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1. Introduction

This paper, on solving the dynamics of recurrent neural networks using none-
quilibrium statistical mechanical techniques, is the sequel of [1], which was devoted
to solving the statics using equilibrium techniques. I refer to [1] for a general in-
troduction to recurrent neural networks and their properties.

Equilibrium statistical mechanical techniques can provide much detailed quan-
titative information on the behavior of recurrent neural networks, but they obvi-
ously have serious restrictions. The ®rst one is that, by de®nition, they will only
provide information on network properties in the stationary state. For associative
memories, for instance, it is not clear how one can calculate quantities like sizes of
domains of attraction without solving the dynamics. The second, and more serious,
restriction is that for equilibrium statistical mechanics to apply the dynamics of the
network under study must obey detailed balance, i.e. absence of microscopic
probability currents in the stationary state. As we have seen in [1], for recurrent
networks in which the dynamics take the form of a stochastic alignment of neuronal
®ring rates to postsynaptic potentials which, in turn, depend linearly on the ®ring
rates, this requirement of detailed balance usually implies symmetry of the synaptic
matrix. From a physiological point of view this requirement is clearly unacceptable,
since it is violated in any network that obeys Dale's law as soon as an excitatory
neuron is connected to an inhibitory one. Worse still, we saw in [1] that in any
network of graded-response neurons detailed balance will always be violated, even
when the synapses are symmetric. The situation will become even worse when we
turn to networks of yet more realistic (spike-based) neurons, such as integrate-and-
®re ones. In contrast to this, nonequilibrium statistical mechanical techniques, it will
turn out, do not impose such biologically nonrealistic restrictions on neuron types
and synaptic symmetry, and they are consequently the more appropriate avenue for
future theoretical research aimed at solving biologically more realistic models.

The common strategy of all nonequilibrium statistical mechanical studies is to
derive and solve dynamical laws for a suitable small set of relevant macroscopic
quantities from the dynamical laws of the underlying microscopic neuronal system.
In order to make progress, as in equilibrium studies, one is initially forced to pay the
price of having relatively simple model neurons, and of not having a very compli-
cated spatial wiring structure in the network under study; the networks described
and analyzed in this paper will consequently be either fully connected, or randomly
diluted. When attempting to obtain exact dynamical solutions within this class, one
then soon ®nds a clear separation of network models into two distinct complexity
classes, re¯ecting in the dynamics a separation which we also found in the statics. In
statics one could get away with relatively simple mathematical techniques as long as
the number of attractors of the dynamics was small compared to the number N of
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neurons. As soon as the number of attractors became of the order of N , on the other
hand, one entered the complex regime, requiring the more complicated formalism of
replica theory. In dynamics we will again ®nd that we can get away with relatively
simple mathematical techniques as long as the number of attractors remains small,
and ®nd closed deterministic di�erential equations for macroscopic quantities with
just a single time argument. As soon as we enter the complex regime, however, we
will no longer ®nd closed equations for one-time macroscopic objects: we will now
have to work with correlation and response functions, which have two time argu-
ments, and turn to the less trivial generating functional techniques.1

In contrast to the situation in statics [1], I cannot in this paper give many
references to textbooks on the dynamics, since these are more or less nonexistent.
There would appear to be two reasons for this. Firstly, in most physics departments
nonequilibrium statistical mechanics (as a subject) is generally taught and applied
far less intensively than equilibrium statistical mechanics, and thus the nonequi-
librium studies of recurrent neural networks have been considerably less in number
and later in appearance in literature than their equilibrium counterparts. Secondly,
many of the popular textbooks on the statistical mechanics of neural networks were
written around 1989, roughly at the point in time where nonequilibrium statistical
mechanical studies just started being taken up. When reading such textbooks one
could be forgiven for thinking that solving the dynamics of recurrent neural net-
works is generally ruled out, whereas, in fact, nothing could be further from the
truth. Thus the references in this paper will, out of necessity, be mainly to research
papers. I regret that, given constraints on page numbers and given my aim to
explain ideas and techniques in a lecture notes style (rather than display encyclo-
pedic skills), I will inevitably have left out relevant references. Another consequence
of the scarce and scattered nature of the literature on the nonequilibrium statistical
mechanics of recurrent neural networks is that a situation has developed where
many mathematical procedures, properties and solutions are more or less known
by the research community, but without there being a clear reference in literature
where these were ®rst formally derived (if at all). Examples of this are the ¯uctu-
ation±dissipation theorems (FDTs) for parallel dynamics and the nonequilibrium
analysis of networks with graded response neurons; often the separating boundary
between accepted general knowledge and published accepted general knowledge is
somewhat fuzzy.

The structure of this paper mirrors more or less the structure of [1]. Again I will
start with relatively simple networks, with a small number of attractors (such as
systems with uniform synapses, or with a small number of patterns stored with
Hebbian-type rules), which can be solved with relatively simple mathematical
techniques. These will now also include networks that do not evolve to a stationary

1 A brief note about terminology: strictly speaking, in this paper we will apply these techniques only to
models in which time is measured in discrete units, so that we should speak about generating func-
tions rather than generating functionals. However, since these techniques can and have also been
applied intensively to models with continuous time, they are in literature often referred to as gen-
erating functional techniques, for both discrete and continuous time.
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state, and networks of graded response neurons, which could not be studied within
equilibrium statistical mechanics at all. Next follows a detour on correlation and
response functions and their relations (i.e. FDTs), which serves as a prerequisite for
the last section on generating functional methods, which are indeed formulated in
the language of correlation and response functions. In this last, more mathemati-
cally involved, section I study symmetric and nonsymmetric attractor neural net-
works close to saturation, i.e. in the complex regime. I will show how to solve the
dynamics of fully connected as well as extremely diluted networks, emphasizing the
(again) crucial issue of presence (or absence) of synaptic symmetry, and compare
the predictions of the (exact) generating functional formalism to both numerical
simulations and simple approximate theories.

2. Attractor neural networks with binary neurons

The simplest nontrivial recurrent neural networks consist of N binary neurons
ri 2 fÿ1; 1g (see [1]) which respond stochastically to postsynaptic potentials (or
local ®elds) hi�r�, with r � �r1; . . . ;rN �. The ®elds depend linearly on the instan-
taneous neuron states, hi�r� �

P
j Jijrj � hi, with the Jij representing synaptic e�-

cacies, and the hi representing external stimuli and/or neural thresholds.

2.1. Closed macroscopic laws for sequential dynamics

First I show how for sequential dynamics (where neurons are updated one after the
other) one can calculate, from the microscopic stochastic laws, di�erential equations
for the probability distribution of suitably de®ned macroscopic observables. For
mathematical convenience our starting point will be the continuous-time master
equation for the microscopic probability distribution pt�r�

d

dt
pt�r� �

X
i

wi�Fir�pt�Fir� ÿ wi�r�pt�r�f g; wi�r� � 1

2
�1ÿ ri tanh�bhi�r���

�1�
with FiU�r� � U�r1; . . . ;riÿ1;ÿri;ri�1; . . . ;rN � (see [1]). I will discuss the condi-
tions for the evolution of these macroscopic state variables to become deterministic
in the limit of in®nitely large networks and, in addition, be governed by a closed set
of equations. I then turn to speci®c models, with and without detailed balance, and
show how the macroscopic equations can be used to illuminate and understand the
dynamics of attractor neural networks away from saturation.

2.1.1. A toy model
Let me illustrate the basic ideas with the help of a simple (in®nite range) toy model:
Jij � �J=N�ginj and hi � 0 (the variables gi and ni are arbitrary, but may not
depend on N ). For gi � ni � 1 we get a network with uniform synapses. For
gi � ni 2 fÿ1; 1g and J > 0 we recover the Hop®eld [2] model with one stored
pattern. Note: the synaptic matrix is nonsymmetric as soon as a pair �ij� exists such
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that ginj 6� gjni, so in general equilibrium statistical mechanics will not apply. The
local ®elds become hi�r� � Jgim�r� with m�r� � 1

N

P
k nkrk. Since they depend on

the microscopic state r only through the value of m, the latter quantity appears to
constitute a natural macroscopic level of description. The probability density of
®nding the macroscopic state m�r� � m is given by Pt�m� �

P
r pt�r�d�mÿ m�r��. Its

time derivative follows upon inserting (1):

d

dt
Pt�m� �

X
r

XN

k�1
pt�r�wk�r� d mÿ m�r� � 2

N
nkrk

� �
ÿ d mÿ m�r�� �

� �

� d

dm

X
r

pt�r�d mÿ m�r�� � 2
N

XN

k�1
nkrkwk�r�

( )
� O

1

N

� �
:

Inserting our expressions for the transition rates wi�r� and the local ®elds hi�r�
gives:

d

dt
Pt�m� � d

dm
Pt�m� mÿ 1

N

XN

k�1
nk tanh�gkbJm�

" #( )
� O�Nÿ1�:

In the limit N !1 only the ®rst term survives. The general solution of the resulting
Liouville equation is Pt�m� �

R
dm0 P0�m0�d mÿ m�tjm0�� �, where m�tjm0� is the

solution of

d

dt
m � lim

N!1
1

N

XN

k�1
nk tanh�gkbJm� ÿ m; m�0� � m0: �2�

This describes deterministic evolution; the only uncertainty in the value of m is due
to uncertainty in initial conditions. If at t � 0 the quantity m is known exactly, this
will remain the case for ®nite time-scales; m turns out to evolve in time according
to (2).

2.1.2. Arbitrary synapses
Let us now allow for less trivial choices of the synaptic matrix fJijg and try
to calculate the evolution in time of a given set of macroscopic observables
X�r� � �X1�r�; . . . ;Xn�r�� in the limit N !1. There are no restrictions yet on the
form or the number n of these state variables; these will, however, arise naturally if
we require the observables X to obey a closed set of deterministic laws, as we will
see. The probability density of ®nding the system in macroscopic state X is given
by:

Pt X� � �
X

r

pt�r�d XÿX�r�� �: �3�

Its time derivative is obtained by inserting (1). If in those parts of the resulting
expression which contain the operators Fi we perform the transformations r! Fir,
we arrive at
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d

dt
Pt X� � �

X
i

X
r

pt�r�wi�r� d XÿX�Fir�� � ÿ d XÿX�r�� �f g:

Upon writing Xl�Fir� � Xl�r� � Dil�r� and making a Taylor expansion in powers
of fDil�r�g, we ®nally obtain the so-called Kramers±Moyal expansion:

d

dt
Pt X� � �

X
`P 1

�ÿ1�`
`!

Xn

l1�1
� � �
Xn

l`�1

o`

oXl1
� � � oXl`

Pt X� �F �`�l1���l` X; t� �
n o

: �4�

It involves conditional averages hf �r�iX;t and the `discrete derivatives'
Djl�r� � Xl�Fjr� ÿ Xl�r�: 2

F �l�l1���ll
X; t� � �

XN

j�1
wj�r�Djl1

�r� � � �Djl`�r�
* +

X;t

;

hf �r�iX;t �
P

r pt�r�d XÿX�r�� �f �r�P
r pt�r�d XÿX�r�� � : �5�

Retaining only the ` � 1 term in (4) would lead us to a Liouville equation, which
describes deterministic ¯ow in X space. Including also the ` � 2 term leads us to a
Fokker±Planck equation which, in addition to ¯ow, describes di�usion of the
macroscopic probability density. Thus a su�cient condition for the observables
X�r� to evolve in time deterministically in the limit N !1 is:

lim
N!1

X
`P 2

1

`!

Xn

l1�1
� � �
Xn

l`�1

XN

j�1
hjDjl1

�r� � � �Djl`�r�jiX;t � 0: �6�

In the simple case where all observables Xl scale similarly in the sense that all
`derivatives' Djl � Xl�Fir� ÿ Xl�r� are of the same order in N (i.e. there is a

monotonic function ~DN such that Djl � O�~DN � for all jl), for instance, criterion (6)
becomes:

lim
N!1

n~DN

����
N
p
� 0: �7�

If for a given set of observables condition (6) is satis®ed we can for large N describe
the evolution of the macroscopic probability density by a Liouville equation:

d

dt
Pt X� � � ÿ

Xn

l�1

o
oXl

Pt X� �F �1�l X; t� �
n o

2 Expansion (4) is to be interpreted in a distributional sense, i.e. only to be used in expressions of the
form

R
dXPt�X�G�X� with smooth functions G�X�, so that all derivatives are well-de®ned and ®nite.

Furthermore, (4) will only be useful if the Djl, which measure the sensitivity of the macroscopic
quantities to single neuron state changes, are su�ciently small. This is to be expected: for ®nite N any
observable can only assume a ®nite number of possible values; only for N !1 may we expect
smooth probability distributions for our macroscopic quantities.
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whose solution describes deterministic ¯ow: Pt�X� �
R
dX0P0�X0�d�XÿX�tjX0��

with X�tjX0� given, in turn, as the solution of

d

dt
X�t� � F�1� X�t�; t� �; X�0� � X0: �8�

In taking the limit N !1, however, we have to keep in mind that the resulting
deterministic theory is obtained by taking this limit for ®nite t. According to (4) the
` > 1 terms do come into play for su�ciently large times t; for N !1, however,
these times diverge by virtue of (6).

2.1.3. The issue of closure
Eq. (8) will in general not be autonomous; tracing back the origin of the explicit
time dependence in the right-hand side of (8) one ®nds that to calculate F�1� one
needs to know the microscopic probability density pt�r�. This, in turn, requires
solving Eq. (1) (which is exactly what one tries to avoid). We will now discuss a
mechanism via which to eliminate the o�ending explicit time dependence, and to
turn the observables X�r� into an autonomous level of description, governed by
closed dynamic laws. The idea is to choose the observables X�r� in such a way
that there is no explicit time dependence in the ¯ow ®eld F�1� X; t� � (if possible).
According to (5) this implies making sure that there exist functions Ul X� � such
that

lim
N!1

XN

j�1
wj�r�Djl�r� � Ul X�r�� � �9�

in which case the time dependence of F�1� indeed drops out and the macroscopic
state vector simply evolves in time according to:

d

dt
X � U X� �; U�X� � �U1�X�; . . . ;Un�X��:

Clearly, for this closure method to apply, a suitable separable structure of the
synaptic matrix is required. If, for instance, the macroscopic observables Xl depend
linearly on the microscopic state variables r (i.e. Xl�r� � 1

N

PN
j�1 xljrj), we obtain

with the transition rates de®ned in (1):

d

dt
Xl � lim

N!1
1

N

XN

j�1
xlj tanh�bhj�r�� ÿ Xl �10�

in which case the only further condition for (9) to hold is that all local ®elds hk�r�
must (in leading order in N ) depend on the microscopic state r only through the
values of the observables X; since the local ®elds depend linearly on r this, in turn,
implies that the synaptic matrix must be separable: if Jij �

P
l Kilxlj then indeed

hi�r� �
P

l KilXl�r� � hi. Next I will show how this approach can be applied to
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networks for which the matrix of synapses has a separable form (which includes
most symmetric and nonsymmetric Hebbian type attractor models). I will restrict
myself to models with hi � 0; introducing nonzero thresholds is straightforward and
does not pose new problems.

2.2. Application to separable attractor networks

2.2.1. Separable models: description at the level of sublattice activities
We consider the following class of models, in which the interaction matrix has the
form

Jij � 1

N
Q�ni; nj�; ni � �n1i ; . . . ; np

i �: �11�

The components nl
i , representing the information (`patterns') to be stored or pro-

cessed, are assumed to be drawn from a ®nite discrete set K, containing nK elements
(they are not allowed to depend on N ). The Hop®eld model [2] corresponds to
choosing Q�x; y� � x � y and K � fÿ1; 1g. One now introduces a partition of the
system f1; . . . ;Ng into np

K so-called sublattices Ig:

Ig � fijni � gg; f1; . . . ;Ng �
[
g

Ig; g 2 Kp: �12�

The number of neurons in sublattice Ig is denoted by jIgj (this number will have to be
large). If we choose as our macroscopic observables the average activities (`mag-
netisations') within these sublattices, we are able to express the local ®elds hk solely
in terms of macroscopic quantities:

mg�r� � 1

jIgj
X
i2Ig

ri; hk�r� �
X

g

pgQ nk; g� �mg �13�

with the relative sublattice sizes pg � jIgj=N . If all pg are of the same order in N
(which, for example, is the case if the vectors ni have been drawn at random from the
set Kp) we may write Djg � O�np

KNÿ1� and use (7). The evolution in time of the
sublattice activities is then found to be deterministic in the N !1 limit if
limN!1 p=logN � 0. Furthermore, condition (9) holds, since

XN

j�1
wj�r�Djg�r� � tanh b

X
g0

pg0Q g; g0� �mg0

" #
ÿ mg:

We may conclude that the situation is that described by (10), and that the evolution
in time of the sublattice activities is governed by the following autonomous set of
di�erential Eqs. [3]:

d

dt
mg � tanh b

X
g0

pg0Q g; g0� �mg0

" #
ÿ mg �14�
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We see that, in contrast to the equilibrium techniques as described in [1], here there
is no need at all to require symmetry of the interaction matrix or absence of self-
interactions. In the symmetric case Q�x; y� � Q�y; x� the system will approach
equilibrium; if the kernel Q is positive de®nite this can be shown, for instance, by
inspection of the Lyapunov function3 Lfmgg:

Lfmgg � 1

2

X
gg0

pgmgQ�g; g0�mg0pg0 ÿ 1

b

X
g

pg log cosh b
X
g0

Q�g; g0�mg0pg0

" #
which is bounded from below and obeys:

d

dt
L � ÿ

X
gg0

pg
d

dt
mg

� �
Q�g; g0� pg0

d

dt
mg0

� �
O 0: �15�

Note that from the sublattice activities, in turn, follow the `overlaps' ml�r� (see [1]):

ml�r� � 1

N

XN

i�1
nl

i ri �
X

g

pgglmg: �16�

Simple examples of relevant models of the type (11), the dynamics of which are for
large N described by Eq. (14), are for instance the ones where one applies a non-
linear operation U to the standard Hop®eld-type [2] (or Hebbian-type) interactions.
This nonlinearity could result from e.g. a clipping procedure or from retaining only
the sign of the Hebbian values:

Jij � 1

N
U

X
l O p

nl
i n

l
j

 !
:

e.g. U�x� �
ÿK for x O K

x for ÿK < x < K

K for x P K

8><>: or U�x� � sgn�x�:

The e�ect of introducing such nonlinearities is found to be of a quantitative nature,
giving rise to little more than a re-scaling of critical noise levels and storage ca-
pacities. I will not go into full details, these can be found in e.g. [4], but illustrate this
statement by working out the p � 2 equations for randomly drawn pattern bits
nl

i 2 fÿ1; 1g, where there are only four sublattices, and where pg � 1
4 for all g. Using

U�0� � 0 and U�ÿx� � ÿU�x� (as with the above examples) we obtain from (14):

d

dt
mg � tanh

1

4
bU�2��mg ÿ mÿg�

� �
ÿ mg: �17�

Here the choice made for U�x� shows up only as a rescaling of the temperature.
From (17) we further obtain d

dt �mg � mÿg� � ÿ�mg � mÿg�. The system decays ex-

3 A function of the state variables which is bounded from below and whose value decreases mono-
tonically during the dynamics, see e.g. [5]. Its existence guarantees evolution towards a stationary
state (under some weak conditions).
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ponentially towards a state where, according to (16), mg � ÿmÿg for all g. If at t � 0
this is already the case, we ®nd (at least for p � 2) decoupled equations for the
sublattice activities.

