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We study the dynamics of the batch minority game, with random external information, using generating
functional techniques introduced by De Dominicis. The relevant control parameter in this model is the ratio
a5p/N of the number p of possible values for the external information over the number N of trading agents.
In the limit N→` we calculate the location ac of the phase transition ~signaling the onset of anomalous
response!, and solve the statics for a.ac exactly. The temporal correlations in global market fluctuations turn
out not to decay to zero for infinitely widely separated times. For a,ac the stationary state is shown to be
nonunique. For a→0 we analyze our equations in leading order in a, and find asymptotic solutions with
diverging volatility s5O(a21/2) ~as regularly observed in simulations!, but also asymptotic solutions with
vanishing volatility s5O(a1/2). The former, however, are shown to emerge only if the agents’ initial strategy
valuations are below a specific critical value.
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I. INTRODUCTION

The minority game has been the subject of much ~and at
times heated! debate in the physics literature recently. It was
originally introduced in @1#, as a variation of the El Farol-Bar
problem @2#, to serve as a simple model for a situation where
adaptive agents are competing for limited resources. It has
since attracted much attention, especially as a model for fi-
nancial markets ~see, e.g., @3#!. The players in the minority
game are trading agents who, at every stage of the game,
have to make a decision whether to buy or to sell, on the
basis of both publicly available information ~i.e., past market
dynamics, weather forecasts, political developments, or stock
prices! and their personal strategies. Those agents who find
themselves having made the minority decision make a profit,
while those agents who opted for the majority choice lose
money. After each round all agents revalue their strategies.
There are many variations on the precise implementation of
this game, yet most share the same main features of the
emerging market fluctuations. The important control param-
eter in the model is the ratio a5p/N of the number p of
possible values for the external information over the number
N of trading agents. If this ratio a is very large, the agents
exhibit essentially random behavior. This is reflected in the
fluctuations of the total bid, which is the sum of all buyers
minus the sum of all sellers. If less external information is
available ~or used! to base decisions upon, i.e., for reduced
a, the mismatch between buyers and sellers is found to de-
crease, and the market behaves more efficiently. This behav-
ior is now understood quite well on the basis of the replica
calculations in @4–6# and the crowd-anticrowd theory of @7#.
The situation is much less clear, however, when a becomes
very small. One possibility is that the market becomes ex-
tremely efficient, and the number of buyers almost equals the
number of sellers. Another possibility is that the mismatch
between buyers and sellers diverges if the amount of shared
~i.e., external! information becomes small, and the market
becomes extremely inefficient ~see, e.g., @8,9#!.

In this paper we solve the dynamics for the original many-
agent model, using the exact generating functional ~or path

integral! techniques introduced in @10#. After defining the
rules of the game we derive in the limit N→` an equivalent
description in terms of an effective stochastic non-
Markovian single-agent process, for which we calculate the
first time steps. For sufficiently large values of a, we can
solve the statics exactly under the assumption of absence of
anomalous response. We calculate the point ac where this
assumption breaks down, resulting in a phase transition; our
value for ac is identical to that found in @4#. The present
dynamical approach allows us to study the behavior of the
market below ac . In this region there exist persistent non-
static solutions that cannot be studied by the methods of @4#.
Below ac the market is nonergodic and the initial conditions
of the agents determine the final stationary state of the mar-
ket @4,5,13#. For a→0 we calculate the market volatility to
leading order in a for the case where the agents are initial-
ized with only weak strategy preferences, leading to a di-
verging volatility with exactly the scaling exponent s
5O(a21/2) predicted in @9# on the basis of heuristic argu-
ments. We find a critical value for the initial strategy valua-
tions above which this solution no longer exists and is re-
placed by an alternative solution with a vanishing volatility
of the form s5O(a1/2). Our dynamical approach allows in
addition for the calculation of the two-time correlations in
the global market fluctuations, by definition inaccessible
with equilibrium methods ~replica or otherwise!, which are
found to have a persistent component. Numerical simulations
confirm our theoretical results convincingly.

II. MODEL DEFINITIONS

There are N agents playing the game. We will only con-
sider the case where N is very large, and ultimately take the
limit N→` . The agents are labeled with roman indices i, j,
k, etc. At iteration round l all agents are given the same ~as
yet unspecified! piece of external information Im(l) , chosen
randomly from a total number p5aN of possible values,
i.e., m(l)P$1, . . . ,aN%. In the original model @1# the history
of the actual market is used as the information given to the
agents; however, in @11# it was shown that random
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information gives ~almost! the same volatility. Each agent i
has S strategies Ria5(R ia

1 , . . . ,R ia
aN)P$21,1%aN at her dis-

posal with which to determine how to convert the external
information into a trading decision, with aP$1, . . . ,S%.
Each component R ia

m is selected randomly and independently
from $21,1% before the start of the game, with uniform prob-
abilities, and remains fixed throughout the game. The strate-
gies thus introduce quenched disorder into the model. Each
strategy of every agent is given an initial valuation or payoff
p ia(0). The choice made for these initial values will turn out
to be crucial for the emerging behavior of the market. Given
a choice m(l) made for the external information presented at
the start of round l, every agent i selects the strategy labeled
by ã i(l) that for trader i has the highest payoff value at that
point in time, i.e., ã i(l)5arg max pia(l), and subsequently

makes a binary bid b i(l)5R i ã i(l)

m(l) . The ~rescaled! total bid at

stage l is defined as A(l)5N21/2( ib i(l). Next all agents
update the payoff values of each strategy a on the basis of
what would have happened if they had played that particular
strategy:

p ia~ l11 !5p ia~ l !2R ia
m~ l !A~ l !.

The minus sign in this expression has the effect that strate-
gies that would have produced a minority decision are re-
warded.

This setup so far allows for an arbitrary number of strat-
egies S. The qualitative behavior of the market fluctuations,
however, is found to be very much the same for all nonex-
tensive numbers of strategies larger than 1 @12,9#. We there-
fore present results here only for the S52 model, where the
equations can be simplified considerably upon introducing
for each agent the instantaneous difference between the two
strategy valuations q i(l)5@p i1(l)2p i2(l)#/2 as well as their
common part vi5(Ri11Ri2)/2 and the difference between
the strategies ji5(Ri12Ri2)/2. The strategy actually se-
lected in round l can now be written explicitly as a function
of s i(l)5sgn@qi(l)#, viz., Ri ã i(l)5vi1s i(l)ji , and the evolu-
tion of the difference will now be given by

q i~ l11 !5q i~ l !2j i
m~ l !FVm~ l !

1N21/2(
j

j j
m~ l !s j~ l !G , ~1!

with V5N21/2( jvjPR
aN. It has been observed in numeri-

cal simulations ~see, e.g., @13#! that the magnitude of the
market fluctuations remains almost unchanged if a large
number of bids are performed before a reevaluation of the
strategies is carried out. This is the motivation for us to study
a modified ~and simpler! version of the dynamics of the
game, where, rather than allowing the strategy payoff valu-
ations to be changed at each round, only the accumulated
effect of a large number of market decisions is used to
change an agent’s strategy payoff valuations. This amounts
to performing an average in the above dynamic equations
over the choices to be made for the external information. If
we also change the time unit accordingly from l ~which

measured individual rounds of the game! to a new unit t
which is proportional to the number of payoff validation up-
dates, we arrive at

q i~ t11 !5q i~ t !2h i2(
j

J i js j~ t !, ~2!

where J i j5ji•jj /Nt 2 and h i5ji•V/ANt 2, and with t 2

5^(Vm)2&5^(j i
m)2&5^(v i

m)2&; here t 2
5

1
2 . The above par-

ticular choice of time scaling has been made only because it
gives the simplest equations later. To make a connection
with the original game, one must interpret the evolution of
the q i(t) as described by Eq. ~2! as the accumulated effect of
order N iterations in the original model. Equation ~2! defines
the version of the minority game analyzed in this paper. Note
that Eq. ~2! cannot be converted into a continuous time equa-
tion, upon replacing @q i(t11)2q i(t)#/AN by dq i /dt . A
number of agents change their preferred strategy at every
iteration of Eq. ~2!. The size of their q’s will be of the order
of ~half! the step size. In the continuous time limit, in con-
trast, this step size is lost; yet any discretization used to
integrate the continuous time differential equation obtained
will effectively reintroduce an ~arbitrary! scale for the q’s.
We regard Eq. ~2! as the equivalent of what in the neural
network literature would be called the ‘‘batch’’ version of
the conventional ‘‘on-line’’ minority game. For a more de-
tailed discussion concerning the validity of a continuous time
differential equation for the thermal minority game we refer
to @14,4,15#. Finally, the magnitude of the market fluctua-
tions, or volatility, is given by s2

5^A2&2^A&2. From the
starting point A(l)5N21/2( i@v i

m(l)
1s i(l)j i

m(l)# and on the
time scales of the process ~2!, one easily derives

^A&5

1

aNAN
(

i
s i(

m
j i

m
1OS 1

AN
D , ~3!

