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Dynamics of the batch minority game with inhomogeneous decision noise
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We study the dynamics of a version of the batch minority game, with random external information and with
different types of inhomogeneous decision noise~additive and multiplicative!, using generating functional
techniques a` la De Dominicis. The control parameters in this model are the ratioa5p/N of the numberp of
possible values for the external information over the numberN of trading agents, and the statistical properties
of the agents’ decision noise parameters. The presence of decision noise is found to have the general effect of
damping macroscopic oscillations, which explains why in certain parameter regions it can effectively reduce
the market volatility, as observed in earlier studies. In the limitN→` we ~i! solve the first few time steps of
the dynamics~for any a), ~ii ! calculate the locationac of the phase transition~signaling the onset of anoma-
lous response!, and~iii ! solve the statics fora.ac . We find thatac is not sensitive to additive decision noise,
but we arrive at nontrivial phase diagrams in the case of multiplicative noise. Our theoretical results find
excellent confirmation in numerical simulations.
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I. INTRODUCTION

One of the more recent application domains of equil
rium and nonequilibrium statistical mechanics is the analy
of simplified models describing large markets of compet
traders~or agents!. One such model, which in spite of it
apparent simplicity was found to exhibit highly nontrivi
behavior and has, therefore, attracted much attention, is
so-called minority game~MG! @1,2#, which is a variation on
the so-called El-Farol bar problem@3#, which mimics, in a
highly idealized fashion, a market of speculators attempt
to profit by buying when most others wish to sell or selli
when others wish to buy, without individual knowledge
their fellows but only of their collective consequences a
external information available to all. An extensive overvie
of the literature on the MG and its many variations and
tensions can be found in@4#. The striking feature of the MG
clearly observed in numerical simulations, is the nontriv
dependence of the market volatility~measuring global fluc-
tuations! on the dimensionality of the information supplie
to the agents~which is defined as the relative numbera of
different values which the information can take!. For largea
the volatility approaches the value corresponding to rand
trading, and the system is ergodic. Asa is reduced, the vola-
tility is also found to decrease beneath random, which
indicative of a more efficient market, where agents ha
‘‘learned’’ to improve the effectiveness of their selection
trading strategies. A further decrease ofa will at some criti-
cal pointac force the system to undergo a phase transition
a highly nonergodic regime, where both a high-volatil
state and a low-volatility state can emerge, dependen
initial conditions~this was only appreciated later!.

In the original minority game, the information supplied
the agents consisted of the actual history of the market. H
ever, it was soon realized@5# that the dynamics of the MG
remains largely unaltered if, instead of the true history of
market, random information is supplied to the agents; giv
a, the only relevant condition is that all agents must be giv
1063-651X/2001/65~1!/016126~16!/$20.00 65 0161
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the sameinformation ~whether sensible or otherwise!. This
led to a considerable simplification of theoretical approac
to the MG, since it reduced the process to a Markovian o
A further generalization of the game was the introduction
agents’ decision noise@6#, which was shown not only to
improve worse than random behavior but also, more surp
ingly, to be able to make it better than random fora,ac .1

The study@6# was followed by a number of papers aiming
develop a solvable statistical-mechanical theory, either
using decision noise to ‘‘regularize’’ the stochastic equatio
and replace these by deterministic ones~followed by an equi-
librium analysis of the ergodic regime, built on the constru
tion and exploitation of a Lyapunov function! @10,11#, or by
concentrating further on analysis of the stochastic equat
themselves@12#. Since the MG process does not obey d
tailed balance, such studies~which also involved different
implementations of the decision noise!, proved to be hard,
and their results partly controversial@13,14# ~especially with
regard to the questions of whether and when the stocha
MG equations can be replaced by suitable determini
ones!.

More recently, in@15# the analysis of the MG was ap
proached from a different angle: all problems and deba
regarding microscopic determinism were simply avoided
re-defining the MG dynamics directly in the form of discret
time deterministic equations, without decision noise~the so-
called ‘‘batch minority game’’!. This allowed for an exact
solution of the model using generating functional techniqu
à la De Dominicis@16#, which was found to be in excellen
agreement with numerical simulations, and which~due to it’s
dynamical nature! even applied to the nonergodic regim
The present study, which can be regarded as a natural
lowup on@15#, achieves the following objectives. We gene

1Using a phenomenological theory for the volatility, based on
called ‘‘crowd-anticrowd’’ cancellations@7#, this effect was later
partially explained in@8,9#.
©2001 The American Physical Society26-1
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alize the ‘‘thermal minority game’’ such as to allow differe
agents to have different levels of decision noise. This int
duces inhomogeneity into the agent population, as in, e
@9#, which leads to interesting new phenomena and ph
diagrams. We generalize and apply the~exact! formalism of
@15# ~which was developed for the deterministic MG! to the
case of having inhomogeneous decision noise, within
context of the discrete-time deterministic~‘‘batch’’ ! equa-
tions. All our theoretical results are shown to find excelle
confirmation in extensive numerical simulations.

II. MODEL DEFINITIONS

The minority game involvesN agents, labeled with Latin
indicesi , j ,k, etc. At each roundl of the game, all agents ac
on the basis of the same piece of external informationI ( l ).
In the original model@1# the history of the actual market wa
used as the information given to the agents. In view of
observation in@5# that random information is equally effica
cious, we consider here that at each roundl the agents are
given the informationI ( l )5I m( l ) , where for eachl the label
m( l ) is chosen randomly and independently fromp5aN
possible values, i.e.,m( l )P$1, . . . ,aN%. To determine how
to convert the external information into a trading decisio
each agenti has at his or her disposalS strategiesRia

5(Ria
1 , . . . ,Ria

aN)P$21,1%aN; aP$1, . . . ,S%. Each compo-
nent Ria

m is selected randomly and independently fro
$21,1% before the start of the game, with uniform probabi
ties, and remains fixed throughout the game. The strate
introduce quenched disorder into the model. Each strat
Ria of every agenti is given an initial valuation or poin
scorepia(0). In thedeterministic version of the game, give
a choicem( l ) made for the information presented at roundl,
every agenti selects the strategy which for traderi has the
highest valuation at that point in time, i.e., the strategy w
label ãi( l )5arg maxpia(l), and subsequently makes a bina
bid bi( l )5Riãi ( l )

m( l ) . The ~rescaled! total bid at stagel is de-

fined asA( l )5N21/2( ibi( l ). Each agent subsequently u
dates the payoff values of each of his or her strategiesa on
the basis of comparing the bid which would have resul
from playing that strategy with the actual outcome:

pia~ l 11!5pia~ l !2Ria
m( l )A~ l !. ~1!

The minus sign in this expression ensures that strategies
would have produced a minority decision are reward
Since the qualitative behavior of the market fluctuations w
found to be very much the same for all nonextensive nu
bers of strategies per agent larger than one@1,2#, we restrict
our discussion to theS52 model, where the equations ca
be simplified upon introducing for each agent the instan
neous difference between the two strategy valuations,qi( l )
5@pi1( l )2pi2( l )#/2, as well as the average strategyvi
5(Ri11Ri2)/2 and the difference between the strategiesji
5(Ri12Ri2)/2. The actually selected strategy in roundl can
now be written explicitly as a function of a binary variab
si( l )561, which in the original model takes the valu
01612
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si( l )5sgn@qi( l )#, that isRi ã i ( l )
5vi1si( l )ji , and the evo-

lution of the difference will now be given by

qi~ l 11!5qi~ l !2j i
m( l )FVm( l )1

1

AN
(

j
j j

m( l )sj~ l !G , ~2!

with V5N21/2( jvjPRaN.
In the so-called thermal minority game@6,12#, the deter-

ministic decision rulesj ( l )5sgn@qj ( l )# is replaced by a sto-
chastic recipe. Two different choices were proposed. In@6#
the probability of the choicesi( l )561 was taken propor-
tional to @17ebqi ( l )#21, whereas in@12# also the alternative
choice@17eb sgn[qi ( l )] #21 was considered; as we shall sho
later, these are, respectively, examples of additive and m
tiplicative noise. In both cases the stochasticity is para
etrized by a single control parameterb5T21, the ‘‘inverse
temperature.’’ In both cases a nonzeroT was shown in simu-
lations to lead to a reduction in the volatility fora,ac , to a
value lower than that for purely random decision choic
For a.ac the additive noise choice was shown to have
consequence for the long-time volatility behavior@12–14#,
reducing to the noiseless value, whereas multiplicative no
still had an effect~increasing the volatility! @12#.

