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1. Introduction

Statistical mechanics deals with large systems of stochastically interacting micro-
scopic elements (particles, atomic magnets, polymers, etc.). The strategy of statis-
tical mechanics is to abandon any ambition to solve models of such systems at the
microscopic level of individual elements, but to use the microscopic laws to calculate
equations describing the behavior of a suitably chosen set of macroscopic observ-
ables. The toolbox of statistical mechanics consists of methods to perform this
reduction from the microscopic to a macroscopic level, which are all based on
efficient ways to do the bookkeeping of probabilities. The experience and intuition
that have been built up over the last century tells us what to expect, and serves as a
guide in finding the macroscopic observables and in seecing the difference between
relevant mathematical subtleties and irrelevant ones. As in any statistical theory,
clean and transparent mathematical laws can be expected to emerge only for large
(preferably infinitely large) systems. In this limit one often encounters phase tran-
sitions, i.e. drastic changes in the system’s macroscopic behavior at specific values of
global control parameters.

Recurrent neural networks, i.e. neural networks with synaptic feedback loops,
appear to meet the criteria for statistical mechanics to apply, provided we indeed
restrict ourselves to large systems. Here the microscopic stochastic dynamical
variables are the firing states of the neurons or their membrane potentials, and one is
mostly interested in quantities such as average state correlations and global infor-
mation processing quality, which are indeed measured by macroscopic observables.
In contrast to layered networks, one cannot simply write down the values of suc-
cessive neuron states for models of recurrent neural networks; here they must be
solved from (mostly stochastic) coupled dynamic equations. Under special condi-
tions (‘detailed balance’), which usually translate into the requirement of synaptic
symmetry, the stochastic process of evolving neuron states leads towards an equi-
librium situation where the microscopic state probabilities are known, and where the
techniques of equilibrium statistical mechanics can be applied in one form or another.
The equilibrium distribution found, however, will not always be of the conventional
Boltzmann form. For nonsymmetric networks, where the asymptotic (stationary)
statistics are not known, dynamical techniques from nonequilibrium statistical me-
chanics are the only tools available for analysis. The ‘natural’ set of macroscopic
quantities (or ‘order parameters’) to be calculated can be defined in practice as the
smallest set which will obey closed deterministic equations in the limit of an infi-
nitely large network.

Being high-dimensional nonlinear systems with extensive feedback, the
dynamics of recurrent neural networks are generally dominated by a wealth of
attractors (fixed-point attractors, limit-cycles, or even more exotic types), and the
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Fig. 1. Information processing by recurrent neural networks through the creation and

manipulation of attractors in state space. Patterns stored: the microscopic states e. If the

synapses are symmetric we will generally find that the attractors will have to be fixed-points

(left picture). With non-symmetric synapses, the attractors can also be sequences of micro-
scopic states (right picture).

