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Abstract

We investigate an XY spin-glass model in which both spins and interactions (or

couplings) evolve in time, but with widely separated time-scales. For large times

this model can be solved using replica theory, requiring two levels of replicas,

one level for the spins and one for the couplings. We define the relevant order

parameters, and derive a phase diagram in the replica-symmetric approximation,

which exhibits two distinct spin-glass phases. The first phase is characterized

by freezing of the spins only, whereas in the second phase both spins and

couplings are frozen. A detailed stability analysis also leads to two distinct

corresponding de Almeida–Thouless lines, each marking continuous replica-

symmetry breaking. Numerical simulations support our theoretical study.

PACS numbers: 7510N, 0520, 6460C

1. Introduction

The study of coupled dynamics of fast Ising spins and slow couplings has received considerable

interest recently (see, e.g., [1–5] and references therein), stimulated by considerations of

simultaneous learning and retrieval in recurrent neural networks and the influence of slow

atomic diffusion processes in disordered magnetic systems.

Generalizing spin systems by taking their interactions to be (slowly) time dependent

was first considered in [6], as a mechanism with which to restore broken ergodicity at low

temperature in the SK model [7]. Another conceptually similar process, but now describing

slow and deterministic synaptic modification in neural systems, driven by averages over neuron

states, was first introduced in [8]. Explicit stochastic dynamical laws for the interactions

were defined in [1,3,9], where spin-glass models with coupled dynamics were studied within

replica mean-field theory. It turned out that the replica dimension in such models has a direct

physical interpretation as the ratio of two temperatures characterizing the stochasticity in the
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spin dynamics and the coupling dynamics, respectively. Later it was shown that the case of

negative replica dimension represents an over-frustrated system [2]. In a similar spirit, neural

network models with a coupled dynamics of fast neurons and slow neuronal connections were

treated in [10–14].

In this paper the results previously obtained by others for Ising spin models are further

extended to a classical XY spin glass with dynamic couplings. Moreover, the XY model is

closely related to models of coupled oscillators [15], of which the neural network version [16]

provides a phenomenological description of neuronal firing synchronization in brain tissue. In

particular, we examine the effects of including an explicit frozen randomness into the dynamics

of the interaction weights.

The model is solved using the replica formalism. Relevant order parameters are defined

and a phase diagram is obtained upon making the replica-symmetric ansatz. Similarly to the

Ising case, we find two different spin-glass phases in addition to a paramagnetic phase. One

spin-glass phase exhibits freezing of the spins in random directions, but on the time-scale

of the coupling dynamics these ‘frozen directions’ still continue to change. A second spin-

glass phase exhibits freezing of the spins as well as of the couplings, such that even on the

large time-scales the ‘frozen directions’ of the spins remain stationary. We perform a detailed

stability analysis and calculate the de Almeida–Thouless (AT) lines [17] (of which here there

are two types), where continuous transitions occur to phases of broken replica symmetry. A

brief preliminary account of the first part of this paper has been presented in [18]. Finally, we

discuss and tackle the problem of simulating this model numerically.

The remainder of this paper is organized as follows. In section 2 the classical XY spin-

glass model with coupled dynamics is defined. In section 3 the order parameters are calculated

in the replica symmetric (RS) ansatz and a phase diagram is presented. As is well known,

the solutions of this ansatz are not always stable against replica symmetry breaking (RSB).

Therefore, the lines of instability are calculated in section 4. Finally, section 5 presents the

results of the numerical simulations of this model, followed by a concluding discussion in

section 6. The appendix describes all eigenvectors and eigenvalues of the Hessian matrix

determining the stability of the replica symmetric solutions.

2. The model

We consider a system of N classical two-component spin variables Si = (cos θi, sin θi),

i = 1, . . . , N , with symmetric couplings (or exchange interactions) Jij , taken to be of infinite

range. In contrast to the standard XY spin glass, these couplings are not static but are allowed to

evolve in time, albeit slowly. The spins are taken to have a stochastic Glauber-type dynamics

such that for stationary choices of the couplings the microscopic spin probability density would

evolve towards a Boltzmann distribution

P({Si}, {Jij }) ∼ exp[−βH({Si}, {Jij })] (1)

with the standard Hamiltonian

H({Si}, {Jij }) = −
∑

k<�

Jk�Sk · S� (2)

and with inverse temperature β = T −1, where k, l ∈ {1, . . . , N}, and where, at least for the

purpose of the dynamics of the spins, the {Jij } are to be considered as quenched variables.



Coupled dynamics in the XY spin glass 3959

We note that this system is equivalent to a system of N coupled oscillators with phases

θi [15], whose time evolution is described by a Langevin equation

τ
d

dt
θi =

∑

j

Jij sin(θj − θi) +

√

2τ

β
ξi(t) (3)

where the ξi(t) are defined as independent white noise variables, drawn from a Gaussian

probability distribution with

〈ξi(t)〉 = 0
〈

ξi(t)ξj (t
′)
〉

= δijδ(t − t ′). (4)

In our model, the couplings also evolve in a stochastic manner, partially in response to

the states of the spins and to externally imposed biases. However, we assume that the spin

dynamics is very fast compared with that of the couplings, such that on the time-scales of the

couplings the spins are effectively in equilibrium (i.e. we take the adiabatic limit). For the

dynamics of the couplings the following Langevin form is proposed:

d

dt
Jij =

〈

Si · Sj

〉

+ Kij

N
− µJij +

ηij (t)

N1/2
i < j = 1, . . . , N. (5)

The term
〈

Si · Sj

〉

, representing local spin correlations associated with the coupling Jij ,

is a thermodynamic average over the Boltzmann distribution (1) of the spins, given the

instantaneous couplings {Jk�}. No other spins are involved, in order to retain the local character

of the couplings. We note that only the thermal averages (or long-time averages) of the spin

correlations play a role, rather than the instantaneous correlations, since the dynamics of the

couplings is (by definition) sufficiently slow. External biases Kij = µNBij serve to steer the

weights to some preferred values. The Bij are chosen to be quenched random variables, drawn

independently from a Gaussian probability distribution with mean B0/N and variance B̃/N :

p(Bij ) = 1
√

2πB̃/N

exp

[

−
(

Bij − B0/N
)2

2B̃/N

]

(6)

and are thus reminiscent of the couplings in the original SK model [7]. Here, in contrast,

the {Bij } generate frozen disorder in the dynamics of the couplings. The decay term µJij

in (5) is added in order to limit the magnitude of the couplings. Finally, the terms ηij (t)

represent Gaussian white noise contributions, of zero mean and covariance 〈ηij (t)ηkl(t
′)〉 =

2T̃ δikδj lδ(t − t ′), with associated temperature T̃ = β̃−1. Appropriate factors of N are

introduced in order to ensure non-trivial behaviour in the thermodynamic limit N → ∞.

The model exhibits three independent global symmetries, which can be expressed

efficiently in terms of the Pauli spin matrices σx and σz:

inversion of both spin axes: Si → −Si for all i

inversion of one spin axis: Si → σzSi for all i

permutation of spin axes: Si → σxSi for all i.

