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Abstract

A discussion is presented of the e-ects of stochasticity in the decision-making of agents in
the minority game. Both simulational and analytic results are reported and discussed for both
additive and multiplicative noise. As a function of the ratio d of information dimension to
number of agents a phase transition separates a low d non-ergodic phase from a high d ergodic
phase. For additive noise the critical dc is temperature-independent but for multiplicative noise
dc(T ) decreases with T . Additive noise does not a-ect the asymptotic behaviour for d¿dc but
is relevant below dc. Multiplicative noise has consequence for all d.
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The Minority Game (MG) [1] is a simple minimalist model inspired by considera-
tions of a stock market of speculators attempting to pro<t by buying low and selling
high, basing their decisions on the application of individual strategies to common in-
formation and learning from experience. Aside from its potential interest from the
perspective of economics, the MG has fundamental interest from the viewpoint of the
statistical physics of complex systems and it is this latter which is the emphasis of
the present paper, with particular reference to the role of stochastic decision-making.
After a general introduction, we discuss brie>y simulational results for the stochastic
case and then present results of an exact analytic solution.
In the MG the speculators are replaced by ‘agents’ who, at each time step make either

of two choices, with the individual objectives of making the opposite choice to the
majority of agents. To determine their choices each agent has a small set of quenched
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randomly and independently chosen strategies whose application to the current common
information yields a choice. The strategy actually employed by an agent at any step
is decided on the basis of the current value of ‘points’ awarded cumulatively so as to
‘reward’ strategies whose application would have yielded the actual minority choice;
this provides the learning. Individual agents have no direct knowledge of one another
and there are no other rewards. The system thus has the key ingredients of frustration
and quenched disorder which underly the complex cooperative behaviour of several
more conventional physical systems. It is also mean-<eld like, thus o-ering the potential
of exact solution, which we indicate below.
In the original model [1] the information was the minority choice for the last

m time-steps, the strategies were Boolean functions operating on this information
and those used were selected deterministically, each agent employing his/her strategy
with the currently highest point-score. In fact, however, the qualitative macroscopic
behaviour is essentially una-ected by replacing the historical information by a random,
but common, choice at each time step 1 [2] and by replacing the space of 2m informa-
tion options by a D-dimensional vector space, with the strategies and the information
both D-dimensional vectors and the choice/bid given by their scalar product [3]. We
employ this modi<cation below.
The most natural instructive macroscopic observable is the volatility �, the variance

of the total bid. It exhibits several interesting features as shown initially in simulations;
(i) it deviates from the value which would result from agents acting randomly [4],
thereby demonstrating correlation, (ii) it shows scaling, �=

√
N versus d= D=N where

N is the number of agents [4]; (iii) for a start from an unbiased point-score, as a
function of d it varies from a value greater than random for low d, reduces to a
minimum below the random value at some dm ∼ O(1), and approaches the random
value asymptotically as d → ∞ [5]; (iv) for a start from a randomly strongly biased
point-score the behaviour is identical to that for the unbiased case for d greater than
a critical value dc, with dc close to dm, suggesting ergodicity, but for d¡dc there is
non-ergodicity and � continues to decrease as d is lowered through dc [6].
The higher than random volatility for the case of unbiased start for low d is due

to crowding e-ects [7] and can be reduced by adding stochasticity to the agents’
decision-making. It might seem natural to expect that � could be reduced to its random
value, but in fact it can be reduced further [3] and the behaviour is actually more subtle.
Stochasticity can be added to the agents’ decision-making by replacing the original

deterministic rule of employing their strategies with the highest current point-scores
by probabilistic ones. Since the above qualitative features are maintained for any <nite
number s¿ 1 of strategies per agent, for simplicity, we concentrate on s=2 where only
the di-erence pi(t)=P1

i (t)−P2
i (t) between the point-scores of an agent’s two strategies

is relevant; here i labels the agent. In keeping with the minimalist philosophy it is nat-
ural to consider <rst the case of a single control parameter for the stochasticity. Thus
we might take the relative probability that agent i uses his/her <rst, rather than second,
strategy to be given by exp(f(pi(t))=T ). For all forms of f(p) with sgn[f(p)]=sgn[p]

