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Dynamics of the batch minority game with inhomogeneous decision noise
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We study the dynamics of a version of the batch minority game, with random external information and with
different types of inhomogeneous decision nojadditive and multiplicativg using generating functional
techniques da De Dominicis. The control parameters in this model are the ratigp/N of the numbep of
possible values for the external information over the nunibef trading agents, and the statistical properties
of the agents’ decision noise parameters. The presence of decision noise is found to have the general effect of
damping macroscopic oscillations, which explains why in certain parameter regions it can effectively reduce
the market volatility, as observed in earlier studies. In the It we (i) solve the first few time steps of
the dynamicgfor any «), (ii) calculate the locatiom of the phase transitiofsignaling the onset of anoma-
lous response and(iii) solve the statics for> .. We find thate, is not sensitive to additive decision noise,
but we arrive at nontrivial phase diagrams in the case of multiplicative noise. Our theoretical results find
excellent confirmation in numerical simulations.
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I. INTRODUCTION the sameinformation (whether sensible or otherwiseThis
led to a considerable simplification of theoretical approaches
One of the more recent application domains of equilib-to the MG, since it reduced the process to a Markovian one.
rium and nonequilibrium statistical mechanics is the analysi#\ further generalization of the game was the introduction of
of simplified models describing large markets of competingagents’ decision noisg6], which was shown not only to
traders(or agents One such model, which in spite of its improve worse than random behavior but also, more surpris-
apparent simplicity was found to exhibit highly nontrivial ingly, to be able to make it better than random for a.*
behavior and has, therefore, attracted much attention, is thehe study{6] was followed by a number of papers aiming to
so-called minority gaméMG) [1,2], which is a variation on  develop a solvable statistical-mechanical theory, either by
the so-called El-Farol bar problef8], which mimics, in a  using decision noise to “regularize” the stochastic equations
highly idealized fashion, a market of speculators attemptingand replace these by deterministic otfieiowed by an equi-
to profit by buying when most others wish to sell or selling librium analysis of the ergodic regime, built on the construc-
when others wish to buy, without individual knowledge of tion and exploitation of a Lyapunov functipf10,11], or by
their fellows but only of their collective consequences andconcentrating further on analysis of the stochastic equations
external information available to all. An extensive overview themselveq12]. Since the MG process does not obey de-
of the literature on the MG and its many variations and ex-ailed balance, such studi¢which also involved different
tensions can be found [#]. The striking feature of the MG, implementations of the decision nojs@roved to be hard,
clearly observed in numerical simulations, is the nontrivialand their results partly controversidl3,14 (especially with
dependence of the market volatilifyneasuring global fluc- regard to the questions of whether and when the stochastic
tuationg on the dimensionality of the information supplied MG equations can be replaced by suitable deterministic
to the agentgwhich is defined as the relative numberof ones.
different values which the information can takEor largea More recently, in[15] the analysis of the MG was ap-
the volatility approaches the value corresponding to randomroached from a different angle: all problems and debates
trading, and the system is ergodic. Ads reduced, the vola- regarding microscopic determinism were simply avoided by
tility is also found to decrease beneath random, which ise-defining the MG dynamics directly in the form of discrete-
indicative of a more efficient market, where agents haveime deterministic equations, without decision noiee so-
“learned” to improve the effectiveness of their selection of called “batch minority game}f. This allowed for an exact
trading strategies. A further decreasecoWill at some criti-  solution of the model using generating functional techniques
cal pointe, force the system to undergo a phase transition ta la De Dominicis[16], which was found to be in excellent
a highly nonergodic regime, where both a high-volatility agreement with numerical simulations, and whidbe to it's
state and a low-volatility state can emerge, dependent odynamical natureeven applied to the nonergodic regime.
initial conditions(this was only appreciated lajer The present study, which can be regarded as a natural fol-
In the original minority game, the information supplied to lowup on[15], achieves the following objectives. We gener-
the agents consisted of the actual history of the market. How-
ever, it was soon realizeld] that the dynamics of the MG
remains largely unaltered if, instead of the true history of the 'Using a phenomenological theory for the volatility, based on so-
market, random information is supplied to the agents; givertalled “crowd-anticrowd” cancellation§7], this effect was later
a, the only relevant condition is that all agents must be givemartially explained ir{8,9].
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alize the “thermal minority game” such as to allow different s;(1)=sgrig;(l)], that is Ran=wi+si(1)&, and the evo-
agents to have different levels of decision noise. This introy tion of the difference will Inow be given by

duces inhomogeneity into the agent population, as in, e.g.,

[9], which leads to interesting new phenomena and phase 1

diagrams. We generalize and apply tle&ac) formalism of ql+1)=q(h— g0 Qe+ —3 &0s1)|, (2
[15] (which was developed for the deterministic M@ the YN 7]

case of having inhomogeneous decision noise, within the . 12 aN
context of the discrete-time deterministitbatch”) equa-  With @=N"""%;w;e R*".

tions. All our theoretical results are shown to find excellent N the so-called thermal minority gani6,12}, the deter-
confirmation in extensive numerical simulations. m'”'SF'C deg:lSlon rulesj.(l)zsgr[qj(.l)] Is replaced by a sto-
chastic recipe. Two different choices were proposed.6ln

the probability of the choice;(I)=*+1 was taken propor-
Il. MODEL DEFINITIONS tional to[ 1¥e?4()]~1 whereas if{12] also the alternative
choice[ 17 e# 5940111 was considered; as we shall show
later, these are, respectively, examples of additive and mul-
tiplicative noise. In both cases the stochasticity is param-
etrized by a single control parametge=T 1, the “inverse
temperature.” In both cases a nonzdravas shown in simu-
Sations to lead to a reduction in the volatility far< e« , to a
value lower than that for purely random decision choices.
For a> «, the additive noise choice was shown to have no
consequence for the long-time volatility behav|d2-14,
reducing to the noiseless value, whereas multiplicative noise
still had an effect(increasing the volatility[12].

The minority game involvedl agents, labeled with Latin
indicesi, j,k, etc. At each round of the game, all agents act
on the basis of the same piece of external informatigi.

In the original mode[1] the history of the actual market was
used as the information given to the agents. In view of th
observation irf5] that random information is equally effica-
cious, we consider here that at each roliritie agents are
given the informatiori (1) =1y, where for each the label
u(l) is chosen randomly and independently frgms oN
possible values, i.ey(l) e{1, ... @N}. To determine how

to convert t_he externa! information into a trading_ decision, Here we generalize this idea further by allowing different
each agent has at his or her dispos® strategiesRia  yragers to have different levels of stochasticity in their deci-
=(Ria, - Rz e{-1,14"% ae{l,... S}. Each compo-  gjon making(see also[9], where the MG with two such
nent R is selected randomly and independently fromjeyels was studied We will consider decision noise of the
{—1,1} before the start of the game, with uniform probabili- general form
ties, and remains fixed throughout the game. The strategies
introduce quenched disorder into the model. Each strategy sj(l)=cr[qj(l),zj(l)|Tj], 3)
R;, of every agent is given an initial valuation or point
scorep;,(0). In thedeterministic version of the game, given in which thez(l) are independent and zero-average random
a choicew(l) made for the information presented at round Numbers, described by some symmetric distributi(z)
every ageni selects the strategy which for tradehas the Which is normalized according tgdz P(z)=[dzP(z)z?
highest valuation at that point in time, i.e., the strategy with=1. TE? fun.ctiorkr[ql,zl'll'] e{- Lli is chosen 'E? ir;)terpolate
label 3;(1) = arg maxp,(1), and subsequently makes a binary SMOOthly via a single ~control - parametef between
bid b»(ll())=R’f-(% T)qr?:((r)escmeai totalqbid " stagd is de- ” o1q.2|0]=sgri] for T=0 ando{q.z/*]=*1 (randomly