Here we generalize this idea further by allowing differe
traders to have different levels of stochasticity in their de
sion making~see also@9#, where the MG with two such
levels was studied!. We will consider decision noise of th
general form

sj~ l !5s@qj~ l !,zj~ l !uTj #, ~3!

in which thezj ( l ) are independent and zero-average rand
numbers, described by some symmetric distributionP(z)
which is normalized according to*dz P(z)5*dzP(z)z2

51. The functions@q,zuT#P$21,1% is chosen to interpolate
smoothly via a single control parameterT between
s@q,zu0#5sgn@q# for T50 ands@q,zu`#561 ~randomly,
with equal probabilities! for T5`, so thatT provides a mea-
sure of the degree of stochasticity in the traders’ decis
making ~with random choice in the caseq50). Typical ex-
amples are additive and multiplicative noise definitions su
as

s@q,zuT#5sgn@q1Tz#, additive, ~4!

s@q,zuT#5sgn@q# sgn@11Tz#, multiplicative. ~5!

In the first case~4! the noise has the potential to be overrul
by the so-called ‘‘frozen’’ agents@17#, who haveqi(t);q̃i t
for t→` @13–15#. In the second case the decision noise w
even retain its effect for frozen agents~if they exist!. The
above definitions represent situations, where forTi.0, a
trader i need not always use his or her ‘‘best’’ strategy; f
Ti→0 we revert back to the deterministic model. The impa
of the multiplicative noise~5! can be characterized by th
monotonic function

l~T!5E dzP~z!sgn@11Tz#, ~6!
6-2
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DYNAMICS OF THE BATCH MINORITY GAME WITH . . . PHYSICAL REVIEW E65 016126
with l(0)51 and l(`)50. For example, for a Gaussia
P(z) one hasl(T)5erf@1/A2T#. The two versions of the
minority game studied in@6,12# correspond to the forms~4!
and ~5! with P(z)5 1

2 K@12tanh2(Kz)# andTi5T for all i.
There has been much discussion on the derivation of

‘‘correct’’ continuous microdynamics~see, e.g.,@12–14,18#!.
Here we circumvent that controversy and debate by dire
employing a generating functional method@16# for the dy-
namics and by discussing the ‘‘batch’’ version of the proble
@15# from the outset, rather than the original ‘‘on-line’’ ve
sion. In the batch version, rather than modifying the$qi%
after every observation of an individual piece of extern
information, they are modified according to theaverageef-
fect of the possible choices for the external information:

qi~ l 11!5qi~ l !2
1

p (
m51

p

j i
mFVm1

1

AN
(

j
j j

msj~ l !G ,

~7!

giving

qi~ t11!5qi~ t !2hi2(
j

Ji j s@qj~ t !,zj~ t !uTj #, ~8!

where Ji j 52N21ji•jj and hi52N2
1
2 ji•V. The specific

choice of time scaling in Eq.~8! has been made for late
convenience. The batch dynamics~8! has the advantage o
being sufficiently simple and transparent to allow for
straightforward exact dynamical solution of the model, us
generating functional techniques@15#. The process~8! is not
exactly equivalent to Eq.~2!, not even forN→` ~see@19#
for the generating functional analysis of the on-line dyna
ics and its relation to the batch alternative!, but it does
present qualitatively similar features@12#.

The magnitude of the market fluctuations, or volatility,
given by

s25K 1

p (
m

~Am!2L
z

2K 1

p (
m

AmL
z

2

, ~9!

whereAm5N2
1
2 ( i@v i

m1sij i
m# and wherê . . . &z denotes an

average over the random numbers$zi%. One easily derives

K 1

p (
m

AmL
z

5
1

aNAN
(

i
^si&z(

m
j i

m1O~N21/2!,

~10!

K 1

p (
m

~Am!2L
z

5
1

2
1

1

aN F(
i

hi^si&z1
1

2 (
i j

Ji j ^sisj&zG
1O~N21/2!. ~11!

Purely random trading corresponds to^p21(mAm&z50 and
s251. Following @15# we also define the volatility matrix
J tt8 :
01612
e
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J tt85K 1

p (
m FAt

m2K 1

p (
n

At
nL

z
GFAt8

m
2K 1

p (
n

At8
n L

z
G L

z

,

~12!

which measures the temporal correlations of the market fl
tuations. Note thats t

25J tt . In the case where the averag
bid ^A& is zero~as in the present model!, the volatility mea-
sures the efficiency of the market.

III. GENERATING FUNCTIONAL ANALYSIS

The canonical tool to deal with the dynamics of th
present problem is generating functional analysis a` la De
Dominicis @16#, which allows one to carry out the disorde
average~here the average over all strategies! and take the
N→` limit exactly. The final result of the analysis is a set
closed equations, which can be interpreted as describing
dynamics of an effective ‘‘single agent’’@16,21#. Due to the
disorder in the process, this single agent will acquire an
fective ‘‘memory,’’ i.e., he or she will evolve according to
nontrivial non-Markovian stochastic process. Here we w
follow closely the steps taken in@15#, and we refer to the
latter paper for full details of the calculation. In contrast
the situation in@15#, for the present noisy version of th
game one finds a microscopic transition probability dens
operatorW(quq8):

W~quq8!5E dq̂

~2p!N

3K expF(
i

i q̂ i S qi2qi81hi1(
j

Ji j sj8D G L
z

,

~13!

with the short handsj85s@qj8 ,zj uTj #. The moment generat
ing functional for a stochastic process of the present typ
defined as

Z@c#5K expF i(
t

(
i

c i~ t !qi~ t !G L
5E )

t
@dq~ t !W„q~ t11!uq~ t !…# p0@q~0!#

3expF i(
t

(
i

c i~ t !qi~ t !G . ~14!

Derivation of the generating functional with respect to t
conjugate variablesc generates all moments ofq at arbitrary
times. Upon introducing the two shorthands:
6-3
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wt
m5

A2

AN
(

i
q̂i~ t !j i

m , xt
m5

A2

AN
(

i
si~ t !j i

m , ~15!

as well as Dq5) i t@dqi(t)/A2p#, Dw5)mt@dwt
m/A2p#,

and Dx5)mt@dxt
m/A2p# ~with similar definitions forDq̂,

Dŵ, and D x̂, respectively!, the generating functional take
the following form:

Z@c#5E DwDŵDx D x̂

3expH i(
tm

@ŵt
mwt

m1 x̂t
mxt

m1A2wt
m~Vm1xt

m!#J
3E DqDq̂ p0@q~0!#K expF ~2 iA2/AN!

3(
m i

j i
m(

t
@ŵt

mq̂i~ t !1 x̂t
msi~ t !#G L

z

3expH i(
t i

@ q̂i~ t !@qi~ t11!2qi~ t !2u i~ t !#

1c i~ t !qi~ t !#J , ~16!

where, as in@15#, we introduced external ‘‘forces’’u i(t) to
generate response functions.

To describe typical behavior, and in view of the se
averaging character of the largeN limit, at this stage we
average over over the explicit choices of the quenched
dom parameters$R%. These averages are not affected in a
way by the introduction of the noise variables$zi% or the
independent temperaturesTi , and the further procedure o
@15# still applies here, generating the dynamical order para
eters Ctt85N21( isi(t)si(t8), Ktt85N21( isi(t)q̂i(t8), and
Ltt85N21( i q̂i(t)q̂i(t8) and their conjugates. For time
which are small compared withN and for simple initial con-
ditions of the formp0(q)5) i p0(qi) one thus finds

Z@c#̄5E @DCDĈ#@DKDK̂#@DLDL̂#exp$N@C1F1V#

1O~N0!%. ~17!

TheO(N0) term in the exponent is independent of the fie
$c i(t)% and$u i(t)%. The three relevant exponents in Eq.~17!
are given by the following expressions:

C5 i(
tt8

@Ĉtt8Ctt81K̂ tt8Ktt81L̂ tt8Ltt8#, ~18!
01612
n-
y

-

F5a lnF E Dw Dŵ Dx Dx̂ expH i(
t

@ŵtwt1 x̂txt1wtxt#J
3expH 2

1

2 (
tt8

@wtwt81ŵtLtt8ŵt812x̂tKtt8ŵt8

1 x̂tCtt8x̂t8#J G . ~19!