^A2&5

1

2
1

1

aN F(
i

h is i1
1

2 (
i j

s iJ i js jG1OS 1

AN
D . ~4!

Purely random trading corresponds to ^A&50 and s2
51.

We will also define a more general object, the volatility ma-
trix J tt8 ,

J tt85^@A t2^A t&#@A t82^A t8&#&, ~5!

which measures the temporal correlations of the market fluc-
tuations. Note that s t

2
5J tt . In the case where the average

bid ^A& is zero ~which will turn out to happen in the present
model!, the volatility measures the efficiency of the market.
Zero volatility implies that supply and demand are always at
the same level, and that the market is extremely efficient. A
large volatility implies large mismatches between supply and
demand, and is the signature of an inefficient market.

III. THE GENERATING FUNCTIONAL

There are two compelling reasons for studying the dy-
namics of the minority game ~MG!. First, dynamical tech-
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niques do not rely on the presence of a Lyapunov function,
so that the MG can be studied for small a. Secondly, it is
clear from simulations @13# ~see also the figures below! that,
at least on the relevant time scales, the stationary state of the
minority game can depend quite strongly on the initial con-
ditions. One canonical tool to deal with the dynamics of the
present problem is generating functional analysis as intro-
duced by De Dominicis @10#, originally developed in the
disordered systems community ~to study spin glasses, in par-
ticular!. This formalism allows one to carry out the disorder
average ~which here is an average over all strategies! and
take the N→` limit exactly. The final result of the analysis
is a set of closed equations, which can be interpreted as
describing the dynamics of an effective ‘‘single agent’’
@10,16#. Due to the disorder in the process, this single agent
will acquire an effective ‘‘memory,’’ i.e., she will evolve
according to a nontrivial non-Markovian stochastic process.

First we rewrite Eq. ~2! as a Chapman-Kolmogorov equation
describing the temporal evolution of an ensemble of markets:

p t11~q!5E dq8 W~quq8!p t~q8!,

where, in the absence of noise, the transition probability den-
sity is simply

W~quq8!5)
i

dS q i2q i81h i1(
j

J i js j8D
5E dq̂

~2p !N expF(
i

i q̂ iK q i2q i81h i1(
j

J i js j8L G
with the shorthand s j85sgn@qj8#. The moment generating
functional for a stochastic process of the present type is de-
fined as

Z@c#5K expF i(
t

(
i

c i~ t !q i~ t !G L
5E )

t
@dq~ t !W„q~ t11 !uq~ t !…#p0„q~0 !…

3expF i(
t

(
i

c i~ t !q i~ t !G .

By taking suitable derivatives of the generating functional
with respect to the conjugate variables c, one can generate
all moments of q at arbitrary times. Upon introducing the
two short hand notations

w t
m

5

1

tAN
(

i
q̂ i~ t !j i

m , x t
m

5

1

tAN
(

i
s i~ t !j i

m ,

as well as Dq5) it@dq i(t)/A2p# , Dw5)mt@dw t
m/A2p# ,

and Dx5)mt@dx t
m/A2p# ~with similar definitions for Dq̂,

Dŵ, and D x̂, respectively!, the generating functional takes
the following form:

Z@c#5E Dw Dŵ Dx D x̂ expH i(
tm

@ŵ t
mw t

m
1 x̂ t

mx t
m

1w t
m~Vm/t1x t

m!#J E Dq Dq̂ p0„q~0 !…

3expH 2i

tAN
(
mi

j i
m (

t
@ŵ t

mq̂ i~ t !1 x̂ t
ms i~ t !#J

3expS i (
ti

$q̂ i~ t !@q i~ t11 !2q i~ t !2u i~ t !#

1c i~ t !q i~ t !% D , ~6!

where we have introduced auxiliary driving forces u i(t) to
generate averages involving q̂ i(t) ~these can be removed
later!.

IV. DISORDER AVERAGING

At this stage we can carry out the disorder averages, to be
denoted as ¯ , which involve the variables j i

m
5t 2(R i1

m

2R i2
m ) and Vm

5N21/2t 2( j(R j1
m

1R j2
m ) only. For times that

do not scale with N one obtains

expS i

t (
tm

w t
mVm

2

i

tAN
(
mi

j i
m(

t
@ŵ t

mq̂ i~ t !1 x̂ t
ms i~ t !# D

5)
im

expS it

AN
(

t
$w t

m~R11R2!2~R12R2!@ŵ t
mq̂ i~ t !1 x̂ t

ms i~ t !#% D
5expS 2

1

2 (
mtt8

@w t
mw t8

m
1ŵ t

mL tt8ŵ t8

m
12 x̂ t

mK tt8ŵ t8

m
1 x̂ t

mC t ,t8x̂ t
m#1O~N0!D ,
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where we have introduced C tt85N21( is i(t)s i(t8), K tt8
5N21( is i(t) q̂ i(t8), and L tt85N21( iq̂ i(t) q̂ i(t8). We iso-
late these functions via the insertion of appropriate d func-
tions ~in integral representation!, and define the correspond-
ing shorthand notation DC5) tt8@dC tt8 /A2p# , DK
5) tt8@dK tt8 /A2p# , and DL5) tt8@dL tt8 /A2p# ~with simi-
lar definitions for DĈ , DK̂ , and DL̂ , respectively!. Upon
assuming simple initial conditions of the form p0(q)
5) ip0(q i), the i-dependent terms in the disorder-averaged
generating functional ~6! are now found to factorize fully
over the N traders, and we arrive at an expression of the
following form:

Z@c#5E @DC DĈ#@DK DK̂#@DL DL̂#eN@C1F1V#1O~N0!.

~7!

The subdominant O(N0) term in the exponent is independent
of the generating fields $c i(t)% and $u i(t)%. There are three
distinct leading contributions to the exponent in Eq. ~7!. The
first is a ‘‘bookkeeping’’ term, linking the two-time order
parameters to their conjugates:

C5i (
tt8

@Ĉ tt8C tt81K̂ tt8K tt81L̂ tt8L tt8# .

The second reflects the statistical properties of the players’
arsenal of strategies:

F5a lnF E Dw Dŵ Dx Dx̂ expS i(
t

@ŵ tw t1 x̂ tx t1w t x t# D
3expS 2

1

2 (
tt8

@w tw t81ŵ tL tt8ŵ t812 x̂ tK tt8ŵ t8

1 x̂ tC tt8x̂ t8# D G . ~8!

The third term, which contains the generating fields, will
describe the ~now stochastic! evolution of the strategy valu-
ations q(t) of a single effective agent:

V5

1

N (
i

lnF E Dq Dq̂ p0„q~0 !…

3expS i(
t

q̂~ t !@q~ t11 !2q~ t !2u i~ t !# D
3expS i(

t
c i~ t !q~ t !2i(

tt8

@s~ t !Ĉ tt8s~ t8!

1s~ t !K̂ tt8q̂~ t8!1 q̂~ t !L̂ tt8q̂~ t8!# D G
with s(t)5sgn@q(t)#, Dq5) t@dq(t)/A2p# , Dw
5) t@dw t /A2p# , and Dx5) t@dx t /A2p# ~and similar defi-
nitions for Dq̂ , Dŵ , and Dx̂!. The form of Eq. ~7! is suitable
for a saddle-point integration in the thermodynamic limit N
→` . With a modest amount of foresight we define G tt85

2iK tt8 . Upon taking derivatives with respect to the generat-

ing fields $u i(t),c i(t)%, and using the built-in normalization
Z@0#51, we find that at the relevant saddle point

C tt85 lim
N→`

1

N (
i

^s i~ t !s i~ t8!&, ~9!