practical use of recurrent neural networks (in both biology and engineering) lies in
the potential for creation and manipulation of these attractors through adaptation
of the network parameters (synapses and thresholds). Input fed into a recurrent
neural network usually serves to induce a specific initial configuration (or firing
pattern) of the neurons, which serves as a cue, and the ‘output’ is given by the
(static or dynamic) attractor which has been triggered by this cue. The most fa-
miliar types of recurrent neural network models, where the idea of creating and
manipulating attractors has been worked out and applied explicitly, are the so-
called attractor neural networks for associative memory, designed to store and
retrieve information in the form of neuronal firing patterns and/or sequences of
neuronal firing patterns. Each pattern to be stored is represented as a microscopic
state vector. One then constructs synapses and thresholds such that the dominant
attractors of the network are precisely the pattern vectors (in the case of static
recall), or where, alternatively, they are trajectories in which the patterns are suc-
cessively generated microscopic system states. From an initial configuration (the
‘cue’, or input pattern to be recognized) the system is allowed to evolve in time
autonomously, and the final state (or trajectory) reached can be interpreted as the
pattern (or pattern sequence) recognized by network from the input (see Fig. 1).
For such programs to work one clearly needs recurrent neural networks with ex-
tensive ‘ergodicity breaking’: the state vector will during the course of the dynamics
(at least on finite time-scales) have to be confined to a restricted region of state
space (an ‘ergodic component’), the location of which is to depend strongly on the
initial conditions. Hence our interest will mainly be in systems with many attrac-
tors. This, in turn, has implications at a theoretical/mathematical level: solving
models of recurrent neural networks with extensively many attractors requires
advanced tools from disordered systems theory, such as replica theory (statics) and
generating functional analysis (dynamics). It will turn out that a crucial issue is
whether or not the synapses are symmetric. Firstly, synaptic asymmetry is found to
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rule out microscopic equilibrium, which has implications for the mathematical
techniques which are available: studying models of recurrent networks with non-
symmetric synapses requires solving the dynamics, even if one is only interested in
the stationary state. Secondly, the degree of synaptic asymmetry turns out to be a
deciding factor in determining to what extent the dynamics will be glassy, i.e.
extremely slow and nontrivial, close to saturation (where one has an extensive
number of attractors).

In this paper (on statics) and its sequel (on dynamics) I will discuss only the
statistical mechanical analysis of neuronal firing processes in recurrent networks
with static synapses, i.e. network operation as opposed to network learning. I will
also restrict myself to networks with either full or randomly diluted connectivity, the
area in which the main progress has been made during the last few decades. Apart
from these restrictions, the text aims to be reasonably comprehensive and self-
contained. Even within the confined area of the operation of recurrent neural net-
works a truly impressive amount has been achieved, and many of the constraints on
mathematical models which were once thought to be essential for retaining solva-
bility but which were regrettable from a biological point of view (such as synaptic
symmetry, binary neuron states, instantaneous neuronal communication, a small
number of attractors, etc.) have by now been removed with success. At the begin-
ning of the new millennium we know much more about the dynamics and statics of
recurrent neural networks than ever before. I aim to cover in a more or less unified
manner the most important models and techniques which have been launched over
the years, ranging from simple symmetric and non-symmetric networks with only a
finite number of attractors, to the more complicated ones with an extensive number,
and I will explain in detail the techniques which have been designed and used to
solve them.

In the present paper I will first discuss and solve various members of the simplest
class of models: those where all synapses are the same. Then I turn to the Hopfield
model, which is the archetypical model to describe the functioning of symmetric
neural networks as associative memories (away from saturation, where the number
of attractors is finite), and to a coupled oscillator model storing phase patterns
(again away from saturation). Next I will discuss a model with Gaussian synapses,
where the number of attractors diverges, in order to introduce the so-called replica
method, followed by a section on the solution of the Hopfield model near satura-
tion. I close this paper with a guide to further references and an assessment of the
past and future deliverables of the equilibrium statistical mechanical analysis of
recurrent neural networks.

2. Definitions and properties of microscopic laws

In this section I define the most common microscopic models for recurrent neural
networks, I show how one can derive the corresponding descriptions of the sto-
chastic evolution in terms of evolving state probabilities, and I discuss some fun-
damental statistical mechanical properties.
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2.1. Stochastic dynamics of neuronal firing states

2.1.1. Microscopic definitions for binary neurons

The simplest nontrivial definition of a recurrent neural network is that where N
binary neurons o; € {—1,1} (in which the states ‘1’ and ‘—1" represent firing and
rest, respectively) respond iteratively and synchronously to post-synaptic potentials

(or local fields) A4;(6), with ¢ = (o1,...,0y). The fields are assumed to depend
linearly on the instantaneous neuron states:
Parallel
oi(L+1) = sgnlhi(6(0) + Tni(0)],  hi(e) =Y Jijo;+6;. ()
J