V5
1

N (
i

lnF E Dq Dq̂ p0@q~0!#

3expH i(
t

$q̂~ t !@q~ t11!2q~ t !2u i~ t !#

1c i~ t !q~ t !%2 i(
tt8

q̂~ t !L̂ tt8q̂~ t8!J
3K expH 2 i(

tt8
@si~ t !Ĉtt8si~ t8!1si~ t !K̂ tt8q̂~ t8!#J L

z
G .

~20!

Heresi(t)5s@q(t),ztuTi # and the averagê &z has now been
reduced to a single site ~but many time! one
^g@z1 ,z2 , . . . #&z5*) t@dztP(zt)#g@z1 ,z2 , . . . #. Following
@15# we have also introduced the short handsDq
5) t@dq(t)/A2p#, Dw5) t@dwt /A2p#, and Dx

5) t@dxt /A2p# ~with similar definitions forDq̂, Dŵ, and
Dx̂). Note that all the quantities appearing in Eq.~17! are
macroscopic; all the microscopic variables have been in
grated out.

IV. THE SADDLE-POINT EQUATIONS

We can now evaluate Eq.~17! by saddle-point integration
in the limit N→`. We defineGtt852 iK tt8 . Taking deriva-
tives with respect to the generating fields and using the n
malizationZ@0#̄51 then gives~at the physical saddle point!
the usual identifications

Ctt85 lim
N→`

1

N (
i

^si~ t !si~ t8!&, ~21!

Gtt85 lim
N→`

1

N (
i

]

]u i~ t8!
^si~ t !&, ~22!

and also

Ltt852 lim
N→`

1

N (
i

]2

]u i~ t !]u i~ t8!
150. ~23!

Putting c i(t)50 ~they are no longer needed! and u i(t)
5u(t) then simplifies Eq.~20! to
6-4
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V5E
0

`

dTW~T!lnF E Dq Dq̂ p0„q~0!…

3expH i(
t

q̂~ t !@q~ t11!2q~ t !2u~ t !#

2 i(
tt8

q̂~ t !L̂ tt8q̂~ t8!J
3K expH 2 i(

tt8
@s~ t !Ĉtt8s~ t8!1s~ t !K̂ tt8q̂~ t8!#J L

z
G ,

~24!

in which nows(t)5s@q(t),ztuT#, and whereW(T) denotes
the distribution of local noise strengths:

W~T!5 lim
N→`

1

N (
i

d~T2Ti !. ~25!

Extremization of the extensive exponentN@C1F1V# of
Eq. ~17! with respect to$C,Ĉ,K,K̂,L,L̂% gives the saddle-
point equations

Ctt85^s~ t !s~ t8!&! Gtt85
]^s~ t !&!

]u~ t8!
, ~26!

Ĉtt85
i ]F

]Ctt8

, K̂ tt85
i ]F

]Ktt8

, L̂ tt85
i ]F

]Ltt8

. ~27!

The effective single-trader averages^ . . . &!, generated by
taking derivatives of Eq.~20!, are defined as

^ f @$q,s%#&!5E
0

`

dTW~T!

3H E Dq ^M @$q,s%# f @$q,s%#&z

E Dq ^M @$q,s%#&z
J , ~28!

M @$q,s%#5p0„q~0!…expF2 i(
tt8

s~ t !Ĉtt8s~ t8!G
3E Dq̂ expF2 i(

tt8
q̂~ t !L̂ tt8q̂~ t8!G

3expH i(
t

q̂~ t !Fq~ t11!2q~ t !2u~ t !

2(
t8

K̂ tt8
T s~ t8!G J . ~29!

Upon elimination of the trio$Ĉ,K̂,L̂% via Eq.~27! we obtain
exact closed equations for the disorder-averaged correla
and response functions in theN→` limit, Eq. ~26!, with the
01612
on

effective single-trader measure~29!. One recovers the theor
of @15# upon puttingW(T)5d(T).

Since the introduction of decision noise into the dynam
has only affected the termV ~24!, compared to the analysi
in @15#, the simplifications of the termF ~reflecting the sta-
tistical properties of the trading strategies! derived in @15#
apply unaltered, so that at the physical saddle point we ag
find

L̂52
1

2
ia~11G!21D~11GT!21, ~30!

K̂T52a~11G!21, ~31!

Ĉ50, ~32!

where AT denotes the transpose of the matrixA, and the
entries of the matrixD are given byDtt8511Ctt8 . We now
find our effective single-trader measureM @$q,s%# of Eq.
~29! reducing further to

M @$q,s%#5p0„q~0!…E Dq̂ expH 2
1

2
a(

tt8
q̂~ t !

3@~11G!21D~11GT!21# tt8q̂~ t8!J
3expH i(

t
q̂~ t !Fq~ t11!2q~ t !2u~ t !

1a(
t8

~11G! tt8
21s~ t8!G J . ~33!

For a given value ofT, this describes a stochastic singl
agent process of the form

q~ t11!5q~ t !2a (
t8<t

~11G! tt8
21s@q~ t8!,zt8uT#1u~ t !

1Aah~ t !. ~34!

Causality ensures that (11G) tt8
21

50 for t8.t. The variable
zt represents the original single-trader decision noise, w
^zt&50 and ^ztzt8&5d tt8 , and h(t) is a disorder-generate
Gaussian noise with zero mean and with temporal corr
tions given by^h(t)h(t8)&5S tt8 :

S5~11G!21D~11GT!21. ~35!

The correlation and response functions~21! and~22! are the
dynamic order parameters of the problem, and must
solved self-consistently from the closed equations

Ctt85^s@q~ t !,ztuT#s@q~ t8!,zt8uT#&! , ~36!

Gtt85
]

]u~ t8!
^s@q~ t !,ztuT#&! , ~37!
6-5



r

id

sily

t

A. C. C. COOLEN, J. A. F. HEIMEL, AND D. SHERRINGTON PHYSICAL REVIEW E65 016126
which, following Eq.~28!, also now involve averaging ove
the distribution of the noise strengthsT. Note thatM @$q,s%#
as given by Eq.~33! is normalized, i.e.,*DqM@$q,s%#51,
so the associated averages reduce to

^ f @$q,s%#&!5E
0

`

dTW~T!E Dq ^M @$q,s%# f @$q,s%#&z.

~38!

The calculation in@15# of the disorder-averaged average b
and the volatility matrix~including the single-time volatility
s t

25J tt) still hold, and hence

lim
N→`

^A& t̄50, lim
N→`

J̄ tt85
1

2
S tt8 . ~39!
h
n

Eq

a

01612
V. THE FIRST TIME STEPS

For the first few time steps one can calculate quite ea
the order parameters~correlation and response functions! and
the volatility, from Eq. ~33!, using the simplifications tha
follow from causality, such as

@Gn# tt850 for t8.t2n. ~40!

At t50 this immediately allows us to conclude thatS00
5D0052. We now obtain from Eq.~33! the joint statistics at
times t51, given a value forT:
p„q~1!uq~0!…5E dz0P~z0!
exp̂ 2$q~1!2q~0!2u~0!1as@q~0!,z0uT#%2/4a‰

2Aap
. ~41!
ial-

ddi-
Equation~41! allows us to calculateC10 andG10, although
the presence of the decision noise induces expressions w
are significantly more difficult to work out explicitly tha
those of the noise-free case in@15#, and which will depend
on the choice made fors@q,zuT#:

C105E
0

`

dTW~T!E dz0 dz1P~z0!P~z1!E dq~0!p0„q~0!…

3E dq~1!

2Aap
exp̂ 2$q~1!2q~0!2u~0!

1as@$q~0!,z0uT#%2/4a‰

3s@q~0!,z0uT# s@q~1!,z1uT#, ~42!

G105E
0

`

dTW~T!E dz0 dz1P~z0!P~z1!E dq~0!p0„q~0!…

3E dq~1!

2Aap
exp̂ 2$q~1!2q~0!2u~0!

1as@q~0!,z0uT#%2/4a‰

3
]

]q~1!
s@q~1!,z1uT#. ~43!

