
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 9009–9026 PII: S0305-4470(01)22137-4

Supervised learning with restricted training sets:
a generating functional analysis

J A F Heimel and A C C Coolen

Department of Mathematics, King’s College London, The Strand, London WC2R 2LS, UK

Received 16 February 2001, in final form 8 June 2001
Published 12 October 2001
Online at stacks.iop.org/JPhysA/34/9009

Abstract
We study the dynamics of supervised on-line learning of realizable tasks in
feed-forward neural networks. We focus on the regime where the number of
examples used for training is proportional to the number of input channels N.
Using generating functional techniques from spin glass theory, we are able to
average over the composition of the training set and transform the problem
for N → ∞ to an effective single pattern system described completely by the
student autocovariance, the student–teacher overlap and the student response
function with exact closed equations. Our method applies to arbitrary learning
rules, i.e., not necessarily of a gradient-descent type. The resulting exact
macroscopic dynamical equations can be integrated without finite-size effects
up to any degree of accuracy, but their main value is in providing an exact and
simple starting point for analytical approximation schemes. Finally, we show
how, in the region of absent anomalous response and using the hypothesis that
(as in detailed balance systems) the short-time part of the various operators
can be transformed away, one can describe the stationary state of the network
succesfully by a set of coupled equations involving only four scalar order
parameters.

PACS numbers: 87.10.+e, 02.50.−r, 05.20.−y

1. Introduction

It is now a little more than ten years since studies of the dynamics of supervised learning in
artificial neural networks started appearing in the statistical physics literature. Early theoretical
studies focused on on-line learning using complete training sets where the probability of the
same example appearing twice during training was zero, e.g. [1–3]. This work enabled the
evaluation of properties like convergence speed, generalization ability and optimal learning
rates. However, such studies were still significantly removed from real-world scenarios. The
most serious restriction was that one had to assume the availability of an infinite amount of
training data, homogeneously distributed over the input space. In a recent article [4] it was
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shown that even for very simple inhomogeneity the generalization error is no longer self-
averaging and deterministic. The issue of repeating examples during training is technically
a much harder problem and has received much attention recently. Most of the work has
focused on simple or linear learning rules [5–7] or different kinds of approximations, such as
Fokker–Planck approaches [8–11] and Gaussian local field distributions [12]. Exact work on
non-linear learning rules has drawn heavily on techniques from the spin glass and disordered
systems community (for an early overview of these techniques, see e.g. [13]). The generating
functional technique was used to study the dynamics of Gibbs learning in a perceptron with
binary weights in [14, 15]. A dynamical version of the cavity method was employed in [16–18]
to study gradient-descent batch learning and the methods of dynamical replica theory were
applied to the problem of on-line learning in [19–22]. The on-line learning scenario in this
last sequence of papers is the one that we study here, but in the present paper we adapt the
generating functional method à la De Dominicis to deal with on-line learning. This paper
might be the first to present exact macroscopic equations for on-line learning of restricted
training sets for non-linear learning rules which are not of a gradient-descent type.

Precise definitions will be given in section 2, but the general set-up is the following. The
examples presented to the student perceptron are N-dimensional vectors chosen with equal
probability from a fixed training set �. The number of examples in � is p = αN. At each
presentation the student is given the teacher’s classification of the pattern. The student can
then decide to change its ‘program’, represented by the N-dimensional vector σ ∈ R

N , in
order to resemble more the teacher’s program τ ∈ R

N . The random choice of a pattern from
the training set makes the evolution of the student weight vector σ a stochastic process. In
section 3 we write down a generating function for all the possible paths ofσ. This function can
be averaged over all possible realizations of the training set � (a quenched disorder average).
At that point we will take the limit N to infinity, to find saddle-point equations for a set of five
order parameters and their conjugates. The reader who is mainly interested in results can skip
section 3 and go directly to section 4, where the equations are reduced to a single exact set
of three equations involving the student autocorrelationC(t, t ′) = σ(t) ·σ(t ′)/N , the student–
teacher overlap R(t) = σ(t) · τ/N and the student response function G(t, t ′). This set gives
a surprisingly simple and intuitive picture of the evolution of the order parameters and the
distribution of the local fields. From that point it is easy to establish links with earlier work on
infinite training sets, batch learning and linear learning rules. Numerical evidence is presented
showing that the present theory is in very good agreement with the simulations.

In section 5, the stationary state of a student with constant weight decay is studied. For the
stationary state one can split all the relevant order parameters into persistent and non-persistent
parts. If we keep only the persistent parts and the single-time non-persistent parts, we find a
closed set of equations containing just four scalar order parameters. The procedure is inspired
by a similar method applied to the solution of detailed balance spin glass dynamics where it
can be shown to be exact. Although the numerical evidence certainly seems to suggest that the
procedure yields the correct results, we cannot prove this fact rigorously here. At the moment,
it remains an interesting open question.