: ia;(1) " with equal probabilitiesfor T=o0, so thatT provides a mea-
fined asA(1)=N""2S;b;(I). Each agent subsequently up- sure of the degree of stochasticity in the traders’ decision
dates the payoff values of each of his or her strategies  making (with random choice in the casg=0). Typical ex-

the basis of comparing the bid which would have resultecamples are additive and multiplicative noise definitions such
from playing that strategy with the actual outcome: as

D1 +1) = pia(1) — REOA(I). B 0[q,z|T]=sgrig+Tz], additive, (4)
0[q,Z|T]=sgriq] sgril+Tz], multiplicative. (5)
The minus sign in this expression ensures that strategies that

would have produced a minority decision are rewarded!n the first casé4) the noise has the potential to be overruled
Since the qualitative behavior of the market fluctuations wasy the so-called “frozen” agentgl7], who haveq;(t)~q;t
found to be very much the same for all nonextensive numfor t— [13—15. In the second case the decision noise will
bers of strategies per agent larger than ghé], we restrict  even retain its effect for frozen ageni$ they exish. The
our discussion to th&=2 model, where the equations can above definitions represent situations, where Tor-0, a

be simplified upon introducing for each agent the instantatraderi need not always use his or her “best” strategy; for
neous difference between the two strategy valuatigp) T;— 0 we revert back to the deterministic model. The impact
=[pir(1)—p;2(1)]/2, as well as the average strategy of the multiplicative noisg5) can be characterized by the
=(Rj1+R»)/2 and the difference between the strategies monotonic function

=(Ry;—Rj2)/2. The actually selected strategy in rounchn
now be written explicitly as a function of a binary variable
s(I)==1, which in the original model takes the value

)\(T)=f dzP(z)sgn1+Tz], (6)
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with N(0)=1 and\(«)=0. For example, for a Gaussian _ 1 1 )
P(z) one has\(T)=erf[1//2T]. The two versions of the ﬂn':<5 E _<B 2 At’> > '
minority game studied ifi6,12] correspond to the form@t) K . 2l
and (5) with P(z)=3K[1—tant?(K2)] andT;=T for all i.

There has been much discussion on the derivation of the (12
“correct” continuous microdynamictsee, e.g.[12—-14,19).
Here we circumvent that controversy and debate by directly
employing a generating functional methftb] for the dy-  Which measures the temporal correlations of the market fluc-
namics and by discussing the “batch” version of the problemtuations. Note that{=E,. In the case where the average
[15] from the outset, rather than the original “on-line” ver- bid (A) is zero(as in the present modekhe volatility mea-
sion. In the batch version, rather than modifying g}  sures the efficiency of the market.
after every observation of an individual piece of external
information, they are modified according to theerageef-
fect of the possible choices for the external information: Ill. GENERATING FUNCTIONAL ANALYSIS

1
A"[LL_<BE AtV>
v ya

The canonical tool to deal with the dynamics of the
present problem is generating functional analysit ée
Dominicis [16], which allows one to carry out the disorder

(7 average(here the average over all strategiend take the
N—oo limit exactly. The final result of the analysis is a set of
giving closed equations, which can be interpreted as describing the
dynamics of an effective “single agen{’16,21]. Due to the
disorder in the process, this single agent will acquire an ef-
q(t+1)=qi(t)—h—> J;0lq;(),z(D[T;], B  fective “memory,” i.e., he or she will evolve according to a
! nontrivial non-Markovian stochastic process. Here we will
1 follow closely the steps taken ifl5], and we refer to the
where Jij=2N‘1§i-§j and hj=2N"2¢-Q. The specific latter paper for full details of the calculation. In contrast to
choice of time scaling in Eq8) has been made for later the situation in[15], for the present noisy version of the
convenience. The batch dynami® has the advantage of game one finds a microscopic transition probability density
being sufficiently simple and transparent to allow for aoperatorW(q|q’):
straightforward exact dynamical solution of the model, using
generating functional techniquésb]. The proces$8) is not
exactly equivalent to Eq.2), not even forN— (see[19] f

ai(l+1)=qi(1)— E &

wwi—E s |,

for the generating functional analysis of the on-line dynam- W(q|q') =

ics and its relation to the batch alternadivéout it does

present qualitatively similar featur¢2]. .
The magnitude of the market fluctuations, or volatility, is X < ex;{z iqi( —qi +h;+ 2 Ji;s J)

given by :

(2mN

),

(13

i) 3e o

M
with the short hand = o{q; ,z|T;]. The moment generat-

1 ing functional for a stochastic process of the present type is
whereA*=N"23 [ wl'+s;¢] and wherd . . .}, denotes an  defined as
average over the random numbées;. One easily derives

VAR | u 12 Z[¢]=<exr{i22¢i<t>qi(t)}>
B3] w3 @ o0 2
(10)

- [ T tdaowcart+ Dlao)] pefa0)]
1 1 1 1
<p % (A%) >Z=§+m{2 hi<si>z+§i21_ Jij(sis)):

xex;{ig Z. lﬂi(t)Qi(t)}- (14)
+O(N~2), (11

Purely random trading corresponds(Qr»*lE A*y,=0 and Derivation of the generating functional with respect to the

o?=1. Following [15] we also define the volatlllty matrix conjugate variableg generates all moments qfat arbitrary

—
=

Hipr times. Upon introducing the two shorthands:
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w#=£2 qi(t)er, x#=£

N N Z s(tg, (15

as well asDqg=TI;[dq;(t)/y2m], Dw=II,[dw/\27],
and Dx=11,,[dx/\27r] (with similar definitions forDg,

Dw, and Dx, respectively, the generating functional takes
the following form:

Z[zp]:f DwDwDx Dx
X ex i% [WEAWE + XExXE+ ﬁw#(aﬂ+x#)]]
xf DqDﬁpo[q(O)]<exr{(—i@Jﬁ)
IR [v“v:‘ai<t>+%#si<t>]}>

xexp[i; [Ai(D[Gi(t+1)—gi(H) — 6(1)]

+‘/’i(t)qi(t)]]r (16)

where, as if15], we introduced external “forces®,(t) to
generate response functions.

