved to be exact for c � exp(1) [32], but for c > exp(1)

equation (50) underestimates the empirical values of xc(c) obtained by numeric simulation
[10], and for c � 20.7 it even violates the lower bound (46). The explanation was found to
be that at c = exp(1) the assumed RS breaks down [10, 30], and replica-symmetry breaking
(RSB) occurs. The one-step RSB solution was computed in [33] via the cavity method; its
agreement with the numeric results [10] improves upon the RS calculation (50) and approaches
(47) correctly for large c, yet the one-step RSB solution is still incorrect for c > exp(1) [33].
A more recent result obtained in [34] is in good agreement with both the numerical simulations
[10] for c � 10.0, and with the asymptotic form (47) for large c. A few and limited analytic
studies of the dynamics of algorithmic solutions of the VC problem were carried out only for
a simple backtracking algorithm [35], and for more complex heuristic [36, 37] algorithms. In
this paper, in contrast, we consider a more physical dynamics, inspired by the connection with
a ground-state search in the Ising spin systems.

2 An alternative representation involves mapping the VC problem into a hard-sphere lattice gas [30].
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4.2. Dynamic replica analysis of the vertex cover problem

In this section, we analyse the Monte Carlo dynamics for the minimum VC problem of type
(5), where we allow the temperature T to vary over time such that limt→∞ T (t) = 0, but
sufficiently slowly so that in (5) we may simply substitute β → β(t). We map the VC
problem into the Ising model (48), and impose the constraint (49) in a ‘soft’ way, by adding
an extra term to the Hamiltonian (48)

H̃ (σ) =
∑
i<j

cij δσi ,−1δσj ,−1 − λ
∑

i

δσi ,−1 (51)

(where λ > 0), which ensures that among the states σ that minimize (51), those with the
smallest sum

∑
i δσi ,1 (i.e. minimal cover) are preferred. The Glauber dynamics associated

with the Hamiltonian (51) is indeed of type (1), with the local field

hi(σ) = J
∑
j �=i

cij δσj ,−1 + θ, (52)

where J = 1
2 and θ = − 1

2λ. The fields could also have been written in the more standard
form hi(σ) = ∑

j Jij σj + θi , but this would have required the site-dependent random θi which
involve the connectivity variables cij . The consequences for our theory of changing the local
fields from the conventional form (2) to (52) are minor. The diffusion equation (16) remains
unchanged; the only difference is in definition of distribution (11), which now becomes

D(s, h; σ) = 1

N

∑
i

δs,σi
δ

⎡
⎣h − J

∑
j �=i

cij δσj ,−1 − θ

⎤
⎦ (53)

and kernel (15), which changes to

Ã[s, s ′;h, h′; s̃] =
〈

1

cN

∑
ij

δs ′,σi
δs,σj

cij δ[h′ − hi(σ)]δ[h − hj (σ) − J s̃]

〉
D;t

, (54)

where s̃ ∈ {0, s ′} and hi(σ) is given by (52). Next, we compute the consequences of defining
(52) within the replica calculations. This involves only minor alterations of the steps taken in
section 3, and we readily obtain the new expression that replaces our previous (28) (where in
VC there is of course no longer a need to average over J ):

A[s, s ′;h, h′; s̃] = lim
n→0

〈
δs ′,σ1δs,σ ′

1
δ[h′ − H1]δ[h − H ′

1 − J s̃] e−iJ
∑

α [ĥαδσ ′
α ,−1+ĥ′

αδσα ,−1]〉
M,M ′〈

e−iJ
∑

α[ĥαδσ ′
α ,−1+ĥ′

αδσα ,−1]〉
M,M ′

.

(55)

The saddle-point equations (29), (30) remain unaltered, with the 〈. . .〉M averages given by
equation (25), but now the associated measure takes the new form:

M[H, ĥ, σ|θ ] = exp

{
iĥ · [H − θ] − i

∑
α

D̂α(σα,Hα)

+ c
∑
σ′

∫
dĥ

′
P(σ′, ĥ

′
)
[
e−iJ

∑
α[ĥαδσ ′

α ,−1+ĥ′
αδσα ,−1] − 1

]}
. (56)

The only changes to the earlier theory that are induced by the introduction of (52) are in
the imaginary arguments of the exponential function in (55) and (56). We can therefore
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derive the RS version of the theory for VC dynamics simply by replacing σα → δσα,−1 and
P(J�) → δ(J� − J ) in equations (38)–(40) of section 3.2. This results in

W [{P }] =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{{dP�}W [{Pl}]}

×
∏
σ ĥ

δ

[
P(σ, ĥ) −

∫
dHd(σ,H) eiĥ[H−θ] ∏k

�=1

{∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ [ĥδσ�,−1+ĥ�δσ,−1]

}
Z[{P1, . . . , Pk}]

]

