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Abstract
We study a simple solvable model describing the genesis of monomer sequences
for hetero-polymers (such as proteins), as the result of the equilibration of a
slow stochastic genetic selection process which is assumed to be driven by
the competing demands of functionality and reproducibility of the polymer’s
folded structure. Since reproducibility is defined in terms of properties of the
folding process, one is led to the analysis of the coupled dynamics of (fast)
polymer folding and (slow) genetic sequence selection. For the present mean-
field model this analysis can be carried out using the finite-dimensional replica
method, leading to exact results for (first- and second-order) transitions and to
rich phase diagrams.

PACS numbers: 61.41.+e, 75.10.Nr

1. Introduction

The functionality of a protein depends largely on the shape of its 3D native state. Determining
this shape from a protein’s sequence of amino acids is called the ‘protein folding problem’.
From a medical point of view it is desirable to be able to solve the related ‘inverse folding
problem’: given a 3D structure, find a sequence of amino acids which would have this as its
native state. Unfortunately, x-ray crystallography (the standard tool for determining native
states) is very time-consuming, and will not deliver the native states of the many amino-acid
sequences collected through the Human Genome Project for years to come [1, 2]. Furthermore,
it does not reveal the mechanics of the folding process. Molecular dynamics simulations are
also extremely slow; only the first 10–50 ns of protein folding processes could so far be
simulated [3–6]. In spite of ongoing hardware improvements, it will take long before real
progress is made. This points to the need for solvable mathematical models, designed to
capture the essentials of proteins, to shed more light on the nature of the folding process and
the role of its parameters.
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The main complications in solving protein models are the chain constraint and the
presence of disorder, embodied in the amino-acid sequences (see, e.g., [7, 8]). Natural amino-
acid sequences have evolved genetically, driven mainly by the two (competing) demands of
structure reproducibility and functionality. They are not random (random hetero-polymers
usually do not fold into unique shapes), whereas most disordered system techniques are based
on exploiting self-averaging properties of random disorder. It is not yet understood what
distinguishes a random amino-acid sequence from a natural one. Our objective is to define
and study a solvable model describing the interplay between the genetic forces and folding
processes, as a first step towards understanding the genesis and statistics of natural amino-acid
sequences.

Our model is a simple mean-field hetero-polymer whose microscopic state is described
by two degrees of freedom per monomer: φi ∈ [0, 2π], giving the orientation of monomer
i relative to the backbone, and ηi ∈ {−1, 1}, giving its polarity (i.e. hydrophobic versus
hydrophilic)3. The evolution of the orientation variables represents the folding; that of the
polarity variables (which involves changing monomer species) represents genetic evolution.
The latter clearly takes place over much larger timescales than the former, and is the result of
an interplay between minimizing an energetic cost determined by the average folding quality,
constraints on the monomer composition, and noise. Models with adiabatically separated
timescales have been studied and solved using finite-dimensional replica theories, but so
far mainly in the context of neural networks and spin-glasses [9–16]. We show how these
techniques can also be used to study analytically the coupled dynamics of (fast) folding and
(slow) genetic sequence selection in our present model.

We first define our model and solve it in the stationary state, describing equilibrium at
the largest (genetic) timescale, via the finite-dimensional replica method. Analysis of the
resulting macroscopic equations leads to general results regarding the ground state and (first-
and second-order)phase transitions. We inspect our equations more closely for specific (small)
values of the number q of allowed local monomer orientations, and generate phase diagrams
via a combination of analytical and numerical techniques. These are found to be very rich,
and involve various types of single-state and multiple-state swollen and compact phases.

2. The model and its solution

2.1. Model definitions

We study hetero-polymer models as in [17], consisting of N monomers labelled i = 1, . . . , N .
The spatial degrees of freedom of the monomers are angles φi ∈ C ⊆ [0, 2π], describing
their orientations around a polymer backbone; each monomer i can take only a finite number
of positions on a circle. The physical properties of a monomer i are defined by its species (i.e.
amino-acid type). Here, we restrict ourselves by taking into consideration only a monomer’s
polarity ηi = IR, where ηi > 0 for hydrophylic monomers and ηi < 0 for hydrophobic
ones. A monomer sequence is thus fully described by the vector η = (η1, . . . , ηN) ∈ IRN ,
whereas the spatial configuration (or ‘conformation’) of the system is described by the vector
φ = (φ1, . . . , φN) ∈ CN .

On the timescales of a single evolutionary generation the sequence η is fixed, and the only
allowed process is folding, i.e. evolution of the φ. We consider here only the dominant folding
force: compactification of the polymer via ‘shielding’ from the solvent of its hydrophobic

3 Thus, in addition to the mean-field nature of the forces and the absence of a chain constraint, our model simplifies
biological reality further by reducing the orientation degrees of freedom of individual amino acids to one, and the
characterization of the physical properties of individual amino acids to a binary number.
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monomers. A simple well-known type of phenomenological Hamiltonian to describe this
effect is (see, e.g., [18–20])

H(φ,η) = − J

N

∑
ij

ηiηj δ[φi − φj ] (1)

with J > 0. The rationale is that efficient shielding of hydrophobic monomers and exposure
of hydrophilic ones requires separation of the species, ideally with the two polarity types
oriented at opposite sides of the chain (here a single bend of the chain would ensure shielding).
The Hamiltonian (1) punishes monomer pairs with opposite polarity but identical orientation
relative to the backbone (which make polarity-based compactification more difficult), and
favours pairs with identical polarity and orientation. The mathematical simplifications induced
by the separable character and the infinite range of the monomer interactions in (1) will allow
us to solve the super-imposed slow genetic process to be introduced below.

For a fixed realization of the sequence η, the equilibrium statistics of the orientation
variables, at temperature T = β−1, are characterized by the partition function

Z[η] = Trφ e−βH(φ,η). (2)

In addition to the folding process we now introduce a stochastic dynamics for the sequences
η, which reflects the demands of structure reproducibility and structure functionality. The
former is measured by the achieved degree of species separation, i.e. by (1). Upon describing
the degree of functionality of a sequence η by a potential V (η), we arrive at the Langevin
equation

d

dt
ηi = − ∂

∂ηi
{H(φ,η) + V (η)} + ξi (3)

with zero-average Gaussian random forces ξi(t), obeying 〈ξi (t)ξj (t ′)〉 = 2T̃ δij δ(t− t ′) (which
introduces a second ‘temperature’ T̃ = β̃−1). Our further discussion will be restricted to the
stationary state of the genetic process (3). Since the genetic process is adiabatically slow
compared to the folding process, we may replace (3) by its average over the equilibrium
folding statistics p(φ|η) ∼ e−βH(φ,η), i.e.

∂H(φ,η)

∂ηi
→
〈
∂H(φ,η)

∂ηi

〉
φ

= ∂

∂ηi

{
− 1

β
logZ[η]

}
.

The equilibrium measure of the genetic process is now also of the Boltzmann form, with
a ‘genetic’ Hamiltonian H(η) which is the sum of the free energy of the folding process,
given the sequence η, and the functionality potential V (η), and characterized by an associated
genetic free energy per monomer fN (with the ‘folding partition function’ defined in (2)):

H(η) = V (η)− 1

β
logZ[η] fN = − 1

β̃N
log Trη e−β̃H(η). (4)

We now make a specific choice for the set C of allowed single-monomer angles, namely
C = {(2k + 1)π/q, k = 0, . . . , q−1} (q possible orientations per monomer), and choose the
simplest non-trivial type of functionality potential V (η) = ∑N

i=1 µiηi . In addition, we switch
to the Ising version of (4), i.e. ηi ∈ {−1, 1} for all i (as opposed to ηi ∈ IR)4. In combination,
studying the stationary state at the largest (genetic) timescale has now been reduced to the

4 Note that this implies that the genetic dynamics (3) will be replaced by either a Glauber-type dynamics or a
‘soft-spin’ Langevin equation (involving the familiar parametrized double-well potential for each ηi ) from which the
binary version of the model can be obtained as a limit.
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calculation of the free energy per monomer fN :

fN = − 1

β̃N
log
∑

η


∑

φ

e−βH(φ,η)




β̃

β

e−β̃µ·η H(φ,η) = − J

N

∑
ij

ηiηj δφi,φj (5)

with η ∈ {−1, 1}N and µ = (µ1, . . . , µN).
The energetic forces in our model favour species-based monomer separation (due to the

fast process) and species selection controlled by the disorder variables {µi} (due to the slow
process). The ease with which these two aims can be achieved simultaneously depends on the
statistics of the single-site genetic forces {µi}; the relative importance of the two objectives
is controlled by the ratio β̃/β of associated noise levels. Entropic forces act in the opposite
direction, favouring randomly distributed monomer orientations and species. The equilibrium
state of the system must therefore be characterized by disorder-averaged order parameters
which measure the overall joint distribution of orientation- and species variables along the
chain.