G tt85 lim
N→`

1

N (
i

]

]u i~ t8!
^s i~ t !&, ~10!

L tt85 lim
N→`

1

N (
i

]2

]u i~ t !]u i~ t8!
Z@0#50. ~11!

The first two are recognized as representing disorder-
averaged and site-averaged correlation and response func-
tions. At this stage the generating fields are in principle no
longer needed. We will put c i(t)50 and u i(t)5u(t), and
find our expression for V simplifying to

V5lnF E Dq Dq̂ p0„q~0 !…

3expS i(
t

q̂~ t !@q~ t11 !2q~ t !2u~ t !# D
3expS 2i(

tt8

@s~ t !Ĉ tt8s~ t8!1s~ t !K̂ tt8q̂~ t8!

1 q̂~ t !L̂ tt8q̂~ t8!# D G . ~12!

Extremization of the extensive exponent C1F1V of Eq.
~7! with respect to $C ,Ĉ ,K ,K̂ ,L ,L̂% gives the saddle-point
equations

C tt85^s~ t !s~ t8!&!
, G tt85

]^s~ t !&!

]u~ t8!
, ~13!

Ĉ tt85
i]F

]C tt 8

, K̂ tt 85
i]F

]K tt 8

, L̂ tt 85
i]F

]L tt 8

, ~14!

whereas L tt850. The effective single-trader averages ^¯&!
,

generated by taking derivatives of Eq. ~12!, are defined as
follows „note that s(t)5sgn@q(t)#…:

^ f @$q%#&!
5

*Dq M @$q%# f @$q%#

*Dq M @$q%#
,

M @$q%#5p0„q~0 !…expS 2i(
tt8

s~ t !Ĉ tt8s~ t8!D
3E Dq̂ expS 2i(

tt8

q̂~ t !L̂ tt8q̂~ t8!D
3expS i(

t
q̂~ t !Fq~ t11 !2q~ t !2u~ t !

2(
t8

K̂ tt8

T s~ t8!G D . ~15!

Upon elimination of $Ĉ ,K̂ ,L̂% via Eq. ~14!, we have now
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obtained exact closed equations for the disorder-averaged
correlation and response functions in the N→` limit:
namely, Eq. ~13!, with the effective single-trader measure
~15!.

V. SIMPLIFICATION OF THE SADDLE-POINT
EQUATIONS

The above procedure is quite insensitive to changing
model details; alternative choices made for the statistics of
traders’ strategies would simply lead to a different form for
the function F ~8!, whereas changing the update rules for the
strategy valuations of the traders ~e.g., by making these non-
deterministic, as in @14,4#! would affect only the details of
the term V ~12!. We now work out our equations for the
present choice of model. Focusing first on F, we perform the
x t integrals, yielding ) td @ x̂ t1w t# , and after performing the
remaining x̂ integrations we get

F5a ln E Dw Dŵ expS i(
t

ŵ tw tD
3expS 2

1

2 (
tt8

@w tw t81ŵ tL tt8ŵ t822w tK tt8ŵ t8

1w tC tt8w t8# D .

The Gaussian integration over $w t% gives

F52

1

2
a ln det D1a ln E )

t
F dŵ t

A2p
G

3expS 2

1

2 (
tt8

ŵ tL tt8ŵ t8D
3expS 2

1

2 (
tt8

ŵ t@~12iK !TD21~12iK !# tt8ŵ t8D ,

where the entries of the matrix D are given by D tt851
1C tt8 . We now take the derivative of F with respect to
L tt8 , as dictated by Eq. ~14!, and subsequently put all L tt8
→0. This gives

L̂52
1
2 ia~12iK !21D~12iK T!21,

and limL→0 F52a Tr ln(12iK), so that

K̂T
52a~12iK !21, Ĉ50.

We now write our final result in terms of the response func-
tion ~10!, via the identity K5iG , and find our effective
single-trader measure M @$q%# of Eq. ~15! reducing to

p0„q~0 !…E Dq̂

3expS 2

1

2
a(

tt8

q̂~ t !@~11G !21D~11GT!21# tt8q̂~ t8!D
3expS i(

t
q̂~ t !Fq~ t11 !2q~ t !2u~ t !

1a(
t8

~11G ! tt8

21s~ t8!G D . ~16!

This describes a stochastic single-agent process of the form

q~ t11 !5q~ t !1u~ t !2a (
t8<t

~11G ! tt8

21 sgn@q~ t8!#

1Aah~ t !. ~17!

Causality ensures that G tt850 for all t8>t @so that (1
1G) tt8

21
50 for t8.t#, and h(t) is a Gaussian noise with

zero mean and with temporal correlations given by
^h(t)h(t8)&5S tt8 :

S5~11G !21D~11GT!21. ~18!

The correlation and response functions defined by Eqs. ~9!
and ~10! are the dynamic order parameters of the problem,
and must be solved self-consistently from the closed equa-
tions

C tt85^sgn@q~ t !q~ t8!#&!
, G tt85

]^sgn@q~ t !#&!

]u~ t8!
. ~19!

Note that M @$q%# as given by Eq. ~16! is normalized, i.e.,
*Dq M @$q%#51, so the associated averages reduce to
^ f @$q%#

!&5*Dq M @$q%# f @$q%# . The solution of Eq. ~19!
can be calculated numerically with arbitrary precision, with-
out finite size effects, using a technique described in @17#.

Finally, in Appendix A we calculate the disorder-
averaged rescaled average bid ^A t& and volatility matrix

J̄ tt85^A tA t8&2^A t&^A t8&, for N→` , as defined previously
in Eqs. ~3! and ~5!. Note that objects such as ^A t& must
asymptotically become self-averaging, i.e., independent of
the microscopic realization of the disorder; hence ^A t&^A t8&
→^A t& ^A t8& for N→` . We find the satisfactory result that
the average bid is zero, and that the volatility matrix ~and
thus also the ordinary single-time volatility s t

2
5J tt! is pro-

portional to the covariance matrix ~18! of the noise in the
dynamics ~17! of the effective single agent:

lim
N→`

^A& t50, lim
N→`

J̄ tt85
1
2 S tt 8 . ~20!

Thus the noise term h(t) in the single-agent process ~17!
represents the overall market fluctuations, and the covariance
matrix ~18! informs us of both single-time volatility and the
temporal correlations of the market fluctuations.
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VI. THE FIRST TIME STEPS

For the first few time steps it is possible to calculate
the order parameters ~correlation and response functions! and
the volatility explicitly, starting from the effective single-
trader measure ~16!. Note that D tt8511C tt8 and that C tt
51 for any t. Significant simplifications can be made by
using causality. For instance, we always have (11G)21

5(n>0(21)nGn, with causality enforcing

@Gn# tt850 for t8.t2n . ~21!

At t50 this immediately allows us to conclude that S00
5D0052. We now obtain from Eq. ~16! the joint statistics at
time t51:

p„q~1 !uq~0 !…

5

exp„2$q~1 !2q~0 !2u~0 !1a sgn@q~0 !#%/4a…

2Aap
. ~22!

Equation ~22!, in turn, allows us to calculate C10
5^sgn@q(0)q(1)#&!

and G105]^sgn@q(1)#&!
/]u(0):

C1052E dq~0 !p„q~0 !…

3erfFAa

2
2

uq~0 !u1u~0 !sgn@q~0 !#

2Aa
G ,

G1052

1

Aap
E dq ~0 !p„q~0 !…

3exp$2@a sgn@q~0 !#2q~0 !2u~0 !#2/4a%.

We can now move to the next time step, again using Eq.
~21!, where we need the noise covariances S11 and S10 :

S105(
tt8

@12G1O~G2!#1tD tt8@12GT
1O~GT!2# t80

511C1022G10 ,

S115(
tt8

@12G1O~G2!#1tD tt8@12GT
1O~GT!2# t81

5222G10@11C01#12@G10#
2.

Although this procedure can in principle be repeated for an
arbitrary number of time steps, generating exact expressions
for the various order parameters iteratively, the results be-
come increasingly complicated when larger times are in-
volved.