(57)

and, with the Fourier transforms P̂ (σ |x) = ∫
dĥP (σ, ĥ) e−iĥx ,

D(s, h) = d(s, h)
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{{dP�}W [{P�}]}

×
∏k

�=1

{∑
σ�

P̂ �(σ�|Jδs,−1)
}
δ
[
h − J

∑k
�=1 δσ�,−1 − θ

]
Z[{P1, . . . , Pk}] , (58)

A[s, s ′;h, h′; s̃] =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{
{dP�}W [{P�}]

∑
σ�

P̂ �(σ�|Jδs ′,−1)

}

×
∑
m�0

cm

m!
e−c

∫ m∏
r=1

⎧⎨
⎩{dQr}W [{Qr}]

∑
σr

Q̂r (σr |Jδs,−1)

⎫⎬
⎭

× δ

[
h′ − J

k∑
�=1

δσ�,−1 − θ − Jδs,−1

]
d(s ′, h′)

× δ

[
h − J

m∑
r=1

δσr ,−1 − θ − Jδs ′,−1 − J s̃

]
d(s, h − J s̃)

×
[∑

σσ ′

k∏
�=1

{∑
σ�

P̂ �(σ�|Jδσ,−1)

}
d

(
σ, J

k∑
�=1

δσ�,−1 + θ + Jδσ ′,−1

)

×
m∏

r=1

⎧⎨
⎩
∑
σr

Q̂r (σr |Jδσ ′,−1)

⎫⎬
⎭ d

(
σ ′, J

m∑
r=1

δσr ,−1 + θ + Jδσ,−1

)⎤
⎦

−1

. (59)

As before we may switch to a measure defined directly on the relevant Fourier transforms,
which in the case of VC simplifies further due to the uniform bonds J :

W̃ [{P̂ }] =
∫

{dP }W [{P }]
∏
σσ ′

δ

[
P̂ (σ |Jδσ ′,−1) −

∫
dĥP (σ, ĥ) e−iĥJ δσ ′ ,−1

]
. (60)

Our RS equations now acquire the following form:

W̃ [{P̂ }] =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{{dP̂ �}W̃ [{P̂ �}]}

×
∏
σσ ′

δ

[
P̂ (σ |Jδσ ′,−1) −

∏k
�=1

{∑
σ�

P̂ �(σ�|Jδσ,−1)
}
d
(
σ, J

∑k
�=1 δσ�,−1 + θ + Jδσ ′,−1

)
Z[{P̂ 1, . . . , P̂ k}]

]
,

(61)
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D(s, h) = d(s, h)
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{{dP̂ �}W̃ [{P̂ �}]}

×
∏k

�=1

{∑
σ�

P̂ �(σ�|Jδs,−1)
}
δ
[
h − J

∑k
�=1 δσ�,−1 − θ

]
Z[{P̂ 1, . . . , P̂ k}]

, (62)

where Z[{P̂ 1, . . . , P̂ k}] = ∑
σ

∏k
�=1

{∑
σ�

P̂ �(σ�|Jδσ,−1)
}
d
(
σ, J

∑k
�=1 δσ�,−1 + θ

)
, and

A[s, s ′;h, h′; s̃] =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{
{dP̂ �}W̃ [{P̂ �}]

∑
σ�

P̂ �(σ�|Jδs ′,−1)

}

×
∑
m�0

cm

m!
e−c

∫ m∏
r=1

{
{dQ̂r}W̃ [{Q̂r}]

∑
σr

Q̂r (σr |Jδs,−1)

}

× δ

[
h′ − J

k∑
�=1

δσ�,−1 − θ − Jδs,−1

]
d(s ′, h′)

× δ

[
h − J

m∑
r=1

δσr ,−1 − θ − Jδs ′,−1 − J s̃

]
d(s, h − J s̃)

×
[∑

σσ ′

k∏
�=1

{∑
σ�

P̂ �(σ�|Jδσ,−1)

}
d

(
σ, J

k∑
�=1

δσ�,−1 + θ + Jδσ ′,−1

)

×
m∏

r=1

{∑
σr

Q̂r (σr |Jδσ ′,−1)

}
d

(
σ ′, J

m∑
r=1

δσr ,−1 + θ + Jδσ,−1

)]−1

. (63)

Compared to the more general expression (42), in the VC case (61) the dimensionality of our
problem has been reduced drastically, as W̃ is now a functional on the space of 2 × 2 matrices
P̂ (σ |Jδσ ′,−1). Furthermore, the solutions of (61), (63) are of the following form, which is
expected on physical grounds (given the non-random bonds J in VC):

D(s, h) =
∑
n�0

P(s, n)δ(h − Jn − θ), (64)

A[s, s ′;h, h′; s̃] =
∑

n,n′�0

A[s, s ′; n, n′]δ[h′ − Jn′ − θ − Jδs,−1]

× δ[h − Jn − θ − Jδs ′,−1 − J s̃], (65)

where P(s, n) and A[s, s ′; n, n′] (with s, s ′ ∈ {−1, 1} and n, n′ ∈ {0, 1, 2, . . .}) are solved
from

