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Abstract
We extend a recently introduced class of exactly solvable models for recurrent
neural networks with competition between one-dimensional nearest-neighbour
and infinite-range information processing. We increase the potential for further
frustration and competition in these models, as well as their biological relevance,
by adding next-nearest-neighbour couplings, and we allow for modulation of
the attractors so that we can interpolate continuously between situations with
different numbers of stored patterns. Our models are solved by combining
mean-field and random-field techniques. They exhibit increasingly complex
phase diagrams with novel phases, separated by multiple first- and second-
order transitions (dynamical and thermodynamic ones), and, upon modulating
the attractor strengths, non-trivial scenarios of phase diagram deformation. Our
predictions are in excellent agreement with numerical simulations.

PACS numbers: 8710, 0520

1. Introduction

In real (biological) recurrent neural networks, where information processing is based on the
creation and manipulation of attractors, one typically observes an intricate interplay and
competition between long-range information processing (via excitatory pyramidal neurons)
and short-range information processing (via short-range pyramidal neurons and inhibitory
inter-neurons). Studying those properties of such systems which are linked to their spatial
structure, using statistical mechanical techniques, requires moving away from the more
traditional infinite-range models of attractor neural networks [1, 2]. With the latter objective,
an alternative type of attractor neural network was recently proposed and studied [3], in which
neurons (represented by Ising spins) are mutually connected by a combination of infinite-
range synaptic interactions, and one-dimensional nearest-neighbour interactions. Although
real biological network architectures are obviously far more complex, such models, which
are still sufficiently simple to be solved exactly, via a combination of mean-field techniques
(as in e.g. [2]) and random field techniques (as in e.g. [4–6]), would appear to represent a
small but welcome step towards biological reality. Moreover, from a statistical mechanical
perspective, the solutions of these models exhibited a remarkably rich behaviour, even in the
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so-called low-storage regime (where the number of patterns stored in the interactions remains
finite in the thermodynamic limit), and particularly in those regions in parameter space where
the two types of interaction (long-range versus nearest-neighbour) compete most strongly.
The phase diagrams where found to describe a series of regions with different numbers of
ergodic components, separated by both second- and first-order transitions (representing various
dynamical transitions, in addition to the thermodynamic ones), and to increase dramatically in
complexity with the number p of stored patterns.

This paper is devoted to a further exploration and enlargement of the class of models
introduced in [3]. We study two orthogonal extensions, each with their own specific objectives.
Our first extension is to include also neuronal interactions between next-nearest neighbours
in the one-dimensional chain (in addition to the mean-field and nearest-neighbour ones), and
to study their impact on the phase diagrams. Here the motivation is, again, partly biological:
short-range pyramidal neurons are believed to act on shorter distances than short-range inter-
neurons, and simple models of the type proposed here have indeed been used recently to
explain properties of the mammalian visual system [7, 8]. We find, especially when the
parameters controlling the new interactions are chosen such as to introduce further competition
and frustration into the network, new phases are being created and the complexity of the phase
diagram is again significantly increased. Our second extension is primarily motivated by our
desire to understand the significant qualitative modification of the phase diagrams as observed
in [3] resulting from just a small increase in the number of stored patterns (e.g. p = 1 versus
2). More specifically, in contrast to the traditional long-range models, in models with short-
range interactions one finds a stronger disruptive effect of non-condensed patterns on the
recall of the condensed ones. In order to shed light on such phenomena we extend the original
models of [3] by modulating the embedding strengths of the individual stored patterns (and
therefore the attractors themselves), as in [9], so that we can smoothly interpolate between, for
instance, the p = 1 and 2 models. This reveals, as was expected on the basis of the qualitative
differences between the p = 1 and 2 diagrams, a very complicated and interesting scenario of
phase diagram deformation. Both extensions of the original models in [3] introduce technical
complications, but these are largely of a quantitative nature, and the extra work needed to again
arrive at exact solutions is more than adequately compensated by the richness of the resultant
phase diagrams.