It is interesting, however, to inspect further some special
limits. We first turn to the ~trivial! case where a is very
small, p„q(0)…5d @q(0)2q0# , and q0 is finite. Provided
uq0u@Aa as a→0, we immediately deduce from the above
results that lima→0 C1051, lima→0 G1050, and lima→0 S10
5lima→0 S1152. Hence we find in leading order in a that
q(1)5q(0) and h~1!5h~0!. One easily repeats the argument

for larger times, and finds that, without perturbations, both
the system variables q(t) and the noise variables h(t) will
remain frozen for times t!1/Aa , the only remaining uncer-
tainty in the noise being the realization of h~0!:

q~ t !5q01tAah~0 !1O~at ! ~a→0 !.

If sgn@q0#Þsgn@h(0)#, the system will ‘‘defreeze’’ at the first
instance where t.uq0 /h(0)Aau. Since h~0! is a zero aver-
age Gaussian variable, one should therefore for small a ex-
pect half of the population of traders ~those with nonprofit-
able initial random strategy choices! to commence strategy
chances at time scales t5O(a21/2), whereas the other half
will continue playing the game with their ~for now profit-
able! initial strategy choices at least up to t5O(a21).

It is also interesting to analyze the case where the game is
initialized in a tabula rasa manner ~which appears to have
been common practice in the literature!, i.e., p„q(0)…5d @q
2q0# with q0501, and where we have no perturbation
fields, i.e., u(t)50. Now the above results reduce to

C1052erf@ 1
2 Aa# , G105~ap !21/2e2a/4,

S10512erf@ 1
2
Aa#2

2

Aap
e2a/4,

S11522

2

Aap
e2a/4~12erf@ 1

2
Aa# !1

2

ap
e2a/2.

The negative value of the correlation function C10 implies
that for short times the traders will exhibit a tendency to
alternate their ~two! strategies. Let us now inspect the limit-
ing behavior of the above expressions for large and small
values of a. For large a one obtains

lim
a→`

C10521, lim
a→`

G105 lim
a→`

S1050.

For small a, on the other hand, we find

C1052

Aa

Ap
1O~a3/2!, G105

1

Aap
1O~Aa !,

S10512

2

Aap
1O~Aa !, S115

2

ap
2

2

Aap
1O~a0!.

So h(1)5O(a21/2), whereas h(0)5O(a0). We also find

K Fh~1 !1

h~0 !

Aap
G 2L 5S111

2

Aap
S101

1

ap
S005O~a0!,

from which it follows that h(1)52h(0)/Aap1O(a0),
and hence we can write the first steps of the effective single-
agent equation ~17! as
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q~1 !5q~0 !2a sgn@q~0 !#1Aah~0 !

5Aah~0 !1O~a !,

q~2 !5q~1 !2a sgn@q~1 !#1aG10 sgn@q~0 !#1Aah~1 !

52h~0 !/Ap1O~Aa !.

Thus also C205^sgn@q(0)q(2)#&!
5O(Aa) and C21

5^sgn@q(1)q(2)#&!
5211O(Aa). We observe that for small

a the first two time steps are driven predominantly by the
noise component in Eq. ~17!. This noise component in-
creases in strength and starts oscillating in sign, resulting in
an effective agent that is increasingly likely to alternate its
strategies. Equivalently, this implies that in the initial
N-agent system an increasing fraction of the population of
agents will start alternating their strategies.

Let us finally inspect the initial behavior of Eq. ~17! for
the intermediate regime where p„q(0)…5d @q2q0# with q0

5O(Aa), to which ~as we have seen! also for q05O(a0)
about half of the traders will automatically be driven in due
course. We now put q05Aa q̃0 and find in leading order

C105erf @ 1
2 uq̃0u#1¯ , G105

1

Aap
e2 q̃0

2/4
1¯ ,

S1052

2

Aap
e2 q̃0

2/4
1¯ , S115

2

ap
e2 q̃0

2/2
1¯ .

Thus we have ^@h(1)1(ap)21/2e2 q̃0
2/4h(0)#2&50, so also

h(1)52(ap)21/2e2 q̃0
2/4h(0), in leading order for a→0.

This then, together with q(1)5O(Aa) @which immediately
follows from Eq. ~22!#, leads us to

q~2 !52p21/2e2 q̃0
2/4h~0 !1O~Aa !.

We thus find that for q05O(Aa) also the initial conditions
are more or less washed out by the internal noise generated
by the process, within just two iteration steps.

VII. THE STATIONARY STATE FOR aÌac

For general a, not necessarily small, the arguments used
in the second part of the previous section do not hold. In a
stationary state, along with agents that will change strategy
~almost! every cycle, there will generally also be agents find-
ing themselves consistently in the minority group, which will
consequently play the same strategy over and over again. For
the latter ‘‘frozen’’ group ~a term introduced in @18#!, the
differences between the valuations of the two available strat-
egies ~i.e., the values of q i! will grow more or less linearly in
time, whereas the ‘‘fickle’’ agents will have values for
q i very close to zero. In order to separate the two groups
efficiently we introduce the rescaled values q̃ i(t)5q i(t)/t .
Frozen agents will be those for which limt→` q̃ i(t)Þ0.
Similarly, the effective single-agent process ~17! is
transformed via q̃(t)5q(t)/t , where now the quantity

f5lime→0 limt→`^u@ uq̃(t)u2e#&!
will give the asymptotic

fraction of frozen agents in the original N-agent system, for
N→` . The dynamical equation of the rescaled effective
agent can be written as

q̃~ t !5

1

t
q̃~1 !1

Aa

t (
t8,t

h~ t8!

2

a

t (
t8,t

(
t9

~11G ! t8t9

21 sgn@ q̃~ t9!# . ~23!

If the game has reached a stationary state, then G tt8
5G(t2t8), C tt85C(t2t8), and S tt85S(t2t8), by defini-
tion. We will assume in this section that the stationary state
is one without anomalous response, i.e., temporary perturba-
tions will not influence the stationary state and decay suffi-
ciently fast, such that limt→` ( t<tG(t)5k exists. This con-
dition will be met if there is just one ergodic component; it is
the dynamical equivalent of replica symmetry being stable
~see, e.g., @19#! in a detailed balance model. We now define
q̃5limt→` q̃(t) ~assuming this limit exists! and take the limit
t→` in Eq. ~23!. Under the assumption of absent anomalous
response, we can use the two lemmas in Appendix B to
simplify the result to

q̃52

a

11k
s1Aah ~24!

with the averages s5limt→` t21( t<t sgn@q̃t# and h
5limt→` t21( t<th(t). The variance of the zero-average
Gaussian random variable h follows from Eq. ~18!:

^h2&5 lim
t ,t8→`

1

tt8
(
t<t

(
t8<t8

@~11G !21D~11GT!21# tt8

5~11k !22F 11 lim
t ,t8→`

1

tt8
(
t<t

(
t8<t8

C tt8G
5~11k !22@11^s2&# . ~25!

Note that ^s2&5limt→` t21( t<tC(t)5c .
The effective agent is frozen if q̃Þ0, in which case s

5sgn@q̃#. This solves Eq. ~24! if and only if uhu.Aa/(1
1k). If uhu,Aa/(1 1k), on the other hand, the agent is not
frozen; now q̃50 and s5(11k)h/Aa . We can now calcu-
late c5^s2& self-consistently, upon distinguishing between
the two possibilities:

c5K uF uhu2
Aa

11kG L 1K uF Aa

11k
2uhuG ~11k !2h2

a L .

Working out the Gaussian integrals describing the statics of
h with variance ~25! then gives

c512S 12

11c

a D erfFA a

2~11c !
G22A11c

2pa
e2a/2~11c !.

~26!
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From this equation the value of c can be obtained numeri-
cally. For large a the solution behaves as c;a21. In Figs.
1 and 2 we show the solution of Eq. ~26! and the fraction
f of frozen agents, given according to the theory by f
5^u@ uhu2Aa/(11k)#&512erf@Aa/2(11c)# , as functions
of a, together with the values for c and f as obtained by
carrying out numerical simulations of the minority game.
One observes excellent agreement between theory and ex-
periment above a critical value ac , which we will calculate
below.

From the time-averaged asymptotic correlation c we
next move on to calculate the integrated response k
5limt→` ( t<tG(t). Since the occurrence of the Gaussian
noise term h(t) in Eq. ~17! is ~apart from a factor a! similar
to that of an external field, we can write the response func-
tion as G tt85a21/2^] sgn@q(t)#/]h(t8)&!