To describe typical behavior, and in view of the self-

averaging character of the larde¢ limit, at this stage we

PHYSICAL REVIEW BE5 016126

d=aln JDW DwDx Diexp{iE [\7vtwt+§<txt+wtxt]
t
1 N - N -
Xexp{ 3 E [WeWer + WLy Wier + 2% K Wy
tt’

+>"<tctt,>”<t,]J . (19

1 N
=52 fDq D3 pola(0)]

X exp{ i Z {alat+1)—q(t) = 6,(1)]

+i(tg()—i > amﬂwam}
tt’

Heres;(t) = o[ q(t),z|T;] and the averagé ), has now been
reduced to a single site(but many timg¢ one
(9lz1,25, .. .1),=JT{dzP(z)]9[z1,25, . . .]. Following

[15] we have also introduced the short handsq
=I[dq(t)/y27], Dw=I[dw/\27w], and Dx
=II,[dx/\27] (with similar definitions forDg, Dw, and
Dx). Note that all the quantities appearing in Eg7) are
macroscopic; all the microscopic variables have been inte-
grated out.

tt’

-iX [si<t>éwsi<t'>+si<t)kwa<t'>]]>

(20

average over over the explicit choices of the quenched ran-
dom parameteréR}. These averages are not affected in any

way by the introduction of the noise variablé¢g} or the
independent temperaturds, and the further procedure of

IV. THE SADDLE-POINT EQUATIONS

We can now evaluate E¢L7) by saddle-point integration,

[15] still applies here, generating the dynamical order parami, the limit N—s . We defineG, = —iKy, . Taking deriva-

eters C,y =N"13;s,(t)si(t'), Ky =N"13;5(t)g;(t’), and
Ly =N"1%,0;(t)q;(t’) and their conjugates. For times
which are small compared with and for simple initial con-
ditions of the formpgy(q) =11;po(q;) one thus finds

2[.//]=f [DCDC][DKDK][DLDL]exp{N[¥ +®+Q]

+O(NO)}. (17

tives with respect to the generating fields and using the nor-

malizationZ[0]=1 then giveqat the physical saddle point
the usual identifications

The O(N®) term in the exponent is independent of the fields@"d &!S0

{¢i(t)} and{6;(t)}. The three relevant exponents in E7)
are given by the following expressions:

\I}:|2 [Ctt’ctt’—'_ktt’Ktt'_'— I:tt’Ltt’]l

tt’

(18

1 -
Cur= lim 5 2 (si(h)si(t), (21)
N— o0 i
1 J ——
Gttl:,\llinoo N EI aal(t,)<SI(t)>, (22)
2
Ly =— lim 1 > i (23

—1=0.
N “T a6,(t)a6i(t")

N—oo

Putting ¢;(t)=0 (they are no longer needednd #6,(t)
= f(t) then simplifies Eq(20) to
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0- f “dTWT)In f Dq D po(a(0)
0

X expl i 2{ a[q(t+1)—q(t)— 6(t)]

—i> at)Lyq(t")

tt’

tt’

X<exp{—i2 [S(t)énfs(t')+5(t)ktt'a(t')]]> ,

(24

in which nows(t)=o{q(t),z|T], and wherew(T) denotes
the distribution of local noise strengths:

W(T)= lim —Z ST-T).

N (29

N—oo

Extremization of the extensive exponedfW¥ +® + Q] of
Eq. (17) with respect to{C,C,K,K,L,L} gives the saddle-
point equations

A(s(t))x

Ciir=(s(t)s t, * Gy = y 26

w=(s(t)s(t")) tt 26(t) (26)

& _igd . io® R iod @7
Cacy Y ke Y oLy

The effective single-trader averagés. .),, generated by
taking derivatives of Eq(20), are defined as

(F[{a,5}]), = f:dTwm

| ba itasitasy,

X , (29)

| pa utas,

M[{q,s}]= po(q(O))exr{ —i > s(t)Cyrs(t’)
tt’

xf Daexp[—iz a<t>£tt,a<t'>]

tt’

q(t+1)—q(t)— (1)

xexp{i}t: a(t)
(29)

-> R;,s(t')H.
t!

Upon elimination of the tridC,K,L} via Eq.(27) we obtain

exact closed equations for the disorder-averaged correlation

and response functions in tie— limit, Eq. (26), with the

PHYSICAL REVIEW E65 016126

effective single-trader measu(29). One recovers the theory
of [15] upon puttingW(T) = &(T).

Since the introduction of decision noise into the dynamics
has only affected the terfl (24), compared to the analysis
in [15], the simplifications of the ternd (reflecting the sta-
tistical properties of the trading strategiederived in[15]
apply unaltered, so that at the physical saddle point we again
find

E:—%ia(MG)-lD(MGT)—l, (30)
KT=—a(1+G)7 1, (31
C=0, (32)

where AT denotes the transpose of the matAx and the
entries of the matribD are given byD;, =1+ Cy;, . We now
find our effective single-trader measuhd[{q,s}] of Eq.
(29) reducing further to

M[{q,s}]= po(q(O))f Dq expl’ - —aZ q(t)

tt’

><[<1+G>-1D<1+GT>—1]wa<t'>]

)| a(t+1)—q(t)—6(t)

xex;{ S G

+a, (14G),'s(t')
t!

] . (33

For a given value ofT, this describes a stochastic single-
agent process of the form

q(t+1)=q(t)—a >, (1+G)  olq(t’),zy|T]+6(t)

t'<t
+an(t).

Causality ensures that { G)t_t,1=0 for t’>t. The variable

z, represents the original single-trader decision noise, with
(z;y=0 and(zz,/)= 8y, and n(t) is a disorder-generated
Gaussian noise with zero mean and with temporal correla-
tions given by n(t) p(t’)) =3 :

(34)

3S=(1+G) 'D(1+G")?! (35)
The correlation and response functiq@g4) and(22) are the
dynamic order parameters of the problem, and must be
solved self-consistently from the closed equations

2o D, (36)

Cuw =(ala(t),z|T]ofq(t’)

Gy = <0'[Q(t) z|T)., (37)

a6(t")
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which, following Eg.(28), also now involve averaging over V. THE FIRST TIME STEPS

the distribution of the noise strengtfisNote thatM[{q,s}]

as given by Eq(33) is normalized, i.e.fDgM[{q,s}]=1, For the first few time steps one can calculate quite easily
so the associated averages reduce to the order parametefsorrelation and response functigrsd

the volatility, from Eq.(33), using the simplifications that
* follow from causality, such as
(flia.si).= | awn) [ pa (Mi{as/Itasi.. v
(38)

The calculation if15] of the disorder-averaged average bid [G"];v=0 for t'>t—n. (40)
and the volatility matrix(including the single-time volatility
o?=H,) still hold, and hence

_ At t=0 this immediately allows us to conclude thag,
lim (AY=0, lIMmEy==3 . (399  =Doo=2. We now obtain from E¢(33) the joint statistics at
N—so0 N—soo 2 timest=1, given a value foff:

exp{—{a(1) —q(0)— 6(0) + aaq(0),2| T]}?*/4a}
pa)|ai0)= [ dzP(z) d . @y
2\am
|
Equation(41) allows us to calculat€,y andG,q, although We now specialize to the case where the game is initial-

the presence of the decision noise induces expressions whicted in atabula rasa manner, i.e.,p(q(0))=4[qe], and
are significantly more difficult to work out explicitly than where we have no perturbation fields, i.6(t)=0. Now,
those of the noise-free case [ib5], and which will depend also upon using the symmetry &(z), we can reduce the

on the choice made far[q,z|T]: above results to
Cu= | dTWT) | dz,d2,P(20)P(zy) | dai(0)po(ai(0)) (" 49 o
10 jo j 1o ! J 0 Cio fo dTW(T)JdZP(Z)f‘l\/Ee
dq(1) x{o{q,Z| T]-o[—q,—2|T]}, (46)

zmexp{—{Q(l)—Q(O)— 6(0)

0 d 2
+ao{{q(0),20| T1}?/4a} Gio= fo dT\N(T)f dzP(z)j Nj_we[qm] J4a
x01d(0),20|T] ola(1),z|T], (42 ;