The stochasticity is in the independent random numbers n;(¢) € ® (representing
threshold noise), which are all drawn according to some distribution w(n). The
parameter T is introduced to control the amount of noise. For 7 = 0 the process (1)
is deterministic: o;(¢ 4+ 1) = sgn[h;(6(¢))]. The opposite extreme is choosing 7' = oo,
here the system evolution is fully random. The external fields 6, represent neural
thresholds and/or external stimuli, J;; represents the synaptic efficacy at the junction
j— i (J; >0 implies excitation, J;; < 0 inhibition). Alternatively we could decide
that at each iteration step ¢ only a single randomly drawn neuron o;, is to undergo
an update of the type (1):
Sequential:

i#i:oi(0+1)=o,(f)
i=ip:o;(0+ 1) = sgnfhi(o(l)) + Tn,(¢)]

with the local fields as in (1). The stochasticity is now both in the independent
random numbers m,;(¢) (the threshold noise) and in the site iy to be updated, drawn

2)

randomly from the set {1,...,N}. For simplicity we assume w(—n) = w(n), and
define
: . d
gl =2 | dnw(n): gl~z] = —glz), lim glz] =£1, g[z]>0
0 z—F00 Z

Popular choices for the threshold noise distributions are

w(n) = (2m) %™ ¢ g[2] = Erflz/v2),
w(n) =1[1- tanh?(n)] : g[z] = tanh(z).

2.1.2. From stochastic equations to evolving probabilities

From the microscopic Egs. (1) and (2), which are suitable for numerical simulations,
we can derive an equivalent but mathematically more convenient description in
terms of microscopic state probabilities py(c). Egs. (1) and (2) state that, if the
system state o(¢) is given, a neuron i to be updated will obey

Prob[o;(¢ + 1)] = 3 [1 + o;(¢ + 1)g[Bhi(a(¢))] 3)
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with p = T'~'. In the case (1) this rule applies to all neurons, and thus we simply get
peni(o) =TI, 211+ o;g[Bhi(e(¢))]]. If, on the other hand, instead of &(¢) only the
probability distribution py(e) is given, this expression for py; (o) is to be averaged
over the possible states at time ¢:

Parallel:

.mz
| —

pesi(o Z Wle;e'lpi(e’), Wie;o] =] [S[1+ cig[Bhi(e)]]. (4)

1

This is the standard representation of a Markov chain. Also the sequential process
(2) can be formulated in terms of probabilities, but here expression (3) applies only
to the randomly drawn candidate i,. After averaging over all possible realizations of
the sites i; we obtain:

peii(o) Z{ [H Bt

(with the Kronecker symbol: ;; = 1 if i = j, 9;; = 0 otherwise). If, instead of &(¢),
the probabilities py(o) are given, this expression is to be averaged over the possible
states at time ¢, with the result:

I+ i g[Bhi(e ())H}

proafo) =33 31+ o glBh(o)pilo) + 3 3 511 + o glBh (o) pu(Fio)

1 1

with the state-flip operators F®(¢) = ®(oy,...,0;-1,—0Ci, Git1,...,0x). This
equation can again be written in the standard form py, (o) = >, W/[o;6'|pi(c’), but
now with the transition matrix

Sequential:

1
W(6;6'] = 86, + v Z{W[(Ec)am/ — wi(6)36.6 }, (5)

where 866 = []; 5,5 and
Wl'(()') = % [1 — O; tanh[ﬁh,(o')ﬂ (6)

Note that, as soon as T > 0, the two transition matrices W{o; 6’| in (4) and (5) both
describe ergodic systems: from any initial state ¢’ one can reach any final state ¢ with
nonzero probability in a finite number of steps (being one in the parallel case, and N
in the sequential case). It now follows from the standard theory of stochastic pro-
cesses (see e.g. [1,2]) that in both cases the system evolves towards a unique sta-
tionary distribution p.. (o), where all probabilities p,,(6) are nonzero.