2. Definitions

We study on-line learning in a student perceptron characterized by a vector σ ∈ R
N . The

student classifies patterns ξ ∈ � ⊂ {−1,+1}N according to S(ξ) = sgn(σ · ξ). The student
tries to learn the task set by the teacher T (ξ) = sgn(τ · ξ) with τ ∈ R

N , i.e. we only
consider linear separable classifications. The components of the weight vectors of teacher
and student are assumed not to scale with N. The set � contains only p = αN examples,
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independently chosen with equal probability from {−1, +1}N. Patterns will be labelled by the
Greek index µ. At each iteration each pattern is equally likely to be chosen for presentation
to the student, independently of previous rounds. If at step m, pattern µ(m) is presented to
the learning student, the student’s weight vector is slightly adjusted to converge to the desired
classification according to a recipe of the general form

σ(m + 1) = σ(m) +
η√
N
ξµ(m)F

(
σ(m) · ξµ(m)

√
N

,
τ · ξµ(m)

√
N

)
. (1)

The speed of the evolution is set by the learning rate η. The function F(x, y) is the learning
rule. Popular learning rules are, e.g.

F(x, y) =




y − x linear
sgn(y) Hebb
sgn(y) − x adaline
sgn(y)�(−xy) perceptron
|x|sgn(y)�(−xy) adatron

(2)

where � is the stepfunction, �(x) = 1 for x � 0 and �(x) = 0 for x < 0. The first three learning
rules are all linear in x, while the last two only alter the student’s weights when student and
teacher disagree. We restrict ourselves to learning rules which only depend on the so-called
student and teacher local fields:

xµ = 1√
N
σ · ξµ yµ = 1√

N
τ · ξµ. (3)

A theoretical study of perceptrons can be useful for predicting learning times, for
evaluating different learning rules or for finding optimal learning rates. For this purpose
one is not so much interested in predicting the specific microscopic realizations of σ over
time, but rather in the number of errors the perceptron makes in the classification of the
training set (training error Et) and the number of errors in the classification of the complete
set of examples {−1, +1}N (generalization error Eg):

Et(σ) ≡ 〈�(−(σ · ξ)(τ · ξ))〉� = 1

p

∑
ξ∈�

�(−(σ · ξ)(τ · ξ)) (4)

Eg(σ) ≡ 〈�(−(σ · ξ)(τ · ξ))〉 = 1

2N

∑
ξ∈{−1,+1}N

�(−(σ · ξ)(τ · ξ)). (5)

Given σ, the generalization error is independent of the training set. It is in fact a standard
result in perceptron theory that this error is only dependent on the angle between student and
teacher vector, i.e. the norm of σ and its overlap with τ .

Eg(σ) = 1

π
arccos

(
R(σ)√
C(σ,σ)

)
. (6)

The microscopic evolution can be used to derive expressions for the evolution of the
macroscopic autocorrelation function C and the student–teacher overlap R. Taking on both
sides of equation (1) the inner product with τ/N leads to

R(m + 1) = R(m) +
η

N
yµ(m)F

(
xµ(m)(m), yµ(m)

)
(7)

while multiplying with σ(n)/N on both sides gives

C(m + 1, n) = C(m, n) +
η

N
xµ(m)(n)F

(
xµ(m)(m), yµ(m)

)
. (8)
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Finally, squaring both sides and summing over all channels gives the evolution of the squared
norm of the student weight vector

C(m + 1,m + 1) = C(m,m) +
2η

N
xµ(m)(m)F

(
xµ(m)(m), yµ(m)

)
+
η2

N
F

(
xµ(m)(m), yµ(m)

)2
. (9)

We see that these three equations depend only on the patterns via the local fields. The evolution
of the response function G is not so easily given in this way due to cross terms like ξ

µ

i ξ
µ

j

entering the calculations. Later in the paper we will see how to deal with this. We will also
give a more rigorous derivation of the continuum time limit of these equations, which were in
fact already derived formally in [20], but for illustration purposes we give a short derivation
at this point.

Consider the change in R after �N steps:

R(m + �N) = R(m) +
1

N

m+�N∑
m′=m

ηyµ(m′)F
(
xµ(m′)(m′), yµ(m′)

)
. (10)

If we express R in a rescaled time τ = m/N , we find

R(τ + �) − R(τ)

�
= 1

�N

m+�N∑
m′=m

ηyµ(m′)F
(
xµ(m′)(m′), yµ(m′)

)
. (11)

We now take the thermodynamic limit N just before sending � to 0. The probability of
selecting the same pattern twice within �N steps vanishes when � goes to 0. The patterns
are uncorrelated with each other (but not with σ). This has the effect that any particular xµ

does not change very much in �N steps unless it is itself selected. Taking the two limits in
the right order let us replace the sum over m′ by an average over the local fields of all patterns
in the training set:

dR(τ)

dτ
= η〈yF(x(τ ), y)〉. (12)

In a very similar way we find

∂C(τ, τ ′)
∂τ

= η〈x(τ ′)F (x(τ ), y)〉 (13)

dC(τ, τ )

dτ
= 2η〈x(τ)F (x(τ ), y)〉 + η2〈F(x(τ), y)2〉. (14)

Although the equations look remarkably simple, we have not dealt with the question of how
to construct the local field averages which appear. This will be done using the generating
functional formalism.