2.2.2. Separable models: description at the level of overlaps
Equations (14) and (16) suggest that at the level of overlaps there will be, in turn,
closed laws if the kernel Q is bilinear:4, Q�x; y� �Plm xlAlmym, or:

Jij � 1

N

Xp

lm�1
nl

i Almn
m
j ; ni � �n1i ; . . . ; np

i �: �18�

We will see that now the nl
i need not be drawn from a ®nite discrete set (as long

as they do not depend on N ). The Hop®eld model corresponds to Alm � dlm and
nl

i 2 fÿ1; 1g. The ®elds hk can now be written in terms of the overlaps ml:

hk�r� � nk � Am�r�; m � �m1; . . . ;mp�; ml�r� � 1

N

XN

i�1
nl

i ri: �19�

For this choice of macroscopic variables we ®nd Djl � O�Nÿ1�, so the evolution
of the vector m becomes deterministic for N !1 if, according to (7),
limN!1 p=

����
N
p � 0. Again (9) holds, sinceXN

j�1
wj�r�Djl�r� � 1

N

XN

k�1
nk tanh bnk � Am� � ÿm:

Thus the evolution in time of the overlap vector m is governed by a closed set of
di�erential equations:

d

dt
m � hn tanh bn � Am� �in ÿm; hU�n�in �

Z
dn q�n�U�n� �20�

with q�n� � limN!1 Nÿ1
P

i d�nÿ ni�. Symmetry of the synapses is not required. For
certain nonsymmetric matrices A one ®nds stable limit-cycle solutions of (20). In the
symmetric case Alm � Aml the system will approach equilibrium; the Lyapunov
function (15) for positive de®nite matrices A now becomes:

Lfmg � 1

2
m � Amÿ 1

b
hlog cosh bn � Am� �in:

Fig. 1 shows in the m1;m2-plane the result of solving the macroscopic laws (20)
numerically for p � 2, randomly drawn pattern bits nl

i 2 fÿ1; 1g, and two choices of
the matrix A. The ®rst choice (upper row) corresponds to the Hop®eld model; as the
noise level T � bÿ1 increases the amplitudes of the four attractors (corresponding to
the two patterns nl and their mirror images ÿnl) continuously decrease, until at the

4 Strictly speaking, it is already su�cient to have a kernel which is linear in y only, i.e.
Q�x; y� �Pm fm�x�ym.
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critical noise level Tc � 1 (see also [1]) they merge into the trivial attractor m � �0; 0�.
The second choice corresponds to a nonsymmetric model (i.e. without detailed
balance); at the macroscopic level of description (at ®nite time scales) the system
clearly does not approach equilibrium; macroscopic order now manifests itself in the
form of a limit-cycle (provided the noise level T is below the critical value Tc � 1
where this limit-cycle is destroyed). To what extent the laws (20) are in agreement
with the result of performing the actual simulations in ®nite systems is illustrated in
Fig. 2. Other examples can be found in [6,7].

Fig. 1. Flow diagrams obtained by numerically solving Eq. (20) for p � 2. Upper row:

Alm � dlm (the Hop®eld model); lower row: A � 1 1
ÿ1 1

� �
(here the critical noise level is

Tc � 1).

Fig. 2. Comparison between simulation results for ®nite systems (N � 1000 and N � 3000)

and the N � 1 analytical prediction (20), for p � 2, T � 0:8 and A � 1 1
ÿ1 1

� �
.
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As a second simple application of the ¯ow Eq. (20) we turn to the relaxation
times corresponding to the attractors of the Hop®eld model (where Alm � dlm).
Expanding (20) near a stable ®xed-point m�, i.e. m�t� � m� � x�t� with jx�t�j � 1,
gives the linearized equation

d

dt
xl �

X
m

bhnlnm tanh�bn �m��in ÿ dlm

h i
xm � O�x2�: �21�

The Jacobian of (20), which determines the linearized Eq. (21), turns out to be minus
the curvature matrix of the free energy surface at the ®xed-point (c.f. the derivations
in [1]). The asymptotic relaxation towards any stable attractor is generally expo-
nential, with a characteristic time s given by the inverse of the smallest eigenvalue
of the curvature matrix. If, in particular, for the ®xed point m� we substitute an
n-mixture state, i.e. ml � mn �l O n� and ml � 0 �l > n�, and transform (21) to the
basis where the corresponding curvature matrix D�n� (with eigenvalues Dn

k) is dia-
gonal, x! ~x, we obtain

~xk�t� � ~xk�0�eÿtDn
k � � � �

so sÿ1 � mink Dn
k, which we have already calculated (see [1]) in determining the

character of the saddle-points of the free-energy surface. The result is shown in Fig. 3.
The relaxation time for the n-mixture attractors decreases monotonically with the
degree of mixing n, for any noise level. At the transition where a macroscopic statem�

ceases to correspond to a local minimum of the free energy surface, it also destabilizes
in terms of the linearized dynamic Eq. (21) (as it should). The Jacobian develops a
zero eigenvalue, the relaxation time diverges, and the long-time behavior is no longer

Fig. 3. Asymptotic relaxation times sn of the mixture states of the Hop®eld model as a
function of the noise level T � bÿ1. From bottom to top: n � 1; 3; 5; 7; 9; 11; 13.
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obtained from the linearized equation. This gives rise to critical slowing down (power
law relaxation as opposed to exponential relaxation). For instance, at the transition
temperature Tc � 1 for the n � 1 (pure) state, we ®nd by expanding (20):

d

dt
ml � ml

2

3
m2

l ÿm2

� �
� O�m5�

which gives rise to a relaxation towards the trivial ®xed-point of the form m � tÿ
1
2.

If one is willing to restrict oneself to the limited class of models (18) (as opposed to
the more general class (11)) and to the more global level of description in terms of p
overlap parameters ml instead of np

K sublattice activities mg, then there are two re-
wards. Firstly there will be no restrictions on the stored pattern components nl

i (for
instance, they are allowed to be real-valued); secondly the number p of patterns stored
can bemuch larger for the deterministic autonomous dynamical laws to hold (p � ����

N
p

instead of p � logN , which from a biological point of view is not impressive.

2.3. Closed macroscopic laws for parallel dynamics

We now turn to the parallel dynamics counterpart of (1), i.e. the Markov chain

p`�1�r� �
X
r0

W r; r0� �p`�r0� W r; r0� � �
YN
i�1

1

2
1� ri tanh�bhi�r0��� � �22�

(with ri 2 fÿ1; 1g, and with local ®elds hi�r� de®ned in the usual way). The evo-
lution of macroscopic probability densities will here be described by discrete map-
pings, instead of di�erential equations.

2.3.1 The toy model
Let us ®rst see what happens to our previous toy model: Jij � �J=N�ginj and hi � 0.
As before we try to describe the dynamics at the (macroscopic) level of the quantity
m�r� � 1

N

P
k nkrk. The evolution of the macroscopic probability density Pt�m� is

obtained by inserting (22):

Pt�1�m� �
X
rr0

d mÿ m�r�� �W r; r0� �pt�r0� �
Z

dm0 ~Wt m;m0� �Pt�m0� �23�

with

~Wt m;m0� � �
P

rr0 d mÿ m�r�� �d m0 ÿ m�r0�� �W r; r0� �pt�r0�P
r0 d m0 ÿ m�r0�� �pt�r0� :

We now insert our expression for the transition probabilities W �r; r0� and for the
local ®elds. Since the ®elds depend on the microscopic state r only through m�r�, the
distribution pt�r� drops out of the above expression for ~Wt which thereby loses its
explicit time dependence, ~Wt m;m0� � ! ~W m;m0� �:

~W m;m0� � � eÿ
P

i
log cosh�bJm0gi� d mÿ m�r�� �ebJm0

P
i
giri

D E
r

with h. . .ir � 2ÿN
X

r

. . .
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Inserting the integral representation for the d-function allows us to perform the
average:

~W m;m0� � � bN
2 p

� � Z
dk eNW�m;m0;k�;

W � ibkm� hlog cosh b�Jgm0 ÿ ikn�ig;n ÿ hlog cosh b�Jgm0�ig:
Since ~W m;m0� � is (by construction) normalized,

R
dm ~W m;m0� � � 1, we ®nd that for

N !1 the expectation value with respect to ~W m;m0� � of any su�ciently smooth
function f �m� will be determined only by the value m��m0� of m in the relevant
saddle-point of W:Z

dm f �m� ~W m;m0� � �
R
dm dk f �m� eNW�m;m0;k�R

dmdk eNW�m;m0;k� ! f �m��m0�� �N !1�:

Variation of W with respect to k and m gives the two saddle-point equations:

m � hn tanh b�Jgm0 ÿ nk�ig;n; k � 0:

We may now conclude that limN!1 ~W m;m0� � � d mÿ m��m0�� � with m��m0� �
hn tanh�bJgm0�ig;n, and that the macroscopic Eq. (23) becomes:

Pt�1�m� �
Z

dm0 d mÿ hn tanh�bJgm0�ign

h i
Pt�m0� �N !1�:

This describes deterministic evolution. If at t � 0 we know m exactly, this will
remain the case for ®nite time scales, and m will evolve according to a discrete
version of the sequential dynamics law (2):

mt�1 � hn tanh�bJgmt�ig;n �24�

2.3.2. Arbitrary synapses
We now try to generalize the above approach to less trivial classes of models. As for
the sequential case we will ®nd in the limit N !1 closed deterministic evolution
equations for a more general set of intensive macroscopic state variables
X�r� � X1�r�; . . . ;Xn�r� if the local ®elds hi�r� depend on the microscopic state r
only through the values of X�r�, and if the number n of these state variables nec-
essary to do so is not too large. The evolution of the ensemble probability density (3)
is now obtained by inserting the Markov Eq. (22):

Pt�1 X� � �
Z

dX0 ~Wt X;X0� �Pt X0� � �25�

~Wt X;X0� � �
P

rr0 d XÿX�r�� �d X0 ÿX�r0�� �W r; r0� �pt�r0�P
r0 d X0 ÿX�r0�� �pt�r0�

� hd XÿX�r�� �h e
P

i
brihi�r0�ÿlog cosh�bhi�r0��� �iX0;tir �26�
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with h. . .ir � 2ÿN P
r . . ., and with the conditional (or sub-shell) average de®ned as

in (5). It is clear from (26) that in order to ®nd autonomous macroscopic laws, i.e.
for the distribution pt�r� to drop out, the local ®elds must depend on the micro-
scopic state r only through the macroscopic quantities X�r�: hi�r� � hi�X�r��. In
this case ~Wt loses its explicit time dependence, ~Wt X;X0� � ! ~W X;X0� �. Inserting
integral representations for the d-functions leads to:

~W X;X0� � � bN
2 p

� �nZ
dK eNW�X;X0;K�;

W � ibK �X� 1

N
log eb

P
i
rihi�X0�ÿiNK�X�r�� �D E

r
ÿ 1

N

X
i

log cosh�bhi�X0��:

Using the normalization
R
dX ~W X;X0� � � 1, we can write expectation values with

respect to ~W X;X0� � of macroscopic quantities f �X� asZ
dX f �X� ~W X;X0� � �

R
dX dK f �X� eNW�X;X0;K�R

dX dK eNW�X;X0;K� : �27�

For saddle-point arguments to apply in determining the leading order in N of (27), we
encounter restrictions on the number n of our macroscopic quantities (as expected),
since n determines the dimension of the integrations in (27). The restrictions can be
found by expanding W around its maximum W�. After de®ning x � �X;K�, of di-
mension 2n, and after translating the location of the maximum to the origin, one has

W�x� � W� ÿ 1

2

X
lm

xlxmHlm �
X
lmq

xlxmxqLlmq � O�x4�

givingR
dxg�x�eNW�x�R
dxeNW�x� ÿg�0�

�
R
dx �g�x�ÿg�0��exp�ÿ1

2Nx �Hx�N
P

lmq xlxmxqLlmq�O�Nx4��R
dxexp�ÿ1

2
Nx �Hx�N

P
lmq xlxmxqLlmq�O�Nx4��

�
R
dy �g�y= ����

N
p �ÿg�0��exp�ÿ1

2y �Hy�Plmq ylymyqLlmq=
����
N
p �O�y4=N��R

dyexp�ÿ1
2y �Hy�Plmq ylymyqLlmq=

����
N
p �O�y4=N��

�
R
dy Nÿ

1
2y �$g�0��O�y2=N�

h i
exp�ÿ1

2
y �Hy� 1�Plmq ylymyqLlmq=

����
N
p �O�y6=N�

h i
R
dyexp�ÿ1

2y �Hy� 1�Plmq ylymyqLlmq=
����
N
p �O�y6=N�

h i
�O�n2=N��O�n4=N2��nondominant terms; �N ;n!1�

with H denoting the Hessian (curvature) matrix of the surface W at the minimum
W�. We thus ®nd
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lim
N!1

n=
����
N
p
� 0 : lim

N!1

Z
dX f �X� ~W X;X0� � � f X��X0�� �;

where X��X0� denotes the value of X in the saddle-point where W is minimized.
Variation of W with respect to X and K gives the saddle-point equations:

X � hX�r� e
b
P

i
rihi�X0�ÿiNK�X�r�� �ir

h eb
P

i
rihi�X0 �ÿiNK�X�r�� �ir

; K � 0:

We may now conclude that limN!1 ~W X;X0� � � d XÿX��X0�� �, with

X��X0� � hX�r� e
b
P

i
rihi�X0�ir

h eb
P

i
rihi�X0 �ir

and that for N !1 the macroscopic Eq. (25) becomes Pt�1�X� �R
dX0 d�XÿX��X0��Pt�X0�. This relation again describes deterministic evolution. If

at t � 0 we know X exactly, this will remain the case for ®nite time scales and X will
evolve according to

X�t � 1� � hX�r� e
b
P

i
rihi�X�t��ir

h eb
P

i
rihi�X�t��ir

: �28�

As with the sequential case, in taking the limit N !1 we have to keep in mind that
the resulting laws apply to ®nite t, and that for su�ciently large times terms of
higher order in N do come into play. As for the sequential case, a more rigorous and
tedious analysis shows that the restriction n=

����
N
p ! 0 can in fact be weakened to

n=N ! 0. Finally, for macroscopic quantities X�r� which are linear in r, the re-
maining r-averages become trivial, so that [8]:

Xl�r� � 1

N

X
i

xliri : Xl�t � 1� � lim
N!1

1

N

X
i

xli tanh bhi�X�t��� � �29�

(to be compared with (10), as derived for sequential dynamics).

2.4. Application to separable attractor networks

2.4.1. Separable models: sublattice activities and overlaps
The separable attractor models (11), described at the level of sublattice activities
(13), indeed have the property that all local ®elds can be written in terms of the
macroscopic observables. What remains to ensure deterministic evolution is meeting
the condition on the number of sublattices. If all relative sublattice sizes pg are of the
same order in N (as for randomly drawn patterns) this condition again translates
into limN!1 p= logN � 0 (as for sequential dynamics). Since the sublattice activities
are linear functions of the ri, their evolution in time is governed by Eq. (29), which
acquires the form:
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mg�t � 1� � tanh b
X
g0

pg0Q g; g0� �mg0 �t�
" #

: �30�

As for sequential dynamics, symmetry of the interaction matrix does not play a role.
At the more global level of overlaps ml�r� � Nÿ1

P
i n

l
i ri we, in turn, obtain

autonomous deterministic laws if the local ®elds hi�r� can be expressed in terms if
m�r� only, as for the models (18) (or, more generally, for all models in which the
interactions are of the form Jij �

P
lO p filn

l
j ), and with the following restriction on

the number p of embedded patterns: limN!1 p=
����
N
p � 0 (as with sequential dy-

namics). For the bilinear models (18), the evolution in time of the overlap vector m
(which depends linearly on the ri) is governed by (29), which now translates into the
iterative map:

m�t � 1� � hn tanh�bn � Am�t��in �31�
with q�n� as de®ned in (20). Again symmetry of the synapses is not required. For
parallel dynamics it is far more di�cult than for sequential dynamics to construct
Lyapunov functions, and prove that the macroscopic laws (31) for symmetric sys-
tems evolve towards a stable ®xed-point (as one would expect), but it can still be
done. For nonsymmetric systems the macroscopic laws (31) can in principle display
all the interesting, but complicated, phenomena of nonconservative nonlinear sys-
tems. Nevertheless, it is also not uncommon that the Eq. (31) for nonsymmetric
systems can be mapped by a time-dependent transformation onto the equations for
related symmetric systems (mostly variants of the original Hop®eld model).

As an example we show in Fig. 4 as functions of time the values of the overlaps
fmlg for p � 10 and T � 0:5, resulting from numerical iteration of the macroscopic
laws (31) for the model

Fig. 4. Evolution of overlaps ml�r�, obtained by numerical iteration of the macroscopic

parallel dynamics laws (31), for the synapses Jij � m
N

P
l nl

i n
l
j � 1ÿm

N

P
l nl�1

i nl
j , with p � 10

and T � 0:5.
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Jij � m
N

X
l

nl
i n

l
j �

1ÿ m
N

X
l

nl�1
i nl

j �l : mod p�

i.e. Akq � mdkq � �1ÿ m�dk;q�1 �k; q : mod p�, with randomly drawn pattern bits
nl

i 2 fÿ1; 1g. The initial state is chosen to be the pure state ml � dl;1. At intervals of
Dt � 20 iterations the parameter m is reduced in Dm � 0:25 steps from m � 1 (where
one recovers the symmetric Hop®eld model) to m � 0 (where one obtains a non-
symmetric model which processes the p embedded patterns in strict sequential order
as a period-p limit-cycle). The analysis of Eq. (31) for the pure sequence processing
case m � 0 is greatly simpli®ed by mapping the model onto the ordinary (m � 1)
Hop®eld model, using the index permutation symmetries of the present pattern
distribution, as follows (all pattern indices are periodic, mod p). De®ne
ml�t� � Mlÿt�t�, now

Ml�t � 1� � nl�t�1 tanh b
X

q

nq�1Mqÿt�t�
" #* +

n

� hnl tanh�bn �M�t��in:

We can now immediately infer, in particular, that to each stable macroscopic ®xed-
point attractor of the original Hop®eld model corresponds a stable period-p mac-
roscopic limit-cycle attractor in the m � 1 sequence processing model (e.g. pure
states $ pure sequences, mixture states $ mixture sequences), with identical am-
plitude as a function of the noise level. Fig. 4 shows for m � 0 (i.e. t > 80) a relax-
ation towards such a pure sequence.

Finally we note that the ®xed-points of the macroscopic Eqs. (14) and (20)
(derived for sequential dynamics) are identical to those of (30) and (31) (derived for
parallel dynamics). The stability properties of these ®xed points, however, need not
be the same, and have to be assessed on a case-by-case basis. For the Hop®eld
model, i.e. Eqs. (20) and (31) with Alm � dlm, they are found to be the same, but
already for Alm � ÿdlm the two types of dynamics would behave di�erently.

