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Abstract
We propose a general scheme in which disordered systems are allowed to
sacrifice energy equi-partitioning and separate into a hierarchy of ergodic sub-
systems (clusters) with different characteristic timescales and temperatures.
The details of the break-up follow from the requirement of stationarity of the
entropy of the slower cluster, at every level in the hierarchy. We apply our ideas
to the Sherrington–Kirkpatrick model, and show how the Parisi solution can be
derived quantitatively from plausible physical principles. Our approach gives
new insight into the physics behind Parisi’s solution and its relations with other
theories, numerical experiments, and short-range models.

PACS numbers: 6460C, 7510N, 6470P

The Parisi scheme [1] for replica symmetry breaking (RSB) has been one of the most celebrated
tools in the description of the ‘glassy’ phase of disordered systems. It was initially proposed
as the solution for the Sherrington–Kirkpatrick (SK) model [2] for spin glasses, but it has since
then been successfully applied to a wide range of models. The physical interpretation of Parisi’s
solution has been the subject of many discussions, and has generated notions such as hierarchies
of disparate timescales [3], effective temperatures [4], low entropy production [5] and non-
equilibrium thermodynamics [6, 7]. Central is the idea of multiple temperatures, which are
usually defined via the violation of fluctuation–dissipation relations; this often limits studies to
very specific models where correlation and response functions can be calculated explicitly. In
this Letter, in contrast, we present and derive a general scheme in which disordered systems are
allowed to sacrifice full energy equi-partitioning by separating autonomously into a hierarchy
of ergodic sub-systems with different characteristic timescales; the statistics at every level
(including effective temperatures) follow from the H-theorem with constrained (i.e. stationary)
entropy. When applied to the SK model, our scheme is found to yield the Parisi solution and
to generate and connect the above concepts in a transparent way. Our assumptions are simple
and natural, and all the ingredients of our theory have a clear physical meaning. Our study
proceeds in three distinct stages. First we show generally how and why multiple temperatures
can arise in disordered systems. We then show how this generates replica theories with nested
levels of replication, with dimensions reflecting ratios of temperatures. We apply our ideas to
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the ‘benchmark’ disordered system, the SK model, and derive Parisi’s solution. We close this
Letter with numerical evidence for the existence of multiple disparate timescales, a summary
of the simple physical picture that naturally emerges from our scheme, and a discussion of the
points which need further investigation.

To understand the origin of multiple temperatures in a system of stochastic variables
σ = (σ1, . . . , σN) with Hamiltonian H(σ) and state probabilities (or densities) p(σ),
we turn to Boltzmann’s H-function H = Trσ p(σ){H(σ) + T logp(σ)}, which decreases
monotonically under standard Glauber or Langevin dynamics and is bounded from below by
the free energy of the Boltzmann state. For the case where we have two groups of variables
(fast versus slow), i.e. σ = (σf ,σs), we substitute p(σf ,σs) = p(σf |σs)p(σs) and find

H = Trσs p(σs){Heff(σs) + T logp(σs)} (1)

Heff(σs) = Trσf p(σf |σs){H(σf ,σs) + T logp(σf |σs)}. (2)

In the case where σs and σf evolve on disparate timescales, the minimization of (1) will occur
in stages. First, for every (fixed) σs the distribution p(σf |σs) of the fast variables will evolve
such as to minimize (2), i.e. towards the Boltzmann state

p(σf |σs) = Z−1
f (σs) e−βH(σf ,σs) Zf(σs) = Trσf e−βH(σf ,σs). (3)