2.2. Solution via the finite-n replica method

Expression (5), which is of the typical form found for systems with disparate timescales, can
be evaluated using the replica method. The temperature ratio n = β̃/β is first regarded as an
integer, which allows us to writeZn[η] as the partition function of an n-fold replicated system,
followed by analytic continuation to non-integer n later (if needed). In the special case n → 0
the polarity numbers {ηi} reduce to quenched disorder variables, and we return to a simplified
version of the model in [17]. Forn = 1 one recovers the annealed case (although the timescales
remain completely disparate). The limit n → ∞ corresponds to dominant coupling of the two
processes: here the polarity dynamics is fully deterministic. When referring to temperature in
the remainder of this paper we will mean T, with T̃ linked to T via T̃ = T/n.

Insertion into (5) of
∑

φ ′ δφiα,φ ′ = 1 followed by exponent linearization via Gaussian
integrals gives

fN = − 1

β̃N
log
∑

η

∑
φ1...φn

e
βJ

N

∑
φ′
∑n

α=1[
∑

i ηi δφ′,φα
i

]2−β̃∑i µiηi

= − 1

β̃N
log
∫ ∏

φα

dzφα


 e− N

4βJ

∑
φα(z

α
φ)

2 ∑
φ1...φn

∑
η

e
∑

i ηi [
∑

α z
α
φα
i
−β̃µi ]

.

We carry out the summations over the polarity variables (first) and over the replicated angles,
and take the thermodynamic limit. This leads us to the following result for the asymptotic free
energy per monomer f = limN→∞ fN , which is evaluated by steepest descent:

β̃f = − lim
N→∞

1

N
log
∫ 
∏
φα

dzαφ


 e− N

4βJ

∑
φα(z

α
φ)

2+
∑

i log
∑

φ2 cosh[
∑

α z
α
φα

−β̃µi ]

= extr{zαφ}




1

4βJ

∑
φα

(
zαφ
)2 −

〈
log


e−β̃µ∏

α


∑

φ

ez
α
φ




+ eβ̃µ
∏
α


∑

φ

e−zαφ





〉

µ


 (6)
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in which φ = (φ1, . . . , φn) ∈ Cn and 〈g(µ)〉µ = ∫
dµP(µ)g(µ), with P(µ) =

limN→∞N−1 ∑
i δ[µ− µi]. The location

{
Zαφ
}

of the extremum in (6) is to be calculated by
solving the following non-linear saddle-point equations:

Z
γ

ψ = 2βJ

〈
eZ

γ
ψ−βnµ∏

α 	=γ
(∑

φ eZ
α
φ

)
− eβnµ−Zγψ ∏

α 	=γ
(∑

φ e−Zαφ
)

e−βnµ∏
α

(∑
φ eZ

α
φ

)
+ eβnµ

∏
α

(∑
φ e−Zαφ

)
〉

µ

. (7)

The physical meaning of the order parameters
{
Zαφ
}

can be determined by adding generating
terms to the Hamiltonian (1), which measure the overall polarity at given positions φ:

H(φ,η) → H(φ,η) +
∑
φ

χφLφ(φ,η) Lφ(φ,η) = 2

N

N∑
i=1

ηiδφi,φ. (8)

Upon working out the general identity limχφ→0 ∂f/∂χφ = Lφ = 〈Lφ(φ,η)〉, with 〈f (η,φ)〉
denoting conformational equilibrium averages for fixed {ηi} and f (η) denoting polarity
equilibrium averages, it follows that

1

n

∑
α

Zαφ = βJLφ Lφ = lim
N→∞

〈Lφ(φ,η)〉. (9)

Thus,Lφ is proportional to the disorder-averaged equilibrium expectation value of the average
polarity of those monomers which are oriented to angle φ. For future use we will also define
the overall average equilibrium polarity p:

p = lim
N→∞

1

N

∑
i

ηi = 1

2

∑
φ

Lφ. (10)

2.3. The replica-symmetric solution

In appendix A, we show that the replica-symmetric (RS) solution of our saddle-point equations
(7), where Zαφ = βJLφ for all α, is locally stable against replica-symmetry breaking
fluctuations. For such RS solutions one finds the (6) and (7) reducing to, respectively,

fRS = min{�φ}



J

4

∑
φ

�2
φ − 1

βn

〈
log




∑

φ

eβ[J�φ−µ]



n

+


∑

φ

eβ[µ−J�φ ]



n

〉

µ


 (11)

Lψ = 2

〈
eβ[JLψ−µ]

(∑
φ eβ[JLφ−µ]

)n−1
− eβ[µ−JLψ ]

(∑
φ eβ[µ−JLφ ]

)n−1

(∑
φ eβ[JLφ−µ]

)n
+
(∑

φ eβ[µ−JLφ ]
)n

〉
µ

. (12)

Summation over φ in (12) gives an alternative expression for the RS average polarity p (10):

p =

〈(∑
φ eβ[JLφ−µ]

)n
−
(∑

φ eβ[µ−JLφ ]
)n

(∑
φ eβ[JLφ−µ]

)n
+
(∑

φ eβ[µ−JLφ ]
)n

〉
µ

. (13)

Equation (13) allows us to write (12) in the form

Lψ = (1 + p)
eβJLψ∑
φ eβJLφ

− (1 − p)
e−βJLψ∑
φ e−βJLφ . (14)
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This latter expression (14) was also found in [17]; however, here the average polarity p is an
order parameter, to be solved simultaneously with the {Lφ} from (13), whereas in [17] it was
a fixed control parameter.

Since we have shown replica symmetry to be locally stable, for any choice of model
parameters, we will henceforth restrict ourselves to RS saddle points only (there is no evidence
for discontinuous RSB transitions).

3. General analytical results

3.1. The high-temperature state

Let us first identify the high-temperature state. Expansion of the free energy (11) for fixed
n > 0 gives fRS = − 1

2βn〈µ2〉µ− 1
β

log q− 1
βn

log 2 + 1
2J extr{�φ}
[{�φ}] +O(β2), with (using∑

φ 1 = q)


[{�φ}] = 1

2

∑
φ

�2
φ +

2βn

q
〈µ〉µ

∑
φ

�φ − βJ


 1

q

∑
φ

�2
φ + (n− 1)


1

q

∑
φ

�φ




2

 .

It follows that the saddle point of f is of the form

Lφ = −2βn

q
〈µ〉µ + O(β2) (β → 0).

For sufficiently high temperatures the order parametersLφ are thus independent ofφ. This was
to be expected in view of the invariance of (11) under arbitrary permutations of the available
monomer orientations φ ∈ C.

Insertion of the symmetric ansatz Lφ = L ∀φ (which is a saddle point of fRS at any
temperature) directly into (11), (12) gives

f
sym
RS = min�

{
Jq

4
�2 − 1

βn
〈log[eβn[J�−µ] + eβn[µ−J�]]〉µ

}
− 1

β
log q (15)

L = 2

q
〈tanh[βn(JL− µ)]〉µ. (16)

In terms of the average equilibrium polarity (10), which here reduces to p = qL/2, equation
(16) can be written alternatively as p = 〈tanh[βn(2Jp/q − µ)]〉µ. The instance where this
RS high-temperature state becomes locally unstable can be inferred from the results of
appendix A. In particular, (A.7) gives the condition for a zero eigenvalue of the RS Hessian as

det

[
nq(K̂ − L̂) + q(L̂ − M̂) +

q

2βJ
11

]
= 0.

Working out the various matrices for the symmetric state Lφ = L, with (16), gives

K̂φψ = q−2〈tanh2[nβ(JL−µ)]〉µ L̂φψ = q−2 M̂φψ = q−1δφψ.