We can now move to the next time step, again using
~40!, where we need the noise covariancesS11 andS10:

S10511C1022G10, ~44!

S115222G10@11C01#12@G10#
2. ~45!

This procedure can, in principle, be repeated for an arbitr
number of time steps.
ich

.

ry

We now specialize to the case where the game is init
ized in a tabula rasa manner, i.e.,p„q(0)…5d@q0#, and
where we have no perturbation fields, i.e.,u(t)50. Now,
also upon using the symmetry ofP(z), we can reduce the
above results to

C105E
0

`

dTW~T!E dzP~z!E dq

4Aap
e2[q1a] 2/4a

3$s@q,zuT#2s@2q,2zuT#%, ~46!

G105E
0

`

dTW~T!E dzP~z!E dq

4Aap
e2[q1a] 2/4a

3
]

]q
$s@q,zuT#2s@2q,2zuT#%. ~47!

Inspection of these expressions for large and smalla, and for
the specific choices~4! and ~5! reveals the following. For
a→` one finds

lim
a→`

G1050, lim
a→`

S1152, ~48!

for both noise types. The order parametersC10 and S10, in
contrast, are sensitive to the type of noise chosen. For a
tive noise of the form~4! one has

lim
a→`

C10521, lim
a→`

S1050, ~49!

whereas for multiplicative noise~5! one has

lim
a→`

C1052E
0

`

dTW~T!l~T!, ~50!
6-6
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lim
a→`

S10512E
0

`

dTW~T!l~T!. ~51!

In both cases the negativity ofC10 shows that thetabula-
rasa initialized system immediately enters an oscillatio
with the qi(1) on average having opposite sign to the cor
spondingqi(0). Initially, additive noise is found not to play
a role, and the effective disorder-generated noise compon
h(t) decorrelate, compared with the deterministic case
@15#. Multiplicative noise, on the other hand, is seen to ret
an impact, even for short times and largea, and to cause a
reduction of the oscillation amplitude.

Now we turn to smalla, where we make the choic
P(z)5(2p)21/2e2z2/2 in order to work out integrals explic
itly. For additive noise~4! we find

C1052
aA2

Ap
E

0

`

dTW~T!T211O~a3/2!, ~52!

G105
A2

Ap
E

0

`

dTW~T!T211O~a1/2! ~53!

@provided the above integrals overT exist; if they do not, we
revert back to the leading orders of theT50 case@15#, i.e.,
C105O(Aa) andG105O(1/Aa)#. Combination with the ex-
pressions~44! and ~45! shows that in leading order

h~1!5S 1

2
2G10Dh~0!1w1••• ~54!

in which w is a zero-average Gaussian variable, independ
of h(0), with variance^w2&53/2. Hence we find from the
effective single spin equation~34!

q~1!5Aa h~0!1O~a!, ~55!

q~2!5AaF S 3

2
2G10Dh~0!1wG1O~a!. ~56!

We observe, as in@15#, that for smalla and additive decision
noise, the first two time steps are driven predominantly
the disorder-generated noise component in Eq.~34!. How-
ever, whether this noise component starts oscillating in s
is, in the case of decision noise, crucially dependent on
distribution of temperatures; only when*dTW(T) T21 is
sufficiently large should we expect the system to enter
high-volatility state. For multiplicative noise, on the oth
hand, we arrive for smalla at the leading orders

C1052
Aa

Ap
E

0

`

dTW~T!l~T!1O~a3/2!, ~57!

G105
1

Aap
E

0

`

dTW~T!l~T!1O~Aa!1••• ~58!

Here the oscillation is much stronger~provided we do not
scale the temperatures witha). Combination with the ex-
01612
,
-

nts
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pressions~44! and ~45! shows that in leading order th
disorder-generated noise not only drives the oscillation,
is also being amplified by a factor of the order ofa21/2:

h~1!52G10h~0!1O~a0!. ~59!

The effective single-trader equation subsequently gives

q~1!5Aah~0!1O~a!, ~60!

q~2!52
h~0!

Ap
E

0

`

dTW~T!l~T!1O~Aa!. ~61!

Thus, for smalla and tabula rasa initialization2 additive
decision noise has the most drastic effect on the dynam
changing the leading order of the relevant observables b
factor of Aa ~in contrast to multiplicative noise!.

VI. STATIONARY STATE FOR aÌaC†W„T…‡

If the game has reached a time-translation invariant
tionary state without long-term memory, thenGtt85G(t
2t8), Ctt85C(t2t8), and S tt85S(t2t8). In this section
we assume that the stationary state is one without anoma
response, i.e., limt→` ( t<tG(t)5k exists. The lower limit
of such behavior ina definesac„W(T)….

In a stationary state one generally finds agents w
change strategy frequently, but also agents who consiste
use the same strategy. For the latter frozen agents, the va
of qi will grow linearly in time. We follow@15# and separate
the two groups by introducingq̃i(t)5qi(t)/t; frozen agents
will be those for whom limt→` q̃i(t)Þ0, and the quantity
f5 lime→0 limt→`^u@ uq̃(t)u2e#&! gives the fraction of fro-
zen agents in the originalN-agent system, forN→`. Trans-
formation of the process~34! gives, for a givenT

q̃T~ t !5
1

t
q̃T~1!1

Aa

t (
t8,t

h~ t8!

2
a

t (
t8,t

(
t9<t8

~11G! t8t9
21 s@ q̃T~ t9!,zt9uT#.

~62!

We now defineq̃T5 limt→` q̃T(t) ~assuming this limit exists!
and take the limitt→` in Eq. ~62!, giving

q̃T52
a

11k
mT1Aah, ~63!

with the time averagesmT5 limt→` t21( t<ts@qt ,ztuT# and
h5 limt→`t21( t<th(t). The variance ofh follows from
Eq. ~35!:

2Note that the smalla expansions in this section are made f
fixed W(T); the observed behavior is likely to be different whe
W(T) is allowed to scale witha.
6-7



ob-

ts
ne

turn
.

o-

n

of

nts

A. C. C. COOLEN, J. A. F. HEIMEL, AND D. SHERRINGTON PHYSICAL REVIEW E65 016126
^h2&5~11k!22F11 lim
t,t8→`

1

tt8
(
t<t

(
t8<t8

Ctt8G
5@11^mT

2&!#/~11k!2. ~64!

Note that^mT
2&!5 limt→` t21( t<tC(t)5c.

The integrated response~or static susceptibility! k
5 limt→` ( t<tG(t) is also calculated along the lines of@15#.
One writes the response function asGtt8
5a21/2^]s@q(t),ztuT#/]h(t8)&!. Integration by parts in this
expression generates

^]s@q~ t !,ztuT#/]h~ t8!&!5(
t9

S t8t9
21 ^s@q~ t !,ztuT#h~ t9!&! ,

~65!

and hence

Aa(
t9

^h~ t8!h~ t9!&Gt9t
T

5^s@q~ t !,ztuT#h~ t8!&! . ~66!

Averaging over the two timest and t8 now gives, in a sta-
tionary state without anomalous response, the following:

^mTh&!5kAa^h2&. ~67!

Inserting the variancêh2&, as given in Eq.~64!, then gives
the general relation

^hmT&!5
kAa~11c!

~11k!2
. ~68!

A. Additive decision noise

In the case of additive decision noise~4! we have
s@q,zuT#5sgn@q1zT#. The effective agent is frozen ifq̃
Þ0, in which casemT5sgn@ q̃T#. This solves Eq.~63!, if and
only if uhu.Aa/(11k). If uhu,Aa/(11k), on the other
hand, the agent is not frozen; nowq̃T50 and mT5(1
1k)h/Aa. As a result, we can calculatec5^mT

2&! and the

fraction f5^u@ uhu2Aa/(11k)#&512erf@Aa/2(11c)# of
frozen agents exactly as in in the case@15# without decision
noise, giving the deterministic@i.e., W(T)5d(T)# result

c512S 12
11c

a DerfFA a

2~11c!
G22A11c

2pa
e2a/2(11c).

~69!

We use Eq.~68! and calculate the covariance^hmT&! exactly
as in @15#. The final result is

1

k
5

a

erfFA a

2~11c!
G 21, ~70!

with the value ofc to be determined by solving Eq.~69!. We
find exactly the same transition pointac'0.337 40, signal-
01612
ing the divergence of the integrated responsek, as was found
in the noise-free case, in accord with earlier numerical
servations@20,12–14# and theoretical predictions@18#.