. Integration by parts
in this expression generates

^] sgn@q~ t !#/]h~ t8!&!
5(

t9

S t8t9

21
^sgn@q~ t !#h~ t9!&!

and hence,

Aa (
t9

^h~ t !h~ t9!&G t9t8

T
5^sgn@q~ t !#h~ t8!&!

. ~27!

Averaging over the two times t and t8 now gives, in a
stationary state, upon using again the assumption of
absent anomalous response and the familiar notational
conventions s5limt→` t21( t<t sgn@q(t)# and h
5limt→` t21( t<t h(t)

^sh&5Aa lim
t→`

1

t (
t8<t

(
t9

^hh~ t9!&G t9t8

T

5kAa^h2&. ~28!

The variance ^h2& is given in Eq. ~25!. We calculate the
remaining object ^sh& similarly to our calculation of c, by
distinguishing between frozen and nonfrozen agents and by
using the two identities s5sgn@h# ~for frozen agents! and s
5h(11k)/Aa ~for the nonfrozen ones!, both of which fol-
low immediately from Eq. ~24!. This results in

^sh&5K uF uhu2
Aa

11kG uhuL 1K uF Aa

11k
2uhuG h2~11k !

Aa
L

5

11c

~11k !Aa
erfFA a

2~11c !
G .

Insertion into Eq. ~28!, together with Eq. ~25!, then gives the
desired expression for the integrated response:

1

k
5

a

erf@Aa/2~11c !#
21 ~29!

with the value of c to be determined by solving Eq. ~26!.
Equivalently, using f512erf @Aa/2(11c)# , we get

k5

12f

a211f
. ~30!

The integrated response k is positive and finite, and hence
our solution ~based on this property! is exact, for a.ac .

FIG. 2. Fraction f512erf@Aa/2(11c)# of frozen agents in the
stationary state. The markers are obtained from individual simula-
tion runs performed with a system of N54000 agents and various
homogeneous initial conditions, where q i(0)5q(0), and in excess
of 1000 iteration steps. The solid line to the right of the critical
point is the theoretical prediction, obtained from the solution of Eq.
~26!. The dotted curve to the left is its continuation into the a
,ac regime ~where it should no longer be correct!.

FIG. 1. Asymptotic average c5limt→`t21S t<tC(t) of the sta-
tionary covariance. The markers are obtained from individual simu-
lation runs performed with a system of N54000 agents and various
homogeneous initial valuations @where q i(0)5q(0)#, and in excess
of 1000 iteration steps. The solid curve to the right of the critical
point is the theoretical prediction, given by the solution of Eq. ~26!.
The dotted curve to the left is its continuation into the a,ac re-
gime ~where it should no longer be correct!.
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Here ac is the point at which k diverges, which is found to
happen when the fraction of fickle agents equals a. Accord-
ing to Eqs. ~26! and ~29!, we can write ac as ac5erf @x#,
where x is the solution of the transcendental equation

erf @x#522

1

xAp
e2x2

. ~31!

This equation is identical to that derived in @4# ~for a stochas-
tic version of the game! using replica calculations. The re-
sulting value is ac'0.337 40. Below ac there might well be
multiple ergodic components, i.e., more than one stationary
solution of our fundamental order parameter equations ~19!.

VIII. STATIONARY VOLATILITY FOR aÌac

In contrast to the persistent order parameter c and its rela-
tive k, the volatility matrix ~5!, to be calculated within our
theory from expressions ~18! and ~20! and in a stationary
state of the Toeplitz form J tt85J(t2t8), generally in-
volves both long-term and short-term fluctuations. This be-
comes apparent when we work out J(t) using Eq. ~18! and
the results of Appendix B. We separate in the functions C
and G the persistent from the nonpersistent terms, i.e., C(t)
5c1C̃(t) and G(t)5G̃(t) ~there is no persistent response
for a.ac!, and find

2J~ t !5

11c

~11k !2 1 lim
t→`

1

t (
u<t

(
t8t9

~11G̃ !u1t t8

21 C̃ t8t9

3~11G̃T! t9u
21. ~32!

Clearly, the asymptotic ~stationary! value of the volatility
s2

5J(0) cannot be expressed in terms of persistent order
parameters only. It requires solving our coupled saddle-point
equations ~19! for C tt8 and G tt8 for large times but finite
temporal separations t2t8. The persistent market correla-
tions, however, are found to be expressible in terms of per-
sistent order parameters:

J~` !5

11c

2~11k !2 . ~33!

Above ac , this quantity can be recognized as the ‘‘energy’’
per agent H/N used in the replica calculations @4#. In order to
find the volatility we separate the correlations at stationarity
into a frozen and a fickle contribution:

C~ t2t8!5f^sgn@ q̃~ t !q̃q~ t8!fr1~12f !^sgn@ q̃~ t !q̃~ t8!#&fi

5f1~12f !^sgn@ q̃~ t !#sgn@ q̃~ t8!#&fi

and hence

C̃~ t2t8!5f2c1~12f !^sgn@ q̃~ t !#sgn@ q̃~ t8!#&fi .

Insertion into Eq. ~32! and putting t50 then gives

2s2
5

11f

~11k !2 1~12f ! lim
t→`

1

t (
t<t

(
t8t9

~11G̃ ! tt8

21

3^sgn@ q̃~ t8!#sgn@ q̃~ t9!#&fi~11G̃T! t9t
21

5

11f

~11k !2 1~12f ! lim
t→`

1

t

3(
t<t K H (

t8<t
~11G̃ ! tt8

21 sgn@ q̃~ t8!#J 2L
fi

. ~34!

We note that the sum ( t8,t(11G̃) tt8

21 sgn@q̃(t8)# is the re-
tarded self-interaction term in Eq. ~17!. Such a term is a
familiar ingredient of disordered systems with ‘‘glassy’’ dy-
namics ~see, e.g., @20#!, and generally acts as the mechanism
that drives the system to a frozen state. Hence, self-
consistency of the distinction between frozen and fickle trad-
ers dictates that the retarded self-interaction term can be
large for frozen traders, but must be small ~if not absent! for
fickle ones. Our approximation now consists in consequently
disregarding the retarded self-interaction for the fickle trad-
ers:

(
t8,t

~11G̃ ! tt8

21 sgn@ q̃~ t8!#'0 for uhu,
Aa

11k
.

Thus we retain for fickle traders only the instantaneous t8
5t term in ( t8<t(11G̃) tt8

21 sgn@q̃(t8)#, and find the ~exact!
expression ~34! being replaced by the approximation

s2
5

11f

2~11k !2 1

1

2
~12f !. ~35!

This turns out to be a surprisingly accurate approximation of
the volatility for a.ac , as can be observed in Fig. 3.

Only in the limit a→` can we expect to be able to go
beyond Eqs. ~33! and ~35!, and work out expressions ~32!
and ~34! exactly. This requires calculating the response func-
tion G̃(t) for small t, which we will set out to do next. Since
we assume absent anomalous response we may choose trivial
initial conditions. We also choose the perturbation fields u(t)
to be nonzero only for a given time t2t , where t.0. From
Eq. ~17! we now derive

sgn@q~ t !#5sgnF u~ t2t !

tAa
1

1

t (
t8<t

h~ t8!

2

Aa

t (
t8t9<t

~11G ! t8t9

21 sgn@q~ t9!#G . ~36!

Hence, for vanishingly small perturbations u(t2t), and
upon taking the t→` limit,
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G̃~t !52

2Aa

11k
lim
t→`

1

t (
t8<t

K dFh2

sAa

11kG F] sgn@q~ t8!#

]u~ t82t !
G L

12K dFh2

sAa

11kGF lim
t→`

1

t (
t8<t

]h~ t8!

]u~ t2t !G L .

We observe that h5sAa/(11k) is precisely the condition
for a trader to be fickle, in the language of the effective
single agent. Secondly, from causality it follows that
limt→` t21 ( t8<t ]h (t8) / ]u (t2t)5limt→` t21 ( t85t2t11

t

3]h(t8)/]u(t2t)50. Hence our result can in a stationary
state be written as

G̃~t !52

2Aa~12f !

11k
lim
t→`

K ] sgn@q~ t !#

]u~ t2t ! L
fi

. ~37!