XoqtotadTl—ol—a,~2T]}. (47)

Gio= fowdT\Al(T)f dzodzlP(zo)P(zl)f dq(0)po(a(0))

Inspection of these expressions for large and smadind for

dq(1) the specific choice$4) and (5) reveals the following. For
X exp{—{q(1)—q(0)— 6(0 —oo one finds
+ ao[q(0),20[ TT}2/4a) Jim G10=0,  lim >3,=2, 43
xig[q(l),zlﬂ-]. (43)  for both noise types. The order paramet€rg and >, in
aq(1) contrast, are sensitive to the type of noise chosen. For addi-

We can now move to the next time step, again using quve noise of the form4) one has

(40), where we need the noise covarianéas and>o: lim Cy=—1, lim3,=0, (49)
3 10= 14 C15— 2Gyo, (44) o o
S 1= 2-2G 1+ Coy]+ 2[ Gygl2. (45 whereas for multiplicative nois€s) one has
This procedure can, in principle, be repeated for an arbitrary lim Cyo=— jwdTMT)A(T), (50)
number of time steps. a—oo 0
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_ o pressions(44) and (45 shows that in leading order the
lim 20=1- Jo dTWT)N(T). (51)  disorder-generated noise not only drives the oscillation, but
= is also being amplified by a factor of the orderaf ¥

In both cases the negativity @&,, shows that thdabula- _ 0

rasa initialized system immediately enters an oscillation, 7(1)==G107(0) +O(a%). (59
with the ;(1) on average having opposite sign to the corre-thg effective single-trader equation subsequently gives
spondingq;(0). Initially, additive noise is found not to play

arole, and the effective disorder-generated noise components q(1)= \/Zn(O) +0(a), (60)
n(t) decorrelate, compared with the deterministic case of

[15]. Multiplicative noise, on the other hand, is seen to retain

an impact, even for short times and largeand to cause a q(2)=— U(O)deT\/\/(T))\(T)+(9( Ja). (61)
reduction of the oscillation amplitude. Jm Jo

Now we turn to smalle, where we make the choice
P(Z):(ZW),l,ze,zz,z in order to work out integrals explic- Thus, for smalle and tabula rasainitializatior? additive
itly. For additive noise(4) we find decision noise has the most drastic effect on the dynamics,
changing the leading order of the relevant observables by a
factor of JZ (in contrast to multiplicative noige

a2 (=
c10=—%—f dTWTT 1+ 0(a*?), (52
0
m VI. STATIONARY STATE FOR a>a [W(T)]

If the game has reached a time-translation invariant sta-
tionary state without long-term memory, thed =G(t
—t'), Civ=C(t—t"), and X, =2(t—t’). In this section
[provided the above integrals ovEmexist; if they do not, we we assume that the stationary state is one without anomalous
revert back to the leading orders of tie=0 case/15], i.e., response, i.e., lim,. =<, G(t)=k exists. The lower limit
C10=O(\Ja) andG o= O(1/y/a)]. Combination with the ex- of such behavior inx definesa(W(T)).
pressiong44) and (45) shows that in leading order In a stationary state one generally finds agents who
change strategy frequently, but also agents who consistently
use the same strategy. For the latter frozen agents, the values
7(1)= (E_Glo) 7(0)+w+- - 5D of q; will grow linearly in time. We follow[15] and separate

the two groups by introducing;(t) = q;(t)/t; frozen agents
Wil be those for whom lim_.., q;(t)#0, and the quantity

d=lim__olim,_..(6[[q(t)|— €]). gives the fraction of fro-
zen agents in the origin&-agent system, fol—o. Trans-

_‘/E - -1 12
Glo_\/_;fo dTWT)T *+O(a™?) (53

in whichw is a zero-average Gaussian variable, independe
of 7(0), with variance(w?)=3/2. Hence we find from the
effective single spin equatio34)

q(1)=a 5(0)+0(a), (55  formation of the proces&34) gives, for a giverl
- 1 Ja
q(2)=a| (g—em> 7(0)+w|+O(a). (56) qT(t)=;qT(1)+Ta > ()
t'<t

We observe, as ifiL5], that for smalle and additive decision
noise, the first two time steps are driven predominantly by
the disorder-generated noise component in B4). How-
ever, whether this noise component starts oscillating in sign (62)
is, in the case of decision noise, crucially dependent on the o~ -~ ) S
distribution of temperatures; only whefd TW(T) T-1is  We now definegr=lim_... qr(t) (assuming this limit exisjs
sufficiently large should we expect the system to enter th@nd take the limit—cc in Eq. (62), giving

high-volatility state. For multiplicative noise, on the other

hand, we arrive for smallr at the leading orders A= ﬁmTJr Jan, 63)

—T 3 3 (1+6)p olart").2elT]

t'<t t"<t’

Ja (=
_ /
Cio="~ \/_; Jo dTWTNT)+O(a®?), (57)  with the time averageswy=Ilim,_ . 7 3, o[ q;,z|T] and
p=lim, .7 13,2 7(t). The variance ofy follows from
1 . Eq. (35):
Glon:f dTWTNT)+O(Ja)+--- (58
aTmJO
2Note that the smalke expansions in this section are made for

Here the oscillation is much stronggurovided we do not fixed W(T); the observed behavior is likely to be different when
scale the temperatures witl)). Combination with the ex- W(T) is allowed to scale with.
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(7¥=(1+k)"2 1+ lim L,E > Cuw

ot o TT tsT <y

=[1+(m3),1/(1+k)>. (64)

Note that(m2),=lim,_., 7 '=,-,C(t)=c.

The integrated responséor static susceptibility k
=lim,_ . Zi<,G(t) is also calculated along the lines[d5].
One writes the response function asGy
=a Y2(9a{q(t),z|T1an(t")).. Integration by parts in this
expression generates

(aalq(t),z|THan(t)). =2 S, ulola(t),z]TIn(t").,
t//
(65)

and hence

Va2 (n(t")n(t")Gy,=(ala(t),z|TIn(t")),. (66)
tH

Averaging over the two timesandt’ now gives, in a sta-
tionary state without anomalous response, the following:

(mry), =k\a(7?). (67)

Inserting the variancé»?), as given in Eq(64), then gives
the general relation

kya(1l+c)

(1+k)? 8

(nme), =

A. Additive decision noise

In the case of additive decision noisd) we have
0[q,z|T]=sgriq+zT]. The effective agent is frozen i
#0, in which caseny=sgri q]. This solves Eq(63), if and
only if |5|>a/(1+Kk). If |5|<\al/(1+k), on the other
hand, the agent is not frozen; nogy=0 and my=(1
+k) 7/ \Ja. As a result, we can calculate=(m?), and the
fraction ¢=(6[| 7| — Va/(1+k)])=1—erf Ja/2(1+c)] of
frozen agents exactly as in in the cd48] without decision
noise, giving the deterministig.e., W(T) = §(T)] result

1+c [« [1+c i
=1-— - A . “A—al2(1+c)
c=1 ( 1 a )er{ 2(1+c) 2 27Tae ’

(69)
We use Eq(68) and calculate the covarian¢cemy), exactly
as in[15]. The final result is

1 «
—_——— 1, (70

k [«
2(1+c)

with the value ofc to be determined by solving E¢9). We
find exactly the same transition point.~0.337 40, signal-

erf

PHYSICAL REVIEW BE5 016126

ing the divergence of the integrated respoksas was found
in the noise-free case, in accord with earlier numerical ob-
servationg 20,12—14 and theoretical predictior4.8].
Numerical simulations of thdbatch dynamics of the
present model{which we will not present here, for brevjty
confirm quite convincingly that, upon measuring objects
such asc or ¢, in the case of additive decision noise, one
indeed exactly recovers the graphs[®§], without any de-
pendence on the noise parameters. This, however, will turn
out to be quite different in the case of multiplicative noise.