3. The generating functional

The random choice of a pattern µ(m) makes it more convenient to go to a description of an
ensemble of students with a distribution of weight vectors, Pm(σ), than to study the stochastic
evolution of σ directly. The microscopic dynamics of weight vectors at time m can be written
in the general form Pm+1(σ) = ∫

dσ′W(σ |σ′)Pm(σ
′), with the transition probabilities

W(σ |σ′) = 1

p

p∑
µ=1

δ

(
σ − σ′ − η√

N
ξµF

(
σ′ · ξµ√

N
,
τ · ξµ√

N

))
. (15)
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In order to simplify the following analysis, we first uncouple the continuum time limit
from the thermodynamic limit. We do this with the often applied procedure (see e.g. [11, 20])
of making the duration of each iteration step a random variable, such that the number of steps
that have been made up to time τ is given by a Poisson random variable with mean Nτ . This
allows one to switch for finite N to a probability distribution Pτ(σ) depending on the continuous
time τ . This distribution obeys a simple differential equation (see [11, 20] for details):

∂

∂τ
Pτ (σ) = N

∫
dσ′{W(σ |σ′) − δ(σ − σ′)}Pτ (σ

′). (16)

If we prescribe the local fields x(τ ) and y and the additional fields wµ(τ) = N−1/2σ̂ · ξµ for
all patterns, the evolution of the Fourier transform P̂ τ of Pτ becomes particularly simple

∂

∂τ
P̂ τ (σ̂) = L(x(τ ), y,w(τ ))P̂ τ (σ̂) (17)

where

L(x, y,w) = 1

α

∑
µ

{exp[−iηwµF(xµ, yµ)] − 1}. (18)

This can formally be integrated to

P̂ τ (σ̂) = P̂ τ0(σ̂) exp

[∫ τ

τ0

dτ ′L(x(τ ′), y,w(τ ′))
]
. (19)

We rediscretize time with small steps of size �. Later we will send � to zero, but this can
be done completely independently of the limit N → ∞. The discrete timesteps are labelled
by t = τ/�. We find P̂ t+1(σ̂) = P̂ t (σ̂) exp[�L(x(t), y,w(t)) + O(�2)]. An inverse Fourier
transform leads back to

Pt+1(σ) =
∫

dσ′W�(σ |σ′)Pt (σ
′) (20)

with a redefined transition rate W�:

W�(σ |σ′) =
∫

dσ̂

(2π)N
exp[iσ̂ · (σ − σ′) + �L(x(t), y,w(t))]. (21)

The probability for a student following a particular path can be expressed as

P(σ(t),σ(t − 1), . . . ,σ(0)) = W(σ(t)|σ(t − 1)) · · ·W(σ(�)|σ(0)) P0(σ(0)). (22)

This distribution contains all information of the learning process and can be conveniently
studied using its characteristic or moment generating function Z[φ] defined as

Z[ψ] =
〈

exp

[
i�

∑
t

∑
i

ψi(t)σi (t)

]〉

=
∫

DσDσ̂
∏
t

[dx(t)dw(t)] dy,[ y, x,w,σ] exp

[∑
t

i�ψ(t) ·σ(t)
]

× exp

[∑
t

iσ̂(t) · (σ(t + 1) − σ(t)) + �
∑
t

L(x(t), y,w(t))

]
(23)

where Dσ = ∏
t (dσ(t)/

√
2π). The local fields are self-consistently prescribed by the δ

functions confined to the function ,, which is given by

,[ y, x,w,σ] =
∏
µ

δ

[
yµ − τ · ξµ√

N

] ∏
t

δ

[
xµ(t) − σ(t) · ξµ√

N

]
δ

[
wµ(t) − σ̂(t) · ξµ√

N

]
.
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In the thermodynamic limit (N → ∞), all the macroscopic observables in this model are
self-averaging with respect to the realization of the training set. To avoid the difficulty of
choosing a typical training set, we can thus safely consider the disorder-averaged generating
function [Z]dis. The only term involving the actual patterns is ,. The quenched disorder
average of , is

[,]dis =
∫ ∏

t

[
dx̂(t)
(2π)p

dŵ(t)

(2π)p

]
dŷ

(2π)p

∏
µ

exp

[
iŷµyµ +

∑
t

ix̂µ(t)xµ(t) +
∑
t

iŵµ(t)wµ(t)

]

× 2−N
∑

ξµ∈{±1}N
exp

−i√
N
ξµ ·

[
ŷµτ +

∑
t

x̂µ(t)σ(t) +
∑
t

ŵµ(t)σ̂(t)

]
.

We see that the conjugate variables x̂ and ŵ will have to be of order � to ensure the existence
of the continuum time limit, when � goes to 0 and the number of steps in the summations will
grow as 1/�. Of the term on the second line, only the quadratic terms in τ , σ and σ̂ survive in
the thermodynamic limit. Near this limit we find that this term containing the training patterns
becomes

∏
µ,i

exp


− 1

2N

(
ŷµτi +

∑
t

x̂µ(t)σi(t) +
∑
t

ŵµ(t)σ̂i (t)

)2

 .

We assume that the initial probability distribution P0(σ) factorizes over sites. Full factorization
of the generating function over patterns and input channels can then be achieved if we introduce
the following order parameters and their conjugates via δ functions:

Rt = 1

N

∑
i

σi(t)τi rt = 1

N

∑
i

σ̂i (t)τi Ctt ′ = 1

N

∑
i

σi(t)σi (t
′)

ctt ′ = 1

N

∑
i

σ̂i (t)σ̂i (t
′) Ktt ′ = 1

N

∑
i

σi(t)σ̂i (t
′).