3. Attractor neural networks with continuous neurons

3.1. Closed macroscopic laws

3.1.1. General derivation
We have seen in [1] that models of recurrent neural networks with continuous neural
variables (e.g. graded response neurons or coupled oscillators) can often be de-
scribed by a Fokker±Planck equation for the microscopic state probability density
pt�r�:

d

dt
pt�r� � ÿ

X
i

o
ori

pt�r�fi�r�� � � T
X

i

o2

or2
i

pt�r�: �32�

Averages over pt�r� are denoted by hGi � R dr pt�r�G�r; t�. From (32) one obtains
directly (through integration by parts) an equation for the time derivative of aver-
ages:
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d

dt
hGi � oG

ot

� �
�

X
i

fi�r� � T
o

ori

� �
oG
ori

* +
�33�

In particular, if we apply (33) to G�r; t� � d�XÿX�r��, for any set of macroscopic
observables X�r� � �X1�r�; . . . ;Xn�r�� (in the spirit of Section 2), we obtain a dy-
namic equation for the macroscopic probability density Pt�X� � hd�XÿX�r��i,
which is again of the Fokker±Planck form:

d

dt
Pt�X� � ÿ

X
l

o
oXl

Pt�X�
X

i

fi�r� � T
o

ori

� �
o

ori
Xl�r�

* +
X;t

8<:
9=;

� T
X
lm

o2

oXloXm
Pt�X�

X
i

o
ori

Xl�r�
� �

o
ori

Xm�r�
� �* +

X;t

8<:
9=; �34�

with the conditional (or subshell) averages:

hG�r�iX;t �
R
dr pt�r�d�XÿX�r��G�r�R

dr pt�r�d�XÿX�r�� : �35�

From (34) we infer that a su�cient condition for the observables X�r� to evolve in
time deterministically (i.e. for having vanishing di�usion matrix elements in (34)) in
the limit N !1 is

lim
N!1

X
i

X
l

o
ori

Xl�r�
���� ����

" #2* +
X;t

� 0: �36�

If (36) holds, the macroscopic Fokker±Planck Eq. (34) reduces for N !1 to a
Liouville equation, and the observables X�r� will evolve in time according to the
coupled deterministic equations:

d

dt
Xl � lim

N!1

X
i

fi�r� � T
o

ori

� �
o

ori
Xl�r�

* +
X;t

: �37�

The deterministic macroscopic Eq. (37), together with its associated condition for
validity (36) will form the basis for the subsequent analysis.

3.1.2. Closure: a toy model again.
The general derivation given above went smoothly. However, Eq. (37) are not yet
closed. It turns out that to achieve closure even for simple continuous networks we
can no longer get away with just a ®nite (small) number of macroscopic observables
(as with binary neurons). This I will now illustrate with a simple toy network of
graded response neurons:

d

dt
ui�t� �

X
j

Jijg�uj�t�� ÿ ui�t� � gi�t� �38�
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with g�z� � 1
2 �tanh�cz� � 1� and with the standard Gaussian white noise gi�t� (see

[1]). In the language of (32) this means fi�u� �
P

j Jijg�uj� ÿ ui. We choose uniform
synapses Jij � J=N , so fi�u� ! �J=N�Pj g�uj� ÿ ui. If (36) were to hold, we would
®nd the deterministic macroscopic laws

d

dt
Xl � lim

N!1

X
i

J
N

X
j

g�uj� ÿ ui � T
o

oui

" #
o

oui
Xl�u�

* +
X;t

: �39�

In contrast to similar models with binary neurons, choosing as our macroscopic
level of description X�u� again simply the average m�u� � Nÿ1

P
i ui now leads to an

equation which fails to close:

d

dt
m � lim

N!1
J

1

N

X
j

g�uj�
* +

m;t

ÿm:

The term Nÿ1
P

j g�uj� cannot be written as a function of Nÿ1
P

i ui. We might be
tempted to try dealing with this problem by just including the o�ending term in our
macroscopic set, and choose X�u� � �Nÿ1Pi ui;Nÿ1

P
i g�ui��. This would indeed

solve our closure problem for the m-equation, but we would now ®nd a new closure
problem in the equation for the newly introduced observable. The only way out is to
choose an observable function, namely the distribution of potentials

q�u; u� � 1

N

X
i

d�uÿ ui�; q�u� � hq�u; u�i � 1

N

X
i

d�uÿ ui�
* +

: �40�

This is to be done with care, in view of our restriction on the number of observables:
we evaluate (40) at ®rst only for n speci®c values ul and take the limit n!1 only
after the limit N !1. Thus we de®ne Xl�u� � 1

N

P
i d�ul ÿ ui�, condition (36) re-

duces to the familiar expression limN!1 n=
����
N
p � 0, and we get for N !1 and

n!1 (taken in that order) from (39) a di�usion equation for the distribution of
membrane potentials (describing a so-called `time-dependent Ornstein±Uhlenbeck
process' [9,10]):

d

dt
q�u� � ÿ o

ou
q�u� J

Z
du0q�u0�g�u0� ÿ u

� �� �
� T

o2

ou2
q�u�: �41�

The natural5 solution of (41) is the Gaussian distribution

qt�u� � �2 pR2�t��ÿ1
2 eÿ

1
2�uÿ�u�t��2=R2�t� �42�

in which R � �T � �R2
0 ÿ T � eÿ2t�12, and �u evolves in time according to

d

dt
�u � J

Z
Dz g��u� Rz� ÿ �u �43�

5 For non-Gaussian initial conditions q0�u� the solution of (41) would in time converge towards the
Gaussian solution.
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(with Dz � �2p�ÿ1
2 eÿ

1
2z

2

dz). We can now also calculate the distribution p�s� of neu-
ronal ®ring activities si � g�ui� at any time:

p�s� �
Z

du q�u�d�sÿ g�u�� � q�ginv�s��R 1
0 ds0q�ginv�s0��

:

For our choice g�z� � 1
2� 1

2 tanh�cz� we have ginv�s� � 1
2c log�s=�1ÿ s��, so in combi-

nation with (42):

0 < s < 1 : p�s� � exp�ÿ 1
2 ��2c�ÿ1 log�s=�1ÿ s�� ÿ �u�2=R2�R 1

0 ds0 exp�ÿ 1
2 ��2c�ÿ1 log�s0=�1ÿ s0�� ÿ �u�2=R2�

: �44�

The results of solving and integrating numerically (43) and (44) are shown in Fig. 5,
for Gaussian initial conditions (42) with �u0 � 0 and r0 � 1, and with parameters
c � J � 1 and di�erent noise levels T . For low noise levels we ®nd high average
membrane potentials, low membrane potential variance, and high ®ring rates; for
high noise levels the picture changes to lower average membrane potentials, higher
potential variance, and uniformly distributed (noise-dominated) ®ring activities. The
extreme cases T � 0 and T � 1 are easily extracted from our equations. For T � 0
one ®nds R�t� � R0 e

ÿt and d
dt

�u � Jg��u� ÿ �u. This leads to a ®nal state where
�u � 1

2 J � 1
2 J tanh�c�u� and where p�s� � d�sÿ �u=J �. For T � 1 one ®nds R � 1 (for

any t > 0) and d
dt

�u � 1
2 J ÿ �u. This leads to a ®nal state where �u � 1

2 J and where
p�s� � 1 for all 0 < s < 1.

None of the above results (not even those on the stationary state) could have
been obtained within equilibrium statistical mechanics, since any network of con-
nected graded response neurons will violate detailed balance [1]. Secondly, there

Fig. 5. Dynamics of a simple network of N graded response neurons (38) with synapses
Jij � J=N and nonlinearity g�z� � 1

2 �1� tanh�cz��, for N !1, c � J � 1, and T 2
f0:25; 0:5; 1; 2; 4g. Left: evolution of average membrane potential hui � �u, with noise levels T
increasing from top graph (T � 0:25) to bottom graph (T � 4). Middle: evolution of the width
R of the membrane potential distribution, R2 � hu2i ÿ hui2, with noise levels decreasing from
top graph (T � 4) to bottom graph (T � 0:25). Right: asymptotic (t � 1) distribution of
neural ®ring activities p�s� � hd�sÿ g�u��i, with noise levels increasing from the sharply peaked

curve (T � 0:25) to the almost ¯at curve (T � 4).
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appears to be a qualitative di�erence between simple networks (e.g. Jij � J=N ) of
binary neurons versus those of continuous neurons, in terms of the types of mac-
roscopic observables needed for deriving closed deterministic laws: a single number
m � Nÿ1

P
i ri versus a distribution q�r� � Nÿ1

P
i d�rÿ ri�. Note, however, that

in the binary case the latter distribution would in fact have been characterized fully
by a single number: the average m, since q�r� � 1

2 �1� m�d�rÿ 1� � 1
2 �1ÿ m�d�r� 1�.

In other words: there we were just lucky.

3.2. Application to graded response attractor networks

3.2.1. Derivation of closed macroscopic laws

I will now turn to attractor networks with graded response neurons of the type (38),

in which p binary patterns nl � �nl
1 ; . . . ; nl

N � 2 fÿ1; 1gN have been stored via sep-

arable Hebbian-type synapses (18): Jij � �2=N�Pp
lm�1 nl

i Almn
m
j (the extra factor 2 is

inserted for future convenience). Adding suitable thresholds hi � ÿ 1
2

P
j Jij to the

right-hand sides of (38), and choosing the nonlinearity g�z� � 1
2 �1� tanh�cz�� would

then give us

d

dt
ui�t� �

X
lm

nl
i Alm

1

N

X
j

nm
j tanh�cuj�t�� ÿ ui�t� � gi�t�

so the deterministic forces are fi�u� � Nÿ1
P

lm nl
i Alm

P
j nm

j tanh�cuj� ÿ ui. Choosing

our macroscopic observables X�u� such that (36) holds, would lead to the deter-
ministic macroscopic laws

d

dt
Xl � lim

N!1

X
lm

Alm
1

N

X
j

nm
j tanh�cuj�

" # X
i

nl
i

o
oui

Xl�u�
" #* +

X;t

� lim
N!1

X
i

T
o

oui
ÿ ui

� �
o

oui
Xl�u�

* +
X;t

: �45�

As with the uniform synapses case, the main problem to be dealt with is how to
choose the Xl�u� such that (45) closes. It turns out that the canonical choice is to
turn to the distributions of membrane potentials within each of the 2p sublattices, as
introduced in (12):

Ig � fijni � gg : qg�u; u� � 1

jIgj
X
i2Ig

d�uÿ ui�; qg�u� � hqg�u; u�i �46�

with g 2 fÿ1; 1gp and limN!1 jIgj=N � pg. Again we evaluate the distributions in
(46) at ®rst only for n speci®c values ul and send n!1 after N !1. Now con-
dition (36) reduces to limN!1 2p=

����
N
p � 0. We will keep p ®nite, for simplicity. Using

identities such as
P

i . . . �Pg

P
i2Ig . . . and

i 2 Ig :
o

oui
qg�u; u� � ÿjIgjÿ1 o

ou
d�uÿ ui�; o2

ou2
i
qg�u; u� � jIgjÿ1 o2

ou2
d�uÿ ui�;
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we then obtain for N !1 and n!1 (taken in that order) from Eq. (45) 2p

coupled di�usion equations for the distributions qg�u� of membrane potentials in
each of the 2p sublattices Ig:

d

dt
qg�u� � ÿ

o
ou

qg�u�
Xp

lm�1
glAlm

X
g0

pg0g
0
m

Z
du0qg0 �u0� tanh�cu0� ÿ u

" #( )

� T
o2

ou2
qg�u�: �47�

Eq. (47) is the basis for our further analysis. It can be simpli®ed only if we make
additional assumptions on the system's initial conditions, such as d-distributed or
Gaussian distributed qg�u� at t � 0 (see below); otherwise it will have to be solved
numerically.

3.2.2. Reduction to the level of pattern overlaps
It is clear that (47) is again of the time-dependent Ornstein±Uhlenbeck form, and
will thus again have Gaussian solutions as the natural ones:

qt;g�u� � �2pR2
g�t��ÿ

1
2 eÿ

1
2�uÿ�ug�t��2=R2

g�t� �48�

in which Rg�t� � �T � �R2
g�0� ÿ T � eÿ2t�12, and with the �ug�t� evolving in time ac-

cording to

d

dt
�ug �

X
g0

pg0 �g � Ag0�
Z

Dz tanh�c��ug0 � Rg0z�� ÿ �ug: �49�

Our problem has thus been reduced successfully to the study of the 2p coupled scalar
Eqs. (49). We can also measure the correlation between the ®ring activities
si�ui� � 1

2 �1� tanh�cui�� and the pattern components (similar to the overlaps in the
case of binary neurons). If the pattern bits are drawn at random, i.e.
limN!1 jIgj=N � pg � 2ÿp for all g, we can de®ne a `graded response' equivalent
ml�u� � 2Nÿ1

P
i n

l
i si�ui� 2 �ÿ1; 1� of the pattern overlaps:

ml�u� � 2

N

X
i

nl
i si�u� � 1

N

X
i

nl
i tanh�cui� � O�Nÿ1

2�

�
X

g

pggl

Z
du qg�u; u� tanh�cu� � O�Nÿ1

2� �50�

Full recall of pattern l implies si�ui� � 1
2 �nl

i � 1�, giving ml�u� � 1. Since the dis-
tributions qg�u� obey deterministic laws for N !1, the same will be true for the
overlaps m � �m1; . . . ;mp�. For the Gaussian solutions (49) of (47) we can now
proceed to replace the 2p macroscopic laws (49), which reduce to d

dt
�ug � g � Amÿ �ug

and give �ug � �ug�0�eÿt � g � A R t
0 ds esÿtm�s�, by p integral equations in terms of

overlaps only:
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ml�t� �
X

g

pggl

Z
Dz tanh c �ug�0� eÿt � g � A

Z t

0

ds esÿtm�s�
��

� z
������������������������������������������
T � �R2

g�0� ÿ T � eÿ2t
q �i

�51�

with Dz � �2p�ÿ1
2 eÿ

1
2z

2

dz. Here the sublattices only come in via the initial conditions.

3.2.3. Extracting the physics from the macroscopic laws
The equations describing the asymptotic (stationary) state can be written entirely

without sublattices, by taking the t!1 limit in (51), using �ug ! g � Am, Rg !
����
T
p

,

and the familiar notation hg�n�in � limN!1 1
N

P
i g�ni� � 2ÿpP

n2fÿ1;1gp g�n�:

ml� nl

Z
Dz tanh c n �Am� z

����
T
p� �h i� �

n
qg�u�� �2pT �ÿ1

2 eÿ
1
2�uÿg�Am�2=T : �52�

Note the appealing similarity with previous results on networks with binary neurons
in equilibrium [1]. For T � 0 the overlap Eq. (52) becomes identical to those found
for attractor networks with binary neurons and ®nite p (hence our choice to insert
an extra factor 2 in de®ning the synapses), with c replacing the inverse noise level b
in the former.

For the simplest nontrivial choice Alm � dlm (i.e. Jij � �2=N�Pl nl
i n

l
j , as in the

Hop®eld [2] model) Eq. (52) yields the familiar pure and mixture state solutions. For
T � 0 we ®nd a continuous phase transition from nonrecall to pure states of the form
ml � mdlm (for some m) at cc � 1. For T > 0 we have in (52) an additional Gaussian
noise, absent in the models with binary neurons. Again the pure states are the ®rst
nontrivial solutions to enter the stage. Substituting ml � mdlm into (52) gives

m �
Z

Dz tanh�c�m� z
����
T
p
��: �53�

Writing (53) as m2 � cm
Rm
0 dk�1ÿ R Dz tanh2�c�k � z

����
T
p ���O cm2, reveals that

m � 0 as soon as c < 1. A continuous transition to an m > 0 state occurs when
cÿ1 � 1ÿ R Dz tanh2�cz

����
T
p �. A parametrization of this transition line in the �c; T �-

plane is given by

cÿ1�x� � 1ÿ
Z

Dz tanh2�zx�; T �x� � x2=c2�x�; x P 0: �54�

Discontinuous transitions away from m � 0 (for which there is no evidence) would
have to be calculated numerically. For c � 1 we get the equation m � erf�m= ������

2T
p �,

giving a continuous transition to m > 0 at Tc � 2=p � 0:637. Alternatively, the latter
number can also be found by taking limx!1 T �x� in the above parametrization:

Tc�c � 1� � lim
x!1 x2 1ÿ

Z
Dz tanh2�zx�

� �2
� lim

x!1

Z
D z

d

dz
tanh�zx�

� �2
� 2

Z
Dz d�z�

� �2
� 2=p:
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The resulting picture of the network's stationary state properties is illustrated in
Fig. 6, which shows the phase diagram and the stationary recall overlaps of the pure
states, obtained by numerical calculation and solution of Eqs. (54) and (53).

Let us now turn to dynamics. It follows from (52) that the `natural' initial
conditions for �ug and Rg are of the form: �ug�0� � g � k0 and Rg�0� � R0 for all g.
Equivalently:

t � 0 : qg�u� � �2 pR2
0�ÿ

1
2 eÿ

1
2�uÿg�k0�2=R2

0 ; k0 2 <p; R0 2 <:
These would also be the typical and natural statistics if we were to prepare an initial
®ring state fsig by hand, via manipulation of the potentials fuig. For such initial
conditions we can simplify the dynamical Eq. (51) to

ml�t� � nl

Z
Dz tanh c n � k0 e

ÿt � A

Z t

0

ds esÿtm�s�
� ����

� z
������������������������������������
T � �R2

0 ÿ T � eÿ2t
q ���

n
: �55�

For the special case of the Hop®eld synapses, i.e. Alm � dlm, it follows from (55) that
recall of a given pattern m is triggered upon choosing k0;l � k0dlm (with k0 > 0), since
then Eq. (55) generates ml�t� � m�t�dlm at any time, with the amplitude m�t� fol-
lowing from

m�t� �
Z

Dz tanh c�k0 eÿt �
Z t

0

ds esÿtm�s� � z
������������������������������������
T � �R2

0 ÿ T � eÿ2t
q

�
� �

�56�

which is the dynamical counterpart of Eq. (53) (to which indeed it reduces for
t!1).

Fig. 6. Left: phase diagram of the Hop®eld model with graded-response neurons and
Jij � �2=N�Pl nl

i n
l
j , away from saturation. P: paramagnetic phase, no recall. R: pattern

recall phase. Solid line: separation of the above phases, marked by a continuous transition.
Right: asymptotic recall amplitudes m � �2=N�Pi n

l
i si of pure states (de®ned such that full

recall corresponds to m � 1), as functions of the noise level T , for cÿ1 2 f0:1; 0:2; . . . ; 0:8; 0:9g
(from top to bottom).
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We ®nally specialize further to the case where our Gaussian initial conditions are
not only chosen to trigger recall of a single pattern nm, but in addition describe
uniform membrane potentials within the sublattices, i.e. k0;l � k0dlm and R0 � 0, so
qg�u� � d�uÿ k0gm�. Here we can derive from (56) at t � 0 the identity m0 �
tanh�ck0�, which enables us to express k0 as k0 � �2c�ÿ1 log��1� m0�=�1ÿ m0��, and
®nd (56) reducing to

m�t� �
Z

Dz tanh eÿt log
1� m0

1ÿ m0

� �1
2

�c
Z t

0

ds esÿtm�s� � z
������������������������
T �1ÿ eÿ2t�

q� �" #
:

�57�
Solving this equation numerically leads to graphs such as those shown in Fig. 7 for
the choice c � 4 and T 2 f0:25; 0:5; 0:75g. Compared to the overlap evolution in
large networks of binary networks (away from saturation) one immediately observes
richer behavior, e.g. nonmonotonicity.