Finding multiple temperatures requires, in addition to disparate timescales, stationarity of the
entropy of the slow system (on the relevant ‘glassy’ timescales). Now (1) is minimized subject
to the constraint that the entropy Ss = − Trσs p(σs) logp(σs) be kept constant, giving

p(σs) = Z−1
s e−β̃Heff (σs) Zs = Trσs e−β̃Heff (σs) (4)

i.e. a Boltzmann state for the slow variables, with the free energy of the fast ones acting as
effective Hamiltonian, and at inverse temperature β̃ = m̃β. This leads to an m̃-dimensional
replica theory, since combining (2)–(4) gives Zs = Trσs [Zf(σs)]m̃. The dimension m̃

follows from demanding the prescribed value of the slow entropy: βm̃2(∂Fs/∂m̃) = Ss,
with Fs = −β̃−1 log Zs. For T > T̃ the fast variables would start acting as a heat bath
for the slow ones, so thermodynamic stability requires m̃ � 1. Note that m̃ < 1 implies
that the constraining entropy must be larger than that of the Boltzmann state (indeed, a large
characteristic timescale does not imply low entropy).

The above argument can be generalized to an arbitrary hierarchy. The variables σ� at each
level � are characterized by distinct timescales and temperatures {τ�, β�} (� = 0, 1, . . . , L);
each level being adiabatically slower than the next, τ� � τ�−1. This leads to replicating
recursion relations for the partition sums at subsequent levels

Z� = Trσ�
[Z�+1]m̃�+1 (� < L)

ZL = TrσL
e−βLH({σ}) (5)

with m̃� = β�−1/β� � 1, and βL = β. The replica dimensions m̃� follow from the prescribed
(stationary, but as yet unknown) values S� of the level-� entropies, via β�+1m̃

2
�+1(∂F�/∂m̃�+1) =

S�, with F� = −β−1
� log Z�. Equivalently, using the specific nesting of the partition functions

in (5) one shows that the {m̃�} are uniquely determined by the identities

β�+1m̃
2
�+1

∂

∂m̃�+1
F0 = �� �� = 〈〈· · · 〈S�〉�−1 · · ·〉1〉0 (6)

in which 〈· · ·〉r denotes the average over the equilibrated level-r process. Due to the constrained
minimizations underlying (5), the free energies F� are generally not minimized; however, one
can verify that F0 still serves as a generator of observables

H({σ}) → H({σ}) + λψ({σ}) : lim
λ→0

∂

∂λ
F0 = 〈ψ({σ})〉. (7)
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This generalizes a formalism originally developed and applied for spin systems with slowly
evolving bonds [8]. The construction reverts back to the conventional statistical mechanical
picture if the constraining entropies S� are identical to those of the full Boltzmann state: then
the constraining forces vanish and m̃� = 1 for all �.

We now apply this scheme to the SK model [2], for which the Parisi solution was
originally constructed, which describes N Ising spins with the conventional Hamiltonian
H(σ) = − ∑

i<j Jij σiσj , but with suitably scaled independent random couplings Jij (with

average J0/N and variance J/
√
N ). In the remainder of this Letter we take J0 = 0. We

assume, following our previous arguments, that this system can be viewed as a hierarchy of
L + 1 levels of spins, each level � with distinct disparate timescales and temperatures {τ�, T�}

{1, . . . , N} =
L⋃

�=0

I� σ = (σ0, . . . ,σL) σ� = {σj |j ∈ I�} (8)

with |I�| = ε�N , and such that τ� � τ�−1 for all � (thus larger values of � correspond to faster
spins). The selection of timescales for the spins is expected to depend on the realization of
the couplings, but here we will make the simplest approximation: the system can only choose
the relative level sizes {ε�}. A study of the autonomous selection of levels will be presented
elsewhere. We calculate the disorder-averaged free energy F0 (the general multi-level generator
of observables) with the replica trick

F0 = −β−1
0 log Z0 = − lim

ñ→0
(ñβ0)

−1 log Z ñ
0 . (9)

Together with the relations (5), this leads us to a nested set of ñ
∏L

�=1 m̃� replicas. A spin at
level � thus carries a set {a}� = {a0, . . . , a�} of replica indices, where a0 ∈ {1, . . . , ñ} reflects
the disorder average, and with a� ∈ {1, . . . , m̃�}. As before m̃� = β�−1/β� � 1. Following
standard manipulations, the asymptotic free energy per spin f = limN→∞ F0/N is then found
to be

f = lim
ñ→0

1

ñβ0
extr

[
J 2β2

4

∑
{a}L,{b}L

q
{a}L 2
{b}L −

L∑
�=0

ε� log K�

]
(10)