P(s, n) =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{{dP̂ �}W̃ [{P̂ �}]}

×
∏k

�=1

{∑
σ�

P̂ �(σ�|Jδs,−1)
}
d(s, Jn + θ)δn,

∑k
�=1 δσ�,−1∑

σ

∏k
�=1

{∑
σ�

P̂ �(σ�|Jδσ,−1)
}
d
(
σ, J

∑k
�=1 δσ�,−1 + θ

) (66)

and

A[s, s ′; n, n′] =
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{
{dP̂ �}W̃ [{P̂ �}]

∑
σ�

P̂ �(σ�|Jδs ′,−1)

}
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×
∑
m�0

cm

m!
e−c

∫ m∏
r=1

{
{dQ̂r}W̃ [{Q̂r}]

∑
σr

Q̂r (σr |Jδs,−1)

}

× d(s ′, Jn′ + θ + Jδs,−1)δn′,
∑k

�=1 δσ�,−1

× d(s, Jn + θ + Jδs ′,−1)δn,
∑m

r=1 δσr ,−1

×
[∑

σσ ′

k∏
�=1

[∑
σ�

P̂ �(σ�|Jδσ,−1)

]
d

(
σ, J

k∑
�=1

δσ�,−1 + θ + Jδσ ′,−1

)

×
m∏

r=1

[∑
σr

Q̂r (σr |Jδσ ′,−1)

]
d

(
σ ′, J

m∑
r=1

δσr ,−1 + θ + Jδσ,−1

)]−1

. (67)

The simplified form of kernels (64), (65) subsequently allows us to transform the main
dynamical equation (16), which is a PDE, into the following system of ordinary differential
equations (see appendix C for details):

d

dt
P (s, 0) = 1

2
[1 + s tanh[βθ ]] P(−s, 0) − 1

2
[1 − s tanh[βθ ]] P(s, 0)

+
1

2
c
∑
n′�0

[1 + tanh[βJn′ + βθ + βJδs,−1]]A[s,−1; 0, n′]

− 1

2
c
∑
n′�0

[1 − tanh[βJn′ + βθ + βJδs,−1]]A[s, 1; 0, n′], (68)

whereas for n > 0 we have

d

dt
P (s, n) = 1

2
[1 + s tanh[βJn + βθ ]] P(−s, n) − 1

2
[1 − s tanh[βJn + βθ ]] P(s, n)

+
1

2
c
∑
n′�0

[1 − tanh[βJn′ + βθ + βJδs,−1]]A[s, 1; n − 1, n′]

+
1

2
c
∑
n′�0

[1 + tanh[βJn′ + βθ + βJδs,−1]]A[s,−1; n, n′]

− 1

2
c
∑
n′�0

[1 − tanh[βJn′ + βθ + βJδs,−1]]A[s, 1; n, n′]

− 1

2
c
∑
n′�0

[1 + tanh[βJn′ + βθ + βJδs,−1]]A[s,−1; n − 1, n′]. (69)

Equations (61) and (66)–(69) are the final results of our dynamical replica analysis. They can
be solved numerically, using population dynamics for the functional saddle-point equations
(see appendix E for details) and any standard method for the system of ordinary differential
equations. If we allow for temperature adaptation, namely β → β(t), and restrict ourselves to
those cooling protocols where β(t) changes only on O(N0) time scales, we may simply make
the replacement β → β(t) in the above equations.

5. Tests of the VC theory against numerical simulations

To test our theoretic predictions for the evolution of observables in the Glauber algorithm with
stochastic cooling running on the VC problem, we compare the results of solving numerically
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the system of dynamical equations (69) with the results of numerical simulations. We solve
(69) using a simple first-order Euler method, i.e. we iterate the iteration

P�+1(s, n) = P�(s, n) + h� [s, n;P�(. . .);A�[. . .]] , t� = �h, (70)

where n ∈ {0, 1, . . . , L(c)} and �[. . .] is a short-hand for the right-hand side of (68), (69).
Here, L(c) denotes a suitable cut-off value that increases monotonically with the average
connectivity c in (3), and 0 < h � 1. At each discrete time-step � of this iteration, we
solve the RS equations (61), (66) via a population dynamics algorithm (see appendix E) and
compute kernel (67). Solving (69) requires a significant numerical effort, the bulk of which
is devoted to solving equations (61), (66), where the computation of a typical object (E.1)
requires typically O(2c) basic operations. Although we expect that for sufficiently small h the
changes in the statistical properties of the population between consecutive iterative time steps
in (70) are small, the fact that the running time of the algorithm (70) grows exponentially with
c restricts the scope of simulation experiments. For each choice of control parameters, our
experimental protocol has been the following. First, we generate a large random Poissonian
graph with the required connectivity c. Then we run the algorithm (1) with the local fields
(52), from an initial spin configuration where the individual spins are drawn randomly and
independently from distribution (D.1). We then let the system evolve according to the Glauber
algorithm, but with the temperature T (t) decreasing in stages (to achieve stochastic cooling),
while we record the evolution of two macroscopic-order parameters, being the fraction x of
covered vertices

x(σ) = 1

N

∑
i

δσi ,1 (71)

and the energy density E, which is proportional to the fraction of uncovered edges,

E(σ) = 1

N

∑
i<j

cij δσi ,−1δσj ,−1. (72)

For a state σ to represent an acceptable vertex cover, it must have E(σ) = 0. For such a cover
to be minimal, we want in addition x(σ) to be as small as possible.