The generating function attains a form suitable for saddle-point integration:

[Z[ψ]]dis ∝
∫

· · · exp [N(0 + 1 + �)] . (24)

There are three distinct leading order contributions to the exponent. The first is a ‘book-
keeping’ term, linking the order parameters to their conjugates:

0 = iR̂ · R + ir̂ · r + i Tr[Ĉ
T
C + K̂

T
K + ĉT c]. (25)

Note that the existence of a continuum time limit again implies that the single time conjugate
variables R̂ and r̂ are actually of order � and the two time conjugate variables Ĉ, K̂ and ĉ are
of order �2. This, with the exception of the diagonal terms, may be of order �. Only in this
scaling, summations over τ/� time steps appearing in the generating function will remain
finite when the continuum time limit is taken. The second term reflects the coupled dynamics
of the local fields
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1 = 1

N

∑
µ

log
∫

dydŷ

2π
DxDx̂DwDŵ exp

[
iŵ ·w +

�

α

∑
t

(
e−iηwtF (xt ,y) − 1

)
+iŷ

(
y − θµ

y

)

+ ix̂ · (
x − θµ

x

) − 1

2
x̂Cx̂ − 1

2
ŷ2 − x̂Kŵ − ŷR · x̂ − 1

2
ŵcŵ − ŷr · ŵ

]
(26)

where we have added additional sources θx and θy to couple to x̂ and ŷ. These sources act as
biases of teacher and student. The third term describes the evolution of the now decoupled
weight components

� = 1

N

∑
i

log
∫

DσDσ̂P0i (σ0) exp
[ − iτiR̂ · σ − iτi r̂ · σ̂ − iσĈσ − iσ̂ ĉσ̂

(27)
− iσK̂σ̂ + iσ̂G−1

0 σ − iσ̂ · θi + iσ · ψi

]
where

[
G−1

0

]
tt ′ = δt+1,t ′ − δtt ′ and where we include an external driving force θ i(t) in the

system. With a modest amount of foresight we write Gtt ′ = −iKtt ′ . Upon taking derivatives
with respect to the generating fields {ψi(t), θi(t)}, we find at the relevant saddle-point:

Rt = lim
N→∞

1

N

∑
i

[〈σi(t)τi〉]dis

Ctt ′ = lim
N→∞

1

N

∑
i

[〈σi(t)σi (t
′)〉]dis

Gtt ′ = lim
N→∞

1

N

∑
i

∂

∂θi(t ′)
[〈σi(t)〉]dis .

Using the built-in normalization [Z(0)]dis = 1, we also find

rt = lim
N→∞

1

N

∑
i

∂

∂θi(t)
[〈τi〉]dis = 0

ctt ′ = lim
N→∞

1

N

∑
i

∂2

∂θi(t)∂θi(t ′)
[Z(0)]dis = 0.

If we perform the saddle-point integration, we find in addition that

iR̂t = − lim
N→∞

1

N

∑
µ

∂2

∂θ
µ
y ∂θ

µ
x (t)

[Z(0)]dis = 0

iĈtt ′ = − lim
N→∞

1

N

∑
µ

∂2

∂θx(t)∂θx(t ′)
[Z(0)]dis = 0.

At this point we can already simplify (or remove altogether) the generating fields
θi(t) = θt , θ

µ
x (t) = θxt , θ

µ
y (t) = θyt and ψi(t) = 0. The external fields θ x and θ y can

be interpreted as biases or thresholds of the student and teacher, respectively. Without loss
of generality we may set τ i = 1. The evolution of the local fields and the weight vector are
now linked only via the remaining non-zero order parameters. We proceed to evaluate the two
separate processes at the saddle-point.



9016 J A F Heimel and A C C Coolen

3.1. Pattern average 1

Focusing on the evaluation of the pattern average 1 we find that the terms involving w can be
interpreted as averages over a Poisson distribution∫

dwt

2π
exp

[
iŵtwt +

�

α

(
e−iηwtF (xt ,y) − 1

)]

=
∞∑

kt=0

∫
dwt

2π
exp

[
iŵtwt − iηktwtF (xt , y) − �

α

]
1

kt !

(
�

α

)kt

=
∞∑

kt=0

δ(ŵt − ηktF (xt , y))P(kt )

where P(k) is a Poisson distribution with average�/α. For�N � 1, P(k) gives the probability
that a specific pattern is presented k times to the student in the time interval�. The saddle-point
equations of the remaining non-zero order parameters are found to be

r̂ t = α
∂

∂θy
〈ft 〉1 2iĉtt ′ = α〈ftft ′ 〉1 iĜtt ′ = −α

∂

∂θxt
〈ft ′ 〉1 (28)

with the shorthand ft = ηktF (xt , y). The average 〈·〉1 uses the measure implied by
equation (26). Performing the disorder average turns the ŷ integral into a Gaussian integral.
Evaluating this integration yields

1 = α log
∫

dy√
2π

DxDx̂
∏
t


∑

kt

P(kt )




× exp

[
−1

2
(y − θy)