B. Homogeneous multiplicative decision noise

Next we turn to the case of multiplicative noig8),
at first with the simplest distributionW(T)=&(T—T),
where ¢{q,Z|T]=sgriqlsgrfl+Tz], and where m;
=lim, .7 13, sgr[qT(t)]sgr{1+?zt]. Since there is
now only one noise strength in the systeﬁ,we may drop

the subscriptsT for variables such as|(t) or m, without
danger of confusion. For a frozen agent one now finds

m=X\(T)sgriq]. (71)

This solves Eq.(63) when |7|>\a\(T)/(1+k). If |7
<\Jax(T)/(1+k), on the other hand, the agent is not fro-

zen; nowqg;=0 andm=(1+Kk) z//a. We can again calcu-
late c=(m?), self-consistently, upon distinguishing between
the two possibilities:

— al ?
C:AZ(T)<6 [71= C+(k) >
1+k)2/ [ Jan(T)
+( . <9 1+(k =7 7/2>- (72)

Working out the Gaussian integrals describing the statics of
7, with variance as given bg64), subsequently gives

a)\z(?)
M N21+o
— [1+c =
_2)\(1-) Zwaefa}\z(T)IZ(lJrc)' (73)

From this equation the value ofis solved numerically. The
fraction ¢ of frozen agents is given by

c=x2(?)—[xz(?>—l+—c
(4

A(T) [ aN3(T)
¢:<0|7’|_\/§+(k) >— —erf{ ;(1—ic)). (74)

We calculate the remaining obje¢tym), in Eq. (68) by
again distinguishing between frozen and nonfrozen agents
and by using the two identitiesi=\(T)sgr 7] (for frozen
agenty andm= 5(1+k)/+/a (for fickle ones, both of which
follow from Eg. (63), giving
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o \/E}\(ﬂ 1.0 E~\ T i r
(nm>*—>\(T)<0 7l == | 1] N
. 1+k , Jan(T) , 08 | -
\/E 1+Kk |77| 7
— 0.6
1+c { [an?(T) .
=————er =
1+Kk)Va 2(1+c) g
(1+K) Ve P
Insertion into Eq(68), together with Eq(64), then gives the
desired expression for the integrated response:
0.2
1 @ @5 a
——_— 1, 75
k aN(T) 0.0 . . .
erf 2(1+0) 107 10" 10° 10" 10°
«

with the value ofc to be determined by solving Eq¢74).

Equivalently, using Eq(74) we find, as in th@ =0 cas€15] FIG. 1. The persistent correlatiaras a function otx=p/N, for

multiplicative noise withw/(T)= §(T—T) and different choices of
1-¢ the noise strengthT(=0, 1, 2 from top to bottom Connected
k= a1t (76)  markers: individual simulation runs, withN=aN?=10° and ho-
mogeneous initial conditions whegg(0)=q(0) [circles:q(0)=0,
The integrated responseis positive and finite, and our so- SAuares:q(0)=10] and in excess of 1000 iteration steps. Thick
lution exact, fora> a,(W(T)). At a,(W(T)) one finds thak solid curves f_ora_> ac(W_(T)): an_alytlcal predictions for homoge-
dverges; s ranilon is, as =0, found to happen [eoUs Mutpicae cecson nose Far (W) where ey
\;V(I:'ICeonr dtirr:Z I:)ag:]%r(‘7g; gﬁslgggﬁgtiaiquﬁ%%}vgg?Igg dashed line. For additive decision noise our theory predicts inde-

a(W(T))=erf[x], wherex is the solution of the transcen- g?rrfjtr;;ﬁcgmgrn‘é;gc(w(-r))’ l.e.,c as given by thd'=0 curve
dental equation '

2] a.(W(T))~0.337 40[i.e., the value corresponding (0)
—e X =1 (77) =1] for additive noise. Beloww (W(T)) our simulations
x\m show, as has been observed and reported earlier for the de-
terministic case, that in the anomalous response region the
stationary state reached by the system depends critically on
the initial conditions. For small values of thg;(0)| (i.e.,

o ler™[ag))? -1/2 weak initial strategy preferencethe system enters a high-
Mi) — [ Qe+ — _ 1] , (79 volatility state with lowc and ¢, whereas for large values of

erf™ ac]\

the |g;(0)| (i.e., strong initial strategy preferengebe sys-
whereX(T) €[0,1], see Eq(6).

tem enters a low-volatility state with largeand ¢.
In Figs. 1 and 2 we show the solution of Eg3) and the C. Inhomogeneous multiplicative decision noise

corresponding fractiorp of frozen agents as functions af ) ] ) )
together with the values farand ¢ as obtained by carrying _ Finally we turn to the more complicated situation of mul-
out numerical simulations of the batch minority gar@ tiplicative n0|se(5). with arbitrary distributions. For a frozen
with homogeneous multiplicative decision noise. The two@gent and for a given value Gfone has
figures forc and ¢ both show excellent agreement between ~
theory and experiment above.(W(T)). One observes that, mr=M(T)sgriq]. (79)
in addition to a reduction in the persistent correlation, an-
other effect of the introduction of multiplicative decision As before, this solves Eq63) if |7|>\a\(T)/(1+k),
noise is an overall increase in the fraction of frozen agentswhereas for| 7;|<\/E)\(T)/(1+ k) the agent is fickle, i.e.,
This is consistent with our solution of the first few iteration q,=0 and m;=(1+k) 7/ \/a. According to Eqs.(36) and
steps, where introducing decision noise had the effect 0f37), the calculation of persistent order parameters will now
dampening the oscillations. In Fig. 3 we show the system’sso involve averaging over the noise distribution. Since the
phase diagrams foV(T)= 8(T—T), defined by the transi- macroscopic dynamics turns out to depend Tolnly via
tion line, wherek=o0. This line is given by the solution of A(T), it will be advantageous to definew(\)
Eq. (78) in the case of multiplicative noise, and by =[gdTW(T)S(\—\(T)), or

x2(ﬂ| erf[x]— 1+

Equivalently, we can write our transition line explicitly in
terms of the inverse error function as
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1.0

08 r

0.6

FIG. 2. The asymptotic fraction of frozen agewtsas a function
of a=p/N, for multiplicative noise withnW(T)=&6(T—T) and dif-
ferent choices of the noise strengfh= 0, 1, 2 from top to bottom
Markers: individual simulation runs, withN=aN?=10° and ho-
mogeneous initial conditions, wherg(0)=q(0) [circles: g(0)
=0, squaresq(0)=10] and in excess of 1000 iteration steps.
Thick-solid curves fora> a(W(T)): analytical predictions for ho-
mogeneous multiplicative decision noise. kox a.(W(T)), where
they should no longer be correct, they have been continued as thic

dashed lines. For additive decision noise our theory predicts inde-

pendence of, ie., ¢ as given by thef =0 curve of multiplicative
noise.