(7)

Upon using algebraic relations such as σxσzσx = −σz and σzσxσz = −σx we see that in the

high-T (ergodic) regime these three global symmetries generate the following local identities,

respectively:

〈Si〉 = 0 〈Si · σxSj 〉 = 0 〈Si · σzSj 〉 = 0. (8)
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We note that the stochastic equation (5) for the couplings is conservative, i.e. it can be

written as

d

dt
Jij = − 1

N

∂

∂Jij

H̃ ({Jij }) +
ηij (t)

N1/2
(9)

with the following effective Hamiltonian for the couplings:

H̃ ({Jij }) = − 1

β
log Zβ({Jij }) +

1

2
µN

∑

k<�

J 2
k� − µN

∑

k<�

Bk�Jk�. (10)

The term Zβ({Jij }) = Tr{Si } exp[β
∑

k<� Jk�Sk ·S�] in this expression is the partition function

of the XY spins with instantaneous couplings {Jij }. It follows from (9) that the stationary

probability density for the couplings is also of a Boltzmann form, with the Hamiltonian (10),

and that the thermodynamics of the slow system (the couplings) are generated by the partition

function Z̃β̃ =
∫
∏

k<� dJk� exp[−β̃H̃ ({Jij })], leading to (modulo irrelevant prefactors):

Z̃β̃ =
∫

∏

k<�

dJk�

[

Zβ({Jij })
]n

exp

[

µβ̃N
∑

k<�

Bk�Jk� − 1
2
µβ̃N

∑

k<�

J 2
k�

]

. (11)

In contrast to the more conventional spin systems with frozen disorder, where the replica

dimension n is a dummy variable, here we find that n is given by the ratio n = β̃/β, and

can take any real non-negative value. The limit n → 0 corresponds to a situation in which

the coupling dynamics is driven purely by the Gaussian white noise, rather than by the spin

correlations. Therefore, in this limit the model is equivalent to the XY model with stationary

couplings formulated, as in [19]. For n = 1 the two characteristic temperatures are the same,

and the theory reduces to that corresponding to the exchange interactions being annealed

variables. In the limit n → ∞ the influence of spin correlations on the coupling dynamics

dominates, and the couplings Jij only fluctuate modestly (if at all) around their mean values

(〈Si · Sj 〉 + Kij )/µN .

3. Statics

We define the disorder-averaged free energy per site

f̃ = − 1

β̃N
〈log Z̃β̃〉B (12)

in which 〈·〉B denotes an average over the {Bij }. We carry out this average using the identity

log Z̃β̃ = limr→0 r
−1[Z̃r

β̃
− 1], evaluating the latter by analytic continuation from integer r .

Our system, characterized by the partition function Z̃β̃ , is thus replicated r times; we label

each replica by a Roman index. Each of the r functions Z̃β̃ , in turn, is given by (11), and

involves Zβ({Jij })n which is replaced by the product of n further replicas, labelled by Greek

indices. For non-integer n, again analytic continuation is made from integer n. Therefore,

performing the disorder average in f̃ boils down to performing the disorder average of [Z̃β̃]r ,

involving nr coupled replicas of the original system: {Si} → {Sα
ia}, with α = 1, . . . , n and
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a = 1, . . . , r . We obtain

〈[Z̃β̃]r〉B =
∫

∏

i<j

{

dBij p(Bij )
}

∫

∏

i<j

{

∏

a

dJ a
ij

[

N

2πJ̃

]1/2
}

× Tr{Sα
ia} exp

[

− N

2J̃

∑

i<j

∑

a

(J a
ij )

2 +
N

J̃

∑

i<j

∑

a

BijJ
a
ij

+β
∑

i<j

∑

a

∑

α

BijS
α
ia · S

β

jb

]

(13)

where J̃ = 1/µβ̃, and with the Gaussian probability distribution of the external biases Bij

as given by equation (6). The Roman indices (a, b, . . .) run from 1 to r; the Greek ones

(α, β, . . .) from 1 to n. Expression (13) can be evaluated using the standard techniques of

replica mean-field theory [20]. Because of the complexity of the replica structure we indicate

the most important steps. We first perform the integrals over the couplings and the biases,

giving

〈[Z̃β̃]r〉B = Tr{Sα
ia} exp

[

β
B0

N

∑

i<j

∑

a

∑

α

Sα
ia · Sα

ja + β2 B̃

N

∑

i<j

(

∑

a

∑

α

Sα
ia · Sα

ja

)2

+
1

2N
β2J̃

∑

i<j

∑

a

(

∑

α

Sα
ia · Sα

ja

)2]

(14)

and decouple the i- and j -components using

Sα
ia · Sα

jaS
β

ib · S
β

jb = 1
2

(

(S
αβ

ab )i · (Sαβ

ab )j + (T
αβ

ab )i · (T αβ

ab )j
)

. (15)

Here the quantity (S
αβ

ab )i is defined as a two-dimensional unit vector with reference angle

equal to the difference of the reference angles of Sα
ia and S

β

ib, whereas (T
αβ

ab )i is defined as a

two-dimensional unit vector with reference angle equal to the sum of both these angles. Upon

applying the saddle-point method in the thermodynamic limit N → ∞ we then arrive at
〈[

Z̃β̃

]r 〉

B
= exp

[

N extr F({mα
a }, {sαβ

a }, {sαβ

ab }, {tαβa }, {tαβab })
]

(16)

F({mα
a }, {sαβ

a }, {sαβ

ab }, {tαβa }, {tαβab }) = − 1
8
B̃β2

∑

a �=b

∑

αβ

(

(s
αβ

ab )
2 + (t

αβ

ab )
2
)

− 1
8
β2(B̃ + J̃ )

∑

a

∑

α �=β

(

(sαβ
a )2 + (tαβa )2

)

− 1
2
βB0

∑

a

∑

α

(sa
α)

2 − 1
2
β2J̃

∑

a

∑

α

(taα)
2

+ logG({mα
a }, {sαβ

a }, {sαβ

ab }, {tαβa }, {tαβab }) (17)

G({mα
a }, {sαβ

a }, {sαβ

ab }, {tαβa }, {tαβab }) = Tr{Sα
a } exp

[

βB0

∑

a

∑

α

mα
a · Sα

a

+ 1
4
B̃β 2

∑

a �=b

∑

α,β

(

s
αβ

ab · S
αβ

ab + t
αβ

ab · T
αβ

ab

)

+ 1
4
(B̃ + J̃ )β2

∑

a

∑

α �=β

(

sαβ
a · Sαβ

a + tαβa · T αβ
a

)

+ 1
4
β2J̃

∑

a

∑

α

tαa · T α
a

]

. (18)
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The parameters {mα
a }, {s

αβ
a }, {sαβ

ab }, {t
αβ
a } and {tαβab } introduced by this procedure are vectors,

hence the extremum is taken over both components. They carry Greek and Roman replica

labels.

Those parameters which have only one Greek and Roman replica label (mα
a , t

α
a ), can be

interpreted as

mα
a = lim

N→∞

1

N

∑

i

〈

〈

Sα
ia

〉

〉

B
tαa = lim

N→∞

1

N

∑

i

〈

〈

T α
ia

〉

〉

B
. (19)

The horizontal bar denotes thermal averaging over the coupling dynamics with fixed biases

{Bij }. Those parameters which involve pairs of replicas either connect two distinct Greek

replicas with a single Roman replica, (s
αβ
a , t

αβ
a ), or with two distinct Roman replicas, (s

αβ

ab , t
αβ

ab ).

The latter vector variables can, equivalently, be expressed in terms of the following scalar order

parameters, which measure the correlations between the various replicas:

q
αβ

ab = lim
N→∞

1

N

∑

i

〈

〈

Sα
ia · S

β

ib

〉

〉

B

u
αβ

ab = lim
N→∞

1

N

∑

i

〈

〈

Sα
ia · σxS

β

ib

〉

〉

B

v
αβ

ab = lim
N→∞

1

N

∑

i

〈

〈

Sα
ia · σzS

β

ib

〉

〉

B
.

(20)

At this point we note that the order parameters u
αβ

ab and v
αβ

ab are typical for the XY-model [19],

and do not appear in the SK-model; comparison with (8) shows that, together with mα
a and

tαa , they measure the breaking of the global symmetries (7). For simplicity we will henceforth

choose B0 = 0. We will make the usual assumption that, in the absence of global symmetry-

breaking forces, phase transitions can lead to at most local violation of the identities (8). Thus

the latter will remain valid if averaged over all sites, at any temperature, which implies that

mα
a = tαa = 0 and that u

αβ

ab = v
αβ

ab = 0. The spin-glass order parameters q
αβ

ab , on the other

hand, are not related to simple global symmetries, but measure the overlap of two vector spins,

and serve to characterize the various phases.