In simulated annealing one starts a Monte Carlo dynamics at a high temperature T (0),
and then lowers it slowly in stages, allowing the system to equilibrate effectively along the
way. The objective is for the algorithm not to get stuck in states that are only locally but not
globally optimal. Determining the best cooling schedule T (t) for achieving this, however,
is highly non-trivial; furthermore, equilibration times in VC-type optimization problems can
scale exponentially in the system size. Here we did not attempt to optimize the cooling protocol
but focused on the VC dynamics for simple stepwise temperature reductions. Our numerical
simulations were carried out on random graphs with N = 100 00 vertices, with average
connectivities c ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5}. The values of the parameters J = 1, θ = −0.99,
the initial covered fraction x0 = N−1 ∑

i δσi (0),1 = 0.9 and the temperatures T ∈ {2, 1, 0.5, 0}
(reduced in steps) were identical in all simulations. The initial conditions for (69) and the
population dynamics were computed via equations (D.3)–(D.2) of appendix D. The value of
the step size in (70) was h = 0.1 and the cut-off values L(c) for n were chosen according to

c 0.5 1.0 1.5 2.0 2.5 3.0 3.5
L(c) 5 8 8 8 9 10 10

The size of the population was N = 100 00 and the number of iterations typically needed
for the population dynamics to converge was of order 10N .

In figures 1–4, we compare the data obtained in our numerical simulations for c ∈
{0.5, 1, 2, 3} with the results of solving (69) numerically. We observe that the overall agreement
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Figure 1. Left and middle: evolution of the fraction x and the energy density E in the VC algorithm
with simulated annealing, for c = 0.5, J = 1.0 and θ = −0.99. Time is measured in iterations per
spin. Solid lines: RS theory. Dashed and dotted lines: average and average plus/minus standard
deviation as measured over 100 simulation runs in systems with N = 104 spins. The annealing
schedule had four stages: (i) T = 2 for t ∈ [0, 10], (ii) T = 1 for t ∈ [10, 20], (iii) T = 0.5
for t ∈ [20, 30] and (iv) T = 0 for t ∈ [30, 40]. Right: histograms (RS theory) of the two
field distributions P(±1, n) at t = 40, together with the corresponding simulation measurements
(markers with error bars).
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Figure 2. Left and middle: evolution of the fraction x and the energy density E in the VC algorithm
with simulated annealing, for c = 1, J = 1.0 and θ = −0.99. Time is measured in iterations per
spin. Solid lines: RS theory. Dashed and dotted lines: average and average plus/minus standard
deviation as measured over 100 simulation runs in systems with N = 104 spins. The annealing
schedule had four stages: (i) T = 2 for t ∈ [0, 10], (ii) T = 1 for t ∈ [10, 20], (iii) T = 0.5
for t ∈ [20, 40] and (iv) T = 0 for t ∈ [40, 50]. Right: histograms (RS theory) of the two
field distributions P(±1, n) at t = 50, together with the corresponding simulation measurements
(markers with error bars).

between theory and simulations is excellent. The RS theory also predicts correctly the joint
spin–field statistics Pt(s, n), see the right panels in figures 1–4; note the different vertical
scales. The Pt(−1, n) histograms, in figures 1–4, show that all neighbours of uncovered
vertices are covered, thus the configurations sampled at final times are indeed vertex covers.
The deviations between theory and simulations are (as usual in DRT) confined to intermediate
times, and limited to low temperatures in combination with high average connectivity, as
shown in the insets of figures 3 and 4; but even there they remain within the error bars of
the simulation data. Finally, in figure 5, we compare our results for the fraction of covered
vertices x as measured at termination of the algorithm with result (50) of equilibrium statistical
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Figure 3. Left and middle: evolution of the fraction x and the energy density E in the VC algorithm
with simulated annealing, for c = 2, J = 1.0 and θ = −0.99. Time is measured in iterations per
spin. Solid lines: RS theory. Dashed and dotted lines: average and average plus/minus standard
deviation as measured over 100 simulation runs in systems with N = 104 spins. The annealing
schedule had four stages: (i) T = 2 for t ∈ [0, 10], (ii) T = 1 for t ∈ [10, 20], (iii) T = 0.5 for
t ∈ [20, 50] and (iv) T = 0 for t ∈ [50, 60]. The inset in the left figure shows an enlargement of the
region t ∈ [20, 30], where the largest deviation between theory and simulation for x is observed.
Right: histograms (RS theory) of the two field distributions P(±1, n) at t = 60, together with the
corresponding simulation measurements (markers with error bars).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60

x

0.00

0.04

0.08

0.12

0.16

0 10 20 30 40 50 60

E

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

0 2 4 6 8

nntt

P (−1, n) P (1, n)