W()\):f:dT \N(T)é()\—f dz P(z)sgr[1+Tz]).
(80)

Here\ €[ 0,1], with A\ =0 reflectingT— <0 contributions and
A =1 reflectingT— 0 ones. Now we may write

c= fold)\w(x)[x2< 0[|7;|— Ve >

2

(1+k)?

(¢

+

1+k
1+k

1 1+c
=J d)\w()\)[)\z—Z)\\/—e“’“zm(l“)
0 27a
aN?
N " Noarol

From this equation the value ofis solved numerically. The
fraction ¢ of frozen agents is given by

- 1 al
d)—l—fo d\ w(\)er \/2(1+c)

We calculate the remaining obje¢ymy), in Eq. (68) by

N ——
a

(81)

. (82

again distinguishing between frozen and nonfrozen agents

PHYSICAL REVIEW B5 016126
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FIG. 3. Phase diagram in thgr,1—\(T)) plane for homoge-
neous multiplicative noise, i.eW(T)=4&(T—T). The solid line
separates a nonergodic phase with anomalous resgl@figefrom
an ergodic one without anomalous respofisght). For additive
noise our theory predicts thE-independent transition given by the
dashed line.

and by using the two identities;=\(T)sgri 7] (for frozen
léfgent$ andm;= 7(1+k)/\/a (for the nonfrozen ongsboth
of which follow from Eq.(63), giving

1+

m ——CJldAW \) ”{\/a—)\Z

Insertion into Eq(68), together with Eq(64), then gives the
desired expression for the integrated response:

a

fld)\ W()\)eri{
0

with the value ofc to be determined by solving E¢81).
Using Eq.(82) this can again be written in the familiar form
(77), which suggests that thle=cc transition is of a geo-
metrical nature.

Unless we revert back to uniform noise levels, a transfor-
mation like a.(W(T))=erf x] will now no longer be help-
ful; to find the location of the phase transition one has to
solve Eq.(81), together with the conditiok=c. Upon put-
ting y?= a/2(1+ c) one can, however, compactify these two
coupled equations to

~I|

—1, (83)

ar?

2(1+c)

7y2)\2

1 e
1=f dx w(x)x2| erf[yn]—1+
0

, 84
yw;] (84)

a= fld)\ w(A)erf[ya]. (85
0
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1.0 ¢

0.8 +

0.6 |

04 r

0.2 r

FIG. 4. The persistent correlatiamas a function otx=p/N, for
multiplicative noise withW(T')=€ed(T'—T)+(1—¢€)d(T"), for
T=1 and different choices of the widthe€ 0, 0.5, 1 from top to
bottom). Markers: individual simulation runs, witlppN= aN?
=10° and homogeneous initial conditions whetg(0)=q(0)
[circles:q(0)=0, squaresq(0)=10] and in excess of 1000 itera-
tion steps. Solid curves fow> a (W(T)): analytical predictions.

For a<a (W(T)), where they should no longer be correct, they

have been continued as dashed lines.

We will finally work out our equations describing the sys-
tem with inhomogeneous multiplicative decision noise ex-

plicitly for the following simple bimodal distribution

W(T)=ed(T'=T)+(1—-e)(T'), (86)

with ee[0,1]. Fore=1 we revert back to the homogeneous

case studied earlier in this section; forx 0 we return to the
model of[15]. Here we have
WA)=eSN—N(T))+(1—€)S(\—1), (87)

with the function\(T) as defined in Eq(6). The general
Egs.(81) and(82) from which to solvec and ¢, reduce to

c=¢e{ N3(T)— 27\ (T) /&e—axzm/z(nc)
2ma
[aN3(T)
2(1+c)
1—2\ [ﬂe—a/Z(l-%—c)
2ma

—[)\Z(T)—l— er
o

1+c Y
—|1-———]er m , (88)
N2(T) [ «
¢—1—eer 2(1+C) —( —e)er m .
(89

PHYSICAL REVIEW E65 016126

Similarly, the two coupled Eq484) and (85) which define
the phase transition, reduce to

e YA ]

1=eN*(T)] erf[yN(T)]—1+———
ex?( )[er [yA(T)] +y>x(T)J?

eV’
+(1- erf[y]—1+——¢, (90)
( e)[ [y] y\/;]
a=ceerf[yN(T)]+(1—e)erf[y]. (92

Note that forT— 0 our transition line equations reduce once
more to those of the noise-free case, as derivdd 5, giv-
ing a.~0.33740. ForT—<, in contrast, we find a strong
dependence oa (the fraction of traders who experience de-
cision noisé. In particular, there is a qualitative difference
betweene<1 ande=1 (where one of the two noise levels in
the system becomes zg¢ro

For e=1 we return to the case of uniform decision noise,
and Egs.(90) and (91) dictate that the transition line obeys
a—0 asT—o. For e<1 (i.e., a nonzero fraction of the
traders take decisions deterministicallgn the other hand,
we find for T—o the Egs.(90) and (91) (which will now
have a solution with finite/) reducing to

2

e_y
1=(1—e)[erf[y]—l+—], (92

y\m
a=(1—¢)erf[y]. (93

Equivalently,
N Rl LY }=e—lerf‘“vi<a’1—f>”2. (99)
1- 1-€

The solution of this equation defines the painie, T=x),
which obeysa (e<1,T=%)>0 anda (1,T=»)=0.

In Figs. 4 and 5 we show th@umerica) solution of Eq.
(89) for the persistent correlation, and the corresponding
value for the fractiong of frozen agents, as given by Eq.
(90), as functions ofa and for different choices of the pa-
rameterg T, e}, together with the corresponding values éor
and ¢, as obtained by carrying out numerical simulations.
Here we have chosen Gaussian distributgdl), i.e., \(T)
=erf[1/T\/2]. As before, one observes excellent agreement
between theory and experiment abavg, and a strong de-
pendence on initial conditions below, . Finally, in Fig. 6

we show, in the («,?) plane, the system’s phase diagram as
defined by theék=< transition line, obtained by solving nu-
merically the coupled Eq$90) and(91), for different values

of e.

VII. STATIONARY VOLATILITY FOR  a>a (W(T))

As in the noise-free cagd5], one finds that the volatility
matrix (12), which is to be calculated from expressiai3$)
and which in a stationary state is time-translation-invariant
Ew=E(t—t"), generally involves both long-term and
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1.0
g
0.8
0.6 r
04

02 r

0.0 55 .
10 04 0.5
(84 (04
FIG. 5. The asymptotic fraction of frozen agegtss a function FIG. 6. The phase diagram for multiplicative noise with

of a=p/N, for multiplicative noise withW(T')=ed(T'—T)+(1 W(T')=ed(T'=T)+(1-€)5(T') and Gaussian distributed,
—€)8(T'), for T=1 and different choices of the widtke€0, 0.5, shown in the @,T) plane for different values ofe (e

1 from bottom to top. Markers: individual simulation runs, with <{0,0.2,0.4,0.6,0.8}1 from right to lefd. For each value o€, the
pN=aN?=10f and homogeneous initial conditions whegg0) solid line separates a nonergodic phase with anomalous response
=q(0) [circles:q(0)=0, squaresq(0)=10] and in excess of 1000 (left) from an ergodic one without anomalous respofiight). For
iteration steps. Solid curves far>a (W(T)): analytical predic- additive noise our theory predicts tHEindependent transition
tions. Fora<a (W(T)), where they should no longer be correct, given by the vertical lindi.e., thee=0 curve.

they have been continued as dashed lines.