For a→` our stationary order parameter equations give
(12f)/(11k)→1. Furthermore, for a→` all traders
will become fickle, so ^] sgn@q(t)#/]u(t2t)&fi→G̃(t). This
leaves for a→` only the trivial solution for Eq. ~37!:
lima→` G̃(t)50 for all t. Insertion into our exact expres-
sion ~32! for the stationary volatility matrix gives

lim
a→`

J~ t !5

1

2
1

1

2
lim

a→`

C̃~ t !

and hence

lim
a→`

lim
t→`

s51. ~38!

This is the random trading limit.

IX. THE STATIONARY STATE FOR aËac

When the amount of external information available for
agents to base their actions upon ~i.e., the value of a! be-
comes small, the behavior of the market is found to become
strongly dependent on initial conditions. Numerical simula-
tions show that below ac the sequence ( t8G tt8 is unbounded,
and that within the limits of experimental accuracy:

lim
t→`

(
t8

~11G ! tt8

21
50, ~39!

C t1t ,t5c1d~21 !t for tÞ0 ~40!

~with C tt51, by definition!. Figure 4 shows the asymptotic
values of d as measured during numerical simulations, for
different values of a and q(0). One clearly observes the
dependence on initial conditions, as already seen in e.g.,
simulations of Ref. @13#.

We will now use Eqs. ~39! and ~40! as ansätze, i.e., we
will construct special self-consistent stationary state solu-
tions of the fundamental order parameter equations ~19!
which obey Eqs. ~39! and ~40!, as well as the stationary state
conditions C tt85C(t2t8) and G tt85G(t2t8). First we ana-
lyze the statistical properties of the Gaussian noise h(t) in
the single-agent equation ~17!. From Eqs. ~39! and ~40! it
follows that the noise covariance matrix ~18! obeys

lim
t→`

^h~ t1t !h~ t !&5~21 !tdg2
1~12c2d !

3(
t

~11G !21~ t1t !~11G !21~ t !,

~41!

in which

g5(
t

~11G !21~ t !~21 ! t. ~42!

FIG. 3. The volatility s as a function of the relative number a
5p/N of possible values for the external information. The markers
are obtained from individual simulation runs performed with a sys-
tem of N54000 agents and various homogeneous initial conditions,
where q i(0)5q(0), and in excess of 1000 iteration steps. The solid
curve for a.ac is the approximate expression ~35!. Below ac the
approximate asymptotic solutions of Eqs. ~61! ~solid! and ~62!
~dashed! are drawn.

FIG. 4. The oscillatory component d of the covariance @see Eq.
~40!#. The markers represent the results of individual simulations,
performed with N54000 agents and various homogeneous initial
conditions, where q i(0)5q(0), and after in excess of 1000 itera-
tion steps.
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From Eq. ~41! one can derive, in turn, that the noise vari-
ables must asymptotically take the form

h~ t !5~21 ! tgzAd1j~ t !A12c2d , t→` , ~43!

where z and $j(t)% are zero-average Gaussian variables, with
^z2&51, ^zj(t)&50, and

lim
t→`

^j~ t1t !j~ t !&5(
t

~11G !21~ t1t !~11G !21~ t !.

From Eq. ~39! we know that limt→` limt→`^j(t1t)j(t)&
50, i.e., in the stationary state the j(t) decorrelate for large
temporal separations. For sufficiently large t, and without
external perturbations, Eq. ~17! now acquires the form

q~ t11 !5q~ t !1gzAad~21 ! t
1j~ t !Aa~12c2d !

2a (
t8<t

~11G ! tt8

21 sgn@q~ t8!# . ~44!

Frozen agents are those for which sgn@q(t)# is independent of
time; due to Eq. ~39! these will not experience the last term
in Eq. ~44!. However, due to the properties of the noise in the
a,ac regime ~and in contrast to the situation with a.ac!,
even frozen agents will now have limt→` q(t)/t50. Inser-
tion into Eq. ~44! shows that frozen solutions of the follow-
ing form exist:

q~ t !5q2
1
2 gzAad~21 ! t ~45!

provided sgn@q(t)#5sgn@q# for all t, so q and d must obey

d512c , uqu.u 1
2 gzAadu. ~46!

Oscillating agents, on the other hand, are those for which
sgn@q(t)#5ŝ(21)t, with ŝ561. Insertion into Eq. ~44!
shows that oscillating solutions of the following form exist:

q~ t !5q1
1
2 gŝ@a2zŝAad#~21 ! t ~47!

provided sgn@q(t11)#52sgn@q(t)# for all t, so q and d must
obey

d512c , g@a2zŝAad#.0, uqu, 1
2 g@a2zŝAad# .

~48!

Note that, if rigorously frozen and/or rigorously oscillating
agents were asymptotic solutions of Eq. ~44!, then the corre-
lations would come out as C(t)5f1(12f)(21)t ~with
f, as before, denoting the fraction of frozen agents!, and we
would find c1d51. Figures 1 and 4, however, show that
this simple relation holds only near a50. Away from a
50 there will therefore be solutions describing fickle agents
that change strategy at intervals intermediate between 1 ~os-
cillating! and infinity ~frozen!. This can be understood on the
basis of Eq. ~44!, where due to the noise term j(t) ~with a
finite temporal correlation length! there will for c1d,1 al-
ways be a nonzero probability of nearly frozen agents chang-
ing strategy occasionally, and of nearly oscillating agents not
changing strategy occasionally.

X. THE LIMIT a\0

Let us finally investigate the situation near a50 more
closely, where we may use the experimental observation that
c1d'1, which implies that all agents will be either frozen
or oscillating. We put c5f ~the fraction of frozen agents!
and d512f , and choose homogeneous initial conditions
with q(0).0. We now find h(t)5(21) tgzA(1 2f) and
our two solution types are given by

q~ t !5H q2
1
2 gzAa~12f !~21 ! t, frozen,

uqu, 1
2 g@a2zŝAa~12f !# , oscillating,

provided the following conditions for existence are met:

uqu.u 1
2 gzAa~12f !u, frozen,

uqu, 1
2 g@a2zŝAa~12f !# , oscillating, ~49!

gAa.gzŝA12f . ~50!

Near a50 we also know, due to c1d51, that

^h~ t1t !h~ t !&5~21 !t~12f !g2, t→` , ~51!

h~ t !5~21 ! tgzA12f , t→` , ~52!

and that limt→` s2
5

1
2 (12f)g2. In order to eliminate

the remaining parameters g and f we note that time trans-
lation invariance guarantees the validity of the relation
( t(Gn)(t)(21) t

5@( tG(t)(21) t#n, and hence

g5~11G !21, G5(
t

G~ t !~21 ! t. ~53!

The quantity G can, in turn, be expressed in terms of g upon
inserting Eqs. ~51! and ~52! into Eq. ~27!. We obtain

Aa~12f !g~12g !~21 !t
5 lim

t→`

^sgn@q~ t1t !#h~ t !&!
.

Working out the average on the right-hand side, by separat-
ing frozen from fickle solutions, gives for large t

^sgn@q~ t1t !#h~ t !&!
5f^sgn@q~ t1t !#h~ t !& fr1~12f !

3^sgn@q~ t1t !#h~ t !&fi

5gA~12f !~21 !t$f~21 ! t

3^sgn@q#z& fr1~12f !^ŝz&fi%.

Since in a stationary state the correlation function
^sgn@q(t)#h(t8)&!

can only depend on t2t8, we must con-
clude that ^sgn@q#z&fr50 and that either

lim
a→0

g~12f !50 or g512A~12f !/a^ŝz&fi ~54!

~in leading order for a→0!. Multiplication of both sides of
the second equation in ~54! by gAa shows that it automati-
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cally ensures the validity of the second condition of Eq. ~50!.
The first equation of ~54! will satisfy the second condition of
Eq. ~50! as long as g.0.

In order to proceed we need to calculate the persistent
term q in the proposed solutions, which can be seen as rep-
resenting their effective initial conditions. It incorporates
both the true initial conditions and the effects of the tran-
sients of the dynamics, which initially will not be of the
simple form ~44!. Exact evaluation would require solving our
order parameter equations for arbitrary times, which is not
feasible. However, one can proceed for now on the basis of
the postulate that the properties of the long-term attractors
~viz., the Gaussian variable z! are uncorrelated with the value
of q. The conditions ~49! and ~50! then simply state whether
a value of q, generated independently of z according to some
distribution P(q), is compatible with a given attractor. Al-
though we will not be able to generate all possible stationary
solutions of the process ~17!, we will show how two quali-
tatively different solutions, one with a diverging volatility for
a→0 and one with a vanishing volatility for a→0, can both
be extracted from our equations.