1 This re>ects the fact that the ‘information’ principally provides an e-ective interaction ‘<eld’ between
the agents.
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that have been studied, and presumably for all such f(p); �(T )6 �(0) and
MinT �(T )6 �random. However, two classes of function f(p) can be identi<ed
and have distinct features. One is unbounded as |p| grows and has its simplest
manifestation in the form [3]

f(p) = p (1)

while the second is bounded, with its simplest form [6]

f(p) = sgn[p] ; (2)

for reasons which will become clearer later these will be referred to, respectively, as
additive and multiplicative noise. The reason for the need for the distinction lies in
the phenomenon of frozen agents [8] whose coarse-time-averaged point-scores pi(t)
maintain their sign and grow quasi-linearly in magnitude. For large enough times such
agents e-ectively behave as deterministic for any T for additive noise (1) [9], but
become random as T → ∞ for multiplicative noise (2) [6]. Again there is a distinc-
tion in behaviour for d greater or less than dc. As dc is decreased from ∞ the fraction
of frozen agents increases monotonically. For the tabula rasa start it then drops rapidly
to zero around dc but continues to increase for the biased start. For additive noise (1),
for d¿dc the volatility is T -independent provided one waits long enough [9], but for
d¡dc a suKcient T ¿Tc(d) leads to a � which converges to a value intermediate
between the results of deterministic (T = 0) rules for tabula rasa and biased starts
[11,12], corresponding to the minimization of an e-ective Hamiltonian [10]. For multi-
plicative noise, at any d¡dc there is a critical T (d) which corresponds to a minimum
of �(T ), but for d¿dc any T ¿ 0 increases the volatility (but it is still bounded above
by �random).
The above is based on computer simulations and iterations of derived microscopic

equations. Let us now turn to analytic considerations, concentrating here on an exact
solution of the macroscopic dynamics via the medium of generating functional theory
[13,14] and on batch dynamics in which the original procedure of updating the points
every microscopic time step in response to instantaneous random information (online
dynamics) is replaced by an update (at a re-scaled macroscopic time) corresponding
to an average over possible information. 2 Taking the information I (t) as a stochastic
unit vector in D-dimensional space and the strategies R�

i ; �=1; 2 as quenched random
unit-vectors in the same space, 3 the dynamical update becomes [16]

pi(t + 1) = pi(t)− hi −
∑
j

Jijsj(t) ; (3)

where

hi = N−1
∑
i

�i · !j ; (4)

2 The batch dynamics is equivalent to carrying out the usual procedure of response to random information
but updating the points only after a number of steps ¿ O(D), and was shown to produce identical stationary
order parameters as the original on-line model for d¿dc [15].

3 Variously the D-dimensional space has been taken as hyperspherical or hypercubical. Bold symbols
denote vectors in these spaces.
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Jij = N−1�i · �j ; (5)

�i = 1
2 (R

1
i − R2

i ) ; (6a)

!i = 1
2 (R

1
i + R

2
i ) (6b)

and sj(t) is a stochastically determined ‘spin’ related to pj(t) via

sj(t) = �[pj(t); zj(t)|T ] (7)

with

�[p; z|T ] = sgn[p+ Tz]; additive noise ; (8a)

�[p; z|T ] = sgn[p] sgn[1 + Tz]; multiplicative noise (8b)

and the zj(t) are zero-average random numbers chosen independently at each time step
from a normalized distribution P(z) with unit variance. 4 We now take (3) as the
de<ning equation for the dynamics, with the addition to hi of perturbation <elds �i(t),
used to generate response functions but taken to zero at the end.
The generating functional is then