2. Definitions

As in [3], each of our extended models is defined as a collection of N binary neuron variables
(i.e. Ising spins) σ = (σ1, . . . , σN), with σi ∈ {−1, 1}, which evolve in time stochastically
and sequentially, following the Glauber-type rule

Prob[σi(t + 1) = ±1] = 1
2 [1 ± tanh[βhi(σ(t))]] hi(σ) =

∑
j �=i
Jij σj . (1)

The parameters Jij represent the synaptic interactions, and the parameter β = 1/T controls
the amount of stochasticity in the dynamics. If the interaction matrix is symmetric, the
process (1) leads to a unique equilibrium state of the Boltzmann type, i.e. with microscopic state
probabilities of the formp∞(σ) ∼ exp[−βH(σ)] and with the conventional Ising Hamiltonian
H(σ) = − ∑

i<j σiJij σj . Information processing in such systems is based on the creation and
manipulation of attractors in the system’s configuration space, by a suitable choice of the spin
interactions {Jij }, which shape the energy landscape. In statistical mechanical terms, the two
key aspects of these interactions which determine the analytical solvability or otherwise of the
resulting models are (i) the spatial structure defined by the interactions (reflected in which of
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Figure 1. Graphical representation of the spatial structure of model II.

the Jij are non-zero), and (ii) the actual values taken by the non-zero interactions (which will
generally be non-trivial, in order to achieve the objective of the creation of specific attractors).
For the interaction matrix Jij we now make two different choices, which both generalize the
model class of [3], but in qualitatively different ways.

Our first generalization focuses on the values of those interactions which are present, while
retaining the mean-field plus nearest-neighbour interaction structure of [3]:

model I: Jij =
p∑
µ=1

[
J �µ

N
+ J sµ(δj,i+1 + δj,i−1)

]
ξ
µ

i ξ
µ

j (2)

in which the components ξµi ∈ {−1, 1} are all drawn independently at random, with equal
probabilities. Neural networks of this type correspond to the result of having stored in
a Hebbian-type fashion a set of p binary patterns ξi = (ξ 1

i , . . . , ξ
p

i ) ∈ {−1, 1}N . The
neurons can be thought of as arranged on a one-dimensional array with mean-field interactions
between all pairs (i, j) given by N−1 ∑

µ J
�
µξ
µ

i ξ
µ

j , in combination with interactions between
nearest neighbours (i, i + 1) of strength

∑
µ J

s
µξ
µ

i ξ
µ

i+1. We will only consider the case where
limN→∞ p/N = 0. The parameters J sµ and J �µ control the embedding strength of pattern µ
in the short- and long-range synapses, with negative values corresponding to the creation of
‘repellors’ rather than attractors. For uniform embedding strengths, J sµ = Js and J �µ = J� for
all µ, we recover [3].

Our second generalization affects the spatial structure of the system, rather than the
properties of the attractors (although the latter will be indirectly affected). Here our choice of
interactions is

model II: Jij =
[
J�

N
+ J (1)s (δj,i+1 + δj,i−1) + J (2)s (δj,i+2 + δj,i−2)

] p∑
µ=1

ξ
µ

i ξ
µ

j . (3)

In neural networks of type II, the short-range synaptic interactions reach beyond nearest
neighbours; here J�, J (1)s , J

(2)
s ∈ R control the strengths of long-range, nearest-neighbour

and second-nearest-neighbour interactions. Alternatively, in these models the neurons can
be thought of as lying on a strip, mutually coupled by infinite range interactions of strength
J�/Nξi · ξj , in combination with short-range ‘diagonal’ interactions of strength J (1)s ξi · ξi+1

and ‘edge’ interactions of strength J (2)s ξi−1 ·ξi+1 (see figure 1). Note that the models of type II
reduce to those in [3] for J (2)s = 0. The most relevant observables in our models are the
so-called overlap order parameters, defined as mµ(σ) = N−1 ∑

i ξ
µ

i σi , which measure the
degree of similarity between the actual network state σ and the µth stored pattern.
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Due to the presence of short-range interactions in the above models (and, similarly, those
of [3]), the solution of even the simplest scenario where p � N is already significantly more
complicated than solving the standard infinite-range (Hopfield-type, [1,2]) cases. The solution
of both models will be based on a suitable adaptation of the random-field techniques of [4].

3. Physics of model I

3.1. Solution via random-field techniques

In order to find the phase diagrams we first isolate the p overlap order parameters by inserting
1 = ∫

dm δ[m− 1
N

∑
i σiξi] with m = (m1, . . . , mp) and ξi = (ξ 1

i , . . . , ξ
p

i ) in the expression
for the asymptotic free energy per site f = − limN→∞(βN)−1 lnZ, and subsequently replace
the delta functions by their integral representations. For model I this leads to

f = − lim
N→∞

1

βN
ln

∫
dm dm̂ e−βNφN (m,m̂)

φN(m, m̂) = −im̂ · m − 1

2

∑
µ

J �µm
2
µ − 1

βN
lnRN(m̂)

(4)

where the non-trivial part of the calculation, mainly induced by the short-range interactions,
has been concentrated in the term RN(m̂) (we consider non-periodic boundary conditions):

RN(m̂) =
∑

σ

N−1∏
i=1

Tσiσi+1 e−iβ
∑
µ m̂µσN ξ

µ

N

Tσiσi+1 = e−iβ
∑
µ m̂µσiξ

µ

i +β
∑
µ J

s
µ(σiξ

µ

i )(σi+1ξ
µ

i+1).