At this stage in the calculation we make the replica symmetry ansatz. Since observables

with identical Roman indices refer to system copies with identical couplings, whereas

observables with identical Roman indices and identical Greek indices refer to system copies

with identical couplings and identical spins, in the present problem the RS ansatz for the

spin-glass order parameters takes the form q
αβ

ab = δab
{

δαβ + q1[1 − δαβ]
}

+ q0[1 − δab]. Here

we note that Sα
a · Sα

a = 1 and that, in the absence of global symmetry breaking forces, s
αβ

ab

becomes a vector of length q
αβ

ab and reference angle 0.

The asymptotic disorder-averaged free energy per site can now be written as

f̃ = 1
8
B̃β2n2q2

0 − 1
8
(B̃ + J̃ )β2n(n − 1)q2

1 − 1
4
(B̃ + J̃ )β2nq1

+

∫

Dp log

{∫

Dq

[

TrS exp

[

β

√

1
2
B̃q0p · S + β,q · S

]]n}

(21)

with the short-hand , = β

√

1
2
(J̃ + B̃)q1 − 1

2
B̃q0, and where we have introduced the two-

dimensional Gaussian measure

Dp = (2π)−1 dpx dpy exp
[

− 1
2
(p2

x + p2
y)
]

. (22)
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Figure 1. Phase diagram of the XY spin glass with slow dynamic couplings, drawn in the n–T -plane

with B0 = 0, B̃ = 1 and J̃ = 3. P: paramagnetic phase, q1 = q0 = 0; SG1: first spin-glass phase,

q1 > 0 and q0 = 0 (freezing on spin time-scales only); SG2: second spin-glass phase, q1 > 0

and q0 > 0 (freezing on all time-scales); AT lines: λR = 0 (Roman replicon), λG = 0 (Greek

replicon).

The remaining two order parameters q0 and q1 are determined as the solutions of the following

coupled saddle-point equations:

q0 =
∫

dx P (x)







∫

dz P (z) [I0(z,)]n−1 I1(z,)I1(zxβ,
−1

√

1
2
B̃q0)

∫

dz P (z) [I0(z,)]n I0(zxβ,−1

√

1
2
B̃q0)







2

(23)

q1 =
∫

dx P (x)







∫

dz P (z) [I0(z,)]n−2 [I1(z,)]2 I0(zxβ,
−1

√

1
2
B̃q0)

∫

dz P (z) [I0(z,)]n I0(zxβ,−1

√

1
2
B̃q0)







(24)

with P(x) = xe− 1
2
x2

θ [x], and where the functions In(x) are the modified Bessel functions of

integer order [21].

One can give a simple physical interpretation of these order parameters in terms of the

appropriate averages over the various dynamics

q0 = lim
N→∞

1

N

∑

i

〈

〈

Si

〉 2〉

B

q1 = lim
N→∞

1

N

∑

i

〈

〈

Si

〉2
〉

B
.

(25)

It is clear that 0 � q0 � q1 � 1.

We have studied the fixed-point equations (23) and (24), after having first eliminated the

parameter redundancy by putting B̃ = 1 and J̃ = 3. The resulting phase diagram in the

n–T -plane is shown in figure 1. The appearance of two different spin-glass order parameters

suggests that two different spin-glass phases are to be expected. Indeed, in addition to a

paramagnetic phase (P), where q0 = q1 = 0, we find two distinct spin-glass phases: SG1,

where q1 > 0 but q0 = 0, and SG2, where both q1 > 0 and q0 > 0. The SG1 phase describes

freezing of the spins on the fast time-scales only (where spin equilibration occurs); on the large

time-scales, where coupling equilibration occurs, we find that, due to the slow motion of the
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Figure 2. Dependence of the order parameters q0 (broken curve) and q1 (full curve) on the

temperature T for various temperature ratios n, all at B0 = 0, B̃ = 1 and J̃ = 3. For n = 1.0 there

is a continuous phase transition from P to SG1 at T = 0.5 and from SG1 to SG2 at T = 1. For

n = 2.5 the first transition occurs at T = 0.98 while the parameter q1 drops discontinuous from

0.18 to 0 at T = 1.03. Finally, for n = 10 both order parameters vanish at T = 1.83 (limit value

q0 = 0.13, q1 = 0.29) indicating a first-order transition from P to SG2.

couplings, the frozen spin directions continually change. In the SG2 phase, on the other hand,

both spins and couplings freeze, with the net result that even on the large time-scales the frozen

spin directions are ‘pinned’. The SG1-SG2 transition is always second order and occurs for

T = (n− 1)q1 + 1
2
. The transition SG1-P is second order for n < 2 (in which case its location

is given by B̃ + J̃ = 4T 2), but first order for n > 2. When n further increases to n > 3.5, the

SG1 phase disappears, and the system exhibits a first-order transition directly from P to SG2.

Figure 2 shows for several values of n the values of the order parameters as a function of the

temperature.

Qualitatively, the phase diagram of the present model is very similar to that of the Ising

spin glass with dynamic couplings [3]. The main difference is the rescaling by a factor two

of the transition temperature from the first spin-glass phase to the paramagnetic phase, as has

already been noted in [19].

The existence of two types of spin-glass order parameters is directly related to the presence

of quenched disorder in the couplings, which allows the latter to freeze in random directions at

low coupling temperature T̃ . In a model with homogeneous external biases [1, 23], where no

preferred direction of the couplings is assumed, one distinguishes (in contrast to the present

situation) only the paramagnetic phase and the spin-glass phase SG1. Qualitatively, the

transition line separating the paramagnetic phase from the spin-glass phase in the case of absent

coupling disorder is the same as that in figure 1, namely, a second-order transition for n � 2

given by J̃ = 2T and a first-order transition for n > 2. The corresponding expressions for

the order parameters can immediately be deduced from the results above: when the quenched

disorder in the couplings is absent, the partition function itself is self-averaging and the replica

method is simply no longer needed. Therefore, all order parameters concerning different

Roman indices are redundant and drop out automatically, such that one ends up with only one

spin-glass order parameter. Its explicit value is obtained by putting B0 = 0 and B̃ = 0 in (24).

4. Stability of the replica-symmetric solutions

Additional transitions may occur in our model due to a continuous breaking of replica

symmetry. Here we expect two distinct types of replica symmetry breaking, with respect to the
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two distinct replicas, namely the Roman and the Greek ones. The stability of the RS solution

is, as always, expressed in terms of the matrix of second derivatives of quadratic fluctuations

at the saddle point [17]. We calculate all eigenvalues and their multiplicity following the ideas

in [3,17]. We note that our results differ from, and improve upon those of [3]. It turns out that

the (restricted) set of eigenvectors and eigenvalues given in [3] satisfy only part of the relevant

orthogonality conditions used in their calculations. In the following we present a summary of

the results. More details can be found in the appendix.

We start by rewriting (17), taking into account its invariance with respect to the global

symmetries and the absence of global symmetry breaking forces

FS({qαβ

ab }, {qαβ
a }) = − 1

8
B̃β2

∑

a �=b

∑

αβ

(

q
αβ

ab

)2 − 1
8
(B̃ + J̃ )β2

∑

a

∑

α �=β

(

qαβ
a

)2

+ logGS({qαβ

ab }, {qαβ
a }) (26)

GS({qαβ

ab }, {qαβ
a }) = Tr{Sα

a } exp

[

1
4
B̃β2

∑

a �=b

∑

αβ

q
αβ

ab Sα
a · S

β

b

+ 1
4
(B̃ + J̃ )β2

∑

a

∑

α �=β

qαβ
a Sα

a · Sβ
a

]

. (27)

We consider small fluctuations of the order parameters around their RS saddle-point values

qαβ
a = q0 + εαβa (α < β) and q

αβ

ab = q1 + η
αβ

ab (a < b) (28)

and expand (27) up to second order in ε
αβ
a and η

αβ

ab . The first-order terms vanish by construction.