Numerical simulations of the~batch! dynamics of the
present model~which we will not present here, for brevity!
confirm quite convincingly that, upon measuring objec
such asc or f, in the case of additive decision noise, o
indeed exactly recovers the graphs of@15#, without any de-
pendence on the noise parameters. This, however, will
out to be quite different in the case of multiplicative noise

B. Homogeneous multiplicative decision noise

Next we turn to the case of multiplicative noise~5!,
at first with the simplest distributionW(T)5d(T2T̄),
where s@q,zuT#5sgn@q#sgn@11T̄z#, and where mT

5 limt→` t21( t<t sgn@qT(t)#sgn@11T̄zt#. Since there is
now only one noise strength in the system,T̄, we may drop
the subscriptsT for variables such asq(t) or m, without
danger of confusion. For a frozen agent one now finds

m5l~ T̄!sgn@ q̃#. ~71!

This solves Eq.~63! when uhu.Aal(T̄)/(11k). If uhu
,Aal(T̄)/(11k), on the other hand, the agent is not fr
zen; nowq̃T50 andm5(11k)h/Aa. We can again calcu-
latec5^m2&! self-consistently, upon distinguishing betwee
the two possibilities:

c5l2~ T̄!K uF uhu2
Aal~ T̄!

11k
G L

1
~11k!2

a K uFAal~ T̄!

11k
2uhuGh2L . ~72!

Working out the Gaussian integrals describing the statics
h, with variance as given by~64!, subsequently gives

c5l2~ T̄!2Fl2~ T̄!2
11c

a GerfFAal2~ T̄!

2~11c!
G

22l~ T̄!A11c

2pa
e2al2(T̄)/2(11c). ~73!

From this equation the value ofc is solved numerically. The
fraction f of frozen agents is given by

f5K uF uhu2
Aal~ T̄!

11k
G L 512erfFAal2~ T̄!

2~11c!
G . ~74!

We calculate the remaining object^hm&! in Eq. ~68! by
again distinguishing between frozen and nonfrozen age
and by using the two identitiesm5l(T)sgn@h# ~for frozen
agents! andm5h(11k)/Aa ~for fickle ones!, both of which
follow from Eq. ~63!, giving
6-8
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DYNAMICS OF THE BATCH MINORITY GAME WITH . . . PHYSICAL REVIEW E65 016126
^hm&!5l~ T̄!K uF uhu2
Aal~ T̄!

11k
G uhu L

1
11k

Aa
K uFAal~ T̄!

11k
2uhuGh2L

5
11c

~11k!Aa
erfFAal2~ T̄!

2~11c!
G .

Insertion into Eq.~68!, together with Eq.~64!, then gives the
desired expression for the integrated response:

1

k
5

a

erfFAal2~T!

2~11c!
G 21, ~75!

with the value ofc to be determined by solving Eq.~74!.
Equivalently, using Eq.~74! we find, as in theT50 case@15#

k5
12f

a211f
. ~76!

The integrated responsek is positive and finite, and our so
lution exact, fora.ac„W(T)…. At ac„W(T)… one finds thatk
diverges; this transition is, as forT50, found to happen
when the fraction of fickle agents equalsa @10#. Finally,
according to Eqs.~73! and ~75! we can writeac„W(T)… as
ac„W(T)…5erf@x#, wherex is the solution of the transcen
dental equation

l2~ T̄!H erf@x#211
1

xAp
e2x2J 51. ~77!

Equivalently, we can write our transition line explicitly i
terms of the inverse error function as

l~ T̄c!5H ac1
e2[erfinv[ac]] 2

erfinv@ac#Ap
21J 21/2

, ~78!

wherel(T̄)P@0,1#, see Eq.~6!.
In Figs. 1 and 2 we show the solution of Eq.~73! and the

corresponding fractionf of frozen agents as functions ofa,
together with the values forc andf as obtained by carrying
out numerical simulations of the batch minority game~8!
with homogeneous multiplicative decision noise. The t
figures forc andf both show excellent agreement betwe
theory and experiment aboveac(W(T)). One observes that
in addition to a reduction in the persistent correlation, a
other effect of the introduction of multiplicative decisio
noise is an overall increase in the fraction of frozen age
This is consistent with our solution of the first few iteratio
steps, where introducing decision noise had the effec
dampening the oscillations. In Fig. 3 we show the syste
phase diagrams forW(T)5d(T2T̄), defined by the transi-
tion line, wherek5`. This line is given by the solution o
Eq. ~78! in the case of multiplicative noise, and b
01612
-

s.

of
’s

ac„W(T)…'0.337 40@i.e., the value corresponding tol(0)
51# for additive noise. Belowac„W(T)… our simulations
show, as has been observed and reported earlier for the
terministic case, that in the anomalous response region
stationary state reached by the system depends critically
the initial conditions. For small values of theuqi(0)u ~i.e.,
weak initial strategy preferences! the system enters a high
volatility state with lowc andf, whereas for large values o
the uqi(0)u ~i.e., strong initial strategy preferences! the sys-
tem enters a low-volatility state with largec andf.

C. Inhomogeneous multiplicative decision noise

Finally we turn to the more complicated situation of mu
tiplicative noise~5! with arbitrary distributions. For a frozen
agent and for a given value ofT one has

mT5l~T!sgn@ q̃#. ~79!

As before, this solves Eq.~63! if uhu.Aal(T)/(11k),
whereas foruhu,Aal(T)/(11k) the agent is fickle, i.e.,
q̃T50 and mT5(11k)h/Aa. According to Eqs.~36! and
~37!, the calculation of persistent order parameters will n
also involve averaging over the noise distribution. Since
macroscopic dynamics turns out to depend onT only via
l(T), it will be advantageous to definew(l)
5*0

`dTW(T)d„l2l(T)…, or

FIG. 1. The persistent correlationc as a function ofa5p/N, for

multiplicative noise withW(T)5d(T2T̄) and different choices of

the noise strength (T̄50, 1, 2 from top to bottom!. Connected
markers: individual simulation runs, withpN5aN25106 and ho-
mogeneous initial conditions whereqi(0)5q(0) @circles:q(0)50,
squares:q(0)510# and in excess of 1000 iteration steps. Thi
solid curves fora.ac„W(T)…: analytical predictions for homoge
neous multiplicative decision noise. Fora,ac„W(T)…, where they
should no longer be correct, they have been continued as th
dashed line. For additive decision noise our theory predicts in

pendence ofT̄ for a.ac„W(T)…, i.e.,c as given by theT̄50 curve
of multiplicative noise.
6-9
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w~l!5E
0

`

dT W~T!dS l2E dz P~z!sgn@11Tz# D .

~80!

HerelP@0,1#, with l50 reflectingT→` contributions and
l51 reflectingT→0 ones. Now we may write

c5E
0

1

dl w~l!H l2K uF uhu2
Aal

11kG L
1

~11k!2

a K uFAal

11k
2uhuGh2L J

5E
0

1

dl w~l!H l222lA11c

2pa
e2al2/2(11c)

2Fl22
11c

a GerfFA al2

2~11c!
G J . ~81!

From this equation the value ofc is solved numerically. The
fraction f of frozen agents is given by

f512E
0

1

dl w~l!erfFA al2

2~11c!
G . ~82!

We calculate the remaining object^hmT&! in Eq. ~68! by
again distinguishing between frozen and nonfrozen ag

FIG. 2. The asymptotic fraction of frozen agentsf as a function

of a5p/N, for multiplicative noise withW(T)5d(T2T̄) and dif-

ferent choices of the noise strength (T̄50, 1, 2 from top to bottom!.
Markers: individual simulation runs, withpN5aN25106 and ho-
mogeneous initial conditions, whereqi(0)5q(0) @circles: q(0)
50, squares:q(0)510# and in excess of 1000 iteration step
Thick-solid curves fora.ac„W(T)…: analytical predictions for ho-
mogeneous multiplicative decision noise. Fora,ac„W(T)…, where
they should no longer be correct, they have been continued as t
dashed lines. For additive decision noise our theory predicts in

pendence ofT̄, i.e.,f as given by theT̄50 curve of multiplicative
noise.
01612
ts

and by using the two identitiesmT5l(T)sgn@h# ~for frozen
agents! andmT5h(11k)/Aa ~for the nonfrozen ones!, both
of which follow from Eq.~63!, giving

^hmT&!5
11c

~11k!Aa
E

0

1

dl w~l!erfFA al2

2~11c!
G .