(5)

In the limit N → ∞ the above integral will be evaluated via steepest descent. This results
in an expression for f in terms of the relevant saddle-point of the asymptotic form of φN :
f = extrm,m̂ limN→∞ φN(m, m̂). Since the quantity R(m̂) does not contain the order
parameters m, we can immediately take derivatives in (4) with respect to m, which allows us to
eliminate the conjugate variables m̂ via −im̂µ = J �µmµ for allµ. Furthermore we observe that,
since for each µ the order parameter mµ is coupled to the infinite-range embedding strengths
J �µ, the so-called ‘pure-state’ ansatz m = (m, 0, . . . , 0) will automatically render the solution
of the model independent of J �µ for all µ > 1. From now on we will therefore use the notation
J �1 = J�. Upon making the pure-state ansatz, the resulting simplifications lead to

Tσiσi+1 = eβJ�mσiξ
1
i +β

∑
µ J

s
µ(σiξ

µ

i )(σi+1ξ
µ

i+1). (6)

To evaluate (5) we now first define the quantities

R
(N)
± (m) =

∑
σ

N−1∏
i=1

Tσiσi+1 eβJ�mσNξ
1
N δσN ,±1. (7)

These allow us to derive a 2 ×2 stochastic recurrence relation, mapping {R(N−1)
± } onto {R(N)± }:(

R
(N)
+ (m)

R
(N)
− (m)

)
=

(
eβ(J�mξ

1
N+

∑
µ J

s
µξ
µ

N−1ξ
µ

N ) eβ(J�mξ
1
N−∑

µ J
s
µξ
µ

N−1ξ
µ

N )

e−β(J�mξ 1
N+

∑
µ J

s
µξ
µ

N−1ξ
µ

N ) e−β(J�mξ 1
N+

∑
µ J

s
µξ
µ

N−1ξ
µ

N )

) (
R
(N−1)
+ (m)

R
(N−1)
− (m)

)
(8)

from which the partition sum of (5) follows as

− lim
N→∞

1

βN
lnRN(m) = − lim

N→∞
1

βN
ln [R(N)+ (m) + R(N)− (m)]

= − lim
N→∞

1

βN
ln

{ (
1
1

)
·
[ N∏
i=2

Ti

] (
R
(1)
+ (m)

R
(1)
− (m)

) }
. (9)
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The successive matrix multiplications above can be simplified via the use of the following ratio
of the conditioned quantities {R(j)+ (m), R

(j)
− (m)}:

kj = e2βmJ�ξ 1
j
R
(j)
− (m)

R
(j)
+ (m)

.

It now follows from (8) that these numbers ki are, in turn, generated by the following stochastic
process:

kj+1 = e−β∑
µ J

s
µξ
µ

j ξ
µ

j+1 + kje
−β∑

µ J
s
µξ
µ

j ξ
µ

j+1 e2βmJ�ξ 1
j

eβ
∑
µ J

s
µξ
µ

j ξ
µ

j+1 + kje
β

∑
µ J

s
µξ
µ

j ξ
µ

j+1 e2βmJ�ξ 1
j

. (10)

The stochasticity here is in the pattern components {ξµi }. This allows us to work out the
partition sum and express the asymptotic free energy per neuron as f = extrmf (m), with

f (m) = 1

2
J�m

2 − 1

β

∫
dk

∑
ξ,ξ′∈{−1,1}p

ρ(k, ξ, ξ′) log{eβ
∑
µ J

s
µξµξ

′
µ + ke−β∑

µ J
s
µξµξ

′
µe2βJ�mξ1}

(11)

and

ρ(k, ξ, ξ′) = lim
N→∞

1

N

N−1∑
i=1

δ[k − ki] δξ,ξi δξ′,ξ′
i+1
. (12)

The joint distribution (12), which is the invariant distribution for the process (10) and which
can be highly non-trivial [3] (depending on the choice of system parameters, the associated
integrated density can take the shape of a devil’s staircase), is in practice calculated numerically.
In the present case one can in fact simplify matters further by exploiting symmetry properties
of ρ(k, ξ, ξ′) resulting from the homogeneous distribution assumed for the {ξµi }.