2 − 1

2
x̂Dx̂ + ix̂ · (x − θx − Gf − R(y − θy))

]
(29)

where we introduce the student autocovariance Dtt ′ = Ctt ′ − RtRt ′ . We note the operator
identity ∂/∂θy = y − R · ∂/∂θx , which in turn implies using (28) that

r̂ t = α〈yft 〉1 +
∑
t ′

iĜT
tt ′Rt ′ . (30)

3.2. Weight component average �

The saddle-point equations involving the weight vectors are

Rt = 〈σt 〉� Ctt ′ = 〈σtσt ′ 〉� Gtt ′ = ∂

∂θt ′
〈σt 〉� (31)

where 〈·〉� is an average with the measure induced by (27). This measure can be generated
by the stochastic process: −r̂ + iĜT σ + G−1

0 σ − θ − ρ = 0, where ρt is a Gaussian noise
with zero mean and covariance 〈ρtρt ′ 〉 = 7tt ′ ≡ 2iĉtt ′ . From this process, we find a simple
expression for σ (upon setting θ = 0)

σ = G(r̂ + ρ) (32)

with the response, student–teacher overlap and student autocovariance given by

G = [
G−1

0 + iĜT
]−1

R = Gr̂ D = G7GT . (33)
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4. Effective single pattern process

Upon combining the results of the previous two paragraphs, we find a closed set of exact
equations relating the evolution of R, D and G to the evolution of the local field distribution
implied by the measure in (29). Setting θ y = 0 in this equation, we find that the distribution
is generated by the stochastic process for a student-pattern overlap

xt = Rty +
∑
t ′

Gtt ′ft ′ + zt + θxt (34)

where y and zt are independent Gaussian random variables with zero mean and variances
〈y2 〉 = 1 and 〈zt zt ′ 〉 = Dtt ′ . In general xt will depend on previous values of x via the term
[Gf ]t = η

∑
t ′ Gtt ′kt ′F(xt ′, y). The conjugate response function can be given in terms of z

after partial integration of the third part of equation (28) as

iĜT
tt ′ = −α

〈
ft

∑
s

D−1
t ′s zs

〉
(35)

where now 〈·〉 denotes the Gaussian averages over y and all zt ’s.
The evolution of the order parameters is given using the bare response G0. To ensure

that the students’ weight distribution will eventually reach a stationary state, we let the
weights decay with rate γ . The bare response then takes the form

[
G−1

0

]
tt ′ = δt+1,t ′ − λδtt ′ ,

where λ ≡ 1 −�γ . In the limit of � → 0, this corresponds to [G0]tt ′ = �(t − t ′ −�/2) exp
[−�γ (t − t ′ − 1)]. Using equation (33) along with the relation (30), we find[

G−1
0 R

]
t
= r̂ t −

∑
s

iĜT
tsRs = α〈yft 〉. (36)

The combination of equations (33) and (35) gives the evolution of D[
G−1

0 D
]
tt ′ = α〈ft [Gf + z]t ′ 〉 = α〈ft (xt ′ − Rt ′y)〉 (37)

where we set θ x to 0. For the evolution of the diagonal terms of D we use the first and third
relations in equation (33) and a little algebra to find

Dt+1,t+1 = λ2Dtt + 7tt − 2[iĜT G7]tt + [iĜTG7GT iĜ]tt + 2λ[G7]tt − 2λ[iĜT G7GT ]tt .

(38)

Now recall that the non-diagonal terms of Ĝ and 7 (proportional to ĉ) are of the order �2,
while the number of steps in the summation will be τ/� for the proper continuum time τ . The
diagonal terms of the two conjugate time order parameters are of order � or smaller. Using
this knowledge we can determine the order of all the terms occuring in this last equation:

7tt = O(�) λ[G7]�� = O(�) λ[i∧GT G7GT ]�� = O(�)

[iĜT G7]tt = O(�∈) [i∧GT G7GT i∧G]�� = O(�∈).

We see that in the continuum time limit, where � goes to 0, only the terms in the first line
survive, giving

Dt+1,t+1 = λ2Dtt + 2λ[G7]tt − 2λ[iĜTG7GT ]tt + 7tt + O(�2)

= λ2Dtt + 2λα〈ft (xt − yRt )〉 + α
〈
f 2
t

〉
+ O(�2).

In terms of Qt ≡ Dtt − R2
t this leads to

Qt+1 = λ2Qt + 2λα〈ft xt〉 + α
〈
f 2
t

〉
+ O(�2). (39)
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Figure 1. The evolution of the generalization (upper lines with diamonds) and training error (lower
lines with squares) for the perceptron (left) and adatron (right) learning rules for various training
set sizes. The lines correspond to (generalization error: top to bottom, training error: bottom to
top) α = 0.25, 0.5, 1, 2, 4. The markers correspond to single run simulations (N = 6000) with no
decay and learning rates η = 1 (perceptron) and η = 1.5 (adatron). The solid lines are the results
of numerical calculations of the effective single pattern process with M = 20 000 and time step
� = 0.05.