In the symmetric state the Hessian has two distinct eigenvalues, one relating to changes in the
amplitude of the symmetric state, and the other relating to changes orthogonal to the symmetric
state, with associated stability conditions:

locally stable in non-symmetric directions: qT/2J > 1
locally stable in symmetric direction: qT/2J > n〈1−tanh2[nβ(JL−µ)]〉µ.
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For n � 1 it immediately follows that, as we lower the temperature, the first stability condition
is always violated before the second can be. Violation of the second condition implies
destabilization in favour of an alternative symmetric solution (i.e. the creation of an alternative
solution of equation (16)). Thus symmetric states Lφ = L ∀φ defined by (15) become locally
unstable against symmetry-breaking fluctuations at

Tc = 2J/q. (17)

Unless preceded by a first-order transition (which will also turn out to be possible in certain
parameter regimes), this describes a second-order phase transition from a non-separated state
into one where the hydrophobic and hydrophilic monomers start to prefer distinct orientations.
Within the context of our model, the former is to be regarded as a swollen state (S) for the
polymer, and the second as a compact state (C). Note that expression (17), which is identical
to that found in [17], is independent of n.

3.2. The replica-symmetric ground state for n > 0

We now study the limit β → ∞ and calculate the ground state of our system, for replica-
symmetric solutions and fixed n > 0. We define �+ = maxφ �φ , �− = minφ �φ (so �+ � �−)
and the number of locations φ for which �φ = �± by q±, respectively (so q± � 1). The
remaining intermediate values for �φ define the set U = {φ|�− < �φ < �+}. Similarly, we
define L± as the values of �± at the relevant saddle point. The ground state is the solution of
the following minimization problem:

E0

J
= min{�φ}




1

4

∑
φ

�2
φ − lim

β→∞
1

βJn

〈
log




∑

φ

eβ[J�φ−µ]



n

+


∑

φ

eβ[µ−J�φ ]



n

〉

µ




= min{�φ}




1

4

∑
φ

�2
φ − 1

J

〈
max


 lim
β→∞

1

β
log


∑

φ

eβ[J�φ−µ]


 ,

lim
β→∞

1

β
log


∑

φ

eβ[µ−J�φ ]





〉

µ




= min{�φ}


1

4

∑
φ

�2
φ − 〈max [�+− µ/J,µ/J − �−]〉µ


 .

Suppose first that L+ = L−, which implies Lφ = L = 2p/q for all φ (i.e. a fully symmetric
ground state). Now

E0/J = min{p}

{
p2/q −

〈∣∣∣2p/q − µ

J

∣∣∣〉
µ

}
.

Next we consider the case L+ > L−. Minimization with respect to those �φ for which φ ∈ U
for a given realization of {q+, q−} reveals that �φ = 0 forφ ∈ U . We can then minimize further
with respect to {q±} and find q+ = q− = 1. Given our previous identification p = 1

2

∑
φ Lφ ,

here reducing to p = 1
2 (L+ + L−), we write �± = p ± z, upon which our problem takes the

form

E0/J = min{p,z}
{

1
2p

2 + 1
2z

2 − z− 〈|p − µ/J |〉µ
}
.
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We conclude that the minimum corresponds to z = 1. Both candidate ground-state solutions
can thus be expressed in terms of the monotonically increasing function

�(z) = min{y}
{

1
2zy

2 − 〈|y − µ/J |〉µ
}

as follows:
symmetric: L = L(1, 1, . . . , 1, 1) E0/J = �(q/2)
non-symmetric: L = (p−1, 0, . . . , 0, p + 1) E0/J = �(1)− 1/2.

Since q � 2 we may conclude that the ground state is the non-symmetric solution, so

E0/J = min{p}ε(p) ε(p) = 1
2p

2 − 1
2 − 〈|p − µ/J |〉µ. (18)

Note that ε(p) is symmetric as soon as P(µ) is symmetric. The ground state is one where at
most two sites φ± are occupied by monomers, and there are at most two nonzero values L±
for the order parameters Lφ .

3.3. The limits n → 0, n → 1 and n → ∞, for arbitrary T

If we take n → 0 in equations (11)–(13) (which implies fully random evolution of the polarity
variables ηi) we find, as expected, the p = 0 version of the solution for the long-range limit
of [17]:

lim
n→0

[
fRS +

log 2

βn

]
= min{�φ}


J4

∑
φ

�2
φ − 1

2β
log


∑

φ

eβJ�φ


− 1

2β
log


∑

φ

e−βJ�φ






Lψ = eβJLψ∑
φ eβJLφ

− e−βJLψ∑
φ e−βJLφ p = 0.

The (constant) contribution −log 2/βn to the free energy per monomer represents the entropy
of the polarity variables. Note that this solution is independent of the distribution P(µ) of the
forces µi , as it should.

Putting n → 1 effectively reduces the polarity variables to annealed ones, in spite of the
disparate timescales in the model. Now we find (11), (13), (14) taking the form

lim
n→1

fRS = min{�φ}


J4

∑
φ

�2
φ − 1

β

〈
log 2

∑
φ

cosh[β(J �φ−µ)]
〉
µ




Lψ = (1 + p)
eβJLψ∑
φ eβJLφ

− (1 − p)
e−βJLψ∑
φ e−βJLφ p =

〈∑
φ sinh[β(JLφ − µ)]∑
φ cosh[β(JLφ − µ)]

〉
µ

.

Somewhat unexpectedly, these equations are still non-trivial, and retain a rich bifurcation
phenomenologyas we will show later for specific choices of the number q of possible monomer
orientations.

Now we turn to n → ∞, i.e. to fully deterministic genetic dynamics. Here the free energy
per monomer (11) reduces to

lim
n→∞ fRS = min{�φ}



J

4

∑
φ

�2
φ −

〈
max


 1

β
log


∑

φ

eβJ�φ


− µ,

µ +
1

β
log


∑

φ

e−βJ�φ





〉

µ



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= min{�φ}


J4

∑
φ

�2
φ − 1

2β
log


∑

φ

eβJ�φ


− 1

2β
log


∑

φ

e−βJ�φ




−
〈 ∣∣∣∣∣µ− 1

2β
log

[ ∑
φ eβJ�φ∑
φ e−βJ�φ

]∣∣∣∣∣
〉
µ

}
. (19)

Equation (13), similarly, becomes

p = −
〈
sgn

[
µ− 1

2β
log

[ ∑
φ eβJLφ∑
φ e−βJLφ

]]〉
µ

. (20)

3.4. Phase diagrams for q = 2 and q = 3

In view of our earlier results regarding the high-temperature states (where L =
L(1, 1, . . . , 1, 1)) and ground states (where L = (p − 1, 0, . . . , 0, p + 1)) it is natural to
assume that the solution of our model will never exhibit more than three distinct values for
the order parameters {Lφ}. Hence, we may restrict our analysis to q ∈ {2, 3} and expect at
most quantitative changes to emerge for q > 3. In the phase diagrams to be given below for
q ∈ {2, 3} we focus on transitions marking bifurcations of local minima of the free energy
surface as minimized in (11), rather than on thermodynamic transitions. Since all energetic
and entropic barriers in our system are extensive, on the timescales of any experiment (whether
real or numerical, and especially in view of the extremely slow genetic process) one would
never detect thermodynamic transitions. The system will in practice be found in the local free
energy minimum in whose domain of attraction the initial configuration happened to lie.

For q = 2 we have only two order parameters, which we can write as L± = p ± Z.
Insertion into (11) reveals that now the free energy minimization decouples conveniently into

fRS = min{Z}

{
JZz2

2
− 1

β
log 2 cosh[βJZ]

}
+ min{p}

{
Jp2

2
− 1

β̃
〈log 2 cosh[β̃(Jp − µ)]〉µ

}
(21)

giving the following independent order parameter equations:

Z = tanh[βJZ] p = 〈tanh[β̃(Jp − µ)]〉µ. (22)

The separation process of hydrophobic from hydrophilic monomers (i.e. the folding),measured
by Z, disentangles from the species evolution, as measured by p, with the two processes
each having its own independent transitions. This is a consequence of the fact that for
q = 2 the orientation variables φi effectively become Ising spins, so that upon putting
δφiφj → 1

2 [1 + σiσj ], the ‘folding’ Hamiltonian in (5) reduces to that of a Mattis [21] magnet,
from which the variables {ηi} can be gauged away.

The uniform high-temperature state Lφ = L ∀φ (where Z = 0) always destabilizes via
a second-order phase transition at the Curie–Weiss temperature Tc = J , independent of the
distribution P(µ). The phase phenomenology embodied in the equation for p, in contrast,
is described by an equation for a mean-field ferromagnet at inverse temperature β̃ and with
random external fields, distributed (apart from a minus sign) according to P(µ). It will
therefore be dependent on the choice made for P(µ), with invariance of the problem under
p → −p for symmetric force distributions P(µ).