The coefficients of the second-order terms form the so-called Hessian matrix and are denoted

by

H(abαβ, cdγ δ) = ∂2FS({qαβ

ab }, {qαβ
a })

∂q
αβ

ab ∂q
γ δ

cd

∣

∣

∣

∣

∣

q0,q1

. (29)

The first argument of H (four components (abαβ) when a �= b and three components (aαβ)

when a = b but α �= β) denotes the index of the row of the matrix and the last one the column

index. Because of the symmetry of the order parameters (20) we can always take a < b or

α < β when a = b. Therefore, the square matrix H has dimension 1
2
[rn(n− 1)+ r(r − 1)n2].

One can distinguish three groups of matrix elements: firstly, those related to RSB fluctuations

around q1 only:

A1 = H(aαβ, aαβ) = −J + J 2

{

〈

〈(

Sα
a · S

β
a

)2〉
〉

− q2
0

}

A2 = H(aαβ, aαδ) = H(aαβ, aγβ) = J 2
{〈

〈

Sα
a · S

β
a Sα

a · Sδ
a

〉

〉

− q2
0

}

A3 = H(aαβ, aγ δ) = J 2
{〈

〈

Sα
a · S

β
a S

γ
a · Sδ

a

〉

〉

− q2
0

}

A4 = H(aαβ, cγ δ) = J 2
{〈

〈

Sα
a · S

β
a S

γ
c · Sδ

c

〉

〉

− q2
0

}

(30)
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secondly, those related to fluctuations around q0:

B1 = H(abαβ, abαβ) = −B + B2

{

〈

〈(

Sα
a · S

β

b

)2〉
〉

− q2
1

}

B2 = H(abαβ, abαδ) = H(abαβ, abγβ) = B2
{〈

〈

Sα
a · S

β

b Sα
a · Sδ

b

〉

〉

− q2
1

}

B3 = H(abαβ, abγ δ) = B2
{〈

〈

Sα
a · S

β

b S
γ
a · Sδ

b

〉

〉

− q2
1

}

B4 = H(abαβ, adαδ) = H(abαβ, cbγβ) = B2
{〈

〈

Sα
a · S

β

b Sα
a · Sδ

d

〉

〉

− q2
1

}

B5 = H(abαβ, adγ δ) = H(abαβ, cbγ δ) = B2
{〈

〈

Sα
a · S

β

b S
γ
a · Sδ

d

〉

〉

− q2
1

}

B6 = H(abαβ, cdγ δ) = B2
{〈

〈

Sα
a · S

β

b S
γ
c · Sδ

d

〉

〉

− q2
1

}

(31)

and finally the matrix elements describing mixed RSB fluctuations:

C1 = H(aαβ, adαδ) = H(aαβ, caγβ) = JB
{〈

〈

Sα
a · S

β
a Sα

a · Sδ
d

〉

〉

− q0q1

}

C2 = H(aαβ, adγ δ) = H(aαβ, caγ δ) = JB
{〈

〈

Sα
a · S

β
a S

γ
a · Sδ

d

〉

〉

− q0q1

}

C3 = H(aαβ, cdγ δ) = JB
{〈

〈

Sα
a · S

β
a S

γ
c · Sδ

d

〉

〉

− q0q1

}

(32)

with

B = 1
4
B̃β2 J = 1

4
(B̃ + J̃ )β2. (33)

A simple interpretation of these matrix elements, similar to that given in, for example, [3], is

not possible here, due to the vector character of the spins.

The RS solutions are stable when the matrix (29) is negative definite. Upon analysing all

eigenvalues (see the appendix) it turns out that only two of these can cause the occurrence of a

region of broken stability. The first replicon eigenvalue, which we will call the Greek replicon,

reads

λG = A1 − 2A2 + A3 (34)

and determines the Greek de Almeida–Thouless (AT) line λG = 0. This AT line measures the

breaking of the symmetry with respect to the Greek indices. The corresponding eigenvectors

are given by equation (A11). The structure of the Greek replicon resembles that of the replicon

mode of the SK model found in [17], and also the Greek replicon mode of the SK model with

coupled dynamics as studied in [3]. Since the Greek replicas are (by construction) related to

the spin dynamics, the associated region of broken symmetry is located in the region of the

phase diagram with low temperature T . The Roman replicon eigenvalue is given by

λR = (B1 − 2B2 + B3) + 2n(B2 − B3 − B4 + B5) + n2(B3 − 2B5 + B6) (35)

and measures the breaking of the symmetry with respect to the Roman replicas. This occurs at

low coupling temperature T̃ . Similar to the Greek replicon (34), the eigenvectors corresponding

to the Roman replicon instability are symmetric under interchanging all but exactly two—in

this case Roman—indices. It turns out that eigenvalues corresponding to eigenvectors which

are symmetric under interchanging all but a number of indices which is larger than two, whether

Roman, Greek or a mixture of both, cannot induce an extra region of broken replica symmetry.

Therefore, all regions where the RS ansatz is unstable, are defined by the locations of the Greek

AT line (λG = 0) and the Roman AT line (λR = 0). These lines are drawn in figure 1 and
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Figure 3. Phase diagram of the XY spin glass with slow dynamic couplings, drawn in the T̃ –T -

plane; for B0 = 0, B̃ = 1 and J̃ = 3. Further notation is as in figure 1.

figure 3. The latter shows explicitly that there is no re-entrance from the region SG1 to the

region with broken replica symmetry when T is varied for fixed T̃ . The RS solution is always

stable in SG1 with respect to the Roman replicas. In fact, one can show analytically that the

Roman AT line coincides with the SG1–SG2 transition line.

The RS replica theory developed for our model, with spin and coupling dynamics on two

different time-scales, is reminiscent of that of the simple XY model with one-step replica

symmetry breaking (1RSB). Our eigenvalues also formally resemble, for example, those

describing the stability of the 1RSB solution in the perceptron model [12, 24]. Note also that

the position of the Roman AT line in our model is quite different from that in [3], although the

phase diagrams of both models are qualitatively the same. The set of eigenvectors given there

turn out to satisfy only part of the required orthogonality relations used in their calculations.

An improved phase diagram for the SK model can be found in [18].

Finally, we note that the simpler model with homogeneous biases, mentioned earlier, does

not involve Roman replicas, such that there appears only a Greek AT line. The latter line is

qualitatively the same as that in the model considered here.

5. Simulations

In order to complete our study and verify the predictions of our theory, we have performed

numerical simulations of our model (note that, due to the parameter redundancy in our model,

we can always restrict ourselves to J̃ = 3 and B̃ = 1). We have considered a population

of XY spins, evolving according to the coupled Langevin equations (3) and (5), which were

discretized according to a standard Euler method, with iteration time step 9t = 0.001. Several

interesting and subtle aspects arise when one attempts to carry out numerical simulations of

models of the type studied here, with its widely disparate time-scales. Firstly, it will be clear

that the presence of two adiabatically separated time-scales induce extremely large computing

times, which prevent us from numerical exploration of the equilibrium regime for large system

sizes. This is a general and systematic constraint, which causes important finite-size effects,

mainly near the phase transitions. In all our numerical studies we have, as a result, been forced

to restrict ourselves to relatively modest systems of N = 200 spins. A second point concerns

the evolution of the relevant quantities of the problem, spins and couplings, in view of the

need to calculate the two main observables of the problem through an averaging process. This
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Figure 4. Evolution in time of the configurational energy (2) of the system, for parameters B0 = 0,

B̃ = 1, J̃ = 3, T = 1.1 and n = 5, and with a system of size N = 200. The first window is chosen

on the basis of the time required for the combined dynamical system (spins and interactions) to

reach equilibrium; here we decided on a window size of 200. The values of the observables q0 and

q1 were obtained by performing a temporal average over a (third) time window of the same size.

will have to be done very carefully, in order for the measured objects to indeed be identical to

(or at least an acceptable approximation of) those calculated in the theory. Again the problem

is related to having a finite system size: this narrows the time window where, on the one

hand, the fast processes can be assumed to have been equilibrated, yet, on the other hand,

the slow processes can be assumed not to have taken place. Thirdly, there is the fundamental

problem that in regions where replica symmetry no longer holds (beyond either of the two

AT lines) already the spin dynamics will exhibit the traditional phenomena associated with

ageing, including extremely slow relaxation towards equilibrium; even without the additional

superimposed slow dynamics of the couplings, it would have been extremely difficult to carry

out numerical simulations that would probe the true equilibrium regime.