The analysis and results described in this section, which can be done and derived
in a similar fashion for other networks with continuous units (such as coupled
oscillators), are somewhat di�cult to ®nd in research papers. There are two reasons
for this. Firstly, nonequilibrium statistical mechanical studies only started being
carried out around 1988, and obviously concentrated at ®rst on the (simpler) net-
works with binary variables. Secondly, due to the absence of detailed balance in
networks of graded response networks, the latter appear to have been suspected of
consequently having highly complicated dynamics, and analysis terminated with
pseudo-equilibrium studies [11]. In retrospect that turns out to have been too pes-
simistic a view on the power of nonequilibrium statistical mechanics: one ®nds that

Fig. 7. Overlap evolution in the Hop®eld model with graded-response neurons and
Jij � �2=N�Pl nl

i n
l
j , away from saturation. Gain parameter: c � 4. Initial conditions:

qg�u� � d�uÿ k0gm� (i.e. triggering recall of pattern m, with uniform membrane potentials
within sublattices). Lines: recall amplitudes m � �2=N�Pi n

m
i si of pure state m as functions of

time, for T � 0:25 (upper set), T � 0:5 (middle set) and T � 0:75 (lower set), following dif-
ferent initial overlaps m0 2 f0:1; 0:2; . . . ; 0:8; 0:9g.
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dynamical tools can be applied without serious technical problems (although the
calculations are somewhat more involved), and again yield interesting and explicit
results in the form of phase diagrams and dynamical curves for macroscopic ob-
servables, with sensible physical interpretations.

4. Correlation and response functions

We now turn to correlation functions Cij�t; t0� and response functions Gij�t; t0�. These
will become the language in which the generating functional methods are formu-
lated, which will enable us to solve the dynamics of recurrent networks in the
(complex) regime near saturation (we take t > t0):

Cij�t; t0� � hri�t�rj�t0�i; Gij�t; t0� � ohri�t�i=ohj�t0�: �58�
The frig evolve in time according to equations of the form (1) (binary neurons,
sequential updates), (22) (binary neurons, parallel updates) or (32) (continuous
neurons). The hi represent thresholds and/or external stimuli, which are added to the
local ®elds in the cases (1) and (22), or added to the deterministic forces in the case
of a Fokker±Planck Eq. (32). We retain hi�t� � hi, except for a perturbation dhj�t0�
applied at time t0 in de®ning the response function. Calculating averages such as (58)
requires determining joint probability distributions involving neuron states at dif-
ferent times.

4.1. Fluctuation±dissipation theorems

4.1.1. Networks of binary neurons
For networks of binary neurons with discrete time dynamics of the form
p`�1�r� �

P
r0 W r; r0� �p`�r0�, the probability of observing a given `path' r�`0�

! r�`0 � 1� ! � � � ! r�`ÿ 1� ! r�`� of successive con®gurations between step `0

and step ` is given by the product of the corresponding transition matrix elements
(without summation):

Prob�r�`0�; . . . ; r�`�� � W �r�`�; r�`ÿ 1��W �r�`ÿ 1�; r�`ÿ 2�� . . .

� W �r�`0 � 1�; r�`0��p`0 �r�`0��:
This allows us to write

Cij�`; `0� �
X
r�`0�
� � �
X
r�`�

Prob�r�`0�; . . . ;r�`��ri�`�rj�`0� �
X
rr0

rir
0
jW

`ÿ`0 �r;r0�p`0 �r0�;

�59�

Gij�`; `0� �
X
rr0r00

riW `ÿ`0ÿ1�r; r00� o
ohj

W �r00; r0�
� �

p`0 �r0�: �60�

From (59) and (60) it follows that both Cij�`; `0� and Gij�`; `0� will in the stationary
state, i.e. upon substituting p`0 �r0� � p1�r0�, only depend on `ÿ `0: Cij�`; `0�
! Cij�`ÿ `0� and Gij�`; `0� ! Gij�`ÿ `0�. For this we do not require detailed bal-
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ance. Detailed balance, however, leads to a simple relation between the response
function Gij�s� and the temporal derivative of the correlation function Cij�s�.

We now turn to equilibrium systems, i.e. networks with symmetric synapses (and
with all Jii � 0 in the case of sequential dynamics). We calculate the derivative of the
transition matrix that occurs in (60) by di�erentiating the equilibrium condition
peq�r� �

P
r0 W �r; r0�peq�r0� with respect to external ®elds:

o
ohj

peq�r� �
X
r0

oW �r; r0�
ohj

peq�r0� � W �r; r0� o
ohj

peq�r0�
� �

:

Detailed balance implies peq�r� � Zÿ1 eÿbH�r� (in the parallel case we simply
substitute the appropriate Hamiltonian H ! ~H ), giving opeq�r�=ohj �
ÿ�Zÿ1oZ=ohj � boH�r�=ohj�peq�r�, so that

X
r0

oW �r; r0�
ohj

peq�r0� � b
X
r0

W r; r0� � oH�r0�
ohj

peq�r0� ÿ oH�r�
ohj

peq�r�
( )

(the term containing Z drops out). We now obtain for the response function (60) in
equilibrium:

Gij�`� � b
X
rr0

riW `ÿ1 r; r0� �
X
r00

W r0; r00� � oH�r00�
ohj

peq�r00� ÿ oH�r0�
ohj

peq�r0�
( )

:

�61�
The structure of (61) is similar to what follows upon calculating the evolution of

the equilibrium correlation function (59) in a single iteration step:

Cij�`� ÿ Cij�`ÿ 1� �
X
rr0

riW `ÿ1 r; r0� �
X
r00

W r0; r00� �r00j peq�r00� ÿ r0jpeq�r0�
( )

:

�62�
Finally we calculate the relevant derivatives of the two Hamiltonians
H�r� � ÿPi<j Jijrirj ÿ

P
i hiri and ~H�r� � ÿPi hiri ÿ bÿ1

P
i log 2 cosh�bhi�r��

(with hi�r� �
P

j Jijrj � hi), see [1]:

oH�r�=ohj � ÿrj; o ~H�r�=ohj � ÿrj ÿ tanh�bhj�r��:
For sequential dynamics we hereby arrive directly at a FDT. For parallel dynamics
we need one more identity (which follows from the de®nition of the transition
matrix in (22) and the detailed balance property) to transform the tanh occurring in
the derivative of ~H :

tanh�bhj�r0��peq�r0� �
X
r00

r00j W r00; r0� �peq�r0� �
X
r00

W r0; r00� �r00j peq�r00�:

For parallel dynamics ` and `0 are the real time labels t and t0, and we obtain, with
s � t ÿ t0:
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Binary & Parallel:

Gij�s > 0� � ÿb�Cij�s� 1� ÿ Cij�sÿ 1��; Gij�sO 0� � 0: �63�
For the continuous-time version (1) of sequential dynamics the time t is de®ned as
t � `=N , and the di�erence equation (62) becomes a di�erential equation. For
perturbations at time t0 in the de®nition of the response function (60) to retain a
nonvanishing e�ect at (re-scaled) time t in the limit N !1, they will have to be re-
scaled as well: dhj�t0� ! Ndhj�t0�. As a result:

Binary & Sequential:

Gij�s� � ÿbh�s� d
ds

Cij�s�: �64�

The need to re-scale perturbations in making the transition from discrete to con-
tinuous times has the same origin as the need to re-scale the random forces in the
derivation of the continuous-time Langevin equation from a discrete-time process.
Going from ordinary derivatives to functional derivatives (which is what happens in
the continuous-time limit), implies replacing Kronecker delta's dt;t0 by Dirac delta-
functions according to dt;t0 ! Dd�t ÿ t0�, where D is the average duration of an
iteration step. Eqs. (63) and (64) are examples of so-called ¯uctuation-dissipation
theorems (FDT).

4.1.2. Networks with continuous neurons
For systems described by a Fokker±Planck Eq. (32) the simplest way to calculate
correlation and response functions is by ®rst returning to the underlying discrete-time
system and leaving the continuous time limit D! 0 until the end. In [1] we saw that
for small but ®nite time-steps D the underlying discrete-time process is described by

t � `D; p`D�D�r� � �1� DLr � O�D3
2��p`D�r�

with ` � 0; 1; 2; . . . and with the di�erential operator

Lr � ÿ
X

i

o
ori

fi�r� ÿ T
o

ori

� �
: �65�

From this it follows that the conditional probability density p`D�rjr0; `0D� for ®nding
state r at time `D, given the system was in state r0 at time `0D, must be

p`D�rjr0; `0D� � �1� DLr � O�D3
2��`ÿ`0d�rÿ r0�: �66�

Eq. (66) will be our main building block. Firstly, we will calculate the correlations:

Cij�`D; `0D� � hri�`D�rj�`0D�i �
Z

drdr0 rir
0
j p`D�rjr0; `0D�p`0D�r0�

�
Z

drri�1� DLr � O�D3
2��`ÿ`0

Z
dr0 r0j d�rÿ r0�p`0D�r0�

�
Z

drri�1� DLr � O�D3
2��`ÿ`0 rj p`0D�r�

� �
:
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At this stage we can take the limits D! 0 and `; `0 ! 1, with t � `D and t0 � `0D
®nite, using limD!0�1� DA�k=D � ekA:

Cij�t; t0� �
Z

dr ri e
�tÿt0�Lr rj pt0 �r�

� �
: �67�

Next we turn to the response function. A perturbation applied at time t0 � `0D to the
Langevin forces fi�r� comes in at the transition r�`0D� ! r�`0D� D�. As with se-
quential dynamics binary networks, the perturbation is re-scaled with the step size D
to retain signi®cance as D! 0:

Gij�`D; `0D� � ohri�`D�i
Dohj�`0D� �

o
Dohj�`0D�

Z
dr dr0 ri p`D�rjr0; `0D�p`0D�r0�

�
Z

dr dr0 dr00 ri p`D�rjr00; `0D� D� op`00D�D�rjr0; `0D�
Dohj

� �
p`0D�r0�

�
Z

dr dr0 dr00 ri�1� DLr � O�D3
2��`ÿ`0ÿ1d�rÿ r00�

� 1

D
o

ohj
�1� DLr00 � O�D3

2��d�r00 ÿ r0�
� �

p`0D�r0�

� ÿ
Z

dr dr0 dr00 ri�1� DLr � O�D3
2��`ÿ`0ÿ1d�rÿ r00�d�r00 ÿ r0�

�
�

o
or0j
� O�D1

2�
�

p`0D�r0�

� ÿ
Z

dr ri�1� DLr � O�D3
2��`ÿ`0ÿ1 o

orj
� O�D1

2�
� �

p`0D�r�:

We take the limits D! 0 and `; `0 ! 1, with t � `D and t0 � `0D ®nite:

Gij�t; t0� � ÿ
Z

drri e
�tÿt0�Lr

o
orj

pt0 �r�: �68�

Eqs. (67) and (68) apply to arbitrary systems described by Fokker±Planck equa-
tions. In the case of conservative forces, i.e. fi�r� � ÿoH�r�=ori, and when the
system is in an equilibrium state at time t0 so that Cij�t; t0� � Cij�t ÿ t0� and
Gij�t; t0� � Gij�t ÿ t0�, we can take a further step using pt0 �r� � peq�r� � Zÿ1 eÿbH�r�.
In that case, taking the time derivative of expression (67) gives

o
os

Cij�s� �
Z

dr ri e
sLrLr rj peq�r�

� �
:

Working out the key term in this expression gives

Lr�rj peq�r�� � ÿ
X

i

o
ori

fi�r� ÿ T
o

ori

� �
rj peq�r�
� � � T

o
orj

peq�r�

ÿ
X

i

o
ori
�rjJi�r��
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with the components of the probability current density Ji�r� � � fi�r� ÿ T o
ori
�peq�r�.

In equilibrium, however, the current is zero by de®nition, so only the ®rst term in the
above expression survives. Insertion into our previous equation for oCij�s�=os, and
comparison with (68) leads to the FDT for continuous systems:

Continuous:

Gij�s� � ÿbh�s� d
ds

Cij�s�: �69�

We will now calculate the correlation and response functions explicitly, and verify
the validity or otherwise of the FDT relations, for attractor networks away from
saturation.

4.2. Example: simple attractor networks with binary neurons

4.2.1. Correlation and response functions for sequential dynamics
We will consider the continuous time version (1) of the sequential dynamics, with the
local ®elds hi�r� �

P
j Jijrj � hi, and the separable interaction matrix (18). We al-

ready solved the dynamics of this model for the case with zero external ®elds and
away from saturation (i.e. p � ����

N
p

). Having nonzero, or even time-dependent,
external ®elds does not a�ect the calculation much; one adds the external ®elds to
the internal ones and ®nds the macroscopic laws (2) for the overlaps with the stored
patterns being replaced by

d

dt
m�t� � lim

N!1
1

N

X
i

ni tanh bni � Am�t� � hi�t�� � ÿm�t�: �70�

Fluctuations in the local ®elds are of vanishing order in N (since the ¯uctuations in
m are), so that one can easily derive from the master Eq. (1) the following expres-
sions for spin averages:

d

dt
hri�t�i � tanh b�ni � Am�t� � hi�t�� ÿ hri�t�i �71�

i 6� j :
d

dt
hri�t�rj�t�i � tanh b�ni � Am�t� � hi�t��hrj�t�i � tanh b�nj � Am�t�

� hj�t��hri�t�i ÿ 2hri�t�rj�t�i: �72�

Correlations at di�erent times are calculated by applying (71) to situations where the
microscopic state at time t0 is known exactly, i.e. where pt0 �r� � dr;r0 for some r0:

hri�t�ijr�t0��r0 � r0i e
ÿ�tÿt0� �

Z t

t0
ds esÿt tanh b�ni � Am�s; r0; t0� � hi�s�� �73�

with m�s; r0; t0� denoting the solution of (70) following initial condition
m�t0� � 1

N

P
i r
0
ini. If we multiply both sides of (73) by r0j and average over all

possible states r0 at time t0 we obtain in leading order in N :
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hri�t�rj�t0�i � hri�t0�rj�t0�i eÿ�tÿt0�

�
Z t

t0
ds esÿthtanh b�ni � Am�s; r�t0�; t0� � hi�s��rj�t0�i:

Because of the existence of deterministic laws for the overlaps m in the N !1 limit,
we know with probability one that during the stochastic process the actual value
m�r�t0�� must be given by the solution of (70), evaluated at time t0. As a result we
obtain, with Cij�t; t0� � hri�t�rj�t0�i:

Cij�t; t0� � Cij�t0; t0� eÿ�tÿt0� �
Z t

t0
ds esÿt tanh b�ni � Am�s� � hi�s��hrj�t0�i: �74�

Similarly we obtain from the solution of (71) an equation for the leading order in N
of the response functions, by derivation with respect to external ®elds:

ohri�t�i
ohj�t0� � bh�t ÿ t0�

Z t

ÿ1
ds esÿt 1ÿ tanh2 b�ni � Am�s� � hi�s��

� �
� 1

N

X
k

�ni � Ank�
ohrk�s�i
ohj�t0� � dijd�sÿ t0�

" #

or

Gij�t; t0� � bdijh�t ÿ t0� eÿ�tÿt0� 1ÿ tanh2 b�ni � Am�t0� � hi�t0��
� �

� bh�t ÿ t0�
Z t

t0
ds esÿt 1ÿ tanh2 b�ni � Am�s� � hi�s��

� �
� 1

N

X
k

�ni � Ank�Gkj�s; t0�: �75�

For t � t0 we retain in leading order in N only the instantaneous single site contri-
bution

lim
t0"t

Gij�t; t0� � bdij 1ÿ tanh2 b�ni � Am�t� � hi�t��
� �

: �76�

This leads to the following ansatz for the scaling with N of the Gij�t; t0�, which can be
shown to be correct by insertion into (75), in combination with the correctness at
t � t0 following from (76):

i � j : Gii�t; t0� � O�1�; i 6� j : Gij�t; t0� � O�Nÿ1�:

Note that this implies 1
N

P
k�ni � Ank�Gkj�s; t0� � O�1N�. In leading order in N we now

®nd

Gij�t; t0� � bdijh�t ÿ t0� eÿ�tÿt0� 1ÿ tanh2 b�ni � Am�t0� � hi�t0��
� �

: �77�
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For those cases where the macroscopic laws (70) describe evolution to a stationary
state m, obviously requiring stationary external ®elds hi�t� � hi, we can take the limit
t!1, with t ÿ t0 � s ®xed, in the two results (74) and (77). Using the t!1 limits
of (71) and (72) we subsequently ®nd time translation invariant expressions:
limt!1 Cij�t; t ÿ s� � Cij�s� and limt!1 Gij�t; t ÿ s� � Gij�s�, with in leading order
in N

Cij�s� � tanh b�ni � Am� hi� tanh b�nj � Am� hj�
� dij e

ÿs 1ÿ tanh2 b�ni � Am� hi�
� � �78�

Gij�s� � bdijh�s� eÿs 1ÿ tanh2 b�ni � Am� hi�
� � �79�

for which indeed the FDT (64) holds: Gij�s� � ÿbh�s� d
ds Cij�s�.

4.2.2. Correlation and response functions for parallel dynamics
We now turn to the parallel dynamical rules (22), with the local ®elds
hi�r� �

P
j Jijrj � hi, and the interaction matrix (18). As before, having time-

dependent external ®elds amounts simply to adding these ®elds to the internal
ones, and the dynamic laws (31) are found to be replaced by

m�t � 1� � lim
N!1

1

N

X
i

ni tanh bni � Am�t� � hi�t�� �: �80�

Fluctuations in the local ®elds are again of vanishing order in N , and the parallel
dynamics versions of Eqs. (71) and (72), to be derived from (22), are found to be

hri�t � 1�i � tanh b�ni � Am�t� � hi�t��; �81�

i 6� j : hri�t � 1�rj�t � 1�i � tanh b�ni � Am�t� � hi�t�� tanh b�nj � Am�t� � hj�t��:
�82�

With m�t; r0; t0� denoting the solution of the map (80) following initial condition

m�t0� � 1
N

P
i r
0
ini, we immediately obtain from Eqs. (81) and (82), the correlation

functions:

Cij�t; t� � dij � �1ÿ dij� tanh b�ni � Am�t ÿ 1� � hi�t ÿ 1��
� tanh b�nj � Am�t ÿ 1� � hj�t ÿ 1��; �83�

t > t0 : Cij�t; t0� � htanh b�ni � Am�t ÿ 1; r�t0�; t0� � hi�t ÿ 1��rj�t0�i
� tanh b�ni � Am�t ÿ 1� � hi�t ÿ 1��
� tanh b�nj � Am�t0 ÿ 1� � hj�t0 ÿ 1��: �84�

From (81) also follow equations determining the leading order in N of the response
functions Gij�t; t0�, by derivation with respect to the external ®elds hj�t0�:
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t0 > t ÿ 1 : Gij�t; t0� � 0;

t0 � t ÿ 1 : Gij�t; t0� � bdij 1ÿ tanh2 b�ni � Am�t ÿ 1� � hi�t ÿ 1��� �
;

t0 < t ÿ 1 : Gij�t; t0� � b 1ÿ tanh2 b�ni � Am�t ÿ 1� � hi�t ÿ 1��� �
� 1

N

X
k
�ni � Ank�Gkj�t ÿ 1; t0�:

�85�

It now follows iteratively that all o�-diagonal elements must be of vanishing order in
N : Gij�t; t ÿ 1� � dijGii�t; t ÿ 1� ! Gij�t; t ÿ 2� � dijGii�t; t ÿ 2� ! . . ., so that in
leading order

Gij�t; t0� � bdijdt;t0�1 1ÿ tanh2 b�ni � Am�t0� � hi�t0��
� �

: �86�
For those cases where the macroscopic laws (80) describe evolution to a stationary
state m, with stationary external ®elds, we can take the limit t!1, with t ÿ t0 � s
®xed, in (83), (84) and (86). We ®nd time translation invariant expressions:
limt!1 Cij�t; t ÿ s� � Cij�s� and limt!1 Gij�t; t ÿ s� � Gij�s�, with in leading order
in N :

Cij�s� � tanhb�ni �Am� hi� tanhb�nj �Am� hj� � dijds;0 1ÿ tanh2 b�ni �Am� hi�
� �

�87�

Gij�s� � bdijds;1 1ÿ tanh2 b�ni � Am� hi�
� � �88�

obeying the FDT (63): Gij�s > 0� � ÿb�Cij�s� 1� ÿ Cij�sÿ 1��.