0.44

0.46

0.48

0.50

20 25 30

Figure 4. Left and middle: evolution of the fraction x and the energy density E in the VC algorithm
with simulated annealing, for c = 3, J = 1.0 and θ = −0.99. Time is measured in iterations per
spin. Solid lines: RS theory. Dashed and dotted lines: average and average plus/minus standard
deviation as measured over 100 simulation runs in systems with N = 104 spins. The annealing
schedule had four stages: (i) T = 2 for t ∈ [0, 10], (ii) T = 1 for t ∈ [10, 20], (iii) T = 0.5 for
t ∈ [20, 50] and (iv) T = 0 for t ∈ [50, 60]. The inset in the left figure shows an enlargement of the
region t ∈ [20, 30], where the largest deviation between theory and simulation for x is observed.
Right: histograms (RS theory) of the two field distributions P(±1, n) at t = 60, together with the
corresponding simulation measurements (markers with error bars).

mechanics, as obtained (within the replica-symmetry ansatz) in [10]. Our data (markers, with
virtually no difference between the observed values in simulations and the prediction of our
dynamical theory) are seen to be close to the equilibrium prediction (50) (solid curve), but
they overestimate slightly the size of the minimal vertex covers. This type of behaviour is
not unusual in simulations, and suggests that more sophisticated annealing schemes must be
used to achieve equilibration. Slightly more unexpected is the fact that our RS theory exhibits
a similar overestimation of x. This, in combination with the fact that the static RS equations
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Figure 5. The fraction x(c) of covered vertices in a minimal vertex cover as a function of the
average connectivity c. Solid line: prediction of a static replica-symmetric calculation (exact for
c < e; the value c = e is shown as a vertical dashed line), as obtained in [10]. Symbols: the
predicted final fraction x of covered vertices in the vertex cover obtained from the present dynamics
(when we have arrived at T = 0), according to the RS dynamical replica method (which agrees
perfectly with the simulations).

of [10] can be shown to constitute a stationary solution of our present dynamical replica
equations, suggests (at least to the left of the vertical dashed line, where replica symmetry
should hold) that the time required for true equilibration diverges with N. Both the static RS
replica equations and the long time limit of the dynamical RS replica equations represent
distinct stationary solutions of the dynamical formalism, and the observed differences in x(c)

are manifestations of the non-commuting of the limits N → ∞ and t → ∞.

6. Discussion

In this paper, we have studied the sequential dynamics of finitely connected Ising spin models
with random bonds, on Poissonian random graphs. Starting from the microscopic master
equation we derived a dynamic equation for the joint spin–field probability distribution, which
is exact in the infinite system size limit, but not closed. We then followed the usual prescriptions
and assumptions of the dynamic replica theory [22] in order to close this equation. The result
is a set of non-trivial coupled diffusion equations, in which the evaluation of the driving forces
requires the solution of a saddle-point problem at each instance of time. The latter saddle-point
equations are of a functional nature, and are derived within the replica-symmetric (RS) ansatz;
they can be solved numerically by a conventional population dynamics algorithm [6].

As a first application, we have applied our dynamical theory to the dynamics of a simulated
annealing algorithm (Glauber-type dynamics with a stepwise stochastic cooling schedule)
when running to find a solution of the so-called minimal vertex cover (VC) problem [10], on
finitely connected Poissonian random graphs. In this problem the local fields are essentially
integer-valued, which simplifies our dynamical equations. We have derived dynamic equation
for the joint probability of spins and non-negative integer fields. Upon solving the equations of
our theory numerically and comparing the results with the outcome of numerical simulations
of the algorithm, we find an excellent agreement between the theory and experiment.
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When compared to, e.g. the generating functional analysis method (GFA), the advantage
of the dynamic replica theory (DRT) is that, unlike GFA, it does not give an effective number
of scalar order parameters that grows exponentially with time. Although also in its present
form3, with the joint spin–field distribution as the core dynamical order parameter, the DRT
method is not exact, it is certainly much more accurate than, e.g. any simple two-parameter
theory [17], and can be systematically improved further by increasing the order parameter set
[15], although at a numerical cost. We believe its wide applicability to be the main advantage
of the dynamical theory presented in this paper. The formalism can be extended relatively
easily to include, for instance, directed or non-Poissonian random graphs.

Acknowledgments

It is our great pleasure to thank I Pérez-Castillo, JPL Hatchett, A Annibale and M Weigt for
interesting and helpful discussions.