3.2. Phase diagrams and comparison with numerical simulations

We can now extract the macroscopic characteristics of model I by generating the variables
{kj ; ∀j � N} numerically (together with the {ξµi }), which leads us to the joint distribution (12),
and by subsequently evaluating (numerically) the local minima of the free energy surface (11).
We show in figure 2 the resulting phase diagrams, for βJ s2 = {0,−3/2,−5/2, βJ s1 } and for
the simplest non-trivial case p = 2. In all graphs dashed curves correspond to second-order
transitions and solid lines to first-order ones.

Note that for J s2 = 0 (see figure 2, upper left panel) only pattern µ = 1 is effectively
embedded in the spin chain, and the phase diagram of the model is identical to that found
earlier in [3] for p = 1, as it should be. In this diagram we observe, apart from strictly
null-recall (N) and recall (R) phases, that there is also a region in which the trivial solution
and two non-trivial ones (one with positive and one with negative m) can be locally stable
simultaneously (indicated by N2)1. This region corresponds to parameter values for which the
two different types of synapse compete most strongly (negative nearest-neighbour interactions
versus positive infinite-range ones). It is separated from the recall region by a second-order
transition (dashed curve), and from the null-recall region by a first-order transition (solid line);
these two lines come together at {βJ�, βJ s1 } = {√3,− 1

4 ln 3}. Another benchmark solution
of [3] is recovered for the special case of having uniform short-range embedding strengths

1 From now on, regions which allow for locally stable null-recall solutions will be denoted by Ni , with i indicating
the number of simultaneously locally stable recall solutions. Similarly, regions which do not allow for locally stable
null-recall solutions will be denoted by Ri .
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Figure 2. Phase diagram cross-sections of model type I for p = 2, upon making the ‘pure-state’
ansatz for pattern µ = 1, with J� = J �1 . The parameters J s1 and J s2 control the short-range
embedding strength of patterns µ = 1 and 2, respectively, J� represents the strength of the mean-
field interactions and β = T −1 is the inverse temperature. In the absence of pattern µ = 2
(upper left) or for equally strong short-range embedding strengths (lower right), we recover [3].
Solid/dashed lines denote first/second-order transitions. Regions R and N represent strictly recall
or null-recall regions, whereas Ri and Ni correspond to regions where the trivial solution m = 0
is (R) or is not (N) locally stable, and with i ∈ {2, 4, 6} giving the number of locally stable m �= 0
solutions.

J s2 = J s1 (see figure 2, lower right panel). Here, two ‘pairs’ of first-order transition lines have
appeared, which separate the regions R4 and R6 (wherem = 0 is unstable and where four and
sixm �= 0 solutions are possible, depending on initial conditions) from the N region. Here the
second-order transition line does not touch any of the first-order ones.

The remarkable qualitative difference between the phase diagrams which the
aforementioned two special cases produce is striking; in our previous study the physical origin
of this difference was not studied. In particular, although the correctness of the solution had
been tested in [3] against extensive numerical simulations, it was not at all clear how and why
the second-order transition line (dashed curve) would change from the exponentially rising
curve (figure 2, upper left) to the one in the lower right corner of figure 2. Our present model
generalizes [3], and allows for independent tuning of the short-range embedding strengths:
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one can now bring the non-condensed pattern to life in a continuous way. The top right and
lower left panels of figure 2, where J s2 �= 0, show how the system realizes the transition
from the p = 1 case to the p = 2 case (where J s1 = J s2 ). The four panels in the figure can
be thought of as different cross-sections of an extended graph in the area {βJ s1 , βJ s2 , βJ�},
which in combination reveal the underlying complexity of the model; due to the competing
short- and long-range forces and the high degree of frustration new regions come to life in
parameter space, with multiple locally stable overlap solutions. In contrast to the J s1 = J s2
phase diagram, where m = 0 is unstable everywhere, apart from the strictly null-recall phase,
the other two J s2 �= 0 phase diagrams display regions (N2, N4 and N6) where m = 0 coexists
as a locally stable state together with multiple locally stablem �= 0 solutions. These latter new
phase diagrams appear significantly richer than those found in [3], owing to the breaking of
the pattern embedding strength symmetry.

To test and verify our results we have performed extensive simulation experiments. Initial
configurations σ(t = 0) were chosen randomly, according to

p(σ(0)) =
∏
i

{ 1
2 [1 +m0]δσi(0),ξ 1

i
+ 1

2 [1 −m0]δσi(0),−ξ 1
i
}.