4.3. Example: graded response neurons with uniform synapses

Let us ®nally ®nd out how to calculate correlation and response function for the
simple network (38) of graded response neurons, with (possibly time-dependent)
external forces hi�t�, and with uniform synapses Jij � J=N :

d

dt
ui�t� � J

N

X
j

g�cuj�t�� ÿ ui�t� � hi�t� � gi�t�: �89�

For a given realization of the external forces and the Gaussian noise variables
fgi�t�g we can formally integrate (89) and ®nd

ui�t� � ui�0� eÿt �
Z t

0

ds esÿt J
Z

du q�u; u�s��g�cu� � hi�s� � gi�s�
� �

�90�

with the distribution of membrane potentials q�u; u� � Nÿ1
P

i d�uÿ ui�. The cor-
relation function Cij�t; t0� � hui�t�uj�t0�i immediately follows from (90). Without loss
of generality we can de®ne t � t0. For absent external forces (which we only need
to de®ne the response function), and upon using hgi�s�i � 0 and hgi�s�gj�s0�i �
2Tdijd�sÿ s0�, we arrive at
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Cij�t; t0� � Tdij� et0ÿt ÿ eÿt0ÿt� � ui�0� eÿt � J
Z

du g�cu�
Z t

0

ds esÿtq�u; u�s��
� �*

� uj�0� eÿt0 � J
Z

du g�cu�
Z t0

0

ds0 es0ÿt0q�u; u�s0��
" #+

:

For N !1, however, we know the distribution of potentials to evolve determi-
nistically: q�u; u�s�� ! qs�u� where qs�u� is the solution of (41). This allows us to
simplify the above expression to

N !1 : Cij�t; t0� � T dij� et0ÿt ÿ eÿt0ÿt� � ui�0� eÿt � J
Z

du g�cu�
Z t

0

ds esÿtqs�u�
� �*

� uj�0� eÿt0 � J
Z

du g�cu�
Z t0

0

ds0 es0ÿt0qs0 �u�
" #+

: �91�

Next we turn to the response function Gij�t; t0� � dhui�t�i=dnj�t0� (its de®nition in-
volves functional rather than scalar di�erentiation, since time is continuous). After
this di�erentiation the forces fhi�s�g can be put to zero. Functional di�erentiation of
(90), followed by averaging, then leads us to

Gij�t; t0� � h�t ÿ t0�dij e
t0ÿt ÿ J

Z
du g�cu� o

ou

Z t

0

ds esÿt

1

N

X
k

lim
h!0

d�uÿ uk�s�� duk�s�
dhj�t0�

� �
:

In view of (90) we make the self-consistent ansatz duk�s�=dnj�s0� � O�Nÿ1� for k 6� j.
This produces

N !1 : Gij�t; t0� � h�t ÿ t0�dij e
t0ÿt: �92�

Since Eq. (41) evolves towards a stationary state, we can also take the limit t!1,
with t ÿ t0 � s ®xed, in (91). Assuming nonpathological decay of the distribution
of potentials allows us to put limt!1

R t
0 ds esÿtqs�u� � q�u� (the stationary solution

of (41)), with which we ®nd not only (92) but also (91) reducing to time
translation invariant expressions for N !1, limt!1 Cij�t; t ÿ s� � Cij�s� and
limt!1 Gij�t; t ÿ s� � Gij�s�, in which

Cij�s� � T dij e
ÿs � J 2

Z
du q�u�g�cu�

� �2

; Gij�s� � h�s�dij e
ÿs: �93�

Clearly the leading orders in N of these two functions obey the FDT (69):
Gij�s� � ÿbh�s� d

ds Cij�s�. As with the binary neuron attractor networks for which we
calculated the correlation and response functions earlier, the impact of detailed
balance violation (occurring when Alm 6� Aml in networks with binary neurons and
synapses (18), and in all networks with graded response neurons [1]) on the validity
of the FDTs, vanishes for N !1, provided our networks are relatively simple and
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evolve to a stationary state in terms of the macroscopic observables (the latter need
not necessarily happen, see e.g. Figs. 1 and 4). Detailed balance violation, however,
would be noticed in the ®nite size e�ects [12].

5. Dynamics in the complex regime

The approach we followed so far to derive closed macroscopic laws from the mi-
croscopic equations fails when the number of attractors is no longer small compared
to the number N of microscopic neuronal variables. In statics we have seen [1] that,
at the work ¯oor level, the ®ngerprint of complexity is the need to use replica theory,
rather than the relatively simple and straightforward methods based on (or equiv-
alent to) calculating the density of states for given realizations of the macroscopic
observables. This is caused by the presence of a number of `disorder' variables per
degree of freedom which is proportional to N , over which we are forced to average
the macroscopic laws. One ®nds that in dynamics this situation is re¯ected in the
inability to ®nd an exact set of closed equations for a ®nite number of observables
(or densities). We will see that the natural dynamical counterpart of equilibrium
replica theory is generating functional analysis.

5.1. Overview of methods and theories

Let us return to the simplest setting in which to study the problem: single pattern
recall in an attractor neural network with N binary neurons and p � aN stored
patterns in the nontrivial regime, where a > 0. We choose parallel dynamics, i.e.
(22), with Hebbian-type synapses of the form (18) with Alm � dlm, i.e. Jij �
Nÿ1

Pp
l nl

i n
l
j , giving us the parallel dynamics version of the Hop®eld model [2]. Our

interest is in the recall overlap m�r� � Nÿ1
P

i rin
1
i between system state and pattern

one. We saw in [1] that for N !1 the ¯uctuations in the values of the recall overlap
m will vanish, and that for initial states where all ri�0� are drawn independently the
overlap m will obey

m�t � 1� �
Z

dz Pt�z� tanh�b�m�t� � z��;

Pt�z� � lim
N!1

1

N

X
i

d zÿ 1

N

X
l>1

n1i n
l
i

X
j6�i

nl
j rj�t�

" #* + �94�

and that all complications in a dynamical analysis of the a > 0 regime are con-
centrated in the calculation of the distribution Pt�z� of the (generally nontrivial)
interference noise.

5.1.1. Gaussian approximations
As a simple approximation one could just assume [13] that the ri remain uncorre-
lated at all times, i.e. Prob�ri�t� � �n1i � � 1

2 �1� m�t�� for all t P 0, such that the
argument given in [1] for t � 0 (leading to a Gaussian P �z�) would hold generally,
and where the mapping (94) would describe the overlap evolution at all times:
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Pt�z� � �2 pa�ÿ1
2 eÿ

1
2z

2=a : m�t � 1� �
Z

Dz tanh�b�m�t� � z
���
a
p �� �95�

with the Gaussian measure Dz � �2p�ÿ1
2 eÿ

1
2z

2

dz. This equation, however, must be
generally incorrect. Firstly, Fig. 5 in [1] shows that knowledge of m�t� only does not
permit prediction of m�t � 1�. Secondly, expansion of the right-hand side of (95) for
small m�t� shows that (95) predicts a critical noise level (at a � 0) of Tc � bÿ1c � 1,
and a storage capacity (at T � 0) of ac � 2=p � 0:637, whereas both numerical
simulations and equilibrium statistical mechanical calculations [1] point to
ac � 0:139. Rather than taking all ri to be independent, a weaker assumption would
be to just assume the interference noise distribution Pt�z� to be a zero-average
Gaussian one, at any time, with statistically independent noise variables z at dif-
ferent times. One can then derive (for N !1 and fully connected networks) an
evolution equation for the width R�t�, giving [14,15]:

Pt�z� � �2 pR2�t��ÿ1
2 eÿ

1
2z

2=R2�t� : m�t � 1� �
Z

Dz tanh�b�m�t� � zR�t���

R2�t � 1� � a� 2 am�t � 1�m�t�h�m�t�;R�t�� � R2�t�h2�m�t�;R�t��

with h�m;R� � b 1ÿ R Dz tanh2�b�m� zR��� �
. These equations describe correctly

the qualitative features of recall dynamics, and are found to work well when
retrieval actually occurs. For nonretrieval trajectories, however, they appear to
underestimate the impact of interference noise: they predict Tc � 1 (at a � 0) and
a storage capacity (at T � 0) of ac � 0:1597 (which should have been about
0.139). A ®nal re®nement of the Gaussian approach [16] consisted in allowing for
correlations between the noise variables z at di�erent times (while still describing
them by Gaussian distributions). This results in a hierarchy of macroscopic
equations, which improve upon the previous Gaussian theories and even predict
the correct stationary state and phase diagrams, but still fail to be correct at
intermediate times. The fundamental problem with all Gaussian theories, however
sophisticated, is clearly illustrated in Fig. 6 of [1]: the interference noise distri-
bution is generally not of a Gaussian shape. Pt�z� is only approximately Gaussian
when pattern recall occurs. Hence the successes of Gaussian theories in de-
scribing recall trajectories, and their perpetual problems in describing the non-
recall ones.

5.1.2. Non-Gaussian approximations
In view of the non-Gaussian shape of the interference noise distribution, several
attempts have been made at constructing non-Gaussian approximations. In all cases
the aim is to arrive at a theory involving only macroscopic observables with a single
time argument. Fig. 6 of [1] suggests that for a fully connected network with binary
neurons and parallel dynamics a more accurate ansatz for Pt�z� would be the sum of
two Gaussians. In [17] the following choice was proposed, guided by the structure of
the exact formalism to be described later:

A.C.C. Coolen634



Pt�z� � P�t �z� � Pÿt �z�;

P�t �z� � lim
N!1

1

N

X
i

dri�t�;�n1i
d zÿ 1

N

X
l>1

n1i n
l
i

X
j6�i

nl
j rj�t�

" #* +
;

P�t �z� �
1� m�t�
2R�t� ������2p

p eÿ
1
2�z�d�t��2=R2�t�

followed by a self-consistent calculation of d�t� (representing an e�ective `retarded
self-interaction', since it has an e�ect equivalent to adding hi�r�t�� !
hi�r�t�� � d�t�ri�t�), and of the width R�t� of the two distributions P�t �z�, together
with

m�t � 1� � 1

2
�1� m�t��

Z
Dz tanh�b�m�t� � d�t� � zR�t���

� 1

2
�1ÿ m�t��

Z
Dz tanh�b�m�t� ÿ d�t� � zR�t���:

The resulting three-parameter theory, in the form of closed dynamic equations for
fm; d;Rg, is found to give a nice (but not perfect) agreement with numerical simu-
lations.

A di�erent philosophy was followed in [18] (for sequential dynamics). First (as
yet exact) equations are derived for the evolution of the two macroscopic observ-
ables m�r� � m1�r� and r�r� � aÿ1

P
l>1 m2

l�r�, with ml�r� � Nÿ1
P

i n
l
i ri, which

are both found to involve Pt�z�:
d

dt
m �

Z
dz Pt�z� tanh�b�m� z��; d

dt
r � 1

a

Z
dz Pt�z�z tanh�b�m� z�� � 1ÿ r:

Next one closes these equations by hand, using a maximum-entropy (or `Occam's
Razor') argument: instead of calculating Pt�z� from (94) with the real (unknown)
microscopic distribution pt�r�, it is calculated upon assigning equal probabilities to
all states r with m�r� � m and r�r� � r, followed by averaging over all realizations
of the stored patterns with l > 1. In order words: one assumes (i) that the micro-
scopic states visited by the system are `typical' within the appropriate �m; r� sub-
shells of state space, and (ii) that one can average over the disorder. Assumption (ii)
is harmless, the most important step is (i). This procedure results in an explicit (non-
Gaussian) expression for the noise distribution in terms of �m; r� only, a closed
two-parameter theory which is exact for short times and in equilibrium, accurate
predictions of the macroscopic ¯ow in the �m; r�-plane (such as that shown in Fig. 5
of [1]), but (again) deviations in predicted time dependencies at intermediate times.
This theory, and its performance, was later improved by applying the same ideas to
a derivation of a dynamic equation for the function Pt�z� itself (rather than for m and
r only) [19]; research is still under way with the aim to construct a theory along these
lines which is fully exact.
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5.1.3. Exact results: generating functional analysis
The only fully exact procedure available at present is known under various names,
such as `generating functional analysis', `path integral formalism' or `dynamic mean-
®eld theory', and is based on a philosophy di�erent from those described so far.
Rather than working with the probability pt�r� of ®nding a microscopic state r at
time t in order to calculate the statistics of a set of macroscopic observables X�r� at
time t, one here turns to the probability Prob�r�0�; . . . ; r�tm�� of ®nding a micro-
scopic path r�0� ! r�1� ! � � � ! r�tm�. One also adds time-dependent external
sources to the local ®elds, hi�r� ! hi�r� � hi�t�, in order to probe the networks via
perturbations and de®ne a response function. The idea is to concentrate on the
moment generating function Z�w�, which, like Prob�r�0�; . . . ; r�tm��, fully captures
the statistics of paths:

Z�w� � h eÿi
P

i

Ptm

t�0 wi�t�ri�t�i: �96�
It generates averages of the relevant observables, including those involving neuron
states at di�erent times, such as correlation functions Cij�t; t0� � hri�t�rj�t0�i and
response functions Gij�t; t0� � ohri�t�i=ohj�t0�, upon di�erentiation with respect to
the dummy variables fwi�t�g:

hri�t�i � i lim
w!0

oZ�w�
owi�t�

; Cij�t; t0� � ÿ lim
w!0

o2Z�w�
owi�t�owj�t0�

;

Gij�t; t0� � i lim
w!0

o2Z�w�
owi�t�ohj�t0� :

�97�

Next one assumes (correctly) that for N !1 only the statistical properties of the
stored patterns will in¯uence the macroscopic quantities, so that the generating

function Z�w� can be averaged over all pattern realizations, i.e. Z�w� ! Z�w�. As in
replica theories (the canonical tool to deal with complexity in equilibrium) one
carries out the disorder average before the average over the statistics of the neuron
states, resulting for N !1 in what can be interpreted as a theory describing a single
`e�ective' binary neuron r�t�, with an e�ective local ®eld h�t� and the dynamics
Prob�r�t � 1� � �1� � 1

2 �1� tanh�bh�t���. However, this e�ective local ®eld is found
to generally depend on past states of the neuron, and on zero-average but tempo-
rally correlated Gaussian noise contributions /�t�:

h�tjfrg; f/g� � m�t� � h�t� � a
X
t0<t

R�t; t0�r�t0� � ���
a
p

/�t�: �98�

The ®rst comprehensive neural network studies along these lines, dealing with fully
connected networks, were carried out in [20,21], followed by applications to a-sym-
metrically and symmetrically extremely diluted networks [22,23] (wewill come back to
those later).More recent applications include sequence processing networks [24].6 For
N !1 the di�erences between di�erent models are found to show up only in the

6 In the case of sequence recall the overlap m is de®ned with respect to the `moving' target, i.e.
m�t� � 1

N

P
i ri�t�nt

i.
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actual form taken by the e�ective local ®eld (98), i.e. in the dependence of the `retarded
self-interaction' kernel R�t; t0� and the covariance matrix h/�t�/�t0�i of the interfer-
ence-induced Gaussian noise on the macroscopic objects C � fC�s; s0� �
limN!1 1

N

P
i Cii�s; s0�g and G � fG�s; s0� � limN!1 1

N

P
i Gii�s; s0�g. For instance:7

with the cij drawn at random according to P �cij� � c
N dcij;1 � �1ÿ c

N�dcij;0 (either
symmetrically, i.e. cij � cji, or independently) and where cii � 0, limN!1 c=N � 0,
and c!1. In all cases the observables (overlaps and correlation and response
functions) are to be solved from the following closed equations, involving the sta-
tistics of the single e�ective neuron experiencing the ®eld (98):

m�t� � hr�t�i; C�t; t0� � hr�t�r�t0�i; G�t; t0� � ohr�t�i=oh�t0�: �99�
It is now clear that Gaussian theories can at most produce exact results for asym-
metric networks. Any degree of symmetry in the synapses is found to induce a
nonzero retarded self-interaction, via the kernel K�t; t0�, which constitutes a non-
Gaussian contribution to the local ®elds. Exact closed macroscopic theories ap-
parently require a number of macroscopic observables which grows as O�t2� in order
to predict the dynamics up to time t. In the case of sequential dynamics the picture is
found to be very similar to the one above; instead of discrete time labels
t 2 f0; 1; . . . ; tmg, path summations and matrices, there one has a real time variable
t 2 �0; tm�, path-integrals and integral operators. The remainder of this paper is
devoted to the derivation of the above results and their implications.

5.2. Generating functional analysis for binary neurons

5.2.1. General de®nitions
I will now show more explicitly how the generating functional formalism works for
networks of binary neurons. We de®ne parallel dynamics, i.e. (22), driven as usual
by local ®elds of the form hi�r; t� �Pj Jijrj � hi�t�, but with a more general choice
of Hebbian-type synapses, in which we allow for a possible random dilution (to
reduce repetition in our subsequent derivations):

Jij � cij

c

Xp

l�1
nl

i n
l
j ; p � ac: �100�

Model Synapses Jij R(t,t¢) á/(t)/(t¢)ñ

Fully connected, static patterns 1
N

PaN
l�1 nl

i n
l
j [(1 ) G))1G](t,t¢) [(1)G))1C(1)G ))1](t,t¢)

Fully connected, pattern sequence 1
N

PaN
l�1 nl�1

i nl
j 0

P
n�0��Gy�nCGn��t; t0�

Symm extr diluted, static patterns
cij

c

Pac
l�1 nl

i n
l
j G(t,t¢) C(t,t¢)

Asymm extr diluted, static patterns
cij

c

Pac
l�1 nl

i n
l
j 0 C(t,t¢)

7 In the case of extremely diluted models the structure variables are also treated as disorder, and thus
averaged out.
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Architectural properties are re¯ected in the variables cij 2 f0; 1g, whereas infor-
mation storage is to be e�ected by the remainder in (100), involving p randomly and
independently drawn patterns nl � �nl

1 ; . . . ; nl
N � 2 fÿ1; 1gN . I will deal both with

symmetric and with asymmetric architectures (always putting cii � 0), in which the
variables cij are drawn randomly according to

Symmetric:

cij � cji; 8i < j P �cij� � c
N

dcij;1 � 1ÿ c
N

� �
dcij;0: �101�

Asymmetric:

8 i 6� j P �cij� � c
N

dcij;1 � 1ÿ c
N

� �
dcij;0 �102�

(one could also study intermediate degrees of symmetry; this would involve only
simple adaptations). Thus ckl is statistically independent of cij as soon as
�k; l� j2f�i; j�; �j; i�g. In leading order in N one has hPj ciji � c for all i, so c gives the
average number of neurons contributing to the ®eld of any given neuron. In view of
this, the number p of patterns to be stored can be expected to scale as p � ac. The
connectivity parameter c is chosen to diverge with N , i.e. limN!1 cÿ1 � 0. If c � N
we obtain the fully connected (parallel dynamics) Hop®eld model. Extremely diluted
networks are obtained when limN!1 c=N � 0.