The first type of solution is obtained for lima→0 f5f0
,1. Now one finds, in leading order in a, that ŝ5

2sgn@gz# and that g5^uzu&fiA(12f0)/a . The conditions
~49! and ~50! reduce in leading order to the complementary
pair

uqu. 1
2 guzuAa~12f0!, frozen, ~55!

uqu, 1
2 guzuAa~12f0!, oscillating. ~56!

This, in turn, allows us to calculate f0 and ^uzu&fi :

f05E dq P~q !E dz

A2p
e2z2/2u@ uqu2 1

2 guzuAa~12f !#

5E dq P~q !erfF &uqu

gAa~12f !
G ,

^uzu&fi5E dq P~q !

12f0
E dz uzu

A2p
e2z2/2

3u@ 1
2 guzuAa~12f0!2uqu#

5

&

~12f0!Ap
E dq P~q !e22q2/g2a~12f0!.

We eliminate g in favor of s5
1
2 &gA12f0 and end up

with the following simple closed equation for s:

s5E dq P~q !
e2q2/s2a

Aap
. ~57!

The associated value for f0 then follows from

f05E dq P~q !erfF uqu

sAa
G . ~58!

Finally, we can use our observations regarding the first few
time steps ~Sec. VI! of the process in order to obtain an
estimate for P(q). These showed for small a that initially ~i!
for small uq(0)u5O(Aa) the system is driven toward the
oscillating state, ~ii! for large uq(0)u5O(a0) the system
tends to freeze, ~iii! the transient processes are dominated by
the ~Gaussian! noise term in Eq. ~17!, and ~iv! the noise term
is automatically being ‘‘amplified’’ ~either via a diverging
response function, or via accumulation over time! to an ef-
fective O(a0) contribution. Note that ~i! and ~ii! confirm
that q can indeed be seen as the sum of q(0) and the net
effect of the transient processes, and that ~iii! and ~iv!
subsequently suggest representing the transient processes
by adding a single effective Gaussian variable. Hence
for small a it would appear sensible to write P(q)
5(LA2p)21e2@q2q(0)#2/2L2

, which converts Eqs. ~57! and
~58! into

s2a12L2
5

1

p
e22q2~0 !/~s2a12L2!.

We conclude that s can be written in terms of the solution y
of a transcendental equation

s5

1

Aa
F2q2~0 !

y
22L2G1/2

, 2q2~0 !5

y

p
e2y. ~59!

For uq(0)u→0 we find that s5(ap)21/2A122pL2; hence
we must obviously require L2

,1/2p . The associated value
for f0 then follows from

f05E Dx erfF uq~0 !1Lxu

sAa
G . ~60!

Since we cannot calculate or estimate the width L of the
effective Gaussian noise term without solving our order pa-
rameter equations for short times @L could even depend on
q(0)#, it is quite satisfactory that several interesting proper-
ties of the solution are found to be independent of L. For
instance, one always finds a diverging volatility of the form
s5O(a21/2), and there is a critical value qc5(2pe)21/2

'0.242 such that for uq(0)u.qc the solution no longer ex-
ists. This solution is clearly the type of volatile state that has
been reported regularly ~see, e.g., @8,9#! upon observing nu-
merical simulations. We have now found, however, that
whether or not it will appear depends critically on the choice
made for the initial conditions. Numerical simulations indeed
appear to support the existence and predicted magnitude of a
critical value qc'0.242 ~see Fig. 5!; fully conclusive experi-
ments, however ~with even smaller values of a!, would re-
quire impractical amounts of CPU time and/or memory in
order to meet the requirements p→` and N→` for increas-
ingly small values of a, and are presently ruled out. In the
limit q(0)→0 one can easily carry out the integrals in Eq.

~60!, giving L5(2p)21/2 sin@ 1
2 pf0#. Elimination of L via

insertion into s5(ap)21/2A122pL2 then leads to the
simple relation
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s5

cos@ 1
2 pf0#

Aap
1O~a0!, a ,q~0 !→0. ~61!

This is the high-volatility solution shown in the a,ac re-
gime of Fig. 3, with f0 as measured in simulations ~see, e.g.,
Fig. 2!. The power of a in Eq. ~61! is observed to be correct.
The observed difference between theory and experiment with
regard to the prefactor can be understood as a reflection of
our approximation c1d'1; this amounts to disregarding
deviations from the idealized purely frozen or purely oscil-
lating behavior, which can indeed be expected to give an
approximate theory that ~even for small a! slightly underes-
timates the volatility.

We note that the condition lima→0 f,1 for the above
reasoning to apply can in fact be weakened to lima→0 a/(1
2f)50. The above solution ceases to hold, however, at the
point where the fraction f of frozen agents scales as f51
2ka1O(a2), in which case we have to turn to the first
option in Eq. ~54!, rather than the second. This is consistent
with our previous observation that small values of uq(0)u
lead to a relatively small fraction of frozen agents ~and a
large volatility!, whereas for large uq(0)u such a solution will
break down in favor of states with a larger fraction of frozen
agents. Since we can now no longer use the second equation
in ~54! to determine g and hence find the volatility s
5

1
2 &gA12f , we have to return to Eq. ~53!. A fully frozen

state, which for a→0 will indeed be described by this second
type of solution ~since lima→0 f51!, must necessarily have
G(t.0)5g . This is consistent with our ansätze, since it
gives

~11G !21~ t !52g~12g ! t21, t.0,

which implies ( t>0(11G)21(t)50, provided 0,g,2. We
can now calculate g from Eq. ~53! and find lima→0 g
52/(22g). Thus we obtain, provided 22g5O(a0),

s5

A2k

22g
Aa1O~a !, k5 lim

a→0

12f

a
.

We also note that the scaling property f512O(a) implies
that P(0)5limq→0 P(q)5O(Aa), since all q values of or-
der q5O(Aa) will contribute to the fraction 12f of fickle
agents, giving 12f5O„P(0)Aa…. We can now calculate
lima→0 g upon explicitly inspecting the effect of a perturba-
tion of a frozen state. Since G(t.0)5g we may restrict
ourselves to considering the effect on sgn@q(t11)# of a per-
turbation at time t, giving in leading order for a→0

lim
a→0

g5 lim
a→0

lim
u→0

K ]

]u
sgn@q1

1
2 agzAk~21 ! t

1u#L
52 lim

a→0
^d@q1

1
2 agzAk~21 ! t#&

52 lim
a→0

P~0 !50.

Hence, since the frozen state has q5O(a0), we find
lima→0 g51 and

s5
1
2 A2ka1O~a !, a→0. ~62!

Explicit calculation of the prefactor in Eq. ~62! would re-
quire taking our calculations beyond the leading order in a,
in order to find k. Equation ~62! is the low-volatility solution
shown in the a,ac regime of Fig. 3, with k as measured in
simulations ~see, e.g., Fig. 6!. Again the power of a in Eq.
~62! is observed to be correct. The remaining difference be-
tween theory and experiment with regard to the prefactor can
again be understood as a reflection of our approximation c
1d'1, which induces a structural underestimation of the
volatility.

XI. DISCUSSION

In this paper we have solved a ‘‘batch’’ version of the
minority game with random external information, using gen-
erating functional analysis ~or dynamic mean field theory! as
introduced by De Dominicis, which allows one to carry out
the disorder averages in a dynamical context. Since the dy-
namics of the game is not described by a detailed balance
type of stochastic process, equilibrium statistical mechanical
tools cannot be applied directly. Phase transitions ~if present!
must be of a dynamical nature. The disorder in the minority
game consists of the microscopic realization of the repertoire
of randomly drawn trading strategies of the N agents. Upon
taking the limit N→` one ends up with an exact non-
Markovian stochastic equation describing the dynamics of an
effective single agent ~17!, whose statistical properties are
identical to those of the original system ~averaged over all
realizations of the disorder!. The key control parameter in

FIG. 5. Experimental evidence in support of the existence of a
critical value for the initial strategy valuation q(0) below which a
high-volatility solution exists. The connected markers represent the
results of measuring the volatility in individual simulations, per-
formed with N54000 agents and initial conditions where q i(0)
5q(0), and after in excess of 1000 iteration steps. CPU time and
memory limitations prevent us from doing reliable and conclusive
experiments for a,0.0125; the available data, however, are clearly
not in conflict with our theoretical prediction qc'0.242 ~vertical
dashed line!, which follows from Eq. ~59!.
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this problem is the ratio a5p/N of the number of possible
values of the external information over the number of agents.