In figure 3 we plot the equilibrium valuem1(t → ∞) of the main order parameter as a function
of its initial value m1(t = 0) (black circles), in order to probe the existence and location
of multiple ergodic components. To enable comparison with the theoretically predicted
equilibrium values we also show (insets) the dependence of the asymptotic free energy per
neuron on the order parameter m = m1(t → ∞), as contructed from equations (11) and (16);
its local minima are indeed located at those values which are found as allowed equilibrium
states in the simulations, given appropriate initial conditions, and within the experimental
margin of accuracy. With our system size N = 1000, finite-size effects are expected to be of
the order of O(N− 1

2 ) ≈ 0.03. Our restriction to relatively small system sizes was prompted by
the appearance of extremely large equilibration times, due to domain formation. For the case
of predominant long-range interactions equilibration was achieved within ≈104 flips/spin. For
predominant short-range interactions, however, domain formation led to equilibration times
which were observed to scale exponentially with the system size, see figure 4. For this reason
the observed value of mequi for the ergodic component closest to m = 0 in figure 3 appears to
differ from the theoretically predicted value m = 0 by roughly 0.06 > O(N− 1

2 ). In figure 4
we show that for the parameter choice of figure 3 and for m1(t = 0) = 0.08 the system is
indeed approaching the predicted statemequil = 0, but extremely slowly. Finally, we have also
measured the equilibrium overlaps with the non-‘condensed’ pattern, m2(t → ∞), which are
seen to remain zero (open diamonds in figure 3), which justifies our ‘pure-state’ ansatz.

4. Physics of model II

4.1. Solution via random field techniques

Neural network models of type II can be solved analytically using the same techniques as
applied to model type I, although here the calculations will be somewhat more elaborate.
Upon again making the ‘pure-state’ ansatz: m = (m, 0, . . . , 0) and upon eliminating the
conjugate order parameters m̂ via saddle-point equations, we find that the asymptotic free
energy per neuron is given by f = extrmf (m), with

f (m) = 1

2
J�m

2 − lim
N→∞

1

βN
lnRN(m)
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Figure 3. Simulation results for model type I, for system size N = 1000 and p = 2, showing
the equilibrium value (i.e. that obtained after 10 000 iterations per spin) of the ‘condensed’ overlap
mequi = m1(t → ∞) as a function of the initial value minit = m1(t = 0) (solid circles). The
initial configurations were drawn at random, subject to the constraint imposed by the required
value ofm1(t = 0). The theoretically predicted locations of the ergodic components, as contructed
from equation (11), are also shown as local minima of the free energy per neuron in the insets,
for comparison. Open diamonds represent the equilibrium values of the non-condensed overlaps
m2(t); they are seen to remain zero, which justifies a posteriori the ‘pure-state’ ansatz. Left plot:
βJ s2 = −3.5, βJ s1 = −4.2, βJ� = 18. Right plot: βJ s1 = −5.5, βJ s2 = −3.5, βJ� = 23.
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Figure 4. Simulation results for model type I, for system size N = 1200 and p = 2, showing the
‘condensed’ overlap m1 as a function of time (measured in iterations per neuron). The embedding
strengths were given by βJ s2 = −3.5, βJ s1 = −4.2, βJ� = 18. The relaxation towards zero,
following a small (but non-zero) initial value, is seen to be extremely slow, due to domain formation.

where the complicated part of the partition sum is in the last term:

RN(m) =
∑

σ

[ N−2∏
i=1

Tσiσi+1σi+2

]
eβJ

(1)
s (σN−1ξN−1)·(σNξN )eβJ�m{ξN−1σN−1+ξNσN }

Tσiσi+1σi+2 = eβJ
(1)
s

∑
i (σiξi )·(σi+1ξi+1)+βJ

(2)
s

∑
i (σiξi )·(σi+2ξi+2)+βJ�m

∑
i σi ξi

(13)

(with open boundary conditions). As in model I we next derive a recurrence relation for
conditioned partition sums. For the present model we find that this can be achieved in terms
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of the following four quantities:

R
(N)
±± (m) =

∑
σ

N−2∏
i=1

Tσiσi+1σi+2 eβJ
(1)
s (σN−1ξN−1)·(σNξN )eβJ�m{ξN−1σN−1+ξNσN }δσN−1,±1 δσN ,±1.

These are found to be successively generated by a 4×4 linear but stochastic iterative process of
the form RN+1 = TN+1RN , where Rj = (R

(j)
++ , R

(j)
+−, R

(j)
−+, R

(j)
−−), the stationary state of which

will produce the free energy per neuron. The 4 × 4 random matrix TN+1 can be decomposed
further into two coupled 2 × 2 random matrices:(

R
(N+1)
++

R
(N+1)
+−

)
=

(
eβJ�mξN+1 0

0 e−βJ�mξN+1

) (
LN,+ LN,−
L−1
N,+ L−1

N,−

) (
R
(N)
++

R
(N)
−+

)
(14)

(
R
(N+1)
−+

R
(N+1)
−−

)
=

(
eβJ�mξN+1 0

0 e−βJ�mξN+1

) (
L−1
N,− L−1

N,+
LN,− LN,+

) (
R
(N)
+−
R
(N)
−−

)
(15)

where

LN,± = eβ(J
(1)
s ξN−1·ξN±J (2)s ξN−1·ξN+1).