For q = 3 one has φ ∈ {− 2
3π, 0, 2

3π
}
, and there will be three order parameters {Lφ}.

One can no longer map the model onto a Mattis-like system, and one no longer benefits from
the resulting decoupling of orientation degrees of freedom from polarity degrees of freedom
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which occurred for q = 2. According to (17), the fully symmetric (i.e. swollen) state Lφ =
L ∀φ now destabilizes locally at the n-independent temperature Tc = 2J/3. In addition, we
know the ground state of the q = 3 system, for several choices of the force distribution P(µ)
(see, e.g., (24), (29)). In contrast to the previous situation q = 2, however, there appear to
be no significant5 further analytical simplifications possible, and to obtain results on compact
states and phase transitions in the regime of intermediate temperatures we have to resort mainly
to a numerical analysis of our fundamental equations (11)–(14). Bifurcations of new solutions
of the saddle-point equations are marked by the smallest eigenvalue of the relevant Hessian
becoming zero, i.e.[

n(K̂ − L̂) + L̂ − M̂
]
x = −1

2
βJx (23)

(see appendix A), with the 3 × 3 matrices as defined in (A.3)–(A.5). Extensive numerical
analysis of the phases in the region T < 2J/3, where the swollen state is locally unstable,
reveals a highly non-trivial phase phenomenology, with many simultaneously locally stable
saddlepoints. Giving all details and lines in this regime of compact states would be more
distracting than informative. In contrast, we will focus mainly on transitions in the region
T > 2J/3, where the swollen state is locally stable, but where in spite of this one generally
finds enhanced first-order transitions to compact states whose presence is a direct consequence
of our coupled dynamics of slow and fast processes6. Note that for q = 3 we give phase
diagrams with βJ along the horizontal axis (as opposed to β̃J = nβJ ) because, in contrast
to q = 2, one here no longer finds that the non-trivial transitions can be expressed in terms of
just two effective control parameters (βnJ and βnσ or βnJ ).

4. Results for δ-distributed genetic forces

In the simplest case P(µ) = δ[µ−µ] (i.e.µi = µ for all i), the functionality potentialV (η) in
the genetic dynamics favours a single polarity type. Since the general dynamical behaviour of
our system can be regarded as a stochastic version of the combined T = 0 (i.e. deterministic)
folding process and the n → ∞ (i.e. deterministic) genetic dynamics, we first inspect the
limits T → 0 and n → ∞.

4.1. The deterministic limits: T → 0 and n → ∞
We first calculate the ground state (i.e. deterministic evolution of configurational angles,
T = 0). We find the function ε(p) in (18) reducing to

ε(p) = 1

2
p2 − 1

2
−
∣∣∣∣p− µ

J

∣∣∣∣ .
Upon working out the derivatives of ε(p) in the different regimes (characterized by different
values of sgn[p − µ/J ]) one arrives at the following result:

E0 = −J − |µ| L = 2p(1, 0, . . . , 0)

{
µ > 0 : p = −1
µ < 0 : p = 1.

(24)

5 It will be clear that our equations can still be simplified partially upon making specific ansätze for the saddle
point as in [17], such as the uniform (i.e. swollen) state Lφ = L ∀φ (which has already been studied in detail
for arbitrary q), or states of the form L = (L1, L2, L2) (where our saddle-point and stability problems become
two-dimensional). Note that our system is invariant under permutations of the three monomer orientations, so that
states such as L = (L1, L2, L2) and L = (L2, L2, L1) are equivalent.
6 In the long-range limit of [17] one can also find discontinuous bifurcations for very specific values of the control
parameters (marking the creation a locally stable state with relatively high free energy, and hence non-thermodynamic),
and very close to the general second-order transition at Tc = 2J/q; this was missed in [17].
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For µ > 0 the ground state is one where all monomers have become hydrophobic, and are
found at exactly the same location relative to the chain. For µ < 0 the ground state is one
where all monomers have become hydrophilic, and are again all oriented at the same location.
However, one finds also that for |µ| < J the solutions p = ±1 are both local minima of ε(p)
(although the state p = sgn[µ] will have an energy higher than the ground state p = −sgn[µ]
as long as µ 	= 0). This will cause remanence effects in the low-temperature dynamics. For
µ = 0 both single-species states p = ±1 give equivalent (local and global) minima.

Next we turn to n → ∞, i.e. deterministic genetic dynamics. Equation (13), together with
the order-parameter equation (14), gives us three candidate solution classes, p ∈ {−1, 0, 1} for
n → ∞. Only p = ±1 will be potentially stable, separated by the unstable fixed point p= 0:

p = 1 : Lψ = 2 eβJLψ∑
φ eβJLφ

µ <
1

2β
log

[ ∑
φ eβJLφ∑
φ e−βJLφ

]

lim
n→∞fRS = J

4

∑
φ

L2
φ − 1

β
log


∑

φ

eβJLφ




p = −1 : Lψ = −2 e−βJLψ∑
φ e−βJLφ µ >

1

2β
log

[ ∑
φ eβJLφ∑
φ e−βJLφ

]

lim
n→∞fRS = J

4

∑
φ

L2
φ − 1

β
log


∑

φ

e−βJLφ


 .

For the swollen state Lφ = 2p/q ∀φ this implies the following: for |µ| > 2J/q there is only
the solution p = −sgn[µ], for |µ| < 2J/q both solutions p = ±1 are locally stable (but with
the lowest free energy obtained for p = −sgn[µ]).

In both cases the system evolves towards a single-species state, with either all hydrophilic
monomers (the preferred option when µ < 0) or all hydrophobic monomers (the preferred
option when µ > 0). For small |µ| only the preferred states are locally stable, but for
sufficiently large |µ| both single-species states are. This behaviour, which is not desirable
from a biological point of view, results from the simple fact that for P(µ) = δ[µ − µ]
the single-species state with appropriate polarity sign is energetically favourable to both the
folding process and the genetic selection process.

4.2. Phase diagrams for q = 2

According to (22), for P(µ) = δ[µ − µ] we find the simple Curie–Weiss equation
p = tanh[β̃(Jp − µ)]. Upon inverting this to β̃µ = β̃Jp − 1

2 log[(1 + p)/(1 − p)] and
calculating the derivative with respect to p, one can work out the bifurcation properties of the
solution:

β̃J > 1 and |µ| < µc: two local minima p in (21)
elsewhere: one local minimum

with

β̃µc =
√
β̃J

√
β̃J − 1 − 1

2
log

[ √
β̃J +

√
β̃J − 1√

β̃J −
√
β̃J − 1

]
. (25)

The transitions at µ = ±µc are first-order, except for the common point (β̃J, β̃µ) = (1, 0)
where they become second-order. In the region of multiple local minima, for µ 	= 0 the
global minimum has sgn[p] = −sgn[µ], whereas for µ = 0 the local minima for β̃J > 1 are
equivalent. We note
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Figure 1. Phase diagrams for q = 2 and P (µ) = δ[µ−µ]. The four possible phases are {S1, S2}
(swollen phases with one or two possible locally stable values of p) and {C1,C2} (compact phases
with one or two possible locally stable values of p). The S1 → C1 and S2 → C2 transitions (at
β̃J = n) are second-order (they mark the creation of Z 	= 0 solutions of (22)). The S1 → S2 and
C1 → C2 transitions are first-order (except at µ = 0, where the transition is second-order). Left
diagram: n = 5. In this and subsequent phase diagrams all first- and second-order transitions are
drawn as dashed and solid curves, respectively. Right diagram: n = 1

2 . Note that β̃ = βn and that
phase S2 exists only for n > 1.

β̃µc = 1
2 (β̃J − 1)3/2 + O((β̃J − 1)2) (β̃J → 1)

β̃µc = β̃J + O(log(β̃J )) (β̃J → ∞).

This agrees with our results regarding the ground state. We have now determined all phases
and transitions: there is one second-order transition at βJ = 1 from a swollen state with
uniformly distributed monomer orientations to a compact state with separation of polarity
types, and two first-order transitions at µ = ±µc(β, n, J ) (in the region βnJ > 1) marking
the creation of multiple locally stable values for the average polarity. These lines are shown
in the (β̃J, β̃µ) phase diagram, in figure 1. We denote swollen phases with � possible locally
stable values of p as S�, and compact phases with � possible locally stable values of p as C�.
The number of possible phases depends explicitly on the value of n, since phase S2 exists only
for n > 1.