2.1.3. From discrete to continuous times
The above processes have the (mathematically and biologically) less appealing
property that time is measured in discrete units. For the sequential case we will now
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assume that the duration of each of the iteration steps is a continuous random
number (for parallel dynamics this would make little sense, since all updates would
still be made in full synchrony). The statistics of the durations is described by a
function (), defined as the probability that at time ¢ precisely ¢ updates have been
made. Upon denoting the previous discrete-time probabilities as p,(6), our new
process (which now includes the randomness in step duration) will be described by

=Y m(t)pe) =) mlt ZWGGPO

(=0 =0

and time has become a continuous variable. For n,(¢) we make the Poisson choice
no(t) = L) e /A From (£), = t/A and (£%), = t/A + 2/ A? it follows that A is the
average duration of an iteration step, and that the relative deviation in ¢ at a given ¢

vanishes for A — 0 as 1/ (£2), — (()2/(¢), = \/AJt. The nice properties of the

T
Poisson distribution under temporal derivation allow us to derive:

A p, Z W(o;6'|p.(6') — pi(o).

For sequential dynamics we choose A = % so that, as in the parallel case, in one time
unit each neuron will on average be updated once. The master equation corre-
sponding to (5) acquires the form

& nio) = Y- twlFo)p(o) — wilo)p(o)). )

The wi(c) (6) now play the role of rransition rates. The choice A = implies

— = Nt, so we will still for N — oo no longer have uncertainty
2) — (020, 1 ill still f 1 h i

T
in where we are on the ¢ axis.

2.1.4. Microscopic definitions for continuous neurons
Alternatively, we could start with continuous neuronal variables o; (representing

e.g. firing frequencies or oscillator phases), where i = 1,..., N, and with stochastic
equations of the form
o;(t+ A) = o,(t) + Afi(o(t)) + V2 TAE(¢). (8)

Here we have introduced (as yet unspecified) deterministic state-dependent forces
fi(6), and uncorrelated Gaussian distributed random forces &;(¢) (the noise), with
(1)) = 0 and (E,(1)E;(')) = 8;8,+. As before, the parameter T controls the amount
of noise in the system, ranging from 7 = 0 (deterministic dynamics) to 7 = oo
(completely random dynamics). If we take the limit A — 0 in (8) we find a Langevin
equation (with a continuous time variable):

d

Soilt) = file(0) + (1) ©)

This equation acquires its meaning only as the limit A — 0 of (8). The moments of
the new noise variables m;(¢) = &;(¢)\/2T/A in (9) are given by (n;(¢)) =0 and
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(m;(e)n;(¢')) = 2T8;;6(¢ — ¢'). This can be derived from the moments of the &;(z). For
instance:

, 2T , 1
(ni(e)n; (1)) = ili% A (G(0g;(1) =2T8; ilE})K Sy = 2TC8;5(t — 7).

The constant C is found by summing over ¢, before taking the limit A — 0, in the
above equation:

/dt j(¢)) = lim 27 Z (&(E,(1) =278, lim Z 8y = 2T5y.

'=—00 =—00

Thus C = 1, which indeed implies (n;(t)n;(¢)) = 276;;6(t — ¢'). More directly, one
can also calculate the moment generating function

<exp <i / dtZ\l/i(t)ni(t)>> = EL%H / \/dzz_nexp <—;zz + iz, (1) V2 TA)

= lim e TA0) — T [dr 37 vl (10)
i

2.1.5. From stochastic equations to evolving probabilities

A mathematically more convenient description of the process (9) is provided
by the Fokker—Planck equation for the microscopic state probability density
pi(6) = (3[6 — o(¢)]), which we will now derive. For the discrete-time process (8) we
expand the d-distribution in the definition of p,;a(c) (in a distributional sense):

pia(e) = pi(o) = (8] — o(1) — Af (o(1)) — V2TAL(1)| ) - (3]0 — o(0))
== 3 o (sl — o) Ar(o(0) + V2TA()] )

2
1A Z Gc?acyj (8[6 — a(1)]E;(2)&, (1)) + @(A%).