K� = Tr{σ {c}� } exp

[
J 2β2

2

∑
{a}L,{b}L

q
{a}L
{b}L σ {a}�σ {b}�

]
. (11)

Extremization is to be carried out with respect to the order parameters q{a}L
{b}L , whose physical

meaning is given by (with averages denoting the multi-temperature statistics)

q
{a}L
{b}L = lim

N→∞
1

N

L∑
�=0

∑
j∈I�

〈σ {a}�
j σ

{b}�
j 〉. (12)

With the new definitions m� = ∏L
k=� m̃k = β�−1/β, β0ñ = βn, the connection with the

original Parisi solution becomes clear. What remains is to assume full ergodicity within each
level in the hierarchy of timescales

q
{a}L
{b}L = q�[{a}L,{b}L] (13)

where �[{a}L, {b}L] denotes the slowest level for which the two strings of replica coordinates
{a}L and {b}L differ. Insertion of (13) into (10) gives

f = βJ 2

2

L∑
�=0

[
1

2
m�+1(q

2
�+1 − q2

� ) − ε�

L∑
r=�

mr+1(qr+1 − qr)

]
− 1

m1β

L∑
�=0

ε�

∫
Dz0 log[N 1

� ]

(14)
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Figure 1. The ultra-metric tree, which here is a direct consequence of the hierarchy of spin clusters,
evolving at disparate timescales.

where qL+1 = mL+1 = 1, Dz = (2π)−1/2 exp (−z2/2) dz, and

N r
� =




∫
Dzr [N r+1

� ]
mr

mr+1 for r � �

2 cosh

(
Jβm�+1

�∑
s=0

zs
√
qs − qs−1

)
for r = � + 1.

(15)

The physical meaning of q� is

q� = lim
N→∞

1

N

∑
j

〈· · · 〈〈〈· · · 〈σj 〉L · · ·〉�+1〉2
�〉�−1 . . .〉0 (16)

in which · · ·denotes the disorder average. The physical saddle-point is the analytic continuation
of the one which minimizes f for positive integer values of {ñ, m̃�}. For such values,
the minimum with respect to the ε� (with

∑L
�=0 ε� = 1), in turn, is found to occur for

{ε∗
L = 1, ε∗

� = 0 ∀� < L}, i.e. in the thermodynamic limit the slow spins form a vanishing
fraction of the system as a whole. Note, however, that the number of slow spins can still
(and is expected to) diverge as N → ∞. We have now exactly recovered the Lth-order Parisi
solution. The values of m� follow from (6), which translates into

βm2
�+1

∂

∂m�+1
f = ��/N. (17)

The bounds 0 � limN→∞ ��/N � ε� log 2 subsequently dictate that, as ε� → 0 for all � < L,
determining m� via (17) simply reduces to extremizing f with respect to m�, thus removing
the need to know the values of the constraining entropies S�.

We have thus shown that the Parisi solution can be derived from simple physical principles,
and can be interpreted as describing a system with an infinite hierarchy of timescales where
a vanishingly small fraction of slow spins act as effective symmetry-breaking disorder for the
faster ones. The vanishing of the fraction of slow spins indicates that the cumulative entropy
of the slow spins is sub-extensive, and that the so-called complexity is zero. A block size m�

at level � of the Parisi matrix is found to be the ratio of the effective temperature T� of that
level and the ambient temperature T . Extremization of the free energy per spin with respect
to m� is equivalent to saying that the average entropy of the spins at level � − 1 is stationary
and sub-extensive. It follows from physical considerations (no heat flow in equilibrium) that
m� � 1 for all �. Ultra-metricity (see figure 1) is a direct consequence of the existence of a
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Figure 2. Upper graph: distribution of the number of flips f per spin for a simulation of the SK
model with N = 6000, during t = 106 Monte Carlo updates per spin, after a waiting time of
tw = 6×105, at T = 0.25. Lower graph: corresponding estimate of the most probable distribution
W)(τ) of timescales τ . Inset: the small τ area enlarged.

hierarchy of timescales. At each level �, the different descendants of a node represent different
configurations of the σ�+1, which share the same realization of the disorder and of the slower
spins.