We see that in the continuum time limit these macroscopic equations indeed coincide with the
evolution equations derived in section 2. Finally, the generating functional formalism also al-
lows us to determine the evolution of the response function. The combination of equations (33)
and (28) gives [

G−1
0 G

]
tt ′ = Itt ′ + α

∑
s

〈
∂ft

∂θxs

〉
Gst ′ . (40)

The generalization error is a direct function of all these order parameters, while the
training error is a slave of the local field distribution governed by them:

Eg(t) = 1

π
arccos

(
Rt√
Qt

)
Et(t) = 〈�(−xty)〉. (41)

The evolution of the order parameters can be calculated numerically by a Monte Carlo
procedure similar to the single-spin procedure outlined in [23]. The general idea is to follow
the evolution of M pattern overlaps. For each of these patterns, one generates at time t = 0
a teacher overlap y from the standard normal distribution. Time is discretized with unit �.
At each time step and for each pattern, one generates the Gaussian noise zt , correlated with
the previous noise values zt ′ for that particular pattern and a Poissonian random variable kt.
Averages over all patterns are Monte Carlo implementations of the averages occurring in the
evolution equations for D, R and G. By increasing M and decreasing � the evolution of the
N → ∞-perceptron can be calculated to arbitrary precision. This is shown for various α in
figure 1 with M = 20 000 and � = 0.05. The figures illustrate that the agreement of the theory
with the simulations is very good.

4.1. Batch learning

So far, we have treated only the case of on-line learning. This is the most widely applied
learning scenario, but much of the analytical work on learning with restricted training sets has
been devoted to off-line or batch learning. In batch learning one first calculates the average
effect of learning (a large sample of ) the entire training set, before making a weight update.
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For small learning rates, batch and on-line learning ought to generate the same macroscopic
flow. For completeness we discuss here what changes when we switch from an on-line to a
batch scenario. The effect on the theory as presented above is the disappearance of the extra
noise term

〈
f 2
t

〉
in the evolution of Q in equation (39) and the replacement of the Poisson

variable kt by its average �/α. The intuition behind the first change is that big changes in the
student weight vector can no longer take place after a single pattern is presented; the weights
undergo a much smoother evolution due to the averaging of the update over all patterns. As a
result of the second change, the student training pattern overlap becomes

xt = Rty + zt + η
�

α

∑
s

GtsF (xs, y). (42)

This equation was derived earlier in the context of gradient-descent batch learning by Wong
et al using an elegant application of the dynamical cavity method [18]. Again, the reason for
the change in a training pattern overlap xt is that instead of big changes when kt times that
particular pattern is presented to the student in time interval (�t,�(t + 1)), now during an
interval, xt feels the average effect of the influence of the pattern. These are the only changes
necessary in the present analysis when switching from on-line to batch learning.

4.2. Linear learning rules

The average occurring in the evolution of the response function G in (40) can be explicitly
calculated if the student uses a learning rule that is linear in x, e.g. the linear, Hebbian or
adaline rules. For these types of rules of the form F(x, y) = g(y) − cx, we find

∂ft

∂xt ′
= −ηckt

(
δtt ′ +

∑
s

Gts

∂fs

∂xt ′

)
. (43)

The causality of G allows us to perform the Poisson averages and a little matrix algebra leads
to

G−1
0 G = I − �cη

[
I + cη

�

α
G

]−1

G. (44)

The resulting response is translation invariant, i.e. Gtt ′ = G(�(t − t ′)) for t � t ′. The on-line
response found here for linear learning rules agrees with the batch results found for the linear
rule in [5] and the adaline rule in [17]. The Fourier transform of the previous relation reads

G−1(ω) = γ − iω + cη
1

1 + cη/αG(ω)
. (45)

This equation is analysed in [5]. For γ = 0 and for c �= 0, a transition in the behaviour of the
response takes place at αc = 1. This position is identical for on-line and off-line learning. The
nature of this transition is easily understood. Without decay, the evolution of the weight vector
is confined to the linear subspace spanned by the patterns in the training set. Below αc = 1,
the random patterns cannot span the whole N-dimensional space, resulting in a non-decaying
part of the response function. This argument is valid for general rules without decay.

The student overlap with a particular pattern can also be written in a more explicit way:

x = [I + cηGK]−1 (Ry + z + ηg(y)Gk) Ktt ′ ≡ ktδtt ′ . (46)

The final results are rather cumbersome, but all the averages appearing in the evolution of
the order parameters involving k and z can be calculated without any problems. The only
remaining integrals are of the form 〈g(y)y〉 and 〈g(y)2〉 with the standard Gaussian measure.
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4.3. Infinite training sets

To compare our results to the well-known unrestricted training set results, we take the limit
α → ∞. In this case the probability of repeating an example is zero. This is reflected in the
fact that 〈k〉 → 0 as α → ∞. Given y, the local fields x are random variables given by

xt = yRt + zt (47)

or, equivalently, xt is a Gaussian random variable with mean yRt and covariance Dtt′. The effects
of the retarded self-interaction caused by G thus completely vanish. If we go to a continuum
time description, we recover equations found in, for example, [2, 24]. The evolution of the
student–teacher overlap and the student self-overlap is given by

dR

dt
= −γR + η〈yF(x, y)〉t (48)

dQ

dt
= −2γQ + 2η〈xF(x, y)〉t + η2〈F(x, y)2〉t (49)

with the Gaussian single-time average defined by 〈x〉t = 0, 〈y〉t = 0, 〈x2〉t = Qt , 〈y2〉t = 1,
〈xy〉t = Rt .