SATW(T)(---) as{(---)). In order to find the volatility we

short-term fluctuations. Hence even the ordinary single-timgeparate the correlations at stationarity in a frozen and a
stationary volatilityo>= = (0) cannot be expressed in terms fickle contribution:
of the persistent order paramete(or its relativesk and ¢).
Upon separating in the functiodandG the persistent from Clt—t") = ¢{(alq(t),z|TIoTa(t"),ze | TT)s (96)
. . ~ - 14t &t
the nonpersistent terms, i.eC(t)=c+C(t) and G(t) '

=G(t) (there is no persistent response for a,) we find,

+(1=p)(ola(t),z|Tlela(t’),zo T,

as in[15]:
l+c 1 ~ 1= ~ ; ; .- " / .
2"~ lim = 14+8) 1%, ,(1+8T); L,  Wwhich gives, using(t—t")=C(t—t')—c, and upon rewrit-
7 2(1+k)? .27 uzs:T 2 ( Jur Crvl i ing the fickle contribution to the volatility
(95
2 S B
ini [ i i o= im
Obtaining an exact expression for would require solving 201+K)2 . 27

our coupled saddle-point Eq$36) and (37) for C,;, and
Gy for large times but finite temporal separationst’, _

hence in practice one has to resort to approximations. XE <<[E (1[+G)Jtla[q(t),zt|T]
The approximation chosen ifl0,11], for instance, is in !

our language equivalent to substituting
(o[ai(t),z(t)[Tlala;(),z(t)[T])
— 8+ (1= &j){o[ai(1),z(1)[T])
X(olqj(t),z;(1)|T])

I,

lim Zi’T > S a+8); +8N);k

T—® UsT tt/

usr

X{(ola(t),z| Tlala(t’),ze | T - (98)

The approximation of15] consists of retaining in the con-
tribution from fickle agents only the instantaneous-t
terms, the rationale being that thett ones represent, in the

Here we will generalize to the case of decision ndadeast  original single-trader equation, a retarded self-interaction,
for the batch MG the slightly more accurate approximation which is assumed to be significant only for frozen agents.
proposed in[15]. We will abbreviate the double averages Hence we obtain
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for a>a, (in line with [13,14]), again finds confirmation in
numerical simulationgthat is, within the limits imposed by
our approximation; one does observe some weak effect,
which could either be due to excessive relation times or due
to the retarded self-interaction of fickle traders, which we
neglected in deriving Eq.100)].

The more interesting case, as before, is that of multiplica-
tive noise. Here we have

(ala(t),z|Tlala(t’),ze [T
= <<)\2(T)>>fr+ Ow[1— <<)\2(T)>>fr]- (101

Hence the approximatio(®9) reduces to

o2 1+ ¢x
2(1+k)?

1
t5(1-9)

1 ~ ~
-1 TN -1
FIG. 7. The asymptotic volatilitys as a function ofa, for +§¢(1_X)[UHG) (1+G7)"71(0). (102

multiplicative noise withW(T)=§[T—T] and different choices of

the noise strengthT(=0, 1, 2 from bottom to top > a, regime. Here we have used time-translation invariance of the station-
Markers: individual simulation runs, withN=aN2=10° and ho-  ary state, giving ... Jy—[ ... ]J(t—t)=[...](0) for the
mogeneous initial conditions wheeg(0)=q(0) [circles:q(0)=0,  relevant matrix elements in EGLO3). The conditional aver-
squaresq(0)=10] and in excess of 1000 iteration steps. Thick- age x={(\?(T)))y, constrained by 7|>\a\(T)/(1+k)

solid curves fora>a(W(T)): analytical predictions for homoge- (which, in the case of multiplicative noise, is the condition
neous multiplicative decision noise. Fer< a(W(T)), where they  for an agent to be frozerand calculated using the variance
should no longer be correct, they have been continued as thicl(—,72>:(1+c)/(1+ k)2 (64) of the zero-average persistent
dashed lines. For additive decision noise our theory predicts indenpjse term, is given by

pendence o, i.e., o as given by thel =0 curve of multiplicative

noise. X:«)\Z(T)»fr
> A(T)
1 1 f dTvv(T)xZ(T)sza z|- Ja
" 217 o e
s [Farwen [ e - 20
+lim o > 2 (1+6)+GN, o 4TV )| bzd) 2 1+c
T—®© UsT gt/
1 Me
< (o), 2] Tlolat"),ze| T - (99) f 2 1 erf VY
(ola(t),z|Tlola(t’),z [T SN wOIN? 1 erf(m
Note that, according to Eq$82) and (83), the integrated = i (103
response& can be expressed in terms of the order parameter J d\ w(n) 1—erf()\—a
¢ ask=(1—- )/ (a—1+ ). 0 V2(1+c¢)

At this stage we again have to distinguish between addi-
tive noise and multiplicative noise, in order to work out the We note that only forW(T)=&(T) [15], i.e., w(\)=S(\

remaining averages. For additive noise one simply finds —1), where y=1, will Eq. (103 involve only persistent
observables. In the presence of decision noise, as in this
(ola(t),z/TIala(t’),ze| T study, one always hag<1, and additional approximations
~ ~ are required to also reduce the last term in @43 further
={(ola®]ofat) =1, to an expression in terms of persistent order parameters only.

g’_his is done in detail in Appendix A, where we show that a
reasonable approximation is obtained by simply putfifig

+G) " }(1+G")"1](0)—1. The end result is the following

and hence we recover the expression describing the nois
free case if15]:

1+ ¢ 1 final approximation for the stationary-state volatility:
ol=———+(1-¢). (100
2(1+k)? 2 1+
2o X 1w (104
Since the order parameteys andk are, for additive noise, 7 2(1+k)2 2 X0

independent of the noise distribution, the same is true for the
volatility. This independence of the noise parameters, at leastith y as given by Eq(103).
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the dynamics of the batch version of this model by general-
izing the recent applicatiofl5] to the minority game of the
generating functional techniques pf6] (note that in[15]
only the fully deterministic case was studjed@his formal-

ism reduces th&l-agent dynamics, in the limiN—o, to a
stochastic process for a single “effective agent,” with dy-
namic equations involving colored noise and a retarded self-
interaction. It leads to exact closdbut implicit and non-
trivial) equations for correlation and response functions.