We find a phase transition at ac'0.337 40, signaled by
the onset of anomalous response, in agreement with the
value reported recently in @4#. The method used in @4# de-
pends on the fact that for their stochastic version of the mi-
nority game a Lyapunov function exists. Our approach does
not have this constraint and can be easily applied to those
variations of the game where a Lyapunov function is not
available, thus opening up a wider range of models for analy-
sis ~see, e.g., @3#!. Above ac ~where anomalous response is
absent! we can solve the stationary state of the system ex-
actly, giving exact expressions for quantities such as the frac-
tion of frozen agents ~which is zero for a→` but increases
with decreasing a!, the persistent two-time correlations, and
the persistent correlations in the total bid. The volatility
~which is itself not an order parameter of the system! can be
calculated to a very good approximation. Above ac , our
method and that of @6,4# are likely to describe the same be-
havior @21#. Below ac , i.e., in the region of complex dynam-
ics ~inaccessible by the replica approach @15#!, our present
method still applies. In this region we demonstrate the exis-
tence of multiple stationary states, and derive expressions for
the relevant observables in leading order in a as a→0. We
show, more specifically, that the occurrence and practical
observability of a diverging volatility for a→0 ~as reported
in, e.g., @8,9#! is crucially dependent on the overall degree of
a priori preference for specific strategies exhibited by the
agents at t50, which may explain the different observations
regarding the a→0 behavior that have been reported in the
literature @13#. More specifically, our theory points at the

existence of a critical value for the initial strategy valuations,
above which the system will revert to a state with vanishing
volatility. Our theoretical predictions find quite satisfactory
confirmation in numerical simulations.

The fact that we can analyze the stationary state of Eq.
~17!, in spite of it describing a non-Markovian stochastic
process, suggests that the present method should also be suit-
able to deal with models where the external information de-
pends on time, or on the previous behavior of the agents, as
in the original model @1,22#.
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APPENDIX A: EXPRESSIONS FOR AVERAGE BID
AND VOLATILITY

First we calculate limN→`^A t& using expression ~3!. We
note that we obtain ^A t& simply by making the replacement
exp@i(tici(t)qi(t)#→(t/aN)(mxt

m in the right-hand side of Eq.
~6!. The disorder average is carried out as before, but instead
of Eq. ~7! we now obtain

^A t&5tE @DC DĈ#@DK DK̂#@DL DL̂#

3eN@C1F1V#1O~N0!e2F/aE Dw Dŵ Dx Dx̂ x t

3expS i(
s

@ŵsws1 x̂sxs1wsxs# D
3expS 2

1

2 (
ss8

@wsws81ŵsLss8ŵs8

12 x̂sKss8ŵs81 x̂sCss8x̂s8# D ,

where we have used permutation invariance with respect to
m ~after the disorder average!. The integral is dominated by
the familiar saddle point. Since the O(N0) term in the expo-
nent is identical to that in Eq. ~7!, we can now simply use the
identity Z@0#51 to show that

lim
N→`

^A t&5te2F/aE Dw Dŵ Dx Dx̂ x t

3expS i(
s

@ŵsws1 x̂sxs1wsxs# D
3expS 2

1

2 (
ss8

@wsws812i x̂sGss8ŵs8

1 x̂sCss8x̂s8# D 50. ~A1!

The last step follows immediately from the antisymmetry of
the integrand under overall reflection.

FIG. 6. Experimental evidence for the existence of the limit k
5lima→0(12f)/a for the low-volatility solution. The markers are
obtained from individual simulation runs performed with a system
of N54000 agents and initial valuations of the form q i(0)5q(0)
.qc ~to evoke the low-volatility state!, and in excess of 1000 itera-
tion steps. The solid curve to the right of the critical point is the
theoretical prediction, obtained from the exact equations ~26! and
f512erf @Aa/2(11c)# describing the a.ac regime. The dotted
curve to the left is its continuation into the a,ac regime ~where it
should indeed no longer be correct!.
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To determine the disorder-averaged volatility matrix, which for N→` becomes identical to ^A tA t8& due to Eq. ~A1! and the
self-averaging property, we first work out the dominant terms in Eq. ~5!. Using limN→`(aN)21(mVm

2
5

1
2 , we obtain the

relatively simple expression

lim
N→`

^A tA t8&5 lim
N→`

1

2aN (
m

^@x t
m

1Vm/t#@x t8

m
1Vm/t#&.

We calculate this average by making the replacement exp@i(ti ci(t)qi(t)#→(2aN)21(m^@xt
m
1Vm/t#@xt8

m
1Vm/t#& on the right-hand

side of Eq. ~6!. Repeated integration by parts over the w t
m shows that we may equivalently put exp@i(ti ci(t)qi(t)#

→(2aN)21(mŵt
mŵt8

m . Following the steps we also took in calculating ^A& now gives

lim
N→`

^A tA t8&5

1

2
e2F/aE Dw Dŵ Dx Dx̂ ŵ tŵ t8 expS i(

s
@ŵsws1 x̂sxs1wsxs# D

3expS 2

1

2 (
ss8

@wsws812i x̂sGss8ŵs81 x̂sCss8x̂s8# D

5

1

2

*Dŵ ŵ tŵ t8 expS 2

1

2
(ss8ŵs@~11G !TD21~11G !#ss8ŵs8D

*Dŵ expS 2

1

2
(ss8@~11G !TD21~11G !#ss8ŵs8D

5
1
2 @~11G !21D~11GT!21# tt8 . ~A2!

APPENDIX B: CONSEQUENCES OF ABSENCE
OF ANOMALOUS RESPONSE

Lemma 1. Consider two bounded sequences of real num-
bers A t and b t . Because b t is bounded, there exists a number
b such that limt→`(1/t)( t<t b t5b . Define at5( t<t A t ,
and assume that limt→` at5a . Then

lim
t→`

1

t (
t<t

(
t8<t

A t2t8b tt85ab .

Proof. Upon substituting t→t1t8 we find

1

t (
t<t

(
t8<t

A t2t8b t85
1

t (
t8<t

b t8 (
t<t2t8

A t5
1

t (
t<t

at2tb t .

The sequences $a% and $b% are bounded, so there exist num-
bers Ca and Cb such that ua tu,Ca and ub tu,Cb for all t
>0. The sequence $a% converges to a, so for any e.0 there
exists a K such that for all t.K ua t2au,e/3Cb . We now
choose M such that for all t.M u(1/t)( t<tb t2bu,e/3uau
and KCaCb /t,e/3. Then we find for all t.M

U1t (
t<t

at2tb t2abU
5U1t (

t5t2K

t

at2tb t1 (
t,t2K

at2tb t2abU
<U1t (

t5t2K

t

at2tb tU1U1t (
t,t2K

~at2t2a !b t

2aS b2

1

t (
t,t2K

b tD U
<

KC aCb

t
1U1t (

t,t2N
~at2t2a !b tU

1uauUb2

1

t (
t,t2K

b tU<e .

Hence the limit is as claimed. j

Lemma 2. Suppose Gst5G(s2t)PR, where G(t)50
for all t,0 and with limt→`( t<tG(t)5k , and suppose
limt→` t21( t<ts(t)5s . Then for all nPN

lim
t→`

1

t (
t51

t

(
t8

~Gn! tt8s~ t8!5kns .
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Proof. The proof proceeds by induction. For n50, the
statement is trivially true. Suppose now that it is true for all
n<m . Then

lim
t→`

1

t (
t51

t

(
t8

~Gm11! tt8s~ t8!

5 lim
t→`

1

t (
t51

t

(
t9<t

G~ t2t9! (
t8<t9

~Gm! t9t8s~ t8!.

The sequence b t5( t8<t(Gm) tt8s(t8) satisfies the conditions
of Lemma 1, application of which gives

lim
t→`

1

t (
t51

t

(
t8

~Gm11! tt8s~ t8!5kkms5km11s .

Hence the claim holds for m11, and by induction it is now
proved for all n. j
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