5. Stationary state

Many learning rules will not reach a stationary state that is independent of the initial conditions,
as soon as weight decay is absent. Weight decay, or another type of constraint, may also be
necessary to bound the length of the student vector. In the Hebbian case, for example, the
student weights keep on growing in the direction of the perceived teacher, regardless of the
size of the training error. In order for the student to reach a stationary state, we assume that
the weight decay γ is large enough to bound R and C and that the integrated response or
susceptibility g is finite:

g ≡ lim
t→∞�

∑
t ′

Gtt ′ < ∞. (50)

This condition is known in the disordered systems literature as absence of anomalous response.
We also assume that for sufficiently large t the order parameters become time-translation
invariant: Rt = R, Gt+τ,t = Gτ , Dt+τ,t = Dτ . These assumptions are related to the replica
symmetry ansatz in the replica equilibrium analyses [13]. We split the covariance kernel Dt

into a persistent part d = limt→∞ Dt and a non-persistent part D̃t = Dt − d . If d exists, then

d = D̄ ≡ lim
T→∞

1

T

T∑
t=0

Dt .

Given time-translation invariance, one derives from equations (36) and (37) that

R = η

γ
〈yF(x, y)〉 (51)

d = lim
τ→∞ lim

t→∞
η

γ
〈F(xt+τ , y)(xt − yR)〉 = η

γ
〈F̄ (x̄ − yR)〉. (52)

An earlier relation found involving the covariance (33) now yields

d = αG〈ff T 〉GT = η2g2

α
〈F̄ 2〉 (53)

while the stationary value of Q can be found from (39):

Q = η

γ
〈F(x, y)x〉 +

η2

2γ
〈F(x, y)2〉. (54)
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All the averages either involve a single time or two infinitely separated distant times. We
lack an explicit expression for the single-time probability distribution of xt. The probability
of xt is related to realizations of x at previous times via the response function G. This makes
the evaluation of the averages as difficult as solving the dynamical equations themselves. The
same problem exists in the field of (Ising) spin glasses and recurrent neural networks. In
those cases where the stationary state is in detailed balance (e.g. when the dynamics are of
gradient-descent type and the systems feel a Gaussian white noise) a fluctuation dissipation
theorem (FDT) connects the correlation C and the response G. It is known for such systems that
when calculating the persistent and the single-time parts of the correlation and the integrated
response, the non-persistent parts can be chosen arbitrarily as long as the FDT is obeyed.
In particular one can set them to zero and take only the persistent parts and the integrated
response into account. Although there are large differences between the learning perceptron
discussed here and the aforementioned spin systems (for one, the learning rule F does not have
to be a gradient), we assume that this decoupling property of persistent from non-persistent
parts still holds1. We replace the stationary distribution of x generated by equation (34) by a
distribution generated by a stochastic relation containing only the integrated response g and
random variables described by the persistent part of the covariance matrix D, the single-time
correlation Q and the student–teacher overlap R

xt = yR + z + z̃t +
η

α
gF̄ (55)

where y, z and z̃t are all independent Gaussian random variables with zero mean and
covariances 〈y2〉 = 1, 〈z2〉 = d and 〈z̃t z̃t ′ 〉 = (Q − R2 − d)δtt ′ . The average learning
term F̄ for a specific pattern with a certain (y, z), can be expressed self-consistently as

F̄ yz ≡ lim
T→∞

1

T

∑
t<T

F (xt , y) =
∫

dz̃ p(z̃)F
(
yR + z + z̃ +

ηg

α
F̄ yz, y

)
. (56)

For Hebbian learning one has F̄ = sgn(y), but in general (56) will be a transcendental
equation, so one has to revert to numerical methods to solve it. Once F̄ can be found for any
point (y, z), the remaining two independent Gaussian integrals over y and z can be evaluated
to close equations (51)–(54). The remaining closed set can be solved numerically. Results for
Hebbian and perceptron learning rules and various training set sizes are presented in figure 2.
For the perceptron rule, the results shown in figure 3 compare Eg and Et for different decay
strengths. Perceptron results are independent of η. The theoretical predictions seem to be
in almost perfect agreement with the simulations. Although no adatron results are shown,
we expect that the proposed procedure is equally valid for this latter rule. Our method of
calculation is valid only when G is time-translation invariant and the integrated response is
bounded. For this to happen, we need the presence of a weight decay. The complication is
that any decay, however small, will cause the adatron student weight vector to vanish. An
alternative way of ensuring that the student ensemble reaches a stationary state that does not
exhibit this problem is by constraining σ to a sphere. This can be implemented by choosing
γt ∝ (Qt − 1). However, the adatron rule yields zero training error in this set-up. This causes
other problems in numerically evaluating the stationary state equations.