For simplicity we make the so-called `condensed ansatz': we assume that the
system state has an O�N0� overlap only with a single pattern, say l � 1. This situ-
ation is induced by initial conditions: we take a randomly drawn r�0�, generated by

p�r�0�� �
Y

i

1

2
�1� m0�dri�0�;n1i �

1

2
�1ÿ m0�dri�0�;ÿn1i

� �
so

1

N

X
i

n1i hri�0�i � m0:

�103�

The patterns l > 1, as well as the architecture variables cij, are viewed as disorder.
One assumes that for N !1 the macroscopic behaviour of the system is `self-
averaging', i.e. only dependent on the statistical properties of the disorder (rather
than on its microscopic realisation). Averages over the disorder are written as � � �.
We next de®ne the disorder-averaged generating function:

Z�w� � h eÿi
P

i

P
t
wi�t�ri�t�i �104�

in which the time t runs from t � 0 to some (®nite) upper limit tm. Note that Z�0� � 1.
With a modest amount of foresight we de®ne the macroscopic site-averaged and

disorder-averaged objects m�t� � Nÿ1
P

i n
1
i hri�t�i, C�t; t0� � Nÿ1

P
i hri�t�ri�t0�i

and G�t; t0� � Nÿ1
P

i ohri�t�i=ohi�t0�. According to (97) they can be obtained from
(104) as follows:

m�t� � lim
w!0

i
N

X
j

n1j
oZ�w�
owj�t�

; �105�
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C�t; t0� � ÿ lim
w!0

1

N

X
j

o2Z�w�
owj�t�owj�t0�

; G�t; t0� � lim
w!0

i
N

X
j

o2Z�w�
owj�t�ohj�t0� : �106�

So far we have only reduced our problem to the calculation of the function Z�w� in
(104), which will play a part similar to that of the disorder-averaged free energy in
equilibrium calculations (see [1]).

5.2.2. Evaluation of the disorder-averaged generating function
As in equilibrium replica calculations, the hope is that progress can be made by
carrying out the disorder averages ®rst. In equilibrium calculations we use the
replica trick to convert our disorder averages into feasible ones; here the idea is to
isolate the local ®elds at di�erent times and di�erent sites by inserting appropriate
d-distributions:

1 �
Y

it

Z
dhi�t�d�hi�t� ÿ

X
j

Jijrj�t� ÿ hi�t��

�
Z
fdh dĥg exp i

X
it

ĥi�t� hi�t� ÿ
X

j

Jijrj�t� ÿ hi�t�
" # !

with fdh dĥg � Qit�dĥi�t�dhi�t�=2p�, giving

Z�w� �
Z
fdh dĥg ei

P
it

ĥi�t��hi�t�ÿhi�t�� eÿi
P

it
wi�t�ri�t� e

ÿi
P

it
ĥi�t�
P

j
Jijrj�t�

h i� �
pf

in which h. . .ipf refers to averages over a constrained stochastic process of the
type (22), but with prescribed ®elds fhi�t�g at all sites and at all times. Note that
with such prescribed ®elds the probability of generating a path fr�0�; . . . ; r�tm�g is
given by

Prob�r�0�; . . . ; r�tm�jfhi�t�g�

� p�r�0�� exp
X

it

�bri�t � 1�hi�t� ÿ log 2 cosh�bhi�t���
 !

so

Z�w� �
Z
fdh dĥg

X
r�0�
� � �
X
r�tm�

p�r�0�� eNF�frg;fĥg�Y
it

exp�iĥi�t��hi�t� ÿ hi�t��

ÿ iwi�t�ri�t� � bri�t � 1�hi�t� ÿ log 2 cosh�bhi�t��� �107�
with

F�frg; fĥg� � 1

N
log e

ÿi
P

it
ĥi�t�
P

j
Jijrj�t�

� �
: �108�
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We concentrate on the term F�. . .� (with the disorder), of which we need only know
the limit N !1, since only terms inside Z�w� which are exponential in N will retain
statistical relevance. In the disorder-average of (108) every site i plays an equivalent
role, so the leading order in N of (108) should depend only on site-averaged func-
tions of the fri�t�; ĥi�t�g, with no reference to any special direction except the one
de®ned by pattern n1. The simplest such functions with a single time variable are

a�t; frg� � 1

N

X
i

n1i ri�t�; k�t; fĥg� � 1

N

X
i

n1i ĥi�t�; �109�

whereas the simplest ones with two time variables would appear to be

q�t; t0; frg� � 1

N

X
i

ri�t�ri�t0�; Q�t; t0; fĥg� � 1

N

X
i

ĥi�t�ĥi�t0�; �110�

K�t; t0; fr; ĥg� � 1

N

X
i

ĥi�t�ri�t0�: �111�

It will turn out that all models of the type (100), with either (101) or (102), have the
crucial property that (109±111) are in fact the only functions to appear in the leading
order of (108):

F�. . .� � U�fa�t; . . .�; k�t; . . .�; q�t; t0; . . .�;Q�t; t0; . . .�;K�t; t0; . . .�g� � � � � �N !1�
�112�

for some as yet unknown function U�. . .�. This allows us to proceed with the eval-
uation of (107). We can achieve site factorization in (107) if we isolate the macro-
scopic objects (109±111) by introducing suitable d-distributions (taking care that all
exponents scale linearly with N , to secure statistical relevance). Thus we insert

1 �
Ytm
t�0

Z
da�t�d�a�t� ÿ a�t; frg��

� N
2 p

� �tm�1Z
da dâ exp iN

X
t

â�t� a�t� ÿ 1

N

X
j

n1j rj�t�
" # !

;

1 �
Ytm
t�0

Z
dk�t�d�k�t� ÿ k�t; fĥg��

� N
2 p

� �tm�1Z
dk dk̂ exp iN

X
t

k̂�t� k�t� ÿ 1

N

X
j

n1j ĥj�t�
" # !

;

1 �
Ytm

t;t0�0

Z
dq�t; t0�d�q�t; t0� ÿ q�t; t0; frg��

� N
2 p

� ��tm�1�2Z
dq dq̂ exp iN

X
t;t0

q̂�t; t0� q�t; t0� ÿ 1

N

X
j

rj�t�rj�t0�
" # !

;
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1 �
Ytm

t;t0�0

Z
dQ�t; t0�d�Q�t; t0� ÿ Q�t; t0; fĥg��

� N
2 p

� ��tm�1�2Z
dQ dQ̂ exp iN

X
t;t0

Q̂�t; t0� Q�t; t0� ÿ 1

N

X
j

ĥj�t�ĥj�t0�
" # !

;

1 �
Ytm

t;t0�0

Z
dK�t; t0�d�K�t; t0� ÿ K�t; t0; fr; ĥg��

� N
2 p

� ��tm�1�2Z
dK dK̂ exp iN

X
t;t0

K̂�t; t0� K�t; t0� ÿ 1

N

X
j

ĥj�t�rj�t0�
" # !

:

Insertion of these integrals into (107), followed by insertion of (112) and usage of the
shorthand

W�a; â; k; k̂; q; q̂;Q; Q̂;K; K̂� � i
X

t

�â�t�a�t� � k̂�t�k�t��

� i
X
t;t0
�q̂�t; t0�q�t; t0� � Q̂�t; t0�Q�t; t0� � K̂�t; t0�K�t; t0�� �113�

then leads us to

Z�w��
Z

dadâdkdk̂dqdq̂dQdQ̂dKdK̂exp�NW�a; â;k; k̂;q; q̂;Q;Q̂;K;K̂�

�NU�a;k;q;Q;K��O�. . .��
Z
fdh dĥg

X
r�0�
� � �
X
r�tm�

p�r�0��

�
Y

it

exp�iĥi�t��hi�t�ÿhi�t��ÿ iwi�t�ri�t��bri�t�1�hi�t�ÿ log2cosh�bhi�t���

�
Y

i

exp

 
ÿ in1i

X
t

�â�t�ri�t�� k̂�t�ĥi�t��ÿ i
X
t;t0
�q̂�t;t0�ri�t�ri�t0�

� Q̂�t;t0�ĥi�t�ĥi�t0�� K̂�t;t0�ĥi�t�ri�t0��
!

�114�

in which the term denoted as O�. . .� covers both the nondominant orders in (108)
and the O�logN� relics of the various pre-factors �N=2p� in the above integral
representations of the d-distributions (note: tm was assumed ®xed). We now see
explicitly in (114) that the summations and integrations over neuron states and local
®elds fully factorize over the N sites. A simple transformation fri�t�; hi�t�; ĥi�t�g !
fn1i ri�t�; n1i hi�t�; n1i ĥi�t�g brings the result into the form
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Z
fdh dĥg

X
r�0�
� � �
X
r�tm�

p�r�0��

�
Y

it

exp�iĥi�t��hi�t� ÿ n1i hi�t�� ÿ in1i wi�t�ri�t�

� bri�t � 1�hi�t� ÿ log 2 cosh�bhi�t���

�
Y

i

exp ÿin1i
X

t

�â�t�ri�t� � k̂�t�ĥi�t��
 

ÿi
X
t;t0
�q̂�t; t0�ri�t�ri�t0� � Q̂�t; t0�ĥi�t�ĥi�t0� � K�t; t0�ĥi�t�ri�t0��

!
� eNN�â;k̂;q̂;Q̂;K̂�

with

N�â; k̂; q̂; Q̂; K̂� � 1

N

X
i

log

Z
fdh dĥg

X
r�0����r�tm�

p0�r�0��

� exp
X

t

fiĥ�t��h�t� ÿ n1i hi�t�� ÿ in1i wi�t�r�t�g
 !

� exp

 X
t

fbr�t � 1�h�t� ÿ log 2 cosh�bh�t��g

ÿ i
X

t

�â�t�r�t� � k̂�t�ĥ�t�� ÿ i
X
t;t0
�q̂�t; t0�r�t�r�t0�

� Q̂�t; t0�ĥ�t�ĥ�t0� � K̂�t; t0�ĥ�t�r�t0��
!

�115�

in which fdh dĥg � Qt�dh�t�dĥ�t�=2p� and p0�r� � 1
2 �1� m0�dr;1 � 1

2 �1ÿ m0�dr;ÿ1.
At this stage (114) acquires the form of an integral to be evaluated via the saddle-
point (or `steepest descent') method:

Z�fw�t�g� �
Z

da dâ dkdk̂dq dq̂ dQ dQ̂ dK dK̂ eN W�...��U�...��N�...�f g�O�...� �116�

in which the functions W�. . .�, U�. . .� and N�. . .� are de®ned by (112), (113) and (115).

5.2.3. The saddle-point problem
The disorder-averaged generating function (116) is for N !1 dominated by the
physical saddle-point of the macroscopic surface

W�a; â; k; k̂; q; q̂;Q; Q̂;K; K̂� � U�a; k; q;Q;K� � N�â; k̂; q̂; Q̂; K̂� �117�

with the three contributions de®ned in (112), (113) and (115). It will be advanta-
geous at this stage to de®ne the following e�ective measure (which will be further
simpli®ed later):
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hf �frg; fhg; fĥg�i�

� 1

N

X
i

Rfdh dĥgPr�0����r�tm�Mi�frg; fhg; fĥg� f �frg; fhg; fĥg�Rfdh dĥgPr�0����r�tm�Mi�frg; fhg; fĥg�

( )
�118�

with

Mi�frg; fhg; fĥg� � p0�r�0��

� exp

 X
t

fiĥ�t��h�t� ÿ n1i hi�t�� ÿ in1i wi�t�r�t�

� br�t � 1�h�t� ÿ log 2 cosh�bh�t��g
!

� exp ÿi
X

t

�â�t�r�t� � k̂�t�ĥ�t�� ÿ i
X
t;t0
�q̂�t; t0�r�t�r�t0�

 

� Q̂�t; t0�ĥ�t�ĥ�t0� � K̂�t; t0�ĥ�t�r�t0��
!

in which the values to be inserted for fm̂�t�; k̂�t�; q̂�t; t0�; Q̂�t; t0�; K̂�t; t0�g are given by
the saddle-point of (117). Variation of (117) with respect to all the original mac-
roscopic objects occurring as arguments (those without the `hats') gives the fol-
lowing set of saddle-point equations:

â�t� � ioU=oa�t�; k̂�t� � ioU=ok�t�; �119�

q̂�t; t0� � ioU=oq�t; t0�; Q̂�t; t0� � ioU=oQ�t; t0�; K̂�t; t0� � ioU=oK�t; t0�:
�120�

Variation of (117) with respect to the conjugate macroscopic objects (those with the
`hats'), in turn, and usage of our newly introduced short-hand notation h. . .i�, gives:

a�t� � hr�t�i�; k�t� � hĥ�t�i�; �121�

q�t; t0� � hr�t�r�t0�i�; Q�t; t0� � hĥ�t�ĥ�t0�i�; K�t; t0� � hĥ�t�r�t0�i�: �122�
The coupled equations (119)±(122) are to be solved simultaneously, once we have
calculated the term U�. . .� (112) which depends on the synapses. This appears to be a
formidable task; it can, however, be simpli®ed considerably upon ®rst deriving the
physical meaning of the above macroscopic quantities. We apply (105)±(116), using
identities such as

oN�. . .�
owj�t�

� ÿ i
N

n1j

Rfdh dĥgPr�0����r�tm�Mj�frg; fhg; fĥg�r�t�Rfdh dĥgPr�0����r�tm�Mj�frg; fhg; fĥg�

" #
oN�. . .�
ohj�t� � ÿ

i
N

n1j

Rfdh dĥgPr�0����r�tm�Mj�frg; fhg; fĥg�ĥ�t�Rfdh dĥgPr�0����r�tm�Mj�frg; fhg; fĥg�

" #
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o2N�. . .�
owj�t�owj�t0�

� ÿ 1

N

Rfdh dĥgPr�0����r�tm�Mj�frg; fhg; fĥg�r�t�r�t0�Rfdh dĥgPr�0����r�tm�Mj�frg; fhg; fĥg�

" #

ÿ N
oN�. . .�
owj�t�

" #
oN�. . .�
owj�t0�

" #

o2N�. . .�
ohj�t�ohj�t0� � ÿ

1

N

Rfdh dĥgPr�0����r�tm�Mj�frg; fhg; fĥg�ĥ�t�ĥ�t0�Rfdh dĥgPr�0����r�tm�Mj�frg; fhg; fĥg�

" #

ÿ N
oN�. . .�
ohj�t�
� �

oN�. . .�
ohj�t0�
� �

o2N�. . .�
owj�t�ohj�t0� � ÿ

i
N

Rfdh dĥgPr�0����r�tm�Mj�frg; fhg; fĥg�r�t�ĥ�t0�Rfdh dĥgPr�0����r�tm�Mj�frg; fhg; fĥg�

" #

ÿ N
oN�. . .�
owj�t�

" #
oN�. . .�
ohj�t0�
� �

and using the short-hand notation (118) wherever possible. Note that the external
®elds fwi�t�; hi�t�g occur only in the function N�. . .�, not in W�. . .� or U�. . .�, and that

overall constants in Z�w� can always be recovered a posteriori, using Z�0� � 1:

m�t� � lim
w!0

i
N

X
i

n1i

R
da . . . dK̂ NoN

owi�t�
h i

eN �W�U�N��O�...�R
da . . . dK̂ eN �W�U�N��O�...� � lim

w!0
hr�t�i�;

C�t; t0� � ÿ lim
w!0

1

N

X
i

R
da . . . dK̂ No2N

owi�t�owi�t0� � NoN
owi�t�

NoN
owi�t0�

h i
eN �W�U�N��O�...�R

da . . . dK̂ eN �W�U�N��O�...�

� lim
w!0
hr�t�r�t0�i�;

iG�t; t0� � ÿ lim
w!0

1

N

X
i

R
da . . . dK̂ No2N

owi�t�ohi�t0� � NoN
owi�t�

NoN
ohi�t0�

h i
eN �W�U�N��O�...�R

da . . . dK̂ eN �W�U�N��O�...�

� lim
w!0
hr�t�ĥ�t0�i�:

Finally we obtain useful identities from the seemingly trivial statements
Nÿ1

P
i n

1
i oZ�0�=ohi�t� � 0 and Nÿ1

P
i o

2Z�0�=ohi�t�ohi�t0� � 0:

0 � lim
w!0

i
N

X
i

n1i

R
da . . . dK̂ NoN

ohi�t�
h i

eN �W�U�N��O�...�R
da . . . dK̂ eN �W�U�N��O�...� � lim

w!0
hĥ�t�i�;
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0 � ÿ lim
w!0

1

N

X
i

R
da . . . dK̂ No2N

ohi�t�ohi�t0� � NoN
ohi�t�

NoN
ohi�t0�

h i
eN �W�U�N��O�...�R

da . . . dK̂ eN �W�U�N��O�...�

� lim
w!0
hĥ�t�ĥ�t0�i�:

In combination with (121) and (122), the above ®ve identities simplify our problem
considerably. The dummy ®elds wi�t� have served their purpose and will now be put
to zero, as a result we can now identify our macroscopic observables at the relevant
saddle-point as:

a�t� � m�t�; k�t� � 0; q�t; t0� � C�t; t0�; Q�t; t0� � 0; K�t; t0� � iG�t0; t�:
�123�

Finally we make a convenient choice for the external ®elds, hi�t� � n1i h�t�, with
which the e�ective measure h. . .i� of (124) simpli®es to

hf �frg; fhg; fĥg�i� �
Rfdh dĥgPr�0����r�tm�M �frg; fhg; fĥg� f �frg; fhg; fĥg�Rfdh dĥgPr�0����r�tm�M �frg; fhg; fĥg�

�124�
with

M �frg; fhg; fĥg� � p0�r�0��

� exp

�X
t

fiĥ�t��h�t� ÿ h�t�� � br�t � 1�h�t�

ÿ log 2 cosh�bh�t��g ÿ i
X

t

�â�t�r�t� � k̂�t�ĥ�t��
�

� exp

�
ÿ i
X
t;t0
�q̂�t; t0�r�t�r�t0� � Q̂�t; t0�ĥ�t�ĥ�t0� � K̂�t; t0�ĥ�t�r�t0��

�
:

In summary our saddle-point equations are given by (119)±(122), and the physical
meaning of the macroscopic quantities is given by (123) (apparently many of them
must be zero). Our ®nal task is ®nding (112), i.e. calculating the leading order of

F�frg; fĥg� � 1

N
log e

ÿi
P

it
ĥi�t�
P

j
Jijrj�t�

� �
�125�

which is where the properties of the synapses (100) come in.