The variables 6(¢) depend only on noise variables ;(¢') with ' < ¢, so that for any

function 4: (4[e(1)];(1)) = (4[e(1)])(&;(¢)) = 0, and (4[a(1)]E;(¢)E;(¢)) = 8;;(4[a(1)])-

As a consequence:

Apria(®) ~plo)] = 30
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By taking the limit A — 0 we then arrive at the Fokker—Planck equation:

d 0 02
apt((’) == Za—m[l?z(“)fi(“)] + Tza—clgpt(")- (11)

2.1.6. Examples: graded response neurons and coupled oscillators

In the case of graded response neurons the continuous variable o; represents the
membrane potential of neuron i, and (in their simplest form) the deterministic forces
are given by fi(6) = Zij tanh[yc;] — o; + 6;, with v > 0 and with the 6; repre-
senting injected currents. Conventional notation is restored by putting c; — u;.
Thus equation (9) specializes to

S 0) = 3 gy tanhly (0] (o) + 0, + 1) (12)

One often chooses T = 0 (i.e. n;(¢) = 0), the rationale being that threshold noise is
already assumed to have been incorporated via the nonlinearity in (12).

In our second example the variables o; represent the phases of coupled
neural oscillators, with forces of the form fi(e) =3, Jysin(c; — 6;) + ;. Indi-
vidual synapses J;; now try to enforce either pair-wise synchronization (J;; > 0)
or pair-wise antisynchronization (J;; < 0), and the o; represent the natural fre-
quencies of the individual oscillators. Conventional notation dictates c; — &,,
giving

d .
0 = o+ 2y sinfdy ) = (0] () (13)
2.2. Synaptic symmetry and Lyapunov functions

2.2.1. Noise-free symmetric networks of binary neurons
In the deterministic limit 7" — 0 the rules (1) for networks of synchronously evolving
binary neurons reduce to the deterministic map

ci(l + 1) = sgnlhi(a(£))]. (14)

It turns out that for systems with symmetric interactions, J;; = Jj; for all (i), one can
construct a Lyapunov function, i.e. a function of ¢ which during the dynamics
decreases monotonically and is bounded from below (see e.g. [3]):

Binary & Parallel:

Lo] = —Z|h,«(o')| —Zc[e[. (15)

Clearly L= — 7,5, || +16]] — >_; [6:|. During iteration of (14) we find:
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Llo(t+ 1) = Lls(0)] = = > [hi(s(C + 1)] + D oill + 1)
— ZG,[G,(Z—i— 1) — Gl(g)]
=- Z [hi(a(C+ 1)) + Y oiO)hi(a(t + 1))

=—Z|h I = 6:(£ +2)5:(£)] <0

> Jio(0) + 6
J

(where we used (14) and J;; = J;). So L decreases monotonically until a stage is
reached where o;(¢ +2) = o;(¢) for all i. Thus, with symmetric interactions this
system will in the deterministic limit always end up in a limit cycle with period <2.
A similar result is found for networks with binary neurons and sequential dynamics.
In the limit 7 — 0 the rules (2) reduce to the map

ci(£+1) = &;,sgn(hi(6(£))] + [1 — 8, ]oi(£) (16)

(in which we still have randomness in the choice of site to be updated). For systems
with symmetric interactions and without self-interactions, i.e. J; = 0 for all i, we
again find a Lyapunov function:

Binary & Sequential

i i

This quantity is bounded from below: L> — %Zi/‘ |7;;l — >, 18;|. Upon calling the
site iy selected for update at step £ simply 7, the change in L during iteration of (16)
can be written as:

Llo({ +1)] — Llo(0)] = —0;[ci(£ + 1) — oi(£)]

—~ %ZJ,-k[c,-(z + Dop(£+1) — ci(£)ok ()]
k

3 o+ el + 1) — oy (D (0)]

=[c;({) —o;( + 1

Z Jijo; (¢

= —|hi(a(£))|[1 = c;(£)o;(£ + 1)] <0.