Our theory enables us {0 obtain a better understanding
of previously observed but only partially explained phenom-
ena(e.g., the suppression of the volatility by decision noise
[6,12], even below random fow<a., due to damping of
the “crowd anti-crowd” oscillationg7-9], or the increase in
the volatility in the presence of multiplicative decision noise
for a>a,), (ii) derive exact phase diagrams, diit) calcu-
late macroscopic observablés.g., the fraction of frozen
agents and the persistent correlatjoims ergodic stationary

FIG. 8. The asymptotic volatilityr as a function ofa, for states exactlf‘/.ln the case of additive decision noise we find
multiplicative noise withW(T')=¢e8(T'—T)+(1—¢€)8(T'), for  a phase diagram identical to that of deterministic decision
T=1 and different choices of the widtke€0, 0.5, 1 from bottom  making in the onset of equilibrium properties of the higher
to top in thea> a, regimg. Markers: individual simulation runs, ergodic phase, with nonergodic behavior at lowerin the
with pN=aN?=10° and homogeneous initial conditions where case of multiplicative decision noise, in contrast, we arrive at
di(0)=q(0) [circles:q(0)=0, squaresq(0)=10] and in excess of phase diagrams with nontrivial decision noise dependencies
1000 iteration steps. Solid curves far>a(W(T)): analytical pre-  of the phase separation line as well as the behavior of both
dictions. Fora<a(W(T)), where they should no longer be cor- phases. Here the control parameters are the relative number
rect, they have been continued as dashed lines. of possible values for the external informatien= p/N, and

the parameters characterizing the noise statistics. In the non-

Expression(104), which reverts back to that dfl5] for  ergodic regime of the modél.e., for sufficiently small)
T—0 and which also reduces correctly to the random tradingur closed equations in terms of correlation and response
limit =1 for T—e (where¢=1, c=k=x=0), turns out  functions are still exact, and can be solved in principle itera-
to be a surprisingly accurate approximation of the volatility tively for arbitrary times; however, finding the stationary
for a>a, (i.e., in its regime of validity. This can be ob- states is hardsee e.g., the calculations for the simpler case
served in Figs. 7 and 8, where we compare the approximatgl5]).* Here we have restricted our calculations in the non-
prediction (104) to the volatility as observed in numerical ergodic regime to the the first few time steps, finding noise
simulations, for both homogeneous multiplicative noise dedependence for both additive and multiplicative decision
fined by W(T)=6(T—T) and for innomogeneous multipli- noise.
cative noise defined by Eq&6) and(87), respectively. In all In the present paper we have only worked out explicitly
cases)\(T)=er1[1/T\/§]. (Note the persistent order param- two types of choices for the decision noise strengths statis-
eters have already been calculated in the previous sectiorfics: a delta distribution(i.e., decision noise of uniform
We note that expressidii04) is very similar to that obtained strength, and a parametrized class of bimodel distributions.
by different means for the on-line case [0,11], from
which it can be obtained by the replacement ¢ y.

The above results emphasize once more the qua|itative3AIthough the stationary-state equations, derived upon assuming
difference between additive and multiplicative noise; in con-ergodicity and absence of long-term memory, are no longer valid in
trast to additive noise, the system remains sensitive to muthe nonergodic regime, Figs. 1, 2, 4, and 5 show that dor
tiplicative noise even for>a.. The resulting dependence <a(W(T)) their predigtions regarding the persistent obsgrvables
of the volatility on the multiplicative noise strength is very @nd ¢, nevertheless, give good qualitative agreement with the re-
similar to that reported ifi6] for additive noise(which was sul_ts of S|mu_lat|0ns from a hlghly biased stéidr the volatlllty_ o,
later understood to be caused by insufficient equilibratioerh'Ch also involves nonpersistent order parameters, this is no
[13,14). oPger the case '

Note that a recently proposed proced{i2€] for calculating at
least the high-volatility stationary state in the nonergodic regime,
VIIl. DISCUSSION based on assuming the integrated response fungtibich diverges
exactly at the critical pointto remain infinite throughout ther

In this paper we have generalized the thermal minority<«, region, is not likely to work for the case of decision noise. It
game[6] to the case of imhomogeneous agent populationsvould, for instance, predict the simple relatign=1—« (i.e., ¢
(where the decision noise, which can be either additive obeing independent of the noise parameétevghich is clearly in
multiplicative, is of nonuniform strengthWe have solved conflict with the simulation experiments presented in this paper.
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Due to the general nature of our solution, however, there isume, within the context of the present approximation, the
no limit to the different types of noise statistics we could correlations betweem(t) and the persistent noisg not to
have studied. This emphasizes once more the remarkable pbe important for fickle agentsThis gives

tential and appropriateness to the minority games of the gen-

erating functional analysis methods[d6]. Two natural next ~ 1-¢ 5 )

steps would bé1) to develop the generating functional for- G(1)= o N(Texp —[a“(t)/ a+ a]/do?}

malism for the original “on-line” formulation of the game,

where the external information is fed to the agents lq(t)] lq(t)]
sequentially, or (2) to analyze our presertexac} order- osh——- +\(T)sin > .
parameter equations further in the nonergodic region 20 fi
<a(W(T)). (Ad)
APPENDIX: APPROXIMATION OF NONPERSISTENT In this expression we simply replafg(t)|— 0 (fickle agents
TERMS IN THE STATIONARY VOLATILITY being described by values @f(t), which oscillate around

zerg and we calculate the residual averd@e(T))); similar

The term Q=[(1+G) *(1+G")"*](0) in Eq. (102, to our calculation of Eq(103. Hence we arrive at the ap-
which contains contributions of nonpersistent order paramproximation

eters, can be written as

d fld)\ (M)A f( Ma )
- 1 w erfl ———
Q= _wA—, (A1) - 1-¢ 2] 0 V2(1+c)
—7 27 |1+ G(w)|? G(1)~ e
o\Ta fld)\ \erf )\\/;
with the definition G(w)=2té(t)e‘i“’t. The simplest ap- 0 w(hJer V2(1+c)

proximation for G(t), which respects causality and also (A5)
meets the requiremeit,G(t) =k, is an exponential expres-
sion of the formG(t>0)—k(1—y)y'~! [with —1<y<1
and with G(t<0)=0]. This gives G(w)=k(1—y)/(e'®

On the other hand, according to our anséti>0)=k(1

—¥)y"t we must demand3(1)=k(1-1y), so that Eq.
(A5) leads to the following estimate of:

—7), and thus
. 1 Ma
7 do elo—y|? fd)\w)\)\erf—
Q= 5= | | 5 (A2) 1-¢ | Jo ) J2(1+c)
- 277|ela)_,y+k(1_,y)| 7*1— e aldo
ok ma 1 N \/;
We will obtain an estimate foy by carrying out an approxi- JO d\ w(\)erf m
mate calculation of the one-step response function
~ d : - :
(1)= (90(0(U[CI(Hl):ZHﬂT])*- (A3) Since fora—o we must findo—1 (random trading and

sincek~ o~ ! (76), we conclude from Eq(A6) that y— 1 for

) ] a—, Conversely, as is lowered, we find a divergence of
We insert Eq.(34), and using the fact that the response ofg at finite a. (where alsog is finite). Hence Eq.(A6) also
frozen agents will be zero, we repeat our previous ansatz thaedicts thaty—1 for a— a,. We now assume thag— 1
fickle agents do not experience a retarded self-interactionyj| give a sensible approximation in the whole range

and we carry out the average over the decision noise variable , " and use Eq(A2) to arrive at the approximate result
z,. This is followed by carrying out the average ovg{t)

[which is Gaussian, with variancer?(t))=20?; we as- [(1+G) " LX(1+GT)1](0)~1. (A7)

The above derivation is clearly far from rigorous, and not
5This is the subject of19], where one also finds a detailed analy- quite satisfactory; it simply appears the best one can do with-
sis of the derivation of the correct continuous time microscopicout actually solving the order-parameter equations for finite-
stochastic equations, of the effect of truncations in differential for-time differences in the stationary state. Yet EAj7) turns out
malisms, and of the relation between the batch and on-line minoritfo lead to a surprisingly accurate approximation for the vola-
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