The partition sum in (13) can now be written in terms of the successive multiplication of the
random matrices T :

− lim
N→∞

1

βN
lnRN = − lim

N→∞
1

βN
ln







1
1
1
1


 ·

[ N∏
i=3

Ti

]
R2


 .

Similar to the analysis performed for model I we again define ratios of conditioned partition
functions (although here we will need three rather than one):

k
(1)
j = e−2βJ�mξj

R
(j)
++

R
(j)
+−

k
(2)
j = e2βJ�mξj

R
(j)
+−
R
(j)
−+

k
(3)
j = e−2βJ�mξj

R
(j)
−+

R
(j)
−−
.

According to (14), (15) these ratios are generated by the following stochastic processes:

k
(1)
j+1 = eβJ

(2)
s ξj−1·ξj+1k

(1)
j k

(2)
j + e−βJ (2)s ξj−1·ξj+1

e−βJ (2)s ξj−1·ξj+1k
(1)
j k

(2)
j + eβJ

(2)
s ξj−1·ξj+1

e2βJ (1)s ξj−1·ξj

k
(2)
j+1 = e−βJ (2)s ξj−1·ξj+1k

(1)
j k

(2)
j + eβJ

(2)
s ξj−1·ξj+1

eβJ
(2)
s ξj−1·ξj+1k

(2)
j k

(3)
j + e−βJ (2)s ξj−1·ξj+1

k
(3)
j e2βJ�mξj

k
(3)
j+1 = eβJ

(2)
s ξj−1·ξj+1k

(2)
j k

(3)
j + e−βJ (2)s ξj−1·ξj+1

e−βJ (2)s ξj−1·ξj+1k
(2)
j k

(3)
j + eβJ

(2)
s ξj−1·ξj+1

e−2βJ (1)s ξj−1·ξj .

The free energy per neuron can now be expressed in terms of the stationary distribution of this
stochastic process:

f (m) = 1

2
J�m

2 − lim
N→∞

1

β

∫
dk

∑
ξ,ξ′∈{−1,1}p

ρ(k, ξ, ξ′) ln{eβJ (2)s ξ·ξ′
+ e−βJ (2)s ξ·ξ′

k(2)k(3)} (16)

with

ρ(k, ξ, ξ′) = lim
N→∞

1

N

N−3∑
i=1

δ[k − ki]δξ,ξi δξ′,ξ′
i+2

(17)

and ki = (k
(1)
i , k

(2)
i , k

(3)
i ).
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Figure 5. Phase diagram cross-sections of model type II for p = 1, with J (1)s , J
(2)
s and J� denoting

nearest-neighbour, next-nearest-neighbour and long-range embedding strengths, respectively. In
the absence of next-nearest-neighbour interactions (upper left) we recover the model of [3], whereas
for J (2)s �= 0 new regions appear in the phase diagram, with different numbers of simultaneously
locally stable solutions for the ‘overlap’ order parameter m. Solid curves denote first-order
transitions; dashed curves denote second-order ones.

4.2. Phase diagrams and comparison with numerical simulations

Numerical evaluation of the energy surface defined by (16) leads to the phase diagrams shown
in figures 5 and 6, which describe the cases p = 1 and 5, respectively. They are drawn in the
{βJ (1)s , βJ�} plane, for four different values of the next-nearest-neighbour embedding strength
J (2)s . In all phase diagrams the solid lines represent continuous (second-order) phase transitions,
whereas the dashed curves correspond to discontinuous (first-order) ones. In the absence of
next-nearest-second-neighbour interactions, i.e. for J (2)s = 0 (upper left graph in figure 5), our
model reduces to that of [3]. For J (2)s > 0 one finds no new phase regimes, compared with the
J (2)s = 0 case; the two transition lines of the J (2)s = 0 phase diagram are found to simply move
towards βJ (1)s = ∞. However, as soon as J (2)s < 0, frustration effects become more important,
with new regions appearing in the phase diagram as a result. In the upper right graph of figure 5,
where βJ (2)s = −0.6, we observe that three new regions have been created: region D (with
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Figure 6. Phase diagram cross-sections for model type II, for p = 5 and upon making the
‘pure-state’ ansatz, with J (1)s , J