Insertion into Eq.~68!, together with Eq.~64!, then gives the
desired expression for the integrated response:

1

k
5

a

E
0

1

dl w~l!erfFA al2

2~11c!
G 21, ~83!

with the value ofc to be determined by solving Eq.~81!.
Using Eq.~82! this can again be written in the familiar form
~77!, which suggests that thek5` transition is of a geo-
metrical nature.

Unless we revert back to uniform noise levels, a transf
mation like ac„W(T)…5erf@x# will now no longer be help-
ful; to find the location of the phase transition one has
solve Eq.~81!, together with the conditionk5`. Upon put-
ting y25a/2(11c) one can, however, compactify these tw
coupled equations to

15E
0

1

dl w~l!l2H erf @yl#211
e2y2l2

ylAp
J , ~84!

a5E
0

1

dl w~l!erf @yl#. ~85!

k-
e-

FIG. 3. Phase diagram in the„a,12l(T̄)… plane for homoge-

neous multiplicative noise, i.e.,W(T)5d(T2T̄). The solid line
separates a nonergodic phase with anomalous response~left! from
an ergodic one without anomalous response~right!. For additive

noise our theory predicts theT̄-independent transition given by th
dashed line.
6-10
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We will finally work out our equations describing the sy
tem with inhomogeneous multiplicative decision noise e
plicitly for the following simple bimodal distribution

W~T8!5ed~T82T!1~12e!d~T8!, ~86!

with eP@0,1#. For e51 we revert back to the homogeneo
case studied earlier in this section; fore50 we return to the
model of @15#. Here we have

w~l!5ed„l2l~T!…1~12e!d~l21!, ~87!

with the functionl(T) as defined in Eq.~6!. The general
Eqs.~81! and ~82! from which to solvec andf, reduce to

c5eH l2~T!22l~T!A11c

2pa
e2al2~T!/2~11c!

2Fl2~T!2
11c

a GerfFAal2~T!

2~11c!
G J

1~12e!H 122A11c

2pa
e2a/2(11c)

2F12
11c

a GerfFA a

2~11c!
G J , ~88!

f512e erfFAal2~T!

2~11c!
G2~12e!erfFA a

2~11c!
G .
~89!

FIG. 4. The persistent correlationc as a function ofa5p/N, for
multiplicative noise withW(T8)5ed(T82T)1(12e)d(T8), for
T51 and different choices of the width (e50, 0.5, 1 from top to
bottom!. Markers: individual simulation runs, withpN5aN2

5106 and homogeneous initial conditions whereqi(0)5q(0)
@circles:q(0)50, squares:q(0)510# and in excess of 1000 itera
tion steps. Solid curves fora.ac„W(T)…: analytical predictions.
For a,ac„W(T)…, where they should no longer be correct, th
have been continued as dashed lines.
01612
-

Similarly, the two coupled Eqs.~84! and ~85! which define
the phase transition, reduce to

15el2~T!H erf @yl~T!#211
e2y2l2(T)

yl~T!Ap
J

1~12e!H erf @y#211
e2y2

yAp
J , ~90!

a5e erf @yl~T!#1~12e!erf @y#. ~91!

Note that forT→0 our transition line equations reduce on
more to those of the noise-free case, as derived in@15#, giv-
ing ac'0.33 740. ForT→`, in contrast, we find a strong
dependence one ~the fraction of traders who experience d
cision noise!. In particular, there is a qualitative differenc
betweene,1 ande51 ~where one of the two noise levels i
the system becomes zero!.

For e51 we return to the case of uniform decision nois
and Eqs.~90! and ~91! dictate that the transition line obey
a→0 as T→`. For e,1 ~i.e., a nonzero fraction of the
traders take decisions deterministically! on the other hand,
we find for T→` the Eqs.~90! and ~91! ~which will now
have a solution with finitey) reducing to

15~12e!H erf @y#211
e2y2

yAp
J , ~92!

a5~12e!erf @y#. ~93!

Equivalently,

ApF22e2a

12e Gerf invF a

12eG5e2[erf inv[(a/12e)]] 2
. ~94!

The solution of this equation defines the pointac(e,T5`),
which obeysac(e,1,T5`).0 andac(1,T5`)50.

In Figs. 4 and 5 we show the~numerical! solution of Eq.
~89! for the persistent correlationc, and the corresponding
value for the fractionf of frozen agents, as given by Eq
~90!, as functions ofa and for different choices of the pa
rameters$T,e%, together with the corresponding values forc
and f, as obtained by carrying out numerical simulation
Here we have chosen Gaussian distributedzj ( l ), i.e., l(T)
5erf@1/TA2#. As before, one observes excellent agreem
between theory and experiment aboveac , and a strong de-
pendence on initial conditions belowac . Finally, in Fig. 6
we show, in the (a,T̄) plane, the system’s phase diagram
defined by thek5` transition line, obtained by solving nu
merically the coupled Eqs.~90! and~91!, for different values
of e.

VII. STATIONARY VOLATILITY FOR aÌac„W„T……

As in the noise-free case@15#, one finds that the volatility
matrix ~12!, which is to be calculated from expressions~35!
and which in a stationary state is time-translation-invari
J tt85J(t2t8), generally involves both long-term an
6-11
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short-term fluctuations. Hence even the ordinary single-t
stationary volatilitys25J(0) cannot be expressed in term
of the persistent order parameterc ~or its relativesk andf).
Upon separating in the functionsC andG the persistent from
the nonpersistent terms, i.e.,C(t)5c1C̃(t) and G(t)
5G̃(t) ~there is no persistent response fora.ac) we find,
as in @15#:

s25
11c

2~11k!2
1 lim

t→`

1

2t (
u<t

(
t8t9

~11G̃!ut8
21C̃t8t9~11G̃T! t9u

21 .

~95!

Obtaining an exact expression fors2 would require solving
our coupled saddle-point Eqs.~36! and ~37! for Ctt8 and
Gtt8 for large times but finite temporal separationst2t8,
hence in practice one has to resort to approximatio
The approximation chosen in@10,11#, for instance, is in
our language equivalent to substituting

^ s @ qi ~ t ! , zi ~ t ! u T # s @qj ~ t ! , zj ~ t ! uT # &

→ d i j 1 ~12d i j !^s@qi~ t !,zi~ t !uT#&

3^s@qj~ t !,zj~ t !uT#&
.

Here we will generalize to the case of decision noise~at least
for the batch MG! the slightly more accurate approximatio
proposed in@15#. We will abbreviate the double average

FIG. 5. The asymptotic fraction of frozen agentsf as a function
of a5p/N, for multiplicative noise withW(T8)5ed(T82T)1(1
2e)d(T8), for T51 and different choices of the width (e50, 0.5,
1 from bottom to top!. Markers: individual simulation runs, with
pN5aN25106 and homogeneous initial conditions whereqi(0)
5q(0) @circles:q(0)50, squares:q(0)510# and in excess of 1000
iteration steps. Solid curves fora.ac„W(T)…: analytical predic-
tions. Fora,ac„W(T)…, where they should no longer be correc
they have been continued as dashed lines.
01612
e

s.

*dTW(T)^•••& as ^^•••&&. In order to find the volatility we
separate the correlations at stationarity in a frozen an
fickle contribution:

C~ t2t8!5fŠ^s@q~ t !,ztuT#s@q~ t8!,zt8uT#&‹fr ~96!

1~12f!Š^s@q~ t !,ztuT#s@q~ t8!,zt8uT#&‹fi ,
~97!

which gives, usingC̃(t2t8)5C(t2t8)2c, and upon rewrit-
ing the fickle contribution to the volatility

s25
1

2~11k!2
1 lim

t→`

12f

2t

3 (
u<t

K K F(
t

~11G̃!ut
21s@q~ t !,ztuT#G2L L

fi

1 lim
t→`

f

2t (
u<t

(
tt8

~11G̃!ut
21~11G̃T! t8u

21

3Š^s@q~ t !,ztuT#s@q~ t8!,zt8uT#&‹fr . ~98!