We have dealt with these practical problems by adopting the following strategy. For a

given set of couplings we first let spins relax to their stationary state; then we perform the

average 〈Si · Sj 〉 over a number of time steps which is sufficiently large to have a statistically

reliable measurement. We subsequently modify the interactions {Jij } for a certain number of

time steps, completing what we call a ‘dual iteration step’. This dual process is repeated until

the global equilibrium state is reached. The key question in the adequate employment of this

strategy is to quantify the various durations rationally. According to the theory, since the time-

scale associated with the couplings is infinitely slow compared with that of the fast variables
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Figure 5. Spin-glass order parameters q0 (circles) and q1 (squares) versus temperature, for n = 2.

Full curves represent the theoretical predictions, while symbols denote simulation results (with

N = 200, averaged over the time window indicated in figure 4 and over 10 samples). As in the

previous figures: B0 = 0, B̃ = 1 and J̃ = 3.

(the spins), in each dual updating step we should modify the interactions {Jij } only very slightly

(and during only a small number of update steps 9t). However, there are limits in practice to

the extent to which one can proceed in this manner, in view of the danger of the simulations

becoming so slow that they exceed by far one’s computing resources. In our simulations we

have updated the interactions over several hundred steps 9t (after having satisfied ourselves

experimentally that a duration of somewhere between 500 and 1000 iteration steps is quite

appropriate) before, in turn, allowing the spin states to evolve. In this manner we have managed

to speed up the convergence process towards global equilibrium, whilst continually verifying

that the stationary values of the order parameters q0 and q1, thus obtained, are not significantly

affected. Even more delicate is deciding on the amount of time during which to evaluate

the spin averages occurring in the stochastic equations for the interactions. If the number of

time steps used to calculate these averages is too large, the spins will have enough time to

diffuse over the whole circle (due to finite-size fluctuations which would have been absent in

an infinitely large system), leading to an underestimation of q0. Our experiments indicate that

averaging over a period of between 2000 and 3000 iteration steps (of duration 9t each) gives

reliable results. Finally, we have to decide on the window size (the number of dual updating

steps) which we have to average over in order to compute the observables of the system. The

logical approach would appear to be to monitor the evolution of quantities such as the energy

(2), starting from the initial state, until the stationary state has been (or at least appears to

have been) reached. Figure 4 shows a typical numerical experiment. The dynamics towards

equilibrium on this time-scale is ultimately controlled by the slow variables, the couplings. The

spins respond to changes in the couplings in a stochastic master/slave fashion, and only when

the slow variables (the couplings) have reached a stationary state can we speak about global
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Figure 6. Spin-glass order parameters q0 (circles) and q1 (squares) versus temperature, for n = 5.

Full curves represent the theoretical predictions, while symbols denote simulation results (with

N = 200, averaged over the time window indicated in figure 4 and over 10 samples). As in the

previous figures: B0 = 0, B̃ = 1 and J̃ = 3.

(thermal) equilibrium. In figure 4 we see that 200 dual steps suffice to ensure the absence of

the main transient effects.

The observed dependence on temperature of the two spin-glass order parameters, q0 and

q1, is illustrated in figures 5 and 6, together with the corresponding theoretical predictions.

We have carried out these numerical simulations for the temperature ratios n = T/T̃ = 2

and 5, respectively. For the smaller temperature ratio n = 2 we observe that our simulations

indeed confirm the existence of two spin-glass phases; one exhibiting freezing only on spin

time-scales, and a second spin-glass phase where freezing is observed on all time-scales.

However, quantitative agreement between theory and simulations is extremely difficult to

achieve, due to the practical problems outlined above. For n = 5 the system is in the region

where the theory predicts that a first-order phase transition from a paramagnetic phase to

a second-spin-glass phase should be found. We observe a good agreement between theory

and simulations, except for temperatures close to the transition, where finite-size effects are

obviously increasingly important. In addition to the above equilibrium observables, we have

investigated other, non-equilibrium, aspects of our model, by way of further illustration. We

have measured, for instance, the distribution P(φ) =
∑

i δ[φ − φi] of phases φi , defined

via Si = (cosφi, sin φi). Figure 7 shows this distribution at three different stages during the

evolution towards equilibrium, for system parameters identical to those of figure 6. Initially, the

phases were distributed uniformly; one observes that this distribution deforms spontaneously

into a bi-modal one, driven in conjunction with the feedback provided by the (slow) dynamics

of the couplings.

Again, it should be emphasized that the need to equilibrate two nested disordered (glassy)

stochastic processes implies that carrying out accurate numerical experiments is very hard, if

not impossible. Even without the superimposed slow dynamics of the bonds, equilibration of
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Figure 7. Non-normalized phase distribution P(φ) =
∑

i δ[φ − φi ] (discretized to a histogram)

as observed at three different stages of the dynamical process towards equilibrium, for parameters

B0 = 0, B̃ = 1, J̃ = 3, T = 1.1 and n = 5, and with a system of size N = 200. Bottom graph,

(random) phase distribution at t = 0; middle graph, phase distribution at t = 100 (during transient

stage); top graph, phase distribution at t = 200.

just the spin system for large values of N is already extremely difficult, since relaxation times

are known to scale as exp[a
√
N ] [22]. Increasing the accuracy of the numerical integration

without a corresponding increase in N would have been pointless: the integration is presently

carried out with 9t = 0.001, implying single-step errors of the order 10−6, to be compared

with errors induced by finite-size effects of order N−1 = 0.005.

6. Concluding discussion

In this paper we have discussed and solved a version of the classical XY spin-glass model in

which both the spins and their couplings evolve stochastically, according to coupled equations,

but on widely disparate time-scales. The spins play the role of fast variables, whereas the

couplings evolve only very slowly, but according to local stochastic laws which involve the

states of the spins. In the context of disordered magnetic systems this model describes a

situation where one takes into account the possible effects of slow diffusion of the magnetic

impurities, without necessarily assuming energy equi-partitioning between the slow variables

(the impurity locations) and the spins (hence the potentially different temperatures associated
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with each). Alternatively, in the context of neural systems this model would describe coupled

neural oscillators [15] with autonomous stochastic Hebbian-type synaptic adaptation on the

basis of the degree of firing synchrony of pairs of neurons.

We have solved our model within the replica-symmetric mean-field theory, involving two

levels of replicas: one level related to the (slow) couplings, and one related to the disorder in the

problem (the symmetry breaking terms in the dynamics of the couplings, representing preferred

random values of the latter). The solution of our model, in RS ansatz, is mathematically similar

to that of the XY model with static couplings, but with one-step RSB. This is reminiscent of the

general connection between the breaking of replica symmetry and the existence of dynamics on

many time-scales [25]. We have discussed in detail the stability of the RS solutions, including

the calculation of all eigenvalues and their multiplicities (details of which can be found in

the appendices). It turns out that two distinct replicon eigenvalues determine the region of

stability, and thus the region of validity of the RS solution.