Z =
∫ ∏

t

[dp̃(t)W (p̃(t + 1)|p̃(t))]P0(p̃(0)) exp

{
i
∑
t

L̃(t) · p̃(t)
}

; (9)

where W (p̃|p̃′) is the transition probability given by (3) and P0(p̃(0)) is the distribu-
tion of p̃(t) at t=0. 5 L̃(t) is an auxiliary generating <eld, taken to zero at the end. Av-
eraging over the R yields typical behaviour, while the range-free nature of the problem
permits the elimination of microscopic variables in favour of macroscopic correlation
and response functions and the further evaluation of dominant behaviour via steepest
descent analysis to produce an e-ective non-Markovian self-consistent single particle
dynamics, from which the macroscopic parameters of interest may be obtained [16].
The e-ective single particle dynamics is 6

p(t + 1) = p(t)− d
∑
t6t′

(1 + G)−1
tt′ �[p(t

′); z(t′)|T ] + �(t) +
√
d�(t) ; (10)

where the z(t) are the original single-agent decision noises chosen independently ran-
domly at each time step with probability distribution P(z), the �(t) are perturbation
<elds (again introduced to generate response functions), the �(t) provide a second
self-consistent source of e-ective decision noise arising from the inter-agent
correlations, and G is a self-consistent response function (Fig. 1). The �(t) are

4 Eqs. (1) and (2) result from a simple special case of this distribution.
5 Overarrows are used to denote vectors in agent-space and are N -dimensional.
6 Underlined symbols are matrices in time space. Tildes will be employed to denote vectors in this space.

Subscripts or bracketed symbols are used interchangeably to denote components.
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Fig. 1. Phase diagram in the (d; T ) plane. The lines separate ergodic phases on the right from non-ergodic
phases on the left. (i) solid line: multiplicative noise, (ii) dashed line: additive noise. From Ref. [16].

Gaussian-distributed with zero mean and temporal correlations related to the correlation
and response functions by

〈�(t)�(t′)〉= �tt′ ; (11)

O = (1 + G)−1D(1 + GT )−1 ; (12)

Dtt′ = 1 + Ctt′ ; (13)

where

Ctt′ = 〈s(t)s(t′)〉∗|{�(t′′)=0} ; (14)

Gtt′ =
@

@�(t′)
〈s(t)〉∗|{�(t′′)=0} ; (15)

s(t) = �[p(t); z(t)|T ] ; (16)

〈f(p̃; z̃)〉∗ =
∫ ∏

t

[
dp(t)√

2 

]
〈M (p̃; z̃)f(p̃; z̃)〉z ; (17)

M (p̃; z̃) = P0(p(0))
∫ ∏

t

[
dq(t)√
2 

]
exp

{
−d
2
q̃ · (1 + G)−1 · D · (1 + GT )−1 · q̃

+ i
∑
t

q(t)

[
p(t + 1)− p(t)− �(t)

+d
∑
t′

(1 + G)−1
tt′ �[p(t

′); z(t′)|T ]
]}

; (18)
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and 〈 〉z denotes an average over z, with measure P(z). Eqs. (10)–(18) then de<ne
the closed set of equations describing the macroscopic behaviour. They can be related
to more conventional macroscopic measures by identi<cation with the macroscopic
autocorrelations and autoresponse functions

Ctt′ = lim
N→∞

N−1
∑
i

〈si(t)si(t′)〉|{�(t)=0} ; (19)

Gtt′ = lim
N→∞

N−1
∑
i

@
@�i(t′)

〈si(t)〉|{�(t)=0} ; (20)

where 〈 〉 denotes an average of the many agent dynamics over the choice of
strategies.
Eqs. (10)–(18) are exact in the thermodynamic limit N → ∞. They are still com-

plicated in their self-consistency which is highly non-linear and non-local in time.
However, already from the simulations it is known that an ergodic solution should be
anticipated for d¿dc(T ) and so we concentrate <rst on this region in the asymptotic
long time limit in which one reaches a time-translationally invariant stationary state with
Gtt′ =G(t− t′) and Ctt′ =C(t− t′). For d¿dc(t) this state has no anomalous response;
i.e., lim#→∞

∑
t6# G(t) = k exists. The lower limit of such behaviour de<nes dc(T ).