Since our proposal relies fundamentally on the existence of clusters with widely separated
characteristic timescales, we sought to provide independent evidence for this assumption by
measuring the distribution ρsim(f, t) of the number of flips f per spin at time t in numerical
simulations of the SK model, see figure 2. Upon assuming an independent characteristic
timescale τj for each spin σj , and a distribution W(τ) for these timescales, one obtains a
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Figure 3. Qualitative sketch of the distributionW(Teff )of (effective) temperatures (note: timescales
increase with Teff ) at ambient temperature T (resp. T1, T2) in the spin-glass phase.

simple theoretical prediction for this distribution

ρth(f, t |W) �
∫ ∞

0
dτ W(τ)

(
t

f

)
1

τf

(
1 − 1

τ

)t−f

. (18)

Minimizing the deviation
∑∞

f=0[ρsim(f, t) − ρth(f, t |W)]2 with respect to W(τ) yields an
estimate of the most probable distribution of the timescales W ∗(τ ), see figure 2, which clearly
supports our assumptions. Both the number of peaks (in agreement with full RSB), and the
separation between the peaks (in agreement with infinitely disparate timescales) are found to
grow with increasing system size and/or time, whereas the fraction (but not the number) of
‘slow’ spins appears to decrease with increasing system size. Although our simulations reach
timescales of the order ofN2 updates per spin, it should be emphasized that full equilibration has
not yet been obtained, since this would have required simulation times of order exp (aN

1
2 ) [10].

The equilibration problem is made worse by the conflicting additional requirement of choosing
N sufficiently large to rule out finite size effects.

In figure 3 we sketch the qualitative picture emerging from our interpretation of the Parisi
scheme. Most spins evolve at the fastest (microscopic) timescale, at ambient temperature
T ; a small fraction evolves at (infinitely) slower timescales, at higher effective temperatures.
Cooling to a temperature T1 < T , followed by heating back to T , will leave spins with Teff > T

unchanged, explaining memory effects. Conversely, after heating to T2 > T and cooling
back to T , the original states of spins with T � Teff � T2 will be erased, which may explain
thermocycling experiments (for a recent review see e.g. [9]). We expect the qualitative features
of our picture to survive in short-range systems, where the timescales need not be infinitely
disparate due to activated processes. The origin of the slow timescales of these clusters must lie
in the latter being coupled much stronger internally, than (effectively) to the rest of the system.
They could therefore be seen as a ‘soft’ version of the fully disconnected clusters which give rise
to so-called Griffiths singularities in diluted systems [11]. In short-range systems, the clusters
would have to be spatially localized, in line with the droplet picture proposed by Fisher and
Huse [12]. In such systems, each of the different levels would correspond to multiple localized
spin clusters. The fact that the characteristic timescale of a cluster increases with Teff − T
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explains why the effective age of a system at temperature T is found to decrease upon spending
time at T1 < T , but to increase upon doing so at T2 > T .

At a theoretical level, a more careful treatment of the selection of clusters is clearly
needed (and is currently being carried out), both for full- and 1-RSB models. This may allow
us to calculate the complexity in such systems. An important question is whether, for mean-
field models in equilibrium, cluster membership of spins is a dynamic or static attribute. If
spins can change mobility on sufficiently large timescales (infinitely larger than that of the
slowest cluster), this would explain why our present simple treatment leads to the correct
solution. Furthermore, it needs to be investigated whether slow clusters survive above the
thermodynamic spin-glass temperature Tsg. Our results suggest further numerical experiments
for both mean-field and short-range models, concentrating on quantities such as spin flip
frequencies, avalanches, spatial correlations and cluster persistency [13–15].

It is our pleasure to thank F Ritort and D Sherrington for critical comments and stimulating
discussions.
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