The approximation of@15# consists of retaining in the con
tribution from fickle agents only the instantaneousu5t
terms, the rationale being that theuÞt ones represent, in the
original single-trader equation, a retarded self-interacti
which is assumed to be significant only for frozen agen
Hence we obtain

FIG. 6. The phase diagram for multiplicative noise wi
W(T8)5ed(T82T)1(12e)d(T8) and Gaussian distributedz,
shown in the (a,T) plane for different values ofe (e
P$0,0.2,0.4,0.6,0.8,1%, from right to left!. For each value ofe, the
solid line separates a nonergodic phase with anomalous resp
~left! from an ergodic one without anomalous response~right!. For
additive noise our theory predicts theT-independent transition
given by the vertical line~i.e., thee50 curve!.
6-12
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s25
1

2~11k!2
1

1

2
~12f!

1 lim
t→`

f

2t (
u<t

(
tt8

~11G̃!ut
21~11G̃T! t8u

21

3Š^s@q~ t !,ztuT#s@q~ t8!,zt8uT#&‹fr . ~99!

Note that, according to Eqs.~82! and ~83!, the integrated
responsek can be expressed in terms of the order param
f ask5(12f)/(a211f).

At this stage we again have to distinguish between ad
tive noise and multiplicative noise, in order to work out t
remaining averages. For additive noise one simply finds

Š^s@q~ t !,ztuT#s@q~ t8!,zt8uT#&‹fr

5Š^s@ q̃~ t !#s@ q̃~ t8!#&‹fr51,

and hence we recover the expression describing the no
free case in@15#:

s25
11f

2~11k!2
1

1

2
~12f!. ~100!

Since the order parametersf and k are, for additive noise
independent of the noise distribution, the same is true for
volatility. This independence of the noise parameters, at l

FIG. 7. The asymptotic volatilitys as a function ofa, for

multiplicative noise withW(T)5d@T2T̄# and different choices of

the noise strength (T̄50, 1, 2 from bottom to top ina.ac regime!.
Markers: individual simulation runs, withpN5aN25106 and ho-
mogeneous initial conditions whereqi(0)5q(0) @circles:q(0)50,
squares:q(0)510# and in excess of 1000 iteration steps. Thic
solid curves fora.ac„W(T)…: analytical predictions for homoge
neous multiplicative decision noise. Fora,ac„W(T)…, where they
should no longer be correct, they have been continued as th
dashed lines. For additive decision noise our theory predicts in

pendence ofT̄, i.e.,s as given by theT̄50 curve of multiplicative
noise.
01612
er
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for a.ac ~in line with @13,14#!, again finds confirmation in
numerical simulations@that is, within the limits imposed by
our approximation; one does observe some weak eff
which could either be due to excessive relation times or
to the retarded self-interaction of fickle traders, which w
neglected in deriving Eq.~100!#.

The more interesting case, as before, is that of multipli
tive noise. Here we have

Š^s@q~ t !,ztuT#s@q~ t8!,zt8uT#&‹fr

5Š^l2~T!&‹fr1d tt8@12Š^l2~T!‹& fr#. ~101!

Hence the approximation~99! reduces to

s25
11fx

2~11k!2
1

1

2
~12f!

1
1

2
f~12x!@~11G̃!21~11G̃T!21#~0!. ~102!

Here we have used time-translation invariance of the stat
ary state, giving@ . . . # tt→@ . . . #(t2t)5@ . . . #(0) for the
relevant matrix elements in Eq.~103!. The conditional aver-
age x5Š^l2(T)&‹fr , constrained byuhu.Aal(T)/(11k)
~which, in the case of multiplicative noise, is the conditio
for an agent to be frozen! and calculated using the varianc
^h2&5(11c)/(11k)2 ~64! of the zero-average persiste
noise term, is given by

x5Š^l2~T!&‹fr

5

E
0

`

dT W~T!l2~T!E DzuF uzu2
Aal~T!

A11c
G

E
0

`

dT W~T!E DzuF uzu2
Aal~T!

A11c
G

5

E
0

1

dl w~l!l2F12erfS lAa

A2~11c!
D G

E
0

1

dl w~l!F12erfS lAa

A2~11c!
D G . ~103!

We note that only forW(T)5d(T) @15#, i.e., w(l)5d(l
21), wherex51, will Eq. ~103! involve only persistent
observables. In the presence of decision noise, as in
study, one always hasx,1, and additional approximation
are required to also reduce the last term in Eq.~103! further
to an expression in terms of persistent order parameters o
This is done in detail in Appendix A, where we show that
reasonable approximation is obtained by simply putting@(1
1G̃)21(11G̃T)21#(0)→1. The end result is the following
final approximation for the stationary-state volatility:

s25
11fx

2~11k!2
1

1

2
~12fx!, ~104!

with x as given by Eq.~103!.

k-
e-
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Expression~104!, which reverts back to that of@15# for
T→0 and which also reduces correctly to the random trad
limit s51 for T→` ~wheref51, c5k5x50), turns out
to be a surprisingly accurate approximation of the volatil
for a.ac ~i.e., in its regime of validity!. This can be ob-
served in Figs. 7 and 8, where we compare the approxim
prediction ~104! to the volatility as observed in numerica
simulations, for both homogeneous multiplicative noise
fined by W(T)5d(T2T̄) and for inhomogeneous multipli
cative noise defined by Eqs.~86! and~87!, respectively. In all
casesl(T)5erf@1/TA2#. ~Note the persistent order param
eters have already been calculated in the previous sect!
We note that expression~104! is very similar to that obtained
by different means for the on-line case in@10,11#, from
which it can be obtained by the replacementc→fx.

The above results emphasize once more the qualita
difference between additive and multiplicative noise; in co
trast to additive noise, the system remains sensitive to m
tiplicative noise even fora.ac . The resulting dependenc
of the volatility on the multiplicative noise strength is ve
similar to that reported in@6# for additive noise~which was
later understood to be caused by insufficient equilibrat
@13,14#!.

VIII. DISCUSSION

In this paper we have generalized the thermal mino
game@6# to the case of imhomogeneous agent populati
~where the decision noise, which can be either additive
multiplicative, is of nonuniform strength!. We have solved

FIG. 8. The asymptotic volatilitys as a function ofa, for
multiplicative noise withW(T8)5ed(T82T)1(12e)d(T8), for
T51 and different choices of the width (e50, 0.5, 1 from bottom
to top in thea.ac regime!. Markers: individual simulation runs
with pN5aN25106 and homogeneous initial conditions whe
qi(0)5q(0) @circles:q(0)50, squares:q(0)510# and in excess of
1000 iteration steps. Solid curves fora.ac„W(T)…: analytical pre-
dictions. Fora,ac„W(T)…, where they should no longer be co
rect, they have been continued as dashed lines.
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the dynamics of the batch version of this model by gene
izing the recent application@15# to the minority game of the
generating functional techniques of@16# ~note that in@15#
only the fully deterministic case was studied!. This formal-
ism reduces theN-agent dynamics, in the limitN→`, to a
stochastic process for a single ‘‘effective agent,’’ with d
namic equations involving colored noise and a retarded s
interaction. It leads to exact closed~but implicit and non-
trivial! equations for correlation and response functions.

Our theory enables us to~i! obtain a better understandin
of previously observed but only partially explained pheno
ena~e.g., the suppression of the volatility by decision no
@6,12#, even below random fora,ac , due to damping of
the ‘‘crowd anti-crowd’’ oscillations@7–9#, or the increase in
the volatility in the presence of multiplicative decision noi
for a.ac!, ~ii ! derive exact phase diagrams, and~iii ! calcu-
late macroscopic observables~e.g., the fraction of frozen
agents and the persistent correlations! in ergodic stationary
states exactly.3 In the case of additive decision noise we fin
a phase diagram identical to that of deterministic decis
making in the onset of equilibrium properties of the highera
ergodic phase, with nonergodic behavior at lowera. In the
case of multiplicative decision noise, in contrast, we arrive
phase diagrams with nontrivial decision noise dependen
of the phase separation line as well as the behavior of b
phases. Here the control parameters are the relative num
of possible values for the external information,a5p/N, and
the parameters characterizing the noise statistics. In the
ergodic regime of the model~i.e., for sufficiently smalla)
our closed equations in terms of correlation and respo
functions are still exact, and can be solved in principle ite
tively for arbitrary times; however, finding the stationa
states is hard~see e.g., the calculations for the simpler ca
@15#!.4 Here we have restricted our calculations in the no
ergodic regime to the the first few time steps, finding no
dependence for both additive and multiplicative decis
noise.