The thermodynamic phase diagram is found to exhibit two different spin-glass phases,

one where freezing occurs on all time-scales, and one where freezing occurs only on the (fast)

time-scale of the spin dynamics. We also find both first- and second-order transitions; the

origin of the first-order ones is the positive feedback in the system (compared with a system

with stationary spin-couplings) which is induced by the superimposed coupling dynamics. As

could have been expected, the physics of the present model resembles that of the SK model

with dynamic couplings, apart from a rescaling in temperature and provided an appropriate

adjustment of the calculation of the AT lines in [3] is made. Our calculations show how the

methods used for solving the Ising case can be easily adapted to deal with more complicated

spin types, and in addition illustrates further the robustness of the phase diagrams describing

the behaviour of large spin systems with dynamic couplings.

Numerical simulations present further interesting technical challenges, due to the existence

of adiabatically separated time-scales (which requires equilibration of two different nested

stochastic processes in order to test the theory), in addition to the already highly non-trivial

and extremely slow dynamics of the fast (spin) system. In spite of the important finite-size

effects, which are inevitable given the practical constraints on available CPU time, our results

show good agreement with the theory and confirm the main characteristics of the predicted

behaviour.
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Appendix A. The Hessian matrix

A.1. Eigenvectors and eigenvalues

In this appendix we show how to find all eigenvectors, eigenvalues and their multiplicity of the

Hessian matrix (29). We immediately note that H is symmetric, implying that its eigenvectors

must be orthogonal, a property exploited heavily in finding its eigenvalues.

We denote the eigenvectors in the 1
2
[rn(n−1)+r(r−1)n2]-dimensional space by (ε

αβ
a , η

γ δ

cd )

with α < β and c < d , and represent them graphically in a square matrix as in figure A1.

This matrix is of size nr × nr and is divided in r2 sub-matrices of size n × n, labelled by two

Roman indices (a, b, c = 1, . . . , r). The elements of these sub-matrices, in turn, are labelled



Coupled dynamics in the XY spin glass 3973

Figure A1. Graphical representation of the structure of a general eigenvector of the Hessian matrix

(29). Dark spaces denote the ε-components; the other non-empty spaces are the η-components.

Further details are found in the text.

by two Greek indices (α, β, γ, δ = 1, . . . , n). Thus the rows and columns of the matrix carry

a Roman and a Greek index. Each of the matrix elements corresponds to a component of the

vector (ε
αβ
a , η

γ δ

cd ), except for the diagonal components, which are put equal to 0 (namely an

empty space). The elements of the type (aα, cγ ) correspond to η
αγ
ac when a �= c and to ε

αγ
a

when a = c but α �= γ . The matrix is symmetric, such that η
αγ
ac = η

γα
ca and ε

αγ
a = ε

γα
a .

The eigenvectors of H with eigenvalue λ satisfy the eigenvalue equation

H

(

ε
αβ
a

η
γ δ

cd

)

= λ

(

ε
αβ
a

η
γ δ

cd

)

. (A1)

At this point we note that {εαβa } are generally uncorrelated fluctuations of the order parameters

{qαβ
a } and {ηγ δ

cd } of {qγ δ

cd }. Therefore, we call a vector (ε
αβ
a , η

γ δ

cd ) symmetric under permutation

of the Roman and Greek indices when the components {εαβa } and {ηγ δ

cd } are simultaneously

symmetric under permutation of these indices. In order to find the explicit form of the

eigenvectors we make a general proposal based on this symmetry. Furthermore, we use the

eigenvalue equation (A1) and the orthogonality of the eigenvectors corresponding to different

eigenvalues.

We start from the symmetric solution where all components are identical, namely

εαβa = f and η
γ δ

cd = g. (A2)

These vectors are represented in figure A2. Substitution of (A2) into the eigenvalue



3974 G Jongen et al

Figure A2. Representation of the replica symmetric eigenvector. Empty space denotes zero

elements; spaces with the same fill shade denote elements with identical matrix elements. The dark

spaces indicate the ε-components; the other spaces indicate the η-components.

equation (A1) reduces the number of equations to solve to two and we easily find

(X1 − λ)f + Y1g = 0

X2f + (Y2 − λ)g = 0

X1 = A1 + 2(n − 2)A2 + 1
2
(n − 2)(n − 3)A3

Y1 = 2n(r − 1)C1 + n(n − 2)(r − 1)C2 + 1
2
n2(r − 1)(r − 2)C3.

(A3)

From this we obtain two non-degenerate eigenvalues

λ1,2 = 1
2

(

Y2 + X1 ±
√

(Y2 + X1)2 − 4(X1Y2 − X2Y1)
)

X2 = 2(n − 1)C1 + (n − 1)(n − 2)C2 + 1
2
n(n − 1)(r − 2)C3

Y2 = B1 + 2(n − 1)B2 + (n − 1)2B3 + 2n(r − 2)B4

+2n(n − 1)(r − 2)B5 + 1
2
n2(r − 2)(r − 3)B6.

(A4)

The matrix elements A1, . . . , C3 are given by equations (29) and (30).

The other eigenvalues are related to the breaking of the symmetry in (A2), both at the

level of Roman indices and at that of the Greek indices. The most simple form of symmetry

breaking is the case where almost all components are identical, except for those labelled by a

single specific pair of indices {x, θ}:

εθβx = f εαβx = g εαβa = h

η
θβ

xb = k η
αβ

xb = l η
αβ

ab = m a, b �= x α, β �= θ.
(A5)
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Figure A3. Representation of the eigenvectors (A6). Empty space denotes zero elements; spaces

with the same fill shade denote elements with identical matrix elements. From dark to light, the

spaces denote the components ε
θβ
x , the components ε

αβ
x , the components η

θβ
xb , and components η

αβ
xb .

This increases drastically the number of equations obtained from (A1). A first trial solution

within this group of candidate eigenvectors is obtained upon putting h = m = 0, giving a

group of eigenvectors with all components vanishing, except those labelled by {x, θ}:

εθβx = f εαβx = − 2

n − 2
f εαβa = 0

η
θβ

xb = k η
αβ

xb = − 1

n − 1
k η

αβ

ab = 0

Y1k = (λ − X1)f

X1 = A1 + (n − 4)A2 − (n − 3)A3

Y1 = n

n − 1
(n − 2)(r − 1)(C1 − C2).

(A6)

The graphical representation of these eigenvectors in the form of a matrix is drawn in figure A3.

The associated eigenvalues read

λ3,4 = 1
2

(

Y2 + X1 ±
√

(Y2 + X1)2 − 4(X1Y2 − X2Y1)
)

X2 = (n − 1)(C1 − C2)

Y2 = B1 + (n − 2)B2 − (n − 1)B3 + n(r − 2)B4 + n(n − 1)(r − 2)B5.

(A7)

The degeneracy of the associated eigenspace is r(n − 1); it is found by calculating explicitly

the rank of the matrix composed by these eigenvectors, as will be outlined in section A.2.
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Figure A4. Representation of the eigenvectors (A8). Empty space denotes zero elements; spaces

with the same fill shade denote elements with identical matrix elements. From dark to light, the

spaces denote the components ε
αβ
a , the components ε

αβ
x , the components η

αβ
xb , and the components

η
αβ
ab .

Insertion of the general proposal (A5) into equation (A1), and subsequently requiring the

orthogonality of this vector to the eigenvectors we have already found earlier, leads us to the

new eigenspace

εθβx = εαβx = f εαβa = − 1

r − 1
f

η
θβ

xb = η
αβ

xb = k η
αβ

ab = − 2

r − 2
k

Y1k = (λ − X1)f

X1 = A1 + 2(n − 2)A2 + 1
2
(n − 2)(n − 3)A3 − 1

2
n(n − 1)A4

Y1 = 2n(r − 1)C1 + n(n − 2)(r − 2)C2 − n2(r − 1)C3

(A8)

with eigenvalue

λ5,6 = 1
2

(

Y2 + X1 ±
√

(Y2 + X1)2 − 4(X1Y2 − X2Y1)
)

X2 = r − 2

r − 1

(

(n − 1)C1 + 1
2
(n − 1)(n − 2)C2 − 1

2
n(n − 1)C3

)

Y2 = B1 + 2(n − 1)B2 + (n − 1)2B3 + n(r − 4)B4 + n(n − 1)(r − 4)B5 − n2(r − 3)B6.