(2)
s and J� denoting nearest-neighbour, next-nearest-neighbour and

long-range embedding strengths, respectively. The two graphs show typical results for the p > 1
phase phenomenology. The ‘islands’ correspond to regions with four simultaneously locally stable
states (two with positive m, and two with negative m). The structural differences between the
p = 1 and p > 1 diagrams can be understood upon modulating the embedding strengths of the
stored patterns, as with model type I.
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Figure 7. Simulation results for model II, for system size N = 1000 and p = 1, showing the
equilibrium value of the ‘condensed’ overlapmequi = m1(t → ∞) as a function of the initial value
minit = m1(t = 0) (solid circles). The initial configurations were drawn at random, subject to the
constraint imposed by the required value ofm1(t = 0). The theoretically predicted locations of the
ergodic components, as constructed from equation (16), are also shown as local minima of the free
energy per neuron in the insets, for comparison. Left plot: βJ (1)s = −2.5, βJ (2)s = −1.2, βJ� =
12.5. Right plot: βJ (1)s = −0.5, βJ (2)s = −1.2, βJ� = 6.5.

m �= 0), region F (where m = 0 and m �= 0 are simultaneously locally stable) and region
E (with two positive and two negative locally stable m �= 0 states). In the lower left graph,
where βJ (2)s = −0.8, we see that, in addition to the previously created regions, a further new
region G comes to life, where the trivial state as well as fourm �= 0 ones are all simultaneously
locally stable. For p > 1, first-order transition lines are found to emerge as boundaries of
‘islands’ in the {βJ (1)s , βJ�} plane, where four m �= 0 solutions are simultaneously locally
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stable. For increasingly negative values of J (2)s these islands expand in size, and at some point
start overlapping, which creates additional new regions. In figure 6 we show typical phase
diagrams for the case p = 5. Extensive numerical work also shows that increasing the number
of patterns p further leads to the appearance of further transition lines in the phase diagrams.
This is due to the explicit dependence of the free energy per neuron, as defined by equation (16),
on p. Unlike the more conventional long-range Hopfield-type networks [1,2], where after the
‘pure-state’ ansatz has been made the macroscopic observables have become independent of
p, in the present model the short-range interactions ensure that thermal fluctuations around a
pure state will always induce non-negligible p-dependent interference on the recall of the pure
state.

To test our results we have again performed extensive numerical simulation experiments,
the results of which are shown in figure 7. The initial states were drawn similar to those in the
simulations of model type I. We plot the equilibrium overlap oder parameter m1(t → ∞) as
a function of its initial value m1(t = 0), to probe different ergodic components, and compare
the locations of these components (in terms of the associated values of m1(t → ∞)) with
the theoretical prediction by also showing (inset graphs) the asymptotic free energy per site as
constructed from equations (11) and (16). The agreement between the two is quite satisfactory,
and well within the error margin given by the finite-size effects (with N = 1000 these are
estimated at O(N− 1

2 ) ≈ 0.03).

5. Discussion

In this paper we presented an equilibrium statistical mechanical analysis of a generalized family
of recurrent neural network models, with information stored in the form of attractors in the
neuronal state space, but with one-dimensional spatial structure and competition between short-
and long-range information processing. We have solved two specific classes of problems. In
the first class, patterns are embedded in both the long-range and nearest-neighbour interactions
of the neuronal chain, but with pattern-dependent embedding strengths (similar to [9]). This
generalizes a previous study [3], where all embedding strengths were independent of the
pattern labels. The breaking of the previous embedding strength symmetry is found to yield
significantly richer phase diagrams, and, moreover, serves to elucidate the remarkable structural
differences which were observed (but not understood) in [3] between the phase diagrams for the
two simplest casesp = 1 and 2. In our second class of models, which is a qualitatively different
generalization of the models in [3], our neurons are equipped with next-nearest-neighbour
interactions (in addition to the long-range and the nearest-neighbour ones), which increases
significantly the potential for frustration and competition, given appropriate choices of the
various pattern embedding strengths. We have been able to solve our models exactly, dealing
with the random transfer matrix multiplications in the relevant partition sums (generated by the
short-range interactions) using suitable adaptations of the random-field techniques presented
in [4]. Alternatively, one could solve our present models using the random-field techniques
of [5], which provides an independent theoretical test of our solution: we have carried out this
test, and found full agreement (see appendix). For both model types we found surprisingly
rich phase diagrams, with qualitatively distinct topologies, and interesting scenarios of phase
diagram deformation when appropriate control parameters are varied. Extensive numerical
simulation experiments support our theoretical results convincingly, in terms of the appearance
and location of the multiple ergodic components in phase space.