5.1. Distribution of local fields

As seen earlier, an important simplifying effect of the limit α → ∞ is to render the local
fields x and y Gaussian. This happens irrespective of the learning rule involved. As soon as

1 Note that a rigorous proof would first require the derivation of a non-equilibrium generalization of FDT theorems.
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Figure 2. Stationary generalization (upper line) and training error (lower line) for Hebbian (left)
and perceptron (right) learning rules. Learning rate η = 1 and decay γ = 0.1. Markers are
simulation results of a single run with N = 6000 input channels. Solid lines are theoretical
predictions obtained under the assumptions of section 5.
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Figure 3. Stationary generalization (upper line) and training error (lower line) for perceptron
learning rule with various decay rates γ . Training set size α = 4. The data points are simulation
results of a single run with N = 6000 input channels. The curves are theoretical predictions
obtained under the assumptions of section 5.

α < ∞, the effect of the extra term Gf in equation (55) sets in and the Gaussian form of the
distribution evaporates for non-linear rules. The non-Gaussian form of the joint local field
distribution has been discussed at length in [20], but equation (55) gives an intuitive idea of
the origin of the deviations reported there.

For a Hebbian learning rule, F(x, y) = sgn(y), the conditional distribution p(x | y)
remains Gaussian with variance D, but will be shifted away from the mean yR by the amount
ηg sgn(y)/α. An example with α = 1 and γ = 0.1 is shown in figure 4(middle). For the
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Figure 4. Stationary local field distributions p(x, y) for an infinite (α = ∞) training set after
perceptron learning (top), and two finite (α = 1) training sets after Hebbian learning (middle),
or perceptron learning (bottom). The left side has simulation results, the right side contains
theoretical predictions in the form of contour plots. The infinite training set yields a joint Gaussian
distribution, the Hebbian rule gives only a conditionally Gaussian p(x | y) and the perceptron rule
deviates even further from the Gaussian shape. Learning rates are η = 1 and decay coefficients are
γ = 0.1 in all three graphs.
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Figure 5. (a) The relationship between F̄ (see equation (57)) and z for y = 1 (upper line) and y =
−1 (lower line) for the stationary state of a perceptron with α = 1 and γ = 0.1. The width of the
sloping part is close to ηg/α, the abcissas are near −yR. (b) The time average of xt as a function of
z, given y = 1. The abcissas of the thin straight lines are near −yR − ηg/α and −yR. Due to the
Gaussian measure of z centred at the origin, the part close to the x-axis is the main contribution.

perceptron learning rule, this is no longer true. The random variables y and z are independently
distributed Gaussian variables. From (56) we find that

F̄ = 1

2
sgn(y) − 1

2
erf

(
yR + z + ηg

α
F̄√

2(D − d)

)
. (57)

Samples of the (y, z) statistics for α = 1 and γ = 0.1 of F̄ as a function of z are shown in
figure 5(a) for y < 0 (top) and y > 0 (bottom). The width of the sloping segment is ηg/α, while
the size of

√
D − d determines the rounding at the edges. The value of x̄ corresponding to

y = 1 as a function of the Gaussian disorder z is drawn in figure 5(b). For y positive and roughly
z > −yR, one has x̄ = yR + z, whereas for z < −yR − ηg/α one finds x̄ = yR + z + ηg/α.
For z in the range −yR− ηg/α < z < −yR, we find x̄ ≈ 0. In this particular example (using
the same values for the order parameters as the graphs shown in figure 4(c))

√
d ≈ 0.27 so that

the Gaussian measure confines z close to the origin. Thus the resulting local field distribution
is distinctly non-Gaussian as shown in figure 4(c).

6. Conclusion

In this paper, we have studied the statics and dynamics of an ensemble of students learning
on-line the classification of a large number of examples. This problem boils down to solving
a large number of coupled stochastic difference equations, each corresponding to a single
input channel. The situation is complicated by the existence of disorder in the form of the
composition of the training set. Using the generating function method we have transformed
this Markovian system of N coupled equations in the limit of N → ∞ into an effective single
pattern process. The price paid for this reduction is that the new process has noise which is
correlated in time and the presence of a retarded self-interaction in the system, which make the
dynamics non-Markovian. In principle, it is possible to calculate the evolution of the system
analytically, but in general it will be impossible to pursue this after the very first few time
steps. However, the process can be solved numerically up to an arbitrary precision.

Our calculation provides a solid basis for the further analytical study of linear rules. For
non-linear rules the importance of our exact macroscopic dynamical equations is mainly in
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the insight they can provide into the behaviour of different learning rules and the possibility
they create to study and solve stationary states of both on-line and batch, gradient and non-
gradient learning. Until now, the stationary states of these kinds of learning processes have
only been directly accessable with tools from equilibrium statistical mechanics, requiring
detailed balance. This confined the analyses to batch gradient-descent learning. This
restriction has now been lifted. From our macroscopic evolution equations we can extract
the stationary state equations very easily if we assume time-translation invariance and the
absence of anomalous response. We have not yet addressed the issue where this is likely
to hold for on-line learning. To reduce the time-dependent order parameters such as the
student autocorrelation and the student response to a finite set of scalar order parameters,
we apply a method we know from similar spin-glass problems based on the detachment of
single-time and persistent order parameters from the non-persistent ones. The procedure
consists of removing all non-persistent parts of the order parameters (except for the single-
time quantities), retaining only a small closed set of equations containing just four (Q, R, d, g)
scalar macroscopic order parameters. Whether this last procedure is indeed exact, remains to
be seen and will be the subject of a future study, but the numerical evidence clearly suggests
that the underlying assumption holds.
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