4.3. Phase diagrams for q = 3

Since for both T → 0 and T → ∞ there are only two non-identical values for the order
parametersLφ , we expect the solution to be of the form L = (L1, L2, L2) at all temperatures.
We thus insert the ansatz

{
L±2π/3 = 1

3 (2p + Z),L0 = 1
3 (2p − 2Z)

}
into our saddle-point

equations and find

p = e−βn[µ− 2
3 Jp]

(
2 e

1
3βJZ + e− 2

3 βJZ
)n − eβn[µ− 2

3 Jp]
(
2 e− 1

3 βJZ + e
2
3 βJZ

)n
e−βn[µ− 2

3 Jp]
(
2 e

1
3βJZ + e− 2

3 βJZ
)n

+ eβn[µ− 2
3 Jp]

(
2 e− 1

3 βJZ + e
2
3 βJZ

)n (26)

Z = F [Z;p] F [Z;p] = 2p[1 − cosh(βJZ)] + 6 sinh(βJZ)

5 + 4 cosh(βJZ)
(27)

with a corresponding simplification of the bifurcation condition (23). For Z = 0 these
equations bring us back to the swollen state Lφ = 2

3p, with p = tanh
[
βn
(

2
3Jp − µ

)]
.

Comparison with the corresponding equation for q = 2 shows that the properties of the
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swollen state with q = 3 can be obtained from those derived for q = 2 via the substitution
J → 2

3J . This gives

swollen state : β̃J > 3
2 and |µ| < µc : two local minimap

elsewhere : one local minimum

with

β̃µc =
√

2

3
β̃J

√
2

3
β̃J − 1 − 1

2
log



√

2
3 β̃J +

√
2
3 β̃J − 1√

2
3 β̃J −

√
2
3 β̃J − 1


 . (28)

The transitions at µ = ±µc are first-order, except for the point (β̃J, β̃µ) = (
3
2 , 0

)
where

they are second-order. Since the swollen state is locally unstable (against collapsed solutions)
for βJ > 3

2 , the transitions at µ = ±µc can be observed only for n > 1. It follows from
F [Z;p] = 2

3βJZ + O(Z2) that the swollen state, Z = 0, indeed destabilizes at βJ = 3
2 in

favour of a collapsed state of the type above, with Z 	= 0.
The main qualitative change observed for q = 3 is the emergence of prominent transitions

to compact states before the temperature where the swollen state becomes locally unstable
(see figure 2). These are in fact also found to be present in the long-range limit of [17], where
there is no genetic dynamics and where p is a control parameter, but far less prominently and
with very small attraction domains of the associated newly created free energy minima. Note
that for n → 0 our present model will not exhibit these first-order transitions, since this would
reduce our system to the p = 0 case of [17] (the first-order transitions are found only for
p 	= 0).

5. Results for zero-average binary genetic forces

Our second example is the symmetric binary distribution P(µ) = 1
2δ[µ + σ ] + 1

2δ[µ − σ ],
with σ � 0. Here the functionality potential V (η) in the genetic dynamics discourages the
biologically undesirable single-species states with p = ±1. Again we first inspect the limits
T → 0 and n → ∞.

5.1. The deterministic limits: T → 0 and n → ∞
We first calculate the ground state (deterministic evolution of configurational angles: T = 0).
For the present choice of P(µ) one finds for the function ε(p) in (18):

ε(p) = 1

2
p2 − 1

2
− 1

2

∣∣∣∣p − σ

J

∣∣∣∣− 1

2

∣∣∣∣p +
σ

J

∣∣∣∣.
Upon working out the details in the three regimes {p < −σ/J, |p| < σ/J, p > σ/J } one
finds that for σ > 0 there is always a local minimum of ε(p) at p = 0, with E = − 1

2J − σ ,
and that for σ < J there are two additional local minima of ε(p) at p = ±1 with E = −J .
The latter will replace p = 0 as the global minimum for σ < 1

2J :

σ > J/2 : E0 = − 1
2J − σ p = 0 L = (−1, 0, . . . , 0, 1)

σ < J/2 : E0 = −J p = ±1 L = 2p(1, 0, . . . , 0).
(29)

For σ > 1
2J the ground state (29) is one where half of the monomers are hydrophilic and

half are hydrophobic (in line with the requirements of the potential V (η)), and where the two
species are perfectly separated with all hydrophobic monomers clustered at one site, and all
hydrophilic ones clustered at another. The origin of the (undesirable) single-species minima
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Figure 2. Phase diagrams for q = 3 and P (µ) = δ[µ−µ]. The possible phases are {S�} (swollen
phases with � possible locally stable values of p), {C�} (compact phases with � possible locally
stable values of p), {S� + C�} (phases with 2� possible locally stable states of p, half of which
are compact) and CO (compact states only). All transitions are first-order, except for the one at
βJ = 3

2 (which is second-order). Upper left diagram: n = 1
2 . Upper right diagram: n = 1.

Lower left diagram: n = 6
5 . Lower right diagram: n = 2.

at p = ±1, for σ < J/2, can be understood upon realizing that for σ → 0 one returns to the
δ-distribution studied earlier, with µ = 0. For σ = J/2 both types of states (multiple-species
and single-species) give energetically equivalent minima.

For n → ∞ (deterministic genetic dynamics) we get

lim
n→∞ fRS = min{�φ}


J4

∑
φ

�2
φ − 1

2β
log


∑

φ

eβJ�φ


− 1

2β
log


∑

φ

e−βJ�φ




− 1

2

∣∣∣∣∣σ − 1

2β
log

[ ∑
φ eβJ�φ∑
φ e−βJ�φ

]∣∣∣∣∣− 1

2

∣∣∣∣∣σ +
1

2β
log

[ ∑
φ eβJ�φ∑
φ e−βJ�φ

]∣∣∣∣∣

 (30)

p = −1

2
sgn

[
σ − 1

2β
log

[ ∑
φ eβJLφ∑
φ e−βJLφ

]]
+

1

2
sgn

[
σ +

1

2β
log

[ ∑
φ eβJLφ∑
φ e−βJLφ

]]
. (31)

We now have five candidate solutions p ∈ {−1,− 1
2 , 0, 1

2 , 1
}

(due to the symmetry under
{Lφ, p} → {−Lφ,−p} of the minimization problem, the p = ±1 and p = ± 1

2 solutions are
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mutually equivalent). The potentially stable ones are p ∈ {−1, 0, 1}, separated by the unstable
fixed points p = ± 1

2 :

p = 1 : Lψ = 2 eβJLψ∑
φ eβJLφ

1

2β
log

[ ∑
φ eβJLφ∑
φ e−βJLφ

]
> σ

lim
n→∞fRS = J

4

∑
φ

L2
φ − 1

β
log


∑

φ

eβJLφ




p = 0 : Lψ = eβJLψ∑
φ eβJLφ

− e−βJLψ∑
φ e−βJLφ

∣∣∣∣∣ 1

2β
log

[ ∑
φ eβJLφ∑
φ e−βJLφ

]∣∣∣∣∣ < σ

lim
n→∞fRS = J

4

∑
φ

L2
φ − 1

2β
log


∑

φ

eβJLφ


− 1

2β
log


∑

φ

e−βJLφ


− σ

p = −1 : Lψ = −2 e−βJLψ∑
φ e−βJLφ

1

2β
log

[ ∑
φ eβJLφ∑
φ e−βJLφ

]
< −σ

lim
n→∞fRS = J

4

∑
φ

L2
φ − 1

β
log


∑

φ

e−βJLφ


 .

For the swollen state Lφ = 2p/q ∀φ this implies: for σ > 2J/q there is only the solution
p = 0, for σ < 2J/q also the solutions p = ±1 are locally stable (but with a lower free
energy than the p = 0 state only when σ < J/q).

The general picture emerging from the above two limit cases is, as expected, that for
sufficiently large σ the single-species states p = ±1 (which continue to be energetically
favourable for the fast process) will indeed be replaced by a biologically more interesting state
with equal fractions of hydrophilic and hydrophobic monomers.