The corresponding persistent quantity for the autocorrelation is lim#→∞
∑

t6# C(t)= c
(Fig. 2).
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Fig. 2. Persistent correlation c as a function of d for three choices of multiplicative noise (bottom to top:
T = 0; 1; 2). Thick solid curves: analytic predictions for d ¿ dc(T ). Thick dashed curves: continuations of
(21) beyond its obvious limit of validity. Connected markers: simulation runs: circles pi(0) = 0, squares
|pi(0)| = 10. From Ref. [16].
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The quantities c and k are then given by

c=%2 −
[
%2 − (1 + c)

d

]
erf



√

d%2

2(1 + c)




− 2%

√
1 + c
2 d

exp
{
− d%2

2(1 + c)

}
; (21)

k =


 d

erf [
√

d%2

2(1+c) ]
− 1




−1

; (22)

where for additive noise

%= 1 (23a)

and for multiplicative noise (Fig. 3)

%=
∫

dz P(z) sgn[1 + Tz] : (23b)

Thus indeed, within the region of validity of the assumption of non-anomaly additive
noise has no consequence and the behaviour is exactly as the deterministic case, with
dc ≈ 0:33740. Both c and k go to zero as d → ∞ (for any T and either type of noise)
and grow monotonically as d is reduced, with k → ∞ signalling d → dc. In the case of
multiplicative noise dc is temperature-dependent, reducing from the deterministic value
towards zero as T → ∞. Fig. 1 shows the resultant phase diagram. For d¡dc(T ) the
system behaves non-ergodically, and the assumptions which led to (21), (22) are no
longer obviously valid, but the solution to (21) continues to provide a reasonable <t to
simulations starting from a strongly biased state. Fig. 2 illustrates the predictions and
comparison with simulation.
The density of frozen agents ' is given by

'= (1− k(1− d))=(1 + k) ; (24)

which again <ts simulations well for d¿dc and also approximately for d¡dc for
the case of strongly biased start; see Fig. 3. The volatility (and its corresponding
non-temporally local extensions) involves short-term as well as long-term >uctuations,
thereby requiring more than just c and k, but can be evaluated with consistent ansQatze
[16], again comparing well with simulations for d¿dc. In this case the continuation
below dc yields results intermediate between those of tabula rasa and strongly biased
starts; see Fig. 4.
Complete solutions of (10)–(18) for d¡dc(T ) remain to be performed, but we

note (i) that in the deterministic case both high and low volatility stationary states of
the corresponding equations have been demonstrated [14] and shown to be in good
accord with the two extremes of initialization, (ii) that in an analysis of the <rst few
time steps from a tabula rasa start both additive and multiplicative noise serve to
reduce oscillations in the pi(t) from one time step to the next, thereby destabilizing
the high volatility state [16], (iii) continuity arguments suggest that in the analytic
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Fig. 3. Asymptotic fraction of frozen agents as a function of d for three choices of multiplicative noise
(bottom to top: T = 0; 1; 2). Thick solid curves: analytic predictions for d ¿ dc(T ). Thick dashed curves:
continuations beyond validity. Connected markers: simulations: circles pi(0)=0, squares |pi(0)|=10. From
Ref. [16].
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Fig. 4. Asymptotic volatility as a function of d for three choices of multiplicative noise (bottom to top:
T =0; 1; 2). Thick solid lines: analytic predictions for d¿ dc(T ). Thick dashed lines: continuations beyond
obvious validity. Connected markers: simulations: circles pi(0) = 0, squares |pi(0)| = 10. From Ref. [16].

continuation of � below dc(T ) the minimum dm(T ) 6 dc(T ) for multiplicative noise
and simulations [16] bear this out.
The analysis of (10)–(17) is readily extended to a non-homogenous ensemble of

agents with a distribution of stochastic control parameters; 〈f(p̃; z̃)〉∗ of (16) is
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Fig. 5. Phase diagram for mixed multiplicative noise levels: fraction ( at temperature T , fraction (1-() at
temperature 0; ( = (0; 0:2; 0:4; 0:6; 0:8; 1) from left to right. For each ( the line separates non-ergodic (left)
from ergodic (right) regions. From Ref. [16].

replaced by the average of the right-hand side over the temperature distribution W (T )=
limN→∞ N−1 ∑ )(T − Ti). Fig. 5 shows resultant phase diagrams for ensembles with
a fraction of agents acting deterministically and the rest at a non-zero temperature.
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