In the present paper we have only worked out explici
two types of choices for the decision noise strengths sta
tics: a delta distribution~i.e., decision noise of uniform
strength!, and a parametrized class of bimodel distributio

3Although the stationary-state equations, derived upon assum
ergodicity and absence of long-term memory, are no longer vali
the nonergodic regime, Figs. 1, 2, 4, and 5 show that fora
,ac„W(T)… their predictions regarding the persistent observablec
and f, nevertheless, give good qualitative agreement with the
sults of simulations from a highly biased start~for the volatility s,
which also involves nonpersistent order parameters, this is
longer the case!.

4Note that a recently proposed procedure@22# for calculating at
least the high-volatility stationary state in the nonergodic regim
based on assuming the integrated response function~which diverges
exactly at the critical point! to remain infinite throughout thea
,ac region, is not likely to work for the case of decision noise.
would, for instance, predict the simple relationf512a ~i.e., f
being independent of the noise parameters!, which is clearly in
conflict with the simulation experiments presented in this paper
6-14
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Due to the general nature of our solution, however, ther
no limit to the different types of noise statistics we cou
have studied. This emphasizes once more the remarkable
tential and appropriateness to the minority games of the g
erating functional analysis methods of@16#. Two natural next
steps would be~1! to develop the generating functional fo
malism for the original ‘‘on-line’’ formulation of the game
where the external information is fed to the age
sequentially,5 or ~2! to analyze our present~exact! order-
parameter equations further in the nonergodic regiona
,ac„W(T)….

APPENDIX: APPROXIMATION OF NONPERSISTENT
TERMS IN THE STATIONARY VOLATILITY

The term Q5@(11G̃)21(11G̃T)21#(0) in Eq. ~102!,
which contains contributions of nonpersistent order para
eters, can be written as

Q5E
2p

p dv

2p

1

u11Ĝ~v!u2
, ~A1!

with the definition Ĝ(v)5( tG̃(t)e2 ivt. The simplest ap-
proximation for G̃(t), which respects causality and als
meets the requirement( tG̃(t)5k, is an exponential expres
sion of the formG̃(t.0)→k(12g)g t21 @with 21,g,1
and with G̃(t<0)50#. This gives Ĝ(v)5k(12g)/(eiv

2g), and thus

Q5E
2p

p dv

2p

ueiv2gu2

ueiv2g1k~12g!u2
. ~A2!

We will obtain an estimate forg by carrying out an approxi-
mate calculation of the one-step response function

G̃~1!5
]

]u~ t !
^s@q~ t11!,zt11uT#&! . ~A3!

We insert Eq.~34!, and using the fact that the response
frozen agents will be zero, we repeat our previous ansatz
fickle agents do not experience a retarded self-interact
and we carry out the average over the decision noise vari
zt . This is followed by carrying out the average overh(t)
@which is Gaussian, with variancêh2(t)&52s2; we as-

5This is the subject of@19#, where one also finds a detailed anal
sis of the derivation of the correct continuous time microsco
stochastic equations, of the effect of truncations in differential f
malisms, and of the relation between the batch and on-line mino
game.
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sume, within the context of the present approximation,
correlations betweenh(t) and the persistent noiseh not to
be important for fickle agents#. This gives

G̃~1!5
12f

sApa
K K l~T!exp$2@q2~ t !/a1a#/4s2%

3H coshF uq~ t !u

2s2 G1l~T!sinhF uq~ t !u

2s2 G J L L
fi

.

~A4!

In this expression we simply replaceuq(t)u→0 ~fickle agents
being described by values ofq(t), which oscillate around
zero! and we calculate the residual averageŠ^l(T)&‹fi similar
to our calculation of Eq.~103!. Hence we arrive at the ap
proximation

G̃~1!'
12f

sApa
e2a/4s25 E0

1

dl w~l!l erfS lAa

A2~11c!
D

E
0

1

dl w~l!erfS lAa

A2~11c!
D 6 .

~A5!

On the other hand, according to our ansatzG̃(t.0)5k(1
2g)g t21 we must demandG̃(1)5k(12g), so that Eq.
~A5! leads to the following estimate ofg:

g'12
12f

skApa
e2a/4s25 E0

1

dl w~l!l erfS lAa

A2~11c!
D

E
0

1

dl w~l!erfS lAa

A2~11c!
D 6 .

~A6!

Since fora→` we must finds→1 ~random trading!, and
sincek;a21 ~76!, we conclude from Eq.~A6! thatg→1 for
a→`. Conversely, asa is lowered, we find a divergence o
k at finite ac ~where alsof is finite!. Hence Eq.~A6! also
predicts thatg→1 for a→ac . We now assume thatg→1
will give a sensible approximation in the whole rangea
.ac , and use Eq.~A2! to arrive at the approximate result

@~11G̃!21~11G̃T!21#~0!'1. ~A7!

The above derivation is clearly far from rigorous, and n
quite satisfactory; it simply appears the best one can do w
out actually solving the order-parameter equations for fin
time differences in the stationary state. Yet Eq.~A7! turns out
to lead to a surprisingly accurate approximation for the vo
tility ~see the main text!.

c
-
ty
e

ton,
@1# D. Challet and Y.-C. Zhang, Physica A246, 407 ~1997!.
@2# R. Savit, R. Manuca, and R. Riolo, Phys. Rev. Lett.82, 2203

~1999!.
@3# W. B. Arthur, Amer Econ. Assoc. Papers Proc.84, 406~1994!.
@4# D. Challet, http://www.unifr.ch/econophysics/minority/~an ex-
tensive commented collection of work on the minority gam!.

@5# A. Cavagna, Phys. Rev. E59, R3783~1999!.
@6# A. Cavagna, J. P. Garrahan, I. Giardina, and D. Sherring
6-15



a A

.

ton,

l

A. C. C. COOLEN, J. A. F. HEIMEL, AND D. SHERRINGTON PHYSICAL REVIEW E65 016126
Phys. Rev. Lett.83, 4429~1999!.
@7# M. Hart, P. Jefferies, N. F. Johnson, and P. M. Hui, Physic

~to be published!.
@8# M. Hart, P. Jefferies, and N.F. Johnson, Phys. Rev. E63,

017102~2000!.
@9# P. Jefferies, M. Hart, N.F. Johnson, and P.M. Hui, J. Phys

33, L409 ~2000!.
@10# D. Challet, M. Marsili, and R. Zecchina, Phys. Rev. Lett.84,

1824 ~2000!.
@11# M. Marsili, D. Challet, and R. Zecchina, Physica A280, 522

~2000!.
@12# J. P. Garrahan, E. Moro, and D. Sherrington, Phys. Rev. E62,

R9 ~2000!.
@13# D. Challet, M. Marsili, and R. Zecchina, Phys. Rev. Lett.85,

5008 ~2000!.
01612
A

@14# A. Cavagna, J. P. Garrahan, I. Giardina, and D. Sherring
Phys. Rev. Lett.85, 5009~2000!.

@15# J.A.F. Heimel, and A.C.C. Coolen, Phys. Rev. E63, 056121
~2001!.

@16# C. De Dominicis, Phys. Rev. B18, 4913~1978!.
@17# D. Challet, and M. Marsili, Phys. Rev. E60, R6271~1999!.
@18# M. Marsili and D. Challet, e-print cond-mat/0102257 2001.
@19# A.C.C. Coolen, and J.A.F. Heimel, J. Phys. A~to be pub-

lished!; e-print cond-mat/0107600.
@20# G. Botazzi, G. Devetag, G. Dosi, in ‘‘LEM-St.Anna’s Schoo

of Advanced Studies working paper 1999/24,’’ 1999.
@21# H. Sompolinsky and A. Zippelius, Phys. Rev. B25, 6860

~1982!.
@22# J. A. F. Heimel and A. De Martino, J. Phys. A: Math. Gen.34,

L539 ~2001!.
6-16