5.2. Phase diagrams for q = 2

Now the order parameter equation becomes

p = G(p) G(p) = 1
2 tanh[β̃(Jp − σ)] + 1

2 tanh[β̃(Jp + σ)]. (32)

Due to the symmetry P(µ) = P(−µ) we always find the state p = 0 (equal fractions of
hydrophobic and hydrophilic monomers). We expand the functionG(p) in powers of p,

G(p) = β̃J [1 − tanh2(β̃σ )]p − 1
3 (β̃J )

3[1 − 4 tanh2(β̃σ ) + 3 tanh4(β̃σ )]p3 + O(p5)

and conclude that the state p = 0 destabilizes when tanh2(β̃σ ) = 1 − 1/β̃J , or, equivalently,
at

β̃σc = 1

2
log

[ √
β̃J +

√
β̃J − 1√

β̃J −
√
β̃J − 1

]
(33)

and that this corresponds to a true second-order transition as long as β̃J < 3/2 (so thatG′′′(0)
is negative). We note that

β̃σc = (β̃J − 1)1/2 + O(β̃J − 1) (β̃J → 1)

β̃σc = 1
2 log(β̃J ) + O(1) (β̃J → ∞).

For β̃J > 3/2, however, there are first-order transitions away from the state p = 0 at
temperatures higher than the one defined by (33). The locations in the phase diagram of
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Figure 3. Phase diagrams for q = 2 and P (µ) = 1
2 δ[µ − σ ] + 1

2 δ[µ + σ ]. The six
possible phases are {S1, S2, S3} (swollen phases with one, two or three possible locally stable
values of p) and {C1, C2, C3} (compact phases with one, two or three possible locally stable
values of p). The S� → C� transitions (at β̃J = n) as well as the S1 → S2 and C1 → C2
transitions are all second-order. The S1 → S3 and C1 → C3 transitions are first-order. Left
diagram: n = 5. Right diagram: n = 5

4 . Note that β̃ = βn, that phase S2 exists only for n > 1,
and that phase S3 exists only for n > 3

2 .

the latter, which start at the triple point (β̃J, β̃σ ) = (
3
2 , arctanh[1/

√
3]
)
, are to be solved

(numerically) from the coupled transcendental equations p = G(p) and 1 = G′(p), i.e.

p = 1
2 tanh[β̃(Jp − σ)] + 1

2 tanh[β̃(Jp + σ)] (34)

1 = β̃J
{
1 − 1

2 tanh2[β̃(Jp − σ)] − 1
2 tanh2[β̃(Jp + σ)]

}
. (35)

It is now (in contrast to the case of δ-distributed genetic forces) possible to have three locally
stable values for the average polarity p (one of which is zero, the other two are different in
sign only). This exhausts the phases and transitions: there is one second-order transition at
βJ = 1 from a swollen state with uniformly distributed monomer orientations to a compact
state with separation of polarity types, two first-order transition lines (in the region βnJ < 3

2 )
marking the creation of multiple locally stable values for the average polarity together with
destabilization of the state p = 0 and two first-order transition lines where two nonzero values
of p bifurcate discontinuously (without affecting the stability ofp = 0). These lines are shown
in the (β̃J, β̃σ ) phase diagram, in figure 3. We denote swollen phases with � locally stable
values of p as S�, and compact phases with � locally stable values of p as C�. The number of
possible phases is again found to depend explicitly on n: phase S2 exists only for n > 1, and
S3 exists only for n > 3

2 .

5.3. Phase diagrams for q = 3

For the force distribution P(µ) = 1
2δ[µ − σ ] + 1

2δ[µ + σ ] we know the ground state to be
L = (−1, 0, 1) for σ > J/2 (with p = 0) and L = 2p(1, 0, 0) for σ < J/2 (with p = ±1).
We therefore expect the solution to be of the form L = (L1, L2, L2) at all temperatures at most
when σ < J/2. Inserting

{
L±2π/3 = 1

3 (2p + Z),L0 = 1
3 (2p − 2Z)

}
into our saddle-point

equations now leads to
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p = 1

2

e−βn[σ− 2
3 Jp]

(
2 e

1
3 βJZ + e− 2

3 βJZ
)n

− eβn[σ− 2
3 Jp]

(
2 e− 1

3 βJZ + e
2
3 βJZ

)n
e−βn[σ− 2

3 Jp]
(

2 e
1
3 βJZ + e− 2

3 βJZ
)n

+ eβn[σ− 2
3 Jp]

(
2 e− 1

3 βJZ + e
2
3 βJZ

)n

+
1

2

eβn[σ+ 2
3 Jp]

(
2 e

1
3 βJZ + e− 2

3 βJZ
)n

− e−βn[σ+ 2
3 Jp]

(
2 e− 1

3 βJZ + e
2
3βJZ

)n
eβn[σ+ 2

3 Jp]
(

2 e
1
3βJZ + e− 2

3 βJZ
)n

+ e−βn[σ+ 2
3 Jp]

(
2 e− 1

3 βJZ + e
2
3βJZ

)n (36)

Z = F [Z;p] F [Z;p] = 2p[1 − cosh(βJZ)] + 6 sinh(βJZ)

5 + 4 cosh(βJZ)
(37)

(with a corresponding simplification of the bifurcation condition (23)). For Z = 0 these
equations bring us back to the swollen state Lφ = 2

3p, but now with

p = 1
2 tanh

[
βn
(

2
3Jp − σ

)]
+ 1

2 tanh
[
βn
(

2
3Jp + σ

)]
.

Comparison with the corresponding equation for q = 2 shows that, for σ < 1
2J , the properties

of the swollen state with q = 3 can again be obtained from those derived for q = 2 via the
substitution J → 2

3J . This tells us that the state p = 0 (which always solves the saddle-point
equation) destabilizes at

β̃σc = 1

2
log



√

2
3 β̃J +

√
2
3 β̃J − 1√

2
3 β̃J −

√
2
3 β̃J − 1


 (38)

and that this corresponds to a true second-order transition as long as β̃J < 9/4. For β̃J > 9/4,
however, there are first-order transitions away from the state p = 0 at temperatures higher
than the one defined by (38), which start at the triple point (β̃J, β̃σ ) = (

9
4 , arctanh[1/

√
3]
)
,

to be solved (numerically) from the coupled equations

p = 1
2 tanh

[
β̃
(

2
3Jp − σ

)]
+ 1

2 tanh
[
β̃
(

2
3Jp + σ

)]
(39)

1 = 2
3 β̃J

{
1 − 1

2 tanh2 [β̃ ( 2
3Jp − σ

)]− 1
2 tanh2 [β̃ ( 2

3Jp + σ
)]}

. (40)

Thus we can have, even for the swollen state, three locally stable values for the average polarity
p (one of which is zero, the other two are different in sign only). Since the swollen state is
locally unstable (against collapsed solutions) for βJ > 3

2 , however, the above transitions
can be seen only for n > 1. Since F [Z;p] = 2

3βJZ + O(Z2), the swollen state, Z = 0
destabilizes at βJ = 3

2 in favour of a collapsed state of the type L = (L1, L2, L2).
We show the resulting phase diagram (complemented by numerical analysis of the

transitions) in figure 4, for n = 2. As a result of the symmetry P(µ) = P(−µ), here
the S1 phase always has p = 0 (in contrast to e.g. the case of δ-distributed forces), whereas
C1 has p 	= 0. The S2 and C2 phases also involve p 	= 0 (with the two possible values
different in sign only). The only phase that exists for large values of σ is S1. One notes again
the crucial dependence on n of the existence of some of the phases (clearly evident in the
equations above). It is now clear that upon choosing a sufficiently large value for σ one can
eliminate the biologically undesirable single-species states at any temperature T.

6. Results for Gaussian-distributed genetic forces

Our third example is the Gaussian distribution P(µ) = [2πσ 2]−
1
2 e− 1

2 [µ−µ]2/σ 2
. Again,

provided σ is sufficiently large, the genetic functionality potential discourages the biologically
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Figure 4. Phase diagrams for q = 3 and P (µ) = 1
2 δ[µ−σ ]+ 1

2 δ[µ+σ ], with n = 2. The possible
phases are {S�} (swollen phases with � possible locally stable values of p), {C�} (compact phases
with � possible locally stable values of p), {S� +C�} (phases with 2� possible locally stable states
of p, half of which are compact) and CO (compact states only). First-order transitions are indicated
by dashed curves, second-order ones by solid curves. The right diagram is an enlargement of one
of the two areas in the left diagram where all lines nearly meet.

undesirable single-species states. For σ → ∞ it follows immediately from (13) that
p = 0.