Note that we have concentrated in this paper on the analysis of the phenomenology
of dynamical phase transitions, i.e. we have concerned ourselves with the local stability of
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extremal points of the free energy, written as a function of the main order parameter, rather
than with the actual value of the free energy in the various locally stable states. In the case
of large recurrent neural networks one is simply not interested in thermodynamic transitions,
since the timescales relevant to their operation as associative memories are much smaller than
the escape times of locally stable states (which diverge with the system size); the locally
stable states, and their domains of attraction, determine the relevant physical properties. The
models and methods in this paper can be adapted in a straightforward manner to cover systems
with non-binary neuron states, or other types of one-dimensional architecture; the inclusion
of more distant short-range interactions, however, will lead to higher-dimensional random
transfer matrices, and the calculations will become more involved. Alternatively, one could
turn to models with synchronous rather than sequential dynamics.

Long-range models, as in [1,2], have been of immense value in shaping our understanding
of information processing in attractor neural networks, but are far removed from biological
reality. Our present study emphasizes once more the richness of attractor neural networks
with spatial structure, and their analytical solvability (at least, within the context of (1 + ∞)-
dimensional models). Not only can exact solutions be obtained beyond the familiar infinite-
range models, but one can also generalize the relatively simple but solvable (1+∞)-dimensional
models of [3], increasing again (albeit with small steps) their biological relevance. This allows
one to investigate further (quantitatively) the significant impact of simple forms of spatial
structure on information processing via the manipulation of attractors in recurrent neural
networks.

Appendix. Comparison with Rujan’s solution

An alternative method to calculate the partition sums (5) and (13) is provided by the random-
field technique of [5]. This requires the result of each of the individual spin summations to be
written in the form

model I:
∑
σj−1

Tσj−1σj = ehj (ξ
µ

j−1,ξ
µ

j )σj+Lj (ξ
µ

j−1,ξ
µ

j ) (18)

for some {hj , Lj }, for σj ∈ {−1, 1}. This transformation allows us to evaluate for N → ∞
the non-trivial part of (4)

− lim
N→∞

1

βN
lnR(m)

= − lim
N→∞

1

2βN

∑
i

ln

[
4 cosh

[
β

∑
µ

(J sµξ
µ

i ξ
µ

i+1) + βJ�mξ
1
i + hi

]
cosh

×
[
β

∑
µ

(J sµξ
µ

i ξ
µ

i+1) + βJ�mξ
1
i − hi

]]

where in the thermodynamic limit we will assume that the asymptotic distribution of the
stochastic variables {hi} is uniquely generated by the process

hi+1 = 1

2
ln

cosh[β
∑
µ(J

s
µξ
µ

i ξ
µ

i+1) + βJ�mξ 1
i + hi]

cosh[β
∑
µ(J

s
µξ
µ

i ξ
µ

i+1) + βJ�mξ 1
i − hi]

(19)

becomes stationary.
In a similar fashion one can perform for N → ∞ the partition sum in (13) requiring

model II:
∑
σj−1

Tσj−1σj σj+1 = eh
(1)σj σj+1+h(2)σj+h(3)σj+1+Lj−1 (20)
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to be true for σj , σj+1 ∈ {−1, 1}. This allows us to write

− lim
N→∞

1

βN
lnR(m) = − lim

N→∞
1

4βN

∑
i

ln{24  (i)++  
(i)
+−  

(i)
−+ 

(i)
−−}

where the quantities  (i)λλ′ are obtained iteratively as functions of three stochastically evolving
variables {h(1)j−1, h

(2)
j−1, h

(3)
j−2; ∀ j � i}:

 
(i)
λλ′ = cosh[(βJ (1)s ξi · ξi+1 + h(1)i−1θ(i − 2))λ + βJ (2)s ξi · ξi+2λ

′

+βJ�mξi + h(2)i−1θ(i − 2) + h(3)i−2θ(i − 3)]

where θ(j) = 1 if j � 0 and θ(j) = 0 otherwise, and with

h
(1)
i = 1

4
ln
 
(i)
++ 

(i)
−−

 
(i)
+− 

(i)
−+

h
(2)
i = 1

4
ln
 
(i)
++  

(i)
+−

 
(i)
−+ 

(i)
−−

h
(3)
i = 1

4
ln
 
(i)
++  

(i)
−+

 
(i)
+− 

(i)
−−
. (21)

Numerical iteration of the processes (19) and (21) and subsequently evaluation of the
asymptotic free energies and of the order parameters shows excellent agreement with the
results found earlier for models I and II.
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