(A9)

The vectors (A8), represented graphically in figure A4, are symmetric under interchanging all

indices but one Roman index x, and have associated with each eigenvalue a (r−1)-dimensional

eigenspace.
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Figure A5. Representation of the eigenvectors (A11). Empty space denotes zero elements; spaces

with the same fill shade denote elements with identical matrix elements. From dark to light, the

spaces denote the components εθαx and εανx , the components εθνx , and the components ε
αβ
x .

A second class of eigenvectors is found by considering a situation where one Roman

index x and two different indices θ and ν cause breaking of the replica symmetry. In their

most general form these are given by

εθνx = f εθβx = εανx = g εαβx = h εαβa = k

η
θβ

xb = η
νβ

xb = l η
αβ

xb = m η
αβ

ab = p (a, b �= x;α, β �= θ, ν).
(A10)

More explicitly, we propose a vector with two special Greek indices, i.e. we try a solution with

k = l = m = p = 0. It corresponds to a vector with all η-components and all ε-components

which are not related to this Roman index vanishing, and with broken replica symmetry with

respect to the two Greek indices:

εθνx = f εθβx = εανx = − 1

n − 2
f εαβx = 2

(n − 2)(n − 3)
f εαβa = 0

η
θβ

xb = η
νβ

xb = 0 η
αβ

xb = 0 η
αβ

ab = 0 (a, b �= x;α, β �= θ, ν).

(A11)

They are visualized in figure A5. The eigenvalue equals

λ7 = A1 − 2A2 + A3 (A12)

and has multiplicity rn(n − 3)/2.

Finally, replica symmetry can also be broken by two spins with different Roman indices

x and y. Upon calling the corresponding Greek indices θ and ν, this group of eigenvectors

reads in its most general form

εθβx = ενβy = f εαβx = εαβy = g εαβa = h

ηθν
xy = k ηθβ

xy = ηαν
xy = l η

θβ

xb = ηαν
ay = m

ηαβ
xy = p η

αβ

xb = ηαβ
ay = q η

αβ

ab = t (a, b �= x, y;α, β �= θ, ν).

(A13)
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Figure A6. Representation of the eigenvectors (A15). Empty space denotes zero elements; spaces

with the same fill shade denote elements with identical matrix elements. Dark spaces denote the

components η
αβ
xy , slightly lighter spaces the components η

αβ
xb and η

αβ
ay , the other non-empty spaces

the components η
αβ
ab .

Again (A1) and the orthogonality relations are used in order to find explicit solutions. One

eigenvalue is given by

λ8 = (B1 − 2B2 + B3) + 2n(B2 − B3 − B4 + B5) + n2(B3 − 2B5 + B6) (A14)

with the corresponding eigenvectors (figure A6)

εθβx = ενβy = εαβx = εαβy = εαβa = 0 ηθν
xy = ηθβ

xy = ηαν
xy = ηαβ

xy = k

η
θβ

xb = ηαν
ay = η

αβ

xb = ηαβ
ay = − 1

r − 2
k η

αβ

ab = 2

(r − 2)(r − 3)
k

(A15)

and with degeneracy r(r − 3)/2. All ε-components vanish.

Yet another eigenvalue is

λ9 = B1 − 2B2 + B3 (A16)

with eigenvectors given by

ηθν
xy = k ηθβ

xy = ηαν
xy = − 1

n − 1
k ηαβ

xy = 1

(n − 1)2
k

εθβx = ενβy = εαβx = εαβy = εαβa = 0

η
θβ

xb = ηαν
ay = η

αβ

xb = ηαβ
ay = η

αβ

ab = 0.

(A17)

This corresponds to a situation where only the components with the marked indices x and y

are non-vanishing. The vectors are drawn in figure A7. The degeneracy of the eigenvalue

(A16) is 1
2
r(r − 1)(n − 1)2.



Coupled dynamics in the XY spin glass 3979

Figure A7. Representation of the eigenvectors (A17). Empty space denotes zero elements; spaces

with the same fill shade denote elements with identical matrix elements. From dark to light, the

spaces denote the components ηθνxy , the components η
θβ
xy and ηανxy , and the other non-empty spaces

the components η
αβ
xy .

Finally, the last eigenvector reads (figure A8)

εθβx = ενβy = εαβx = εαβy = εαβa = 0 η
αβ

ab = 0.

ηθν
xy = k ηθβ

xy = ηαν
xy = n − 2

2(n − 1)
k η

θβ

xb = ηαν
ay = − 1

2(r − 2)
k

ηαβ
xy = − 1

(n − 1)
k η

αβ

xb = ηαβ
ay = 1

2(n − 1)(r − 2)
k.

(A18)

The corresponding eigenvalue is equal to

λ10 = B1 + (n − 2)B2 − (n − 1)B3 − nB4 + nB5 (A19)

and has degeneracy 1
2
r(r − 2)2(n − 1).

A.2. The multiplicity of the eigenvalues

This appendix has been included in the present paper since no information is available in

the replica literature about explicit methods to find the multiplicity of the eigenvalues of the

Hessian matrix. We do not aim for mathematical rigour, but just aim to aid the reader by giving

a heuristic method for finding the solution.

A.2.1. Eigenvalues λ3,4 and λ5,6. We first focus on λ5,6. The sum of all r eigenvectors (A8)

equals zero, such that there are at most r − 1 linearly independent vectors. In the following

we show that the rank of the matrix composed of all eigenvectors is exactly given by this latter

value. We consider the r-dimensional sub-matrix constructed by that part of the ε-component
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Figure A8. Representation of the eigenvectors (A18). Empty space denotes zero elements; spaces

with the same fill shade denote elements with identical matrix elements. From dark to light,

the spaces denote the components ηθνxy , the components η
θβ
xb and ηανay , the components η

αβ
xy , the

components η
θβ
xy and ηανxy , and the components ηανxb and η

αβ
ay .

of the vectors (A8) with fixed Greek indices (e.g. α = 1, β = 2) namely (ε12
a , a = 1, . . . , r);

the r vectors are obtained by varying the Roman index x. This matrix reads

M = (f − g)1l + gP g = −1

r − 1
f (A20)

where 1l and P are the unit matrix and the projector matrix, respectively, here both of

dimension r . Since these matrices commute they can be diagonalized simultaneously. The

only eigenvector of P with a non-zero eigenvalue is the vector (1, 1, . . . , 1) with eigenvalue r .

All other eigenvectors can be chosen orthogonal to this vector. This results in the following

eigenvalues for M: one non-degenerated eigenvalue (f − g) + rg = 0 and an (r − 1)-fold

degenerate eigenvalue f − g = r
r−1

f . We conclude that all four eigenvalues (A9) have

degeneracy (r − 1).

The multiplicity of λ3,4 can be found in an analogous way. Since eigenvectors with a

different Roman index x are always independent, it is sufficient to determine the dimension of

the matrix constructed from the n eigenvectors with the Roman index fixed, e.g. x = 1, and

with the Greek index θ running from 1 to n.

A.2.2. Eigenvalues λ7 and λ8. We start with the less complicated calculation for λ8. As

before we consider a sub-matrix which is the r(r−1)/2-dimensional matrix of the η-part of the
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eigenvectors (A15), with fixed Greek indices e.g.α = 1 = β namely (η
α/β

ab , a < b = 1, . . . , r)

M = (f − g)1l + gP + (h − g)B

g = −1

r − 2
f h = 2

(r − 2)(r − 3)
f

Bαβ,γ δ = (1 − δαγ )(1 − δαδ)(1 − δβγ )(1 − δβδ), α < β, γ < δ.