6.1. The deterministic limits: T → 0 and n → ∞
Working out the relevant Gaussian integral in (18) now gives us

ε(p) = 1

2
p2 − 1

2
− σ

J
F

[
pJ − µ

σ

]
F [x] = x Erf

[
x√
2

]
+

√
2

π
e− 1

2 x
2
. (41)

It follows that dε(p)/dp = p − Erf[(pJ − µ)/σ
√

2]. Graphical inspection of the functions
ε(p) and dε(p)/dp reveals that for µ 	= 0 the global minimum of ε(p) (i.e. the true ground
state) is always at a value of p with sgn[p] = −sgn[µ], but that for sufficiently smallσ there will
be an additional local minimum (bifurcating discontinuously, together with a corresponding
local maximum) with sgn[p] = sgn[µ], provided |µ| < J . The bifurcation point is calculated
by solving simultaneously the equations dε(p)/dp = d2ε(p)/dp2 = 0. Working out these
equations and eliminating p leads us to the two critical lines µ = ±µc(σ ), which separate a
region with a single local minimum from a region with two local minima:

µc

J
= Erf

[
1√
2

√
log

[
2J 2

πσ 2

]]
− σ

J

√
log

[
2J 2

πσ 2

]
. (42)

The result is shown in figure 5. For σ → 0 one finds µc/J → 1, and for σ/J → √
2/π one

findsµc → 0. Thus for σ → 0 we recover the ground state of the example P(µ) = δ[µ−µ],
as it should. For µ = 0, on the other hand, we have dε(p)/dp = p − Erf[pJ/σ

√
2]. Now

one has only the solution p = 0 (equal numbers of hydrophobic and hydrophilic monomers)
for σ/J >

√
2/π , and two equivalent stable solutions ±p with sgn[p] = −sgn[µ] for

σ/J <
√

2/π , separated by a second-order transition at σ/J = √
2/π .
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Figure 5. Onset of multiplicity of locally stable states at T = 0, for Gaussian-distributed forces µi
(with average µ and variance σ 2). Solid curves: critical lines ±µc/J in parameter space as defined
in (42), terminating at σ/J = √

2/π . Region I: a single local and global minimum (the ground
state), with sgn[p] = −sgn[µ]. Region II: an additional local minimum (with energy higher than
the ground state), with sgn[p] = sgn[µ].

For n → ∞ (deterministic genetic dynamics) one finds, upon doing the required integrals,

lim
n→∞ fRS = min{Lφ}


J4

∑
φ

L2
φ − 1

2β
log


∑

φ

eβJLφ


− 1

2β
log


∑

φ

e−βJLφ




−F
[

1

σ

(
µ− 1

2β
log

[ ∑
φ eβJLφ∑
φ e−βJLφ

])]
 (43)

p = −Erf

[
1

σ
√

2

(
µ− 1

2β
log

[ ∑
φ eβJLφ∑
φ e−βJLφ

])]
(44)

with the function F [x] defined in (41), and together with our order-parameter equation (14)
for the {Lφ}. Here, one will generally find a continuous dependence of the average polarity
p on the system’s control parameters. Inspection of the swollen state Lφ = 2p/q ∀φ here
implies studying the saddle-point equation p = Erf[(2pJ/q − µ)/σ

√
2]. For µ = 0 one

finds only the p = 0 state for σ/J > 2
√

2/q
√
π , which destabilizes at σ/J = 2

√
2/q

√
π in

favour of two energetically equivalent p 	= 0 solutions (with opposite signs). For µ 	= 0 there
is always a solution with sgn[p] = −sgn[µ], which always carries the lowest free energy.
A bifurcation analysis of our saddle-point equation for p reveals further that an alternative
solution with sgn[p] = sgn[µ] is created discontinuously at µ = ±µc, where

µc

J
= 2

q
Erf



√√√√log

(
2
√

2J

qσ
√
π

)
− σ

√
2

J

√√√√log

(
2
√

2J

qσ
√
π

)

(provided |µ|/J < (2/q)Erf[
√

2/π]).
As with binary distributed µ, again we find that for sufficiently large σ the single-species

states p = ±1 are replaced by biologically more interesting states with equal fractions of
hydrophilic and hydrophobic monomers.



8666 H Chakravorty et al

6.2. Phase diagrams for q = 2

Working out the q = 2 equations (22) for zero-average Gaussian genetic forces (since choosing
µ 	= 0 always has a deteriorating effect) leads us to the following saddle-point equation for
the polarity order parameter p (with the short-handDz = (2π)−

1
2 e− 1

2 z
2
):

p = G(p) G(p) =
∫
Dz tanh[β̃(Jp − σz)]. (45)

Again p = 0 is always a solution. We expandG(p) for small p and find

G(p) = β̃Jp

∫
Dz[1 − tanh2(β̃σz)]

− 1

3
(β̃J )3p3

∫
Dz[1 − 4 tanh2(β̃σz) + 3 tanh4(β̃σz)] + O(p5)

and conclude that the state p = 0 destabilizes at

1 = β̃J

∫
Dz[1 − tanh2(β̃σz)]. (46)

We note that

β̃σc = (β̃J − 1)1/2 + O(β̃J − 1) (β̃J → 1)

β̃σc =
√

2

π
β̃J + O(1) (β̃J → ∞)

(in line with our earlier results on the ground state). The transition (46) would be preceded
by a first-order one from the point onwards where G′′′(0) � 0. Along the line (46) this latter
condition translates into

1 � 3

4
β̃J

∫
Dz[1 − tanh4(β̃σz)].

Numerical analysis reveals that this inequality is never satisfied, and there is no evidence
for first-order transitions. The final picture for q = 2 is thus as follows. There are only
second-order transitions: one occurs at βJ = 1 from a state with uniformly distributed
monomer orientations (representing a swollen state) to a state with separation of polarity types
(representing a compact state), the remaining two occur for σ = ±σc, where σc denotes the
non-negative solution of (46), and mark the creation of two locally stable non-zero values for
the average polarity (which differ in sign only) together with destabilization of the state p = 0.
These lines are shown in the (β̃J, β̃σ ) phase diagram, in figure 6. We again denote swollen
phases with � locally stable values of p as S�, and compact phases with � locally stable values
of p as C�. As in the previous examples, phase S2 exists only for n > 1.

6.3. Phase diagrams for q = 3

For the force distribution P(µ) = (2πσ 2)−
1
2 e− 1

2µ
2/σ 2

we know the ground state to be
L = (−1, 0, 1) for σ > J

√
2/π (with p = 0) and L = 2p(1, 0, 0) for σ < J

√
2/π

(with p = ±1). We therefore expect the solution to be of the relative form L = (L1, L2, L2)

at all temperatures at most when σ < J/2. Inserting {L±2π/3 = 1
3 (2p+Z),L0 = 1

3 (2p−2Z)}
into our saddle-point equations now leads to

p =
∫
Du


eβn[σu+ 2

3 Jp]
(

2 e
1
3 βJZ + e− 2

3 βJZ
)n

− e−βn[σu+ 2
3 Jp]

(
2 e− 1

3βJZ + e
2
3 βJZ

)n
eβn[σu+ 2

3 Jp]
(

2 e
1
3 βJZ + e− 2

3 βJZ
)n

+ e−βn[σu+ 2
3 Jp]

(
2 e− 1

3βJZ + e
2
3 βJZ

)n

 (47)
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Figure 6. Phase diagrams for q = 2 and P (µ) = [2πσ 2]−1/2 e− 1
2µ

2/σ 2
. The four possible phases

are {S1, S2} (swollen phases with one or two possible locally stable values of p) and {C1,C2}
(compact phases with one or two possible locally stable values of p). Here all transitions are
second-order. Left diagram: n = 6. Right diagram: n = 3

4 . Note that β̃ = βn, and that phase S2
exists only for n > 1.

Z = F [Z;p] F [Z;p] = 2p[1 − cosh(βJZ)] + 6 sinh(βJZ)

5 + 4 cosh(βJZ)
. (48)

For Z = 0 these equations bring us back to the swollen state Lφ = 2
3p, but now with

p =
∫
Dz tanh

[
βn
(

2
3Jp + σz

)]
.

Comparison with the corresponding equation for q = 2 shows that, for σ < J
√

2/π , the
properties of the swollen state with q = 3 can again be obtained from those derived for q = 2
via the substitution J → 2

3J . This tells us that the state p = 0 (which always solves the
saddle-point equation) destabilizes at

1 = 2

3
β̃J

∫
Dz[1 − tanh2(β̃σz)] (49)

and that this corresponds to a true second-order transition.
We show the resulting phase diagram (complemented by numerical analysis of the

transitions) in figure 7, for n = 2. As a result of the symmetry P(µ) = P(−µ) the S1
phase always has p = 0 (in contrast to e.g. δ-distributed forces). The S2 and C2 phases
involve p 	= 0 (with the two values different in sign only). One notes again the crucial
dependence on n of the existence of some of the phases (clearly evident in the equations
above). It is clear that upon choosing a sufficiently large value for σ one can eliminate the
biologically undesirable single-species states at any temperature T.