Appendix A. Averaging over disorder

In this appendix, we give the details of the disorder averaging in equation (20) that brings us
to equation (21). First, we rewrite slightly the term within the angular brackets, exploiting the
symmetry of cij Jij under the index permutations i ↔ j :

〈. . .〉{cij Jij } = 〈
c12δ

[
h − H 1

2 + 2J12s̃
]

e−i
∑

αi ĥα
i hi (σ

α)
〉
{cij Jij }

= e−iθ
∑

αi ĥα
i

〈
c12δ

[
h − H 1

2 + 2J12s̃
]

e−i
∑

i �=j cij Jij

∑
α ĥα

i σ α
j

〉
{cij Jij }

= e−iθ
∑

αi ĥα
i

〈
c12δ

[
h − H 1

2 + 2J12s̃
]

e−i
∑

i<j cij Jij

∑
α[ĥα

i σ α
j +ĥα

j σ α
i ]〉

{cij Jij }. (A.1)

We then average over the connectivity disorder {cij }, which is defined by (3), followed by the
bond disorder {Jij }:

〈. . .〉{cij Jij } = c

N
e−iθ

∑
αi ĥα

i

〈
δ
[
h − H 1

2 + 2J12s̃
]

e−iJ12
∑

α [ĥα
1 σα

2 +ĥα
2 σα

1 ]

×
∏

i<j,j �=2

{
c

N
e−iJij

∑
α[ĥα

i σ α
j +ĥα

j σ α
i ] +

(
1 − c

N

)}〉
{Jij }

= c

N
e−iθ

∑
αi ĥα

i

∫
dJP (J )δ

[
h − H 1

2 + 2J s̃
]

e−iJ
∑

α [ĥα
1 σα

2 +ĥα
2 σα

1 ]

×
∏

i<j,j �=2

{
c

N

∫
dJP (J ) e−iJ

∑
α[ĥα

i σ α
j +ĥα

j σ α
i ] + 1 − c

N

}
. (A.2)

Finally, we re-exponentiate the last line of the above expression, giving

〈. . .〉{cij Jij } = c

N
e−iθ

∑
αi ĥα

i

∫
dJP (J )δ

[
h − H 1

2 + 2J s̃
]

e−iJ
∑

α [ĥα
1 σα

2 +ĥα
2 σα

1 ]

× exp

[
c

2N

∑
ij

[∫
dJP (J ) e−iJ

∑
α [ĥα

i σ α
j +ĥα

j σ α
i ] − 1

]
+ O(1)

]
. (A.3)

3 For parallel stochastic dynamics, it can be shown that an exact formulation of DRT is possible for any discrete spin
model, with an effective number of scalar order parameters that grows at most linearly with time [38].
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Appendix B. Calculation of the RS saddle-point equations

We compute the RS versions of kernel (28) and the saddle-point equation (29). Assuming
replica-symmetry transforms in these equations the averages over the effective measure,
〈. . .〉M → 〈. . .〉MRS , with definition (35). In (28), (29) this gives

D(s, h) = 1

Mn
RS

∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�) {dP�} W [{P�}]}

×
{∑

σ1

∫
dH1 dĥ1d(σ1,H1) eiĥ1[H1−θ]δs,σ1δ[h − H1]

×
k∏

�=1

[∑
σ 1

�

∫
dĥ1

�P�

(
σ 1

� , ĥ1
�

)
e−iJ�[ĥ1σ

1
� +ĥ1

�σ1]

]}

×
n∏

α=2

{∑
σα

∫
dHα dĥαd(σα,Hα) eiĥα [Hα−θ]

×
k∏

�=1

[∑
σα

�

∫
dĥα

� P�

(
σα

� , ĥα
�

)
e−iJ�[ĥασ α

� +ĥα
� σα ]

]}

=
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{
dJ�P (J�) {dP�} W [{P�}]

}
Z[{P1, . . . , Pk}]n−1

Mn
RS

×
∑

σ

k∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

]

× d

(
σ,

k∑
�=1

J�σ� + θ

)
δs,σδ

[
h −

k∑
�=1

J�σ� − θ

]

=
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�) {dP�} W [{P�}]}Z[{P1, . . . , Pk}]n−1

Mn
RS

× d(s, h)

k∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�s

]
δ

[
h −

k∑
�=1

J�σ� − θ

]
(B.1)

and

A[s, s ′;h, h′; s̃] = Ã[s, s ′;h, h′; s̃]∑
σσ ′

∫
dH dH ′Ã[σ, σ ′;H,H ′; s̃]

, (B.2)

where

Ã[s, s ′;h, h′; s̃] = 〈δs ′,σ1δs,σ ′
1
δ[h′ − H1]δ[h − H ′

1 + 2J s̃] e−iJ [ĥ·σ′+ĥ
′
·σ]〉J,MRS,M ′

RS

= 1

M2n
RS

∫
dJP (J )