(A21)

Because the three matrices appearing above commute, the problem of finding the eigenvalues

µi of M reduces to finding the eigenvalues γi of B. First, one finds the non-trivial eigenvector of

P, (1, 1, . . . , 1), which is also an eigenvector of B with eigenvalue (r −1)(r −3)/2. The other

eigenvectors (xab), with a < b, can be chosen orthogonal to the trivial one, i.e.
∑

a<b xab = 0,

leading to the following simplified eigenvalue equation for the eigenvectors of B

γ xab =
∑

c<d

Bab,cdxcd = xa + ya + xb + yb + xab

⇓ xa =
∑

b(> a)

xab yb =
∑

a(< b)

xab (A22)

(1 − γ )xab = xa + ya + xb + yb.

The first solution of these equations is γ = 1, with multiplicity r(r − 1)/2 − r due to the

condition xa + ya = 0, a = 1, . . . , r . When γ �= 1, we can sum (A22) in two different ways:
∑

a(< b)

: (1 − γ )yb = (b − 1)(xb + yb) +
∑

a(< b)

(xa + xb)

∑

b(> a)

: (1 − γ )xa = (n − a)(xa + ya) +
∑

b(> a)

(xb + yb).

Adding the two equations gives

(3 − γ − r)(xa + ya) = 0 (A23)

and leads to the eigenvalue γ = 3 − r . Because of the second factor in (A23) we can conclude

that B has no other eigenvalues than those already found, leading to the multiplicity r − 1 for

γ = 3 − r . It turns out that only γ = 1 gives a non-zero eigenvalue of M. We can therefore

conclude that the rank of M is equal to r(r − 1)/2 − r = r(r − 3)/2.

The same procedure can be followed to determine the multiplicity of λ7, but now by

considering M as composed by the ε-part of the eigenvectors, for a fixed choice of the Roman

index x. Eigenvectors with different Roman indices are again linearly independent.

A.2.3. Eigenvalue λ9. First, we note that each choice of the Roman indices x and y gives

a set of independent eigenvectors, so we can limit ourselves to finding the rank of the matrix

generated by the vectors with x = 1 = y

ηθν
11 = f η

θβ

11 = ηαν
11 = g η

γ δ

11 = h

g = −1

n − 1
f h = 1

(n − 1)2
f

which can be written as

M = (f − g)1l + gP + (h − g)B

Bαβ,γ δ =
{

0 α = γ

B̃βδ α �= γ with B̃ = P − 1l

(A24)
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where the dimension of B̃ is n. The special structure of B allows us to find its eigenvalues

quite easily, namely: one non-degenerate eigenvalue (n − 1)2, one 2(n − 1)-fold degenerate

eigenvalue −(n − 1), and one (n − 1)2-fold degenerate eigenvalue 1. The first and second of

these give a zero eigenvalue for M, leading to rank M = (n − 1)2.

A.2.4. Eigenvalue λ10. Calculating the multiplicity of this eigenvalue involves some more

work. In contrast to the previous sections, we here have to calculate the dimension of the full

matrix of eigenvectors, rather than just the dimension of a suitable sub-matrix. Upon writing

the eigenvectors as

εθβx = ενβy = εαβx = εαβy = εαβa = 0 η
αβ

ab = 0

ηθν
xy = f ηθβ

xy = ηαν
xy = g η

θβ

xb = ηαν
ay = h

ηαβ
xy = k η

αβ

xb = ηαβ
ay = l

g = n − 2

2(n − 1)
f h = − 1

2(r − 2)
f

k = − 1

(n − 1)
f l = 1

2(n − 1)(r − 2)
f

the matrix of eigenvectors M reads

Mabαβ,cdγ δ =











































f a = c and b = d and α = γ and β = δ

g a = c and b = d and (α = γ or β = δ)

k a = c and b = d and α �= γ and β �= δ

h one subindex and the corresponding superindex are equal

l one subindex is equal (and not the superindex)

0 otherwise.

(A25)

It is found to consist of sub-matrices B (containing elements f, g and k) on the diagonal, and

sub-matrices Di, i = 1, . . . , 4 (containing elements h and l, ordered in four different ways)

elsewhere. All of these sub-matrices have dimension n2.

In order to simplify the problem we first construct the matrix C which is made up of

columns which are orthogonal and normalized eigenvectors of B. For every sub-matrix Di we

construct CDiC
T , where CT is the transposed matrix of C. Next we construct the matrix

Ĉ =









C

.. .

C









. (A26)

Since ĈĈT = 1l by construction, the eigenvalue equations of M and M ≡ ĈMĈT are the

same, and we can restrict ourselves to solving the simpler eigenvalue problem of the latter

matrix.

First we focus on the matrix B and the construction of the matrix C. As in section A.2.3

we have

B = (f − g)1l + gP + (k − g)K

Kαβ,γ δ =
{

0 α = γ

K̃βδ α �= γ with K̃ = P − 1l.
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Upon using the Gramm–Schmidt procedure for constructing a set of orthogonal and normalized

eigenvectors of K̃, we arrive at the following result:

C̃ =

































1√
n

1√
n

1√
n

1√
n

1√
n

. . . 1√
n

1√
2

− 1√
2

0 0 0 . . . 0

1
2

√

2
3

1
2

√

2
3

−
√

2
3

0 0 . . . 0

1
3

√

3
4

1
3

√

3
4

1
3

√

3
4

−
√

3
4

0 ... 0

...
...

...
...

...
. . .

...

1
n−1

√

n−1
n

1
n−1

√

n−1
n

1
n−1

√

n−1
n

1
n−1

√

n−1
n

1
n−1

√

n−1
n

... −
√

n−1
n

































.

(A27)

Due to the similar structure of the two matrices K̃ and K, we now can immediately read off the

matrix of eigenvectors C of B: one takes a matrix with the structure of (A27), and multiplies

each matrix element by C̃, arriving at a matrix with dimension n2. Given this matrix it is

straightforward to calculate CDiC
T for all sub-matrices Di . We arrive at

Mabαβ,cdγ δ =































































n2

2(n − 1)
a = c and b = d and α = γ = 1 and β = δ �= 1

a = c and b = d and α = γ �= 1 and β = δ = 1

−n2

2(n − 1)(r − 2)
a = c and b �= d and α = γ �= 1 and β = δ = 1

a = d and b �= c and α = δ �= 1 and β = γ = 1

a �= d and b = c and α = δ = 1 and β = γ �= 1

a �= c and b = d and α = γ = 1 and β = δ �= 1

0 otherwise.

(A28)

In view of the large number of zero-rows in this matrix, it is convenient to define a
1
2
r(r − 1)2(n − 1)-dimensional matrix M̂, which contains only the non-trivial rows

M̂abα,cdβ = Mabγ δ,cdµν

γ = 1 δ = α + 1 for α = 1, . . . , n − 1

γ = α − (n − 2) δ = 1 for α = n, . . . , 2(n − 1)

µ = 1 ν = β + 1 for β = 1, . . . , n − 1

µ = β − (n − 2) ν = 1 for β = n, . . . , 2(n − 1).

(A29)

This matrix can be written as M̂ = n2

2(n−1)
1l + −n2

2(n−1)(r−2)
N, where N is a matrix with elements

0 or 1 only. As in section A.2.2 the eigenvalues of this matrix are obtained by summing the

eigenvalue equation for IN in two different ways. We then find the eigenvalue λ = −1 with

multiplicity 1
2
r(r − 2)2(n − 1), and the eigenvalue λ = r − 2 with multiplicity r(n − 1). It

turns out that only the first of these eigenvalues gives a non-zero eigenvalue for M̂, and we

may conclude that rank M = r(r − 2)(n − 1).
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