7. Discussion

Our objective was to define and study a simple solvable model describing the coupled dynamics
of (fast) compactification and (slow) genetic monomer sequence selection in hetero-polymers,
driven by the competing demands of functionality and reproducibility of the resulting folded
structures, as a first step towards understanding the genesis and statistics of natural amino-
acid sequences in proteins. Our model is a simple mean-field hetero-polymer whose state
is described by two degrees of freedom per monomer i: an angle φi , giving its orientation
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Figure 7. Phase diagram for q = 3 and P (µ) = [2πσ 2]−
1
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, with n = 2. The possible
phases are {S�} (swollen phases with � possible locally stable values of p), {C�} (compact phases
with � possible locally stable values of p), {S� + C�} (phases with 2� possible locally stable states
of p, half of which are compact) and CO (compact states only). First-order transitions are indicated
by dashed curves, second-order ones by solid curves.

relative to the backbone, and a binary variable ηi , giving its polarity (i.e. hydrophobic versus
hydrophilic). The evolution of the orientation variables represents folding; that of the polarity
variables (which involves changing monomer species) represents genetic evolution. The latter
is assumed to be adiabatically slow compared to the former. There is also explicit (quenched)
site disorder in the model, in the form of a simple (site-factorized) random functionality
potential for the monomer sequences.

We have solved our model in equilibrium using the finite-n replica formalism, designed to
analyse statistical mechanical systems with disparate timescales, where n denotes the ratio of
the noise levels (or temperatures) in the two stochastic processes. Replica symmetry is stable,
and we are able to derive closed equations for the system’s order parameters, which measure
the degree of separation of the monomer species, and can be interpreted in terms of swollen
versus compact states. This leads to explicit analytical results for ground states and high-
temperature states. Solution of our order-parameter equations at intermediate temperatures
requires a combination of analytical and numerical methods. Since the qualitative behaviour of
the system can already be captured by restricting ourselves to q � 3 (q denotes the number of
possible orientation angles per monomer), we calculate phase diagrams for q ∈ {2, 3} and for
different choices of the disorder in the sequence functionality potential. These exhibit a rich
phenomenology of first- and second-order phase transitions, and shed light on the emergence
of monomer species statistics (characterized by the fraction of hydrophobic versus hydrophilic
monomers) from the underlying genetic dynamics. The properties of the functionality potential
are found to have a large impact on the nature of the phase diagram; the distribution of genetic
forces needs to be sufficiently broad relative to its average, in order to prevent the system from
evolving towards a single-species state (where all monomers have the same polarity). This is
perfectly compatible with the efficiency-driven biological need for large sequence diversity (in
order to use the available hetero-polymer hardware for as many different biological functions
as possible), which again favours the p = 0 states.

There is much scope for further work. At a theoretical level one could repeat the
above analysis for models in which the folding process also includes short-range forces
(e.g. hydrogen bonds and steric forces), as in [17], which would involve n-replicated transfer
matrices, or study the dynamics (at either the fast or the slow timescale, or both). One
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could also inspect more realistic sequence functionality potentials V (η) with a large number
of local minima. At the level of increasing biological realism one could introduce more
sophisticated degrees of freedom for the monomers, such as three real-valued orientation
angles per monomer, or allow for a realistic number of monomer species (as opposed to two)
and endow each with additional physical characteristics.

A final criticism to be raised against the present model is that its genetic Hamiltonian
favours sequences which allow for efficient shielding of hydrophobic monomers and which
meet functionality requirements. Efficient shielding, and hence reliable compactification,
is our simplified measure of structure reproducibility. It would be interesting to construct
and solve a model in which the genetic Hamiltonian really measures the number of meta-
stable states, and rewards sequences which are not only guaranteed to generate a compact
conformation (as in the present model) but also a unique one.

Appendix A. Stability analysis

Appendix A1. General properties

Here we analyse the local stability properties of the saddle points of the free energy surface per
monomer f [{z}], which is extremized in (6), by studying the eigenvalue problem of the Hessian
Dαφ,γψ = ∂2f [{z}]/∂zαφ∂zγψ . In replica-symmetric saddle points, where zαφ = zφ = βJLφ
for all α, the Hessian takes the following form

Dαφ,γψ = 1

β̃

{
1

2βJ
δαγ δφψ + D̃αφ,γψ

}
(A.1)

D̃αφ,γψ = K̂φψ − L̂φψ + δαγ [L̂φψ − M̂φψ] (A.2)

where

K̂φψ = 〈[
w+v

+
ψ −w−v−

ψ

][
w+v

+
φ − w−v−

φ

]〉
µ

(A.3)

L̂φψ = 〈
w+v

+
ψv

+
φ + w−v−

ψv
−
φ

〉
µ

(A.4)

M̂φψ = δφψ
〈
w+v

+
ψ + w−v−

ψ

〉
µ

(A.5)

and with the short-hands

w± =
e∓β̃µ

(∑
φ e±βJLφ

)n
e−β̃µ

(∑
φ eβJLφ

)n
+ eβ̃µ

(∑
φ e−βJLφ

)n v±
φ = e±βJLφ∑

φ ′ e±βJLφ′ .

The three matrices {K̂, L̂, M̂} are all positive definite and symmetric, and the non-negative
quantities w± and v±

φ obey the normalization relations w+ + w− = 1 and
∑

φ v
±
φ = 1. For

high temperatures (where we know the system is ergodic) we just find

β2Dαφ,γψ = 1

n

{
1

2J
δαγ δφψ + O(β)

}
(β → 0)

(i.e. D is positive definite for β → 0). Hence, the condition for a local destabilization of an
RS saddle point {Lφ} is given in terms of the smallest eigenvalue of D̃ as∑

γψ

D̃αφ,γψx
γ

ψ = λxαφ λmin = −1/2βJ. (A.6)

We now set out to determine the eigenvectors and eigenvalues of (A.2).
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Appendix A2. RS and RSB eigenvectors, local stability of the RS saddle point

Replica-symmetric eigenvectors, describing fluctuations within the RS subspace, are of the
form xαφ = xφ for all α. Insertion into the eigenvalue problem of (A.2) gives

[n(K̂ − L̂) + L̂ − M̂ ]x = λRSx (A.7)

with x = {xφ}. Since the matrices (A.3)–(A.5) are q×q ones, we know that the RS eigenspace
is q-dimensional. The matrix D̃ is self-adjoint, so we know that the RSB eigenvectors, which
we write as yαφ , must be orthogonal to the above q-dimensional RS eigenspace; they must obey
the q conditions

∑
α y

α
φ = 0 for all φ. Insertion into the eigenvalue problem of (A.2) now

gives ∑
ψ

[L̂φψ − M̂φψ ]yαψ = λRSBy
α
φ . (A.8)

Together with the othogonality conditions, this leaves an (n − 1)q dimensional RSB
eigenspace, as it should. We conclude that, in view of (A.6), that second-order transitions of
the RS and RSB type occur when, respectively

RS transitions: min
x∈R

q ,	=0

[
x[n(K̂ − L̂) + L̂ − M̂ ]x

x2

]
= − 1

2βJ
(A.9)

RSB transitions: min
x∈R

q ,	=0

[
x[L̂ − M̂ ]x

x2

]
= − 1

2βJ
. (A.10)

Below we show that the matrix K̂ − L̂ is negative definite. As a consequence, we can be
certain that a destabilization of an RS saddle point will always occur within the RS eigenspace,
since

min
x∈R

q ,	=0

[
x[n(K̂ − L̂) + L̂ − M̂ ]x

x2

]
< min

x∈R
q ,	=0

[
x[L̂ − M̂ ]x

x2

]

(only non-physical RS saddle points can be locally unstable against RSB fluctuations). Hence
replica-symmetry will always be locally stable. What remains is to confirm that K̂ − L̂ is
indeed negative definite. To do so we first define 〈x〉± = ∑

φ v
±
φ xφ . This allows us to write∑

φφ ′
xφ[K̂φφ ′ − L̂φφ ′]xφ ′ = 〈

[w+〈x〉+ −w−〈x〉−]2 −w+〈x〉2
+ −w−〈x〉2

−
〉
µ

�
〈
[w+|〈x〉+| +w−|〈x〉−|]2 −w+|〈x〉+|2 −w−|〈x〉−|2〉

µ

� 0.

This completes our proof.
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