5.3. Parallel dynamics Hop®eld model near saturation

5.3.1. The disorder average
The fully connected Hop®eld [2] network (here with parallel dynamics) is obtained
upon choosing c � N in the recipe (100), i.e. cij � 1ÿ dij and p � aN . The disorder
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average thus involves only the patterns with l > 1. In view of our objective to write
(125) in the form (112), we will substitute the observables de®ned in (109)±(111)
whenever possible. Now (125) gives

F�. . .� � 1

N
log exp�ÿiNÿ1

X
t

X
l

X
i 6�j

nl
i n

l
j ĥi�t�rj�t��

" #
� ia

X
t

K�t; t; fr; ĥg� ÿ i
X

t

a�t�k�t�

� a log exp ÿi
X

t

X
i

niĥi�t�=
����
N
p" # X

i

niri�t�=
����
N
p" # !" #

� O�Nÿ1�:

�126�
We concentrate on the last term:

exp ÿi
X

t

X
i

niĥi�t�=
����
N
p" # X

i

niri�t�=
����
N
p" # !" #

�
Z

dxdy eÿix�y
Y

t

d x�t� ÿ
P

i niri�t�����
N
p

� �
d y�t� ÿ

P
i niĥi�t�����

N
p

" #( )

�
Z

dxdy dx̂ dŷ

�2 p�2�tm�1�
ei�x̂�x�ŷ�yÿx�y� exp ÿ i����

N
p

X
i

ni

X
t

�x̂�t�ri�t� � ŷ�t�ĥi�t��
 !" #

�
Z

dxdy dx̂ dŷ

�2 p�2�tm�1�
exp

 
i�x̂ � x� ŷ � yÿ x � y�

�
X

i

log cos
1����
N
p

X
t

�x̂�t�ri�t� � ŷ�t�ĥi�t��
" #!

�
Z

dxdy dx̂ dŷ

�2 p�2�tm�1�
exp i�x̂ � x� ŷ � yÿ x � y�
0@

ÿ 1

2N

X
i

X
t

�x̂�t�ri�t� � ŷ�t�ĥi�t��
( )2

�O�Nÿ1�
1A

�
Z

dxdy dx̂ dŷ

�2 p�2�tm�1�
exp i�x̂ � x� ŷ � yÿ x � y� ÿ 1

2

X
t;t0

x̂�t�x̂�t0�q�t; t0��
 

� 2 x̂�t�ŷ�t0�K�t0; t� � ŷ�t�ŷ�t0�Q�t; t0�� � O�Nÿ1�
!
:

Together with (126) we have now shown that the disorder average (125) is indeed, in
leading order in N , of the form (112) (as claimed), with
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U�a; k; q;Q;K� � ia
X

t

K�t; t� ÿ ia � k� a log

Z
dx dy dx̂ dŷ

�2 p�2�tm�1�

� exp i�x̂ � x� ŷ � yÿ x � y� ÿ 1

2
�x̂ � qx̂� 2 ŷ � Kx̂� ŷ �Qŷ�

� �
� ia

X
t

K�t; t� ÿ ia � k

� a log

Z
du dv

�2 p�tm�1 exp ÿ
1

2
�u � qu� 2 v � Kuÿ 2 iu � v� v �Qv�

� �
�127�

(which, of course, can be simpli®ed further).

5.3.2. Simpli®cation of the saddle-point equations
We are now in a position to work out Eqs. (119) and (120). For the single-time
observables this gives â�t� � k�t� and k̂�t� � a�t�, and for the two-time ones:

q̂�t; t0� � ÿ 1

2
ai

R
du dv u�t�u�t0� exp�ÿ 1

2 �u � qu� 2 v � Kuÿ 2 iu � v� v �Qv��R
du dv exp�ÿ 1

2 �u � qu� 2 v � Kuÿ 2 iu � v� v �Qv�� ;

Q̂�t; t0� � ÿ 1

2
ai

R
du dv v�t�v�t0� exp�ÿ 1

2 �u � qu� 2 v � Kuÿ 2 iu � v� v �Qv��R
du dv exp�ÿ 1

2 �u � qu� 2 v � Kuÿ 2 iu � v� v �Qv�� ;

K̂�t; t0� � ÿai

R
du dv v�t�u�t0� exp�ÿ 1

2 �u � qu� 2 v � Kuÿ 2 iu � v� v �Qv��R
du dv exp�ÿ 1

2 �u � qu� 2 v � Kuÿ 2 iu � v� v �Qv�� ÿ adt;t0 :

At the physical saddle-point we can use (123) to express all nonzero objects in terms
of the observables m�t�, C�t; t0� and G�t; t0�, with a clear physical meaning. Thus we
®nd â�t� � 0, k̂�t� � m�t�, and

q̂�t; t0� � ÿ 1

2
ai

R
du dv u�t�u�t0� eÿ1

2�u�Cuÿ2iu��1ÿG�v�R
du dv eÿ1

2�u�Cuÿ2iu��1ÿG�v� � 0 �128�

Q̂�t;t0��ÿ1
2
ai

R
dudvv�t�v�t0�eÿ1

2�u�Cuÿ2iu��1ÿG�v�R
dudveÿ1

2�u�Cuÿ2iu��1ÿG�v� �ÿ1
2
ai �1ÿG�ÿ1C�1ÿGy�ÿ1
h i

�t;t0�

�129�

K̂�t; t0� � adt;t0 � ÿai

R
du dv v�t�u�t0� eÿ1

2�u�Cuÿ2iu��1ÿG�v�R
du dv eÿ1

2�u�Cuÿ2iu��1ÿG�v� � a�1ÿG�ÿ1�t; t0�

�130�
(with Gy�t; t0� � G�t0; t�, and using standard manipulations of Gaussian integrals).
Note that we can use the identity �1ÿG�ÿ1 ÿ 1 �P`P 0 G

` ÿ 1 �P`>0 G
` �

G�1ÿG�ÿ1 to compactify (130) to
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K̂�t; t0� � a�G�1ÿG�ÿ1��t; t0�: �131�
We have now expressed all our objects in terms of the disorder-averaged recall
overlap m � fm�t�g and the disorder-averaged single-site correlation and response
functions C � fC�t; t0�g and G � fG�t; t0�g. We can next simplify the e�ective
measure (124), which plays a crucial role in the remaining saddle-point equations.
Inserting â�t� � q̂�t; t0� � 0 and k̂�t� � m�t� into (124), ®rst of all, gives us

M �frg;fhg;fĥg� � p0�r�0��exp
X

t

fiĥ�t� h�t�ÿm�t�ÿ h�t�ÿ
X

t0
K̂�t; t0�r�t0�

" # 

�br�t� 1�h�t�ÿ log2cosh�bh�t��gÿ i
X
t;t0

Q̂�t; t0�ĥ�t�ĥ�t0�
!
:

�132�
Secondly, causality ensures that G�t; t0� � 0 for t O t0, from which, in combination
with (131), it follows that the same must be true for the kernel K̂�t; t0�, since

K̂�t; t0� � a�G�1ÿG�ÿ1��t; t0� � a G�G2 �G3 � � � �� 	�t; t0�:
This, in turn, guarantees that the function M �. . .� in (132) is already normalized:Z

fdh dĥg
X

r�0����r�tm�
M �frg; fhg; fĥg� � 1:

One can prove this iteratively. After summation over r�tm� (which due to causality
cannot occur in the term with the kernel K̂�t; t0�) one is left with just a single
occurrence of the ®eld h�tm� in the exponent, integration over which reduces to
d�ĥ�tm��, which then eliminates the conjugate ®eld ĥ�tm�. This cycle of operations is
next applied to the variables at time tm ÿ 1, etc. The e�ective measure (124) can now
be written simply as

h f �frg; fhg; fĥg�i� �
X

r�0����r�tm�

Z
fdhdĥg M �frg; fhg; fĥg�f �frg; fhg; fĥg�

with M �. . .� as given in (132). The remaining saddle-point equations to be solved,
which can be slightly simpli®ed by using the identity hr�t�ĥ�t0�i� � iohr�t�i�=oh�t0�,
are

m�t� � hr�t�i�; C�t; t0� � hr�t�r�t0�i�; G�t; t0� � ohr�t�i�=oh�t0�: �133�

5.3.3. Extracting the physics from the saddle-point equations
At this stage we observe in (133) that we only need to insert functions of spin states
into the e�ective measure h. . .i� (rather than ®elds or conjugate ®elds), so the ef-
fective measure can again be simpli®ed. Upon inserting (129) and (131) into the
function (132) we obtain h f �frg�i� �

P
r�0����r�tm� Prob�frg�f �frg�, with
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Prob�frg� � p0�r�0��
Z
fd/gP �f/g�

Y
t

1

2
�1� r�t � 1� tanh�bh�tjfrg; f/g��

� �
�134�

in which p0�r�0�� � 1
2 �1� r�0�m0�, and

h�tjfrg; f/g� � m�t� � h�t� � a
X
t0<t

�G�1ÿG�ÿ1��t; t0�r�t0� � a
1
2/�t� �135�

P �f/g� �
exp ÿ 1

2

P
t;t0 /�t� �1ÿGy�Cÿ1�1ÿG�

h i
�t; t0�/�t0�

� �
�2 p��tm�1�=2detÿ1

2 �1ÿGy�Cÿ1�1ÿG�
h i �136�

(note: to predict neuron states up until time tm we only need the ®elds up until time
tm ÿ 1). We recognize (134) as describing an e�ective single neuron, with the usual
dynamics Prob�r�t � 1� � �1� � 1

2 �1� tanh�bh�t���, but with the ®elds (135). This
result is indeed of the form (98), with a retarded self-interaction kernel R�t; t0� and
covariance matrix h/�t�/�t0�i of the Gaussian /�t� given by

R�t; t0� � �G�1ÿG�ÿ1��t; t0�; h/�t�/�t0�i � ��1ÿG�ÿ1C�1ÿGy�ÿ1��t; t0�:
�137�

For a! 0 we loose all the complicated terms in the local ®elds, and recover the type
of simple expression we found earlier for ®nite p: m�t � 1� � tanh�b�m�t� � h�t���.

It can be shown [25] (space limitations prevent a demonstration in this paper)
that the equilibrium solutions obtained via replica theory in replica-symmetric an-
satz [26] can be recovered as those time-translation invariant solutions8 of the above
dynamic equations which (i) obey the parallel dynamics FDT, and (ii) obey
lims!1 G�s� � 0. It can also be shown that the AT [27] instability, where replica
symmetry ceases to hold, corresponds to a dynamical instability in the present
formalism, where so-called anomalous response sets in: lims!1 G�s� 6� 0.

Before we calculate the solution explicitly for the ®rst few time-steps, we ®rst
work out the relevant averages using (134). Note that always C�t; t� � hr2�t�i� � 1
and G�t; t0� � R�t; t0� � 0 for t O t0. As a result the covariance matrix of the Gaussian
®elds can be written as

h/�t�/�t0�i � ��1ÿG�ÿ1C�1ÿGy�ÿ1��t; t0�
�
X

s;s0P 0

�dt;s � R�t; s��C�s; s0��ds0;t0 � R�t0; s0��

�
Xt

s�0

Xt0

s0�0
�dt;s � R�t; s��C�s; s0��ds0;t0 � R�t0; s0��: �138�

8 i.e. m�t� � m, C�t; t0� � C�t ÿ t0� and G�t; t0� � G�t ÿ t0�.
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Considering arbitrary positive integer powers of the response function immediately
shows that

�G`��t; t0� � 0 if t0 > t ÿ ` �139�
which, in turn, gives

R�t; t0� �
X
`>0

�G`��t; t0� �
Xtÿt0

`�1
�G`��t; t0�: �140�

Similarly we obtain from �1ÿG�ÿ1 � 1� R that for t0P t: �1ÿG�ÿ1�t; t0� � dt;t0 .
To suppress notation we will simply put h�tj::� instead of h�tjfrg; f/g�; this need not
cause any ambiguity. We notice that summation over neuron variables r�s� and
integration over Gaussian variables /�s� with time arguments s higher than those
occurring in the function to be averaged can always be carried out immediately,
giving (for t > 0 and t0 < t):

m�t� �
X

r�0�...r�tÿ1�
p0�r�0��

Z
fd/gP �f/g� tanh�bh�t ÿ 1j::��

�
Ytÿ2
s�0

1

2
1� r�s� 1� tanh�bh�sj::��� � �141�

G�t; t0� � b C�t; t0 � 1� ÿ
X

r�0�...r�tÿ1�
p0�r�0��

Z
fd/gP �f/g� tanh�bh�t ÿ 1j::��

8<:
� tanh�bh�t0j::��

Ytÿ2
s�0

1

2
1� r�s� 1� tanh�bh�sj::��� �

9=; �142�

(which we obtain directly for t0 � t ÿ 1, and which follows for times t0 < t ÿ 1 upon
using the identity r�1ÿ tanh2�x�� � �1� r tanh�x���rÿ tanh�x��). For the correla-
tions we distinguish between t0 � t ÿ 1 and t0 < t ÿ 1:

C�t; t ÿ 1� �
X

r�0�...r�tÿ2�
p0�r�0��

Z
fd/gP �f/g� tanh�bh�t ÿ 1j::��

� tanh�bh�t ÿ 2j::��
Ytÿ3
s�0

1

2
1� r�s� 1� tanh�bh�sj::��� �; �143�

whereas for t0 < t ÿ 1 we have

C�t; t0� �
X

r�0�...r�tÿ1�
p0�r�0��

Z
fd/gP �f/g� tanh�bh�t ÿ 1j::��r�t0�

�
Ytÿ2
s�0

1

2
1� r�s� 1� tanh�bh�sj::��� �: �144�
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Let us ®nally work out explicitly the ®nal macroscopic laws (141)±(144), with (135)
and (136), for the ®rst few time steps. For arbitrary times our equations will have to
be evaluated numerically; we will see below, however, that this can be done in an
iterative (i.e. easy) manner. At t � 0 we just have the two observables m�0� � m0 and
C�0; 0� � 1.

5.3.4. The ®rst few time-steps
The ®eld at t � 0 is h�0j::� � m0 � h�0� � a

1
2/�0�, since the retarded self-interaction

does not yet come into play. The distribution of /�0� is fully characterized by its
variance, which (138) claims to be

h/2�0�i � C�0; 0� � 1:

Therefore, with Dz � �2p�ÿ1
2 eÿ

1
2z

2

dz, we immediately ®nd (141)±(144) reducing to

m�1� �
Z

Dz tanh�b�m0 � h�0� � z
���
a
p ��; C�1; 0� � m0m�1�; �145�

G�1; 0� � b 1ÿ
Z

Dz tanh2�b�m0 � h�0� � z
���
a
p ��

� �
: �146�

For the self-interaction kernel this implies, using (140), that R�1; 0� � G�1; 0�. We
now move on to t � 2. Here Eqs. (141)±(144) give us

m�2� � 1

2

X
r�0�

Z
d/�0� d/�1�P �/�0�;/�1�� tanh�bh�1j::���1� r�0�m0�;

C�2; 1� � 1

2

X
r�0�

Z
d/�1� d/�0�P �/�0�;/�1�� tanh�bh�1j::��

� tanh�bh�0j::���1� r�0�m0�;

C�2; 0� � 1

2

X
r�0�r�1�

Z
fd/gP �f/g� tanh�bh�1j::��r�0�

� 1

2
�1� r�1� tanh�bh�0j::����1� r�0�m0�;

G�2; 1� � b 1ÿ 1

2

X
r�0�

Z
d/�0� d/�1�P �/�0�;/�1��

8<:
� tanh2�bh�1j::���1� r�0�m0�

9=;;
G�2; 0� � b C�2; 1� ÿ 1

2

X
r�0�

Z
d/�0� d/�1�P �/�0�;/�1�� tanh�bh�1j::��

8<:
� tanh�bh�0j::���1� r�0�m0�

9=; � 0:
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We already know that h/2�0�i � 1; the remaining two moments we need in order to
determine P �/�0�;/�1�� follow again from (138):

h/�1�/�0�i �
X1
s�0
�d1;s � d0;sR�1; 0��C�s; 0� � C�1; 0� � G�1; 0�;

h/2�1�i �
X1
s�0

X1
s0�1
�d1;s � d0;sR�1; 0��C�s; s0��ds0;1 � ds0;0R�1; 0��

� G2�1; 0� � 2C�0; 1�G�1; 0� � 1:

We now know P �/�0�;/�1�� and can work out all macroscopic objects with t � 2
explicitly, if we wish. I will not do this here in full, but only point at the emerging
pattern of all calculations at a given time t depending only on macroscopic quan-
tities that have been calculated at times t0 < t, which allows for iterative solution. Let
us just work out m�2� explicitly, in order to compare the ®rst two recall overlaps
m�1� and m�2� with the values found in simulations and in approximate theories. We
note that calculating m�2� only requires the ®eld /�1�, for which we found
h/2�1�i � G2�1; 0� � 2C�0; 1�G�1; 0� � 1:

m�2� � 1

2

X
r�0�

Z
d/�1�P �/�1�� tanh�b�m�1� � h�1�

� aG�1; 0�r�0� � a
1
2/�1����1� r�0�m0�

� 1

2
�1� m0�

Z
Dz tanh�b�m�1� � h�1�

� aG�1; 0� � z
��������������������������������������������������������������������
a�G2�1; 0� � 2m0m�1�G�1; 0� � 1�

q
��

� 1

2
�1ÿ m0�

Z
Dz tanh�b�m�1� � h�1� ÿ aG�1; 0�

� z
��������������������������������������������������������������������
a�G2�1; 0� � 2m0m�1�G�1; 0� � 1�

q
��:

5.3.5. Exact results versus simulations and gaussian approximations
I close this section on the fully connected networks with a comparison of some of
the approximate theories, the (exact) generating functional formalism, and nu-
merical simulations, for the case h�t� � 0 (no external stimuli at any time). The
evolution of the recall overlap in the ®rst two time-steps has been described as
follows:

Naive Gaussian Approximation:

m�1� �
Z

Dz tanh�b�m�0� � z
���
a
p ��;

m�2� �
Z

Dz tanh�b�m�1� � z
���
a
p ��:
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Amari±Maginu theory:

m�1� �
Z

Dz tanh�b�m�0� � z
���
a
p ��;

m�2� �
Z

Dz tanh�b�m�1� � zR
���
a
p ��;

R2 � 1� 2m�0�m�1�G� G2;

G � b 1ÿ
Z

Dz tanh2�b�m�0� � z
���
a
p ��

� �
:

Exact solution:

m�1� �
Z

Dz tanh�b�m�0� � z
���
a
p ��;

m�2� � 1

2
�1� m0�

Z
Dz tanh�b�m�1� � aG� zR

���
a
p ��

� 1

2
�1ÿ m0�

Z
Dz tanh�b�m�1� ÿ aG� zR

���
a
p ��;

R2 � 1� 2m�0�m�1�G� G2;

G � b 1ÿ
Z

Dz tanh2�b�m�0� � z
���
a
p ��

� �
:

We can now appreciate why the more advanced Gaussian approximation (Amari±
Maginu theory, [14]) works well when the system state is close to the target attractor.
This theory gets the moments of the Gaussian part of the interference noise distri-
bution at t � 1 exactly right, but not the discrete part, whereas close to the attractor
both the response function G�1; 0� and one of the two pre-factors 1

2 �1� m0� in the
exact expression for m�2� will be very small, and the latter will therefore indeed
approach a Gaussian shape. One can also see why the non-Gaussian approximation
of [17] made sense: in the calculation of m�2� the interference noise distribution can
indeed be written as the sum of two Gaussian ones (although for t > 2 this will cease
to be true). Numerical evaluation of these expressions result in explicit predictions
which can be tested against numerical simulations. This is done in Fig. 8, which
con®rms the picture sketched above, and hints that the performance of the Gaussian
approximations is indeed worse for those initial conditions which fail to trigger
pattern recall.