∑
σσ′

∫
dH dH ′dĥ dĥ

′
δs ′,σ1δs,σ ′

1
δ[h′ − H1]δ[h − H ′

1 + 2J s̃]

×
∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�) {dP�} W [{P�}]}
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×
n∏

α=1

d(σα,Hα) eiĥα [Hα−θ−Jσ ′
α ]

k∏
�=1

[∑
σα

�

∫
dĥα

� P�

(
σα

� , ĥα
�

)
e−iJ�[ĥασ α

� +ĥα
� σα]

]

×
∑
m�0

cm

m!
e−c

∫ m∏
r=1

{dJrP (Jr) {dQr} W [{Qr}]}

×
n∏

α=1

d(σ ′
α,H ′

α) eiĥ′
α [H ′

α−θ−Jσα ]
m∏

r=1

[∑
σα

r

∫
dĥα

r Qr

(
σα

r , ĥα
r

)
e−iJr [ĥ′

ασα
r +ĥα

r σ ′
α]

]

= 1

M2n
RS

∑
k�0

ck

k!
e−c

∫ k∏
�=1

{dJ�P (J�) {dP�} W [{P�}]}

×
∑
m�0

cm

m!
e−c

∫ m∏
r=1

{dJrP (Jr) {dQr} W [{Qr}]}
∫

dJP (J )

×
∑
σσ ′

k∏
�=1

[∑
σ�

∫
dĥ�P�(σ�, ĥ�) e−iJ�ĥ�σ

]
d

(
σ,

k∑
�=1

J�σ� + θ + Jσ ′
)

×
m∏

r=1

[∑
σr

∫
dĥrQr(σr , ĥr ) e−iJr ĥr σ

′
]
d

(
σ ′,

m∑
r=1

Jrσr + θ + Jσ

)

× δs,σ ′δ

[
h −

m∑
r=1

Jrσr − θ − Jσ + 2J s̃

]
δs ′,σ δ

[
h′ −

k∑
�=1

J�σ� − θ − Jσ ′
]

×Z[{P1, . . . , Pk|Q1, . . . ,Qm}]n−1. (B.3)

In the replica limit n → 0 we get limn→0 Mn
RS = limn→0 Z[. . .]n = 1, and also

limn→0
∑

σσ ′
∫

dH dH ′Ã[σ, σ ′;H,H ′; s̃] = 1. As a result, expressions (B.1) and (B.2)
reduce to equations (39) and (40), respectively.

Appendix C. Reduction of PDE to the system of ODEs

In this appendix we show how the diffusion equation (16), written in terms of kernels (53)
and (54), can be reduced to a system of ordinary differential equations. The discrete nature of
fields (52) allows us to write (53) and (54) in terms of the probability distributions (64) and
(65). Inserting (64) and (65) into both sides of (16) gives

∂

∂t

∑
n�0

Pt(s, n)δ(h − Jn − θ) = 1

2
[1 + s tanh[βh]]

∑
n�0

Pt(−s, n)δ(h − Jn − θ)

− 1

2
[1 − s tanh[βh]]

∑
n�0

Pt(s, n)δ(h − Jn − θ)

+
1

2
c
∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]

∑
nn′�0

At [s, s
′; n, n′]

× δ[h′ − J (n′ + δs,−1) − θ ]δ[h − J (n + δs ′,−1 + s ′) − θ ]

− 1

2
c
∑
s ′

∫
dh′[1 − s ′ tanh[βh′]]

∑
nn′�0

At [s, s
′; n, n′]

× δ[h′ − J (n′ + δs,−1) − θ ]δ[h − J (n + δs ′,−1) − θ ]. (C.1)
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In the left-hand side we move the time derivative inside the summation, and in the right-hand
side we sum over s ′ and integrate over h′. This leads to

∑
n�0

d

dt
Pt (s, n)δ(h − Jn − θ) =

∑
n�0

δ(h − Jn − θ)

{
1

2
[1 + s tanh[β(Jn + θ)]] Pt(−s, n)

− 1

2
[1 − s tanh[β(Jn + θ)]] Pt(s, n)

}
+

1

2
c
∑
n�0

δ(h − Jn − θ)

×
∑
n′�0

{[1 + tanh[β(Jn′ + θ + Jδs,−1)]]At [s,−1; n, n′]

− [1 − tanh[β(Jn′ + θ + Jδs,−1)]]At [s, 1; n, n′]} +
1

2
c
∑
n�1

δ(h − Jn − θ)

×
∑
n′�0

{[1 − tanh[β(Jn′ + θ + Jδs,−1)]]At [s, 1; n − 1, n′]

− [1 + tanh [β(Jn′ + θ + Jδs,−1)]]At [s,−1; n − 1, n′]}. (C.2)

It follows from the above that the evolution in time of Pt(s, n) is governed by (69).