5.4. Extremely diluted attractor networks near saturation

Extremely diluted attractor networks are obtained upon choosing limN!1 c=N � 0
(while still c!1) in de®nition (100) of the Hebbian-type synapses. The disorder
average now involves both the patterns with l > 1 and the realization of the `wiring'
variables cij 2 f0; 1g. Again, in working out the key function (125) we will show that
for N !1 the outcome can be written in terms of the macroscopic quantities (109)±
(111). We carry out the average over the spatial structure variables fcijg ®rst:
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F�. . .� � 1

N
log exp ÿ i

c

X
i6�j

cij

X
l

nl
i n

l
j

X
t

ĥi�t�rj�t�
 !" #

� 1

N
log
Y
i<j

exp ÿ i
c

X
l

nl
i n

l
j cij

X
t

ĥi�t�rj�t� � cji

X
t

ĥj�t�ri�t�
" # !

:

At this stage we have to distinguish between symmetric and asymmetric dilutions.

5.4.1. The disorder average
First we deal with the case of symmetric dilution: cij � cji for all i 6� j. The average
over the cij, with the distribution (101), is trivial:

Y
i<j

exp ÿ i
c

cij

X
l

nl
i n

l
j

X
t

�ĥi�t�rj�t� � ĥj�t�ri�t��
 !

�
Y
i<j

1� c
N
�exp ÿ i

c

X
l

nl
i n

l
j

X
t

�ĥi�t�rj�t� � ĥj�t�ri�t��
 !

ÿ 1�
( )

�
Y
i<j

�
1ÿ c

N

�
i
c

X
l

nl
i n

l
j

X
t

�ĥi�t�rj�t� � ĥj�t�ri�t��::

� 1

2 c2

�X
l

nl
i n

l
j

X
t

�ĥi�t�rj�t� � ĥj�t�ri�t��
�2
� O�cÿ3

2�
��

Fig. 8. The ®rst few time steps in the evolution of the overlap m�r� � Nÿ1
P

i rin
1
i in a

parallel dynamics Hop®eld model with a � T � 0:1 and random patterns, following initial
states correlated with pattern one only. Left: simulations (�) versus naive Gaussian approx-
imation (�). Middle: simulations (�) versus advanced Gaussian approximation (Amari±
Maginu theory, �). Right: simulations (�) versus (exact) generating functional theory (�). All

simulations were done with N � 30; 000.
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�
Y
i<j

exp ÿ i
N

X
l

nl
i n

l
j

X
t

�ĥi�t�rj�t� � ĥj�t�ri�t��
 

ÿ 1

2 cN

X
l

nl
i n

l
j

X
t

ĥi�t�rj�t� � ĥj�t�ri�t�
h i" #2

�O 1

N
���
c
p

� �
� O

c
N2

� �1A:
We separate in the exponent the terms where l � m in the quadratic term (being of
the form

P
lm . . .), and the terms with l � 1. Note: p � ac. We also use the de®ni-

tions (109)±(111) wherever we can:

F�...��ÿi
X

t

a�t�k�t�ÿ1
2
a
X

st

q�s;t�Q�s;t��K�s;t�K�t;s�� ��O�cÿ1
2��O�c=N�

� 1

N
log exp ÿ i

N

X
l>1

X
t

X
i

nl
i ĥi�t�

" # X
j

nl
j rj�t�

" # 8<:
ÿ 1

4cN

X
i 6�j

X
l 6�m

X
st

nl
i n

l
j n

m
i n

m
j �ĥi�s�rj�s�� ĥj�s�ri�s���ĥi�t�rj�t�� ĥj�t�ri�t��

!9=;
Our `condensed ansatz' implies that for l > 1: Nÿ

1
2

P
i n

l
i ri�t� � O�1� and

Nÿ
1
2

P
i n

l
i ĥi�t� � O�1�. Thus the ®rst term in the exponent containing the disorder is

O�c�, contributing O�c=N� to F�. . .�. We therefore retain only the second term in the
exponent. However, the same argument applies to the second term. There all con-
tributions can be seen as uncorrelated in leading order, so thatP

i6�j

P
l 6�m . . . � O�Np�, giving a nonleading O�Nÿ1� cumulative contribution to

F�. . .�. Thus, provided limN!1 cÿ1 � limN!1 c=N � 0 (which we assumed), we
have shown that the disorder average (125) is again, in leading order in N , of the
form (112) (as claimed), with

Symmetric:

U�a; k; q;Q;K� � ÿia � kÿ 1

2
a
X

st

�q�s; t�Q�s; t� � K�s; t�K�t; s��: �147�

Next we deal with the asymmetric case (102), where cij and cji are independent.
Again the average over the cij is trivial; here it gives

Y
i<j

�
e
ÿ i

ccij

P
l
nl

i nl
j

P
t
ĥi�t�rj�t� eÿ

i
ccji

P
l
nl

i nl
j

P
t
ĥj�t�ri�t�

�

�
Y
i<j

�
1� c

N
e
ÿ i

c

P
l
nl

i nl
j

P
t
ĥi�t�rj�t� ÿ 1

h i��
1� c

N
e
ÿ i

c

P
l
nl

i nl
j

P
t
ĥj�t�ri�t� ÿ 1

h i�
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�
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i<j

1ÿ c
N

i
c

X
l

nl
i n

l
j

X
t

ĥi�t�rj�t�� 1

2c2
X

l

nl
i n

l
j

X
t

ĥi�t�rj�t�
" #2

�O�cÿ3
2�

24 358<:
9=;

� 1ÿ c
N

i
c

X
l

nl
i n

l
j

X
t

ĥj�t�ri�t�� 1

2c2
X

l

nl
i n

l
j

X
t

ĥj�t�ri�t�
" #2

�O�cÿ3
2�

24 358<:
9=;

(in which the horizontal bars of the two constituent lines are to be read as con-
nected)

�
Y
i<j

exp ÿ i
N

X
l

nl
i n

l
j

X
t

�ĥi�t�rj�t�� ĥj�t�ri�t��ÿ 1

2cN

X
l

nl
i n

l
j

X
t

ĥi�t�rj�t�
" #20@

ÿ 1

2cN

X
l

nl
i n

l
j

X
t

ĥj�t�ri�t�
" #2

�O 1

N
���
c
p

� �
�O

c
N2

� �1A:
Again we separate in the exponent the terms where l � m in the quadratic term
(being of the form

P
lm . . .), and the terms with l � 1, and use the de®nitions (109)±

(111):

F�. . .� � ÿi
X

t

a�t�k�t� ÿ 1

2
a
X

st

q�s; t�Q�s; t� � O�cÿ1
2� � O�c=n�

� 1

N
log exp ÿ i

N

X
l>1

X
t

X
i

nl
i ĥi�t�

" # X
j

nl
j rj�t�

" # 8<:
ÿ 1

2 cN

X
i 6�j

X
l 6�m

nl
i n

l
j n

m
i n

m
j

X
st

ĥi�s�rj�s�ĥi�t�rj�t�
!)

:

The scaling arguments given in the symmetric case, based on our `condensed ansatz',
apply again, and tell us that the remaining terms with the disorder are of vanishing
order in N . We have again shown that the disorder average (125) is, in leading order
in N , of the form (112), with

Asymmetric:

U�a; k; q;Q;K� � ÿia � kÿ 1

2
a
X

st

q�s; t�Q�s; t�: �148�

5.4.2. Extracting the physics from the saddle-point equations
First we combine the above two results (147)±(148) in the following way (with D � 1
for symmetric dilution and D � 0 for asymmetric dilution):

U�a; k; q;Q;K� � ÿia � kÿ 1

2
a
X

st

�q�s; t�Q�s; t� � DK�s; t�K�t; s��: �149�
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We can now work out Eqs. (119) and (120), and use (123) to express the result at the
physical saddle-point in terms of the trio fm�t�;C�t; t0�;G�t; t0�g. For the single-time
observables this gives (as with the fully connected system) â�t� � k�t� and
k̂�t� � a�t�; for the two-time ones we ®nd:

Q̂�t; t0� � ÿ 1
2 iaC�t; t0�; q̂�t; t0� � 0; K̂�t; t0� � aDG�t; t0�:

We now observe that the remainder of the derivation followed for the fully con-
nected network can be followed with only two minor adjustments to the terms
generated by K̂�t; t0� and by Q̂�t; t0�: aG�1ÿG�ÿ1 ! aDG in the retarded self-in-
teraction, and �1ÿG�ÿ1C�1ÿGy�ÿ1 ! C in the covariance of the Gaussian noise
in the e�ective single neuron problem. This results in the familiar saddle-point
equations (133) for an e�ective single neuron problem, with state probabilities (134)
equivalent to the dynamics Prob�r�t � 1� � �1� � 1

2 �1� tanh�bh�t���, and in which
p0�r�0�� � 1

2 �1� r�0�m0� and

h�tjfrg; f/g� � m�t� � h�t� � aD
X
t0<t

G�t; t0�r�t0� � a
1
2/�t�;

P �f/g� � e
ÿ1

2

P
t;t0 /�t�C

ÿ1�t;t0�/�t0�

�2 p��tm�1�=2det12C
:

�150�

5.4.3. Physics of networks with asymmetric dilution
Asymmetric dilution corresponds to D � 0, i.e. there is no retarded self-interaction,
and the response function no longer plays a role. In (150) we now only retain
h�tj . . .� � m�t� � h�t� � a

1
2/�t�, with h/2�t�i � C�1; 1� � 1. We now ®nd (141) sim-

ply giving

m�t � 1� �
X

r�0�...r�t�
p0�r�0��

Z
fd/gP �f/g� tanh�bh�tj . . .��

�
Ytÿ1
s�0

1

2
1� r�s� 1� tanh�bh�sj . . .��� �

�
Z

Dz tanh�b�m�t� � h�t� � z
���
a
p ��: �151�

Apparently this is the one case where the simple Gaussian dynamical law (95) is
exact at all times. Similarly, for t > t0 Eqs. (142)±(144) for correlation and response
functions reduce to

C�t; t0� �
Z d/ad/b exp ÿ1

2

/2
a�/2

bÿ2C�tÿ1;t0ÿ1�/a/b
1ÿC2�tÿ1;t0ÿ1�

� �
2p

��������������������������������������
1ÿC2�tÿ1; t0 ÿ1�p tanh�b�m�tÿ1��h�tÿ1��/a

���
a
p ��

� tanh�b�m�t0 ÿ1��h�t0 ÿ1��/b

���
a
p ��; �152�
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G�t; t0� � bdt;t0�1 1ÿ
Z

Dz tanh2�b�m�t ÿ 1� � h�t ÿ 1� � z
���
a
p ��

� �
: �153�

Let us also inspect the stationary state m�t� � m, for h�t� � 0. One easily proves that
m � 0 as soon as T > 1, using m2 � bm

Rm
0 dk�1ÿ R Dz tanh2�b�k � z

���
a
p ���O bm2. A

continuous bifurcation occurs from the m � 0 state to an m > 0 state when
T � 1ÿ R Dz tanh2�bz

���
a
p �. A paramerization of this transition line in the �a; T �-

plane is given by

T �x� � 1ÿ
Z

Dz tanh2�zx�; a�x� � x2T 2�x�; x P 0:

For a � 0 we just get m � tanh�bm� so Tc � 1. For T � 0 we obtain the equation
m � erf�m= ������

2a
p �, giving a continuous transition to m > 0 solutions at ac �

2=p � 0:637. The remaining question concerns the nature of the m � 0 state. In-
serting m�t� � h�t� � 0 (for all t) into (152) tells us that C�t; t0� � f �C�t ÿ 1; t0 ÿ 1��
for t > t0 > 0, with `initial conditions' C�t; 0� � m�t�m0, where

f �C� �
Z

d/a d/b

2 p
��������������
1ÿ C2
p exp ÿ 1

2

/2
a � /2

b ÿ 2C/a/b

1ÿ C2

� �
tanh�b ���

a
p

/a� tanh�b
���
a
p

/b�:

In the m � 0 regime we have C�t; 0� � 0 for any t > 0, inducing C�t; t0� � 0 for any
t > t0, due to f �0� � 0. Thus we conclude that C�t; t0� � dt;t0 in the m � 0 phase, i.e.
this phase is paramagnetic rather than of a spin-glass type. The resulting phase
diagram is given in Fig. 9, together with that of symmetric dilution (for compari-
son).

5.4.4. Physics of networks with symmetric dilution
This is the more complicated situation. In spite of the extreme dilution, the inter-
action symmetry makes sure that the spins still have a su�cient number of common
ancestors for complicated correlations to build up in ®nite time. We have

h�tjfrg; f/g� � m�t� � h�t� � a
X
t0<t

G�t; t0�r�t0� � a
1
2/�t�;

P �f/g� � exp�ÿ 1
2

P
t;t0 /�t�Cÿ1�t; t0�/�t0��

�2 p��tm�1�=2det12C
:

�154�

The e�ective single neuron problem (134) and (154) is found to be exactly of the
form found also for the Gaussian model in [1] (which, in turn, maps onto the parallel
dynamics SK model [28]) with the synapses Jij � J0ninj=N � Jzij=

����
N
p

(in which the
zij are symmetric zero-average and unit-variance Gaussian variables, and Jii � 0 for
all i), with the identi®cation:

J ! ���
a
p

; J0 ! 1

(this becomes clear upon applying the generating functional analysis to the Gaussian
model, page limitations prevent me from explicit demonstration here). Since one can
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show that for J0 > 0 the parallel dynamics SK model gives the same equilibrium
state as the sequential one, we can now immediately write down the stationary
solution of our dynamic equations which corresponds to the FDT regime, with
q � lims!1 limt!1 C�t; t � s�:

q �
Z

Dz tanh2�b�m� z
������
aq
p ��; m �

Z
Dz tanh�b�m� z

������
aq
p ��: �155�

These are neither identical to the equations for the fully connected Hop®eld model,
nor to those of the asymmetrically diluted model. Using the equivalence with the
(sequential and parallel) SK model [28] we can immediately translate the phase
transition lines as well, giving:

SK model Symmetrically diluted model

P ! F : T � J0 for J0 > J T � 1 for a< 1

P ! SG : T � J for J0 < J T � ���
a
p

for a> 1

F ! SG�in RS� : T � J0�1ÿ q� for T < J0 T � 1ÿ q for T < 1

F ! SG�inRSB� : J0 � J for T < J a� 1 for T <
���
a
p

AT -- line : T 2 � J2
R
Dzcoshÿ4 b�J0m� Jz

���
q
p � T 2 � a

R
Dzcoshÿ4 b�m� z

������
aq
p �

where q � R Dz tanh2 b�m� z
������
aq
p �. Note that for T � 0 we have q � 1, so that the

equation for m reduces to the one found for asymmetric dilution: m � erf�m= ������
2a
p �.

However, the phase diagram shows that the line F ! SG is entirely in the RSB

Fig. 9. Phase diagrams of extremely diluted attractor networks. Left: asymmetric dilution,
cij and cji are statistically independent. Solid line: continuous transition, separating a non-
recall (paramagnetic) region (P) from a recall region (R). The line reaches T � 0 at
ac � 2=p � 0:637. Right: symmetric dilution, cij � cji for all i; j. Solid lines: continuous
transitions, separating a nonrecall region (P) from a recall region (R), for a < 1, and from a
spin-glass region (SG), for a > 1. Dashed-dotted line: the AT instability. The R!SG line
(calculated within RS) reaches T � 0 at aRS

c � 2=p � 0:637. In RSB the latter is replaced by a
new (dashed) line, giving a new storage capacity of aRSB

c � 1.
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region and describes physically unrealistic re-entrance (as in the SK model), so that
the true transition must be calculated using Parisi's replica-symmetry breaking
(RSB) formalism (see e.g. [29]), giving here ac � 1.

The extremely diluted models analyzed here were ®rst studied in [30] (asymmetric
dilution) and [23] (symmetric dilution). We note that it is not extreme dilution which
is responsible for a drastic simpli®cation in the macroscopic dynamics in the com-
plex regime (i.e. close to saturation), but rather the absence of synaptic symmetry.
Any ®nite degree of synaptic symmetry, whether in a fully connected or in an
extremely diluted attractor network, immediately generates an e�ective retarded
self-interaction in the dynamics, which is ultimately responsible for highly nontrivial
`glassy' dynamics.

6. Epilogue

In this paper I have tried to explain how the techniques from nonequilibrium sta-
tistical mechanics can be used to solve the dynamics of recurrent neural networks. As
in the companion paper on statics in this volume, I have restricted myself to relatively
simple models, where one can most clearly see the potential and restrictions of these
techniques, without being distracted by details. I have dealt with binary neurons and
graded response neurons, and with fully connected and extremely diluted networks,
with symmetric but also with nonsymmetric synapses. Similar calculations could have
been done for neuron models which are not based on ®ring rates, such as coupled
oscillators or integrate-and-®re type ones, see e.g. [31]. My hope is that bringing
together methods and results that have so far been mostly scattered over research
papers, and by presenting these in a uniform language to simplify comparison, I will
have made the area somewhat more accessible to the interested outsider.

At another level I hope to have compensated somewhat for the incorrect view
that has sometimes surfaced in the past that statistical mechanics applies only to
recurrent networks with symmetric synapses, and is therefore not likely to have a
lasting impact on neuro-biological modeling. This was indeed true for equilibrium
statistical mechanics, but it is not true for nonequilibrium statistical mechanics. This
does not mean that there are no practical restrictions in the latter; the golden rule of
there not being any free lunches is obviously also valid here. Whenever we wish to
incorporate more biological details in our models, we will have to reduce our am-
bition to obtain exact solutions, work much harder, and turn to our computer at an
earlier stage. However, the practical restrictions in dynamics are of a quantitative
nature (equations tend to become more lengthy and messy), rather than of a
qualitative one (in statics the issue of detailed balance decides whether or not we can
at all start a calculation). The main stumbling block that remains is the issue of
spatial structure. Short-range models are extremely di�cult to handle, and this is
likely to remain so for a long time. In statistical mechanics the state of the art in
short-range models is to be able to identify phase transitions, and calculate critical
exponents, but this is generally not the type of information one is interested in when
studying the operation of recurrent neural networks.
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Yet, since dynamical techniques are still far less hampered by the need to impose
biologically dubious (or even unacceptable) model constraints than equilibrium
techniques, and since there are now well-established and e�cient methods and
techniques to obtain model solutions in the form of macroscopic laws for large
systems (some are exact, some are useful approximations), the future in the statis-
tical mechanical analysis of biologically more realistic recurrent neural networks is
clearly in the nonequilibrium half of the statistical mechanics playing ®eld.
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