Appendix D. Initial conditions

In this appendix we compute the values of the probability distribution P(s, n), the functional
distribution W̃ [{P̂ }] and the function d(s, Jn + θ) at time t = 0. We choose an initial state
of the system in which all individual spin values are drawn randomly and independently,
according to

P0(σ) =
N∏

i=1

{
1

2
(1 + m0)δσi ;1 +

1

2
(1 − m0)δσi ;−1

}
, (D.1)

where m0 ∈ [−1, 1] is the prescribed initial magnetization. It follows that the joint spin–field
distribution (53) at t = 0 is given by

D0(s, h) = lim
N→∞

∑
σ

P0(σ)
1

N

N∑
i

δs,σi
〈δ[h − hi(σ)]〉{cij }

= 1

2
(1 + sm0)

∑
k�0

ck

k!
e−c

k∏
�=1

{∑
σ�

1

2
(1 + σ�m0)

}
δ

[
h − J

k∑
�=1

δσ�,−1 − θ

]

= 1

2
(1 + sm0)

∑
n�0

[
1
2c(1 − m0)

]n

n!
exp

[
−1

2
c(1 − m0)

]
δ[h − Jn − θ ]. (D.2)

The initial conditions for system (69) follow directly from the above expression:

P0(s, n) = 1

2
(1 + sm0)

[
1
2c(1 − m0)

]n

n!
exp

[
−1

2
c(1 − m0)

]
. (D.3)

Furthermore, we see that the joint spin–field distribution (D.2) indeed takes the desired form
of the saddle-point equation (61), with the functional distribution

W̃ [{P̂ }] =
∏
σ,σ ′

δ

[
P̂ (σ |Jδσ ′;−1) − 1

2
(1 + σm0)

]
(D.4)
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and with

d(s, Jn + θ) = 1
2 (1 + sm0). (D.5)

It is a trivial matter to show that (D.4) and (D.2) are indeed the solutions of equation (61).

Appendix E. Population dynamics

The functional saddle-point equations (61) and (66) cannot, in general, be solved analytically
(one trivial exception is the infinite temperature regime). We therefore resort to the so-called
population dynamics algorithm [6] to obtain solutions numerically, solving equations (61) and
(66) simultaneously for the functional distribution W̃ [{P̂ }] and the function d(s, Jn+θ), given
the (known) values of the probability distribution Pt(s, n) at time t. We create a population
of N2 × 2 matrices P̂ i(σ |Jδσ ′,−1), where i = 1, . . . ,N , and we initialize the numbers
d(s, Jn + θ), where s ∈ {−1, 1} and n ∈ {0, 1, 2, . . .}. The initial values of population
{P̂ i(σ |Jδσ ′,−1)} and function d(s, Jn + θ) are set to (D.4) and (D.2), respectively, at t = 0,
and for t > 0 we simply reuse the values from the previous time step. We then execute an
iterative process, whereby at each step we update the population of matrices and the numbers
d(s, Jn + θ) as follows:

(i) a number k is drawn from the Poisson distribution Pc(k) (3);
(ii) k members P̂ i(σ |Jδσ ′,−1) are selected randomly and independently from the population;

(iii) a new value for P(σ |Jδσ ′,−1) is calculated according to

P̂ new(σ |Jδσ ′,−1) =
∏k

�=1

[∑
σ�

P̂ �(σ�|Jδσ,−1)
]
d
(
σ, J

∑k
�=1 δσ�,−1 + θ + Jδσ ′,−1

)
∑

σ

∏k
�=1

[∑
σ�

P̂ �(σ�|Jδσ,−1)
]
d
(
σ, J

∑k
�=1 δσ�,−1 + θ

) ; (E.1)

(iv) a member of the population is selected randomly, and replaced with the newly computed
value P̂ new(σ |Jδσ ′,−1);

(v) a new function d(s, Jn + θ) is computed according to

dnew(s, Jn + θ) = Pt(s, n) ×
[∑

k�0

ck

k!
e−c

∫ k∏
�=1

{{dP̂ �}W̃ [{P̂ �}]}

×
∏k

�=1

[∑
σ�

P̂ �(σ�|Jδs,−1)
]
δn,

∑k
�=1 δσ�,−1∑

σ

∏k
�=1

[∑
σ�

P̂ �(σ�|Jδσ,−1)
]
d
(
σ, J

∑k
�=1 δσ�,−1 + θ

)
]−1

. (E.2)

Here averaging over the functional measure W̃ is defined as averaging over the actual
instantaneous population of 2 × 2 matrices. This iteration is repeated until the values of
the function d(s, Jn + θ) and the statistical properties of the population are stationary. The
population measure W̃ will now be an estimate of the functional distribution (61), and the
function d(s, Jn + θ) is a fixed point of the iteration equation (E.2), i.e. a solution of our
original saddle-point equation.

References

[1] Viana L and Bray A J 1985 J. Phys. C: Solid State Phys. 18 3037–51
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