Here we used (16), J;; =J;;, and absence of self-interactions. Thus L decreases
monotonically until 0,(t + 1) = o,(¢) for all i. With symmetric synapses, but without
diagonal terms, the sequentially evolving binary neurons system will in the deter-
ministic limit always end up in a stationary state.
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2.2.2. Noise-free symmetric networks of continuous neurons
One can derive similar results for models with continuous variables. Firstly, in the
deterministic limit the graded response equations (12) simplify to

%u,«(t) = zj:J,-j tanh[yu;(¢)] — u;:(¢) + 6. (18)

Symmetric networks again admit a Lyapunov function (there is no need to eliminate
self-interactions):
Graded response:

Lu] = — % ZJU tanh[yu,] tanh[yu;]

+ Z [y/oui dv o[l — tanh*[yv]] — 6; tanh[“/ui]}

Clearly L> — %Zij |7i;; — >=, 18| (the term in L[u] with the integral is nonnegative).
During the noise-free dynamics (18) one can use the identity OL/Ou; =
—y[1 — tanh®[yu,]](du;/d¢), valid only when J;; = Jj;, to derive

d oL du; X d 7?
—_— = _— = — ; —U; < .
dtL B yZ[l tanh~[yu]] [dtul] <0

Again L is found to decrease monotonically, until du;/d¢ = 0 for all , i.e. until we
are at a fixed-point.
Finally, the coupled oscillator equations (13) reduce in the noise-free limit to

L o0 = 00+ Y gysinlo (1) — 0, (0)] (19)

Note that self-interactions J; always drop out automatically. For symmetric oscil-
lator networks, a construction of the type followed for the graded response equa-
tions would lead us to propose

Coupled oscillators:

1
Lip] = _EZJU cos[p; — ;] — Z ;. (20)
ij i
This function indeed decreases monotonically, due to 0L/0¢p; = —d¢,/ds:
d oL d¢, d 1?
L= =t — ¢, <O0.
dtL zi:aq),. dt Z{dt d)’} 0

In fact (19) describes gradient descent on the surface L{¢]. However, due to the term
with the natural frequencies ®; the function L[] is not bounded, so it cannot be a
Lyapunov function. This could have been expected; when J;; = 0 for all (i, ), for
instance, one finds continually increasing phases ¢;(¢) = ¢,(0) + @;#. Removing the
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®;, in contrast, gives the bound L> — >_ ; |/;;|. Now the system must go to a fixed-
point. In the special case ®; = @ (N identical natural frequencies) we can transform
away the o; by putting ¢(z) = ¢,;(¢) + ot, and find the relative phases ¢, to go to a
fixed-point.

2.3. Detailed balance and equilibrium statistical mechanics

2.3.1. Detailed balance for binary networks

The results obtained above indicate that networks with symmetric synapses are a
special class. We now show how synaptic symmetry is closely related to the detailed
balance property, and derive a number of consequences. An ergodic Markov chain
of the form (4) and (5), i.e.

peii(o) = Z Wio; o' |pi(d’). (21)

is said to obey detailed balance if its (unique) stationary solution p. (o) has the
property

W(6;6'|ps(6') = W[d'; 6]ps(6) for all 6,6, (22)

All py(6) which satisfy (22) are stationary solutions of (21), this is easily verified by
substitution. The converse is not true. Detailed balance states that, in addition to
Poo(0) being stationary, one has equilibrium: there is no net probability current
between any two microscopic system states.

It is not a trivial matter to investigate systematically for which choices of the
threshold noise distribution w(n) and the synaptic matrix {J;;} detailed balance
holds. It can be shown that, apart from trivial cases (e.g. systems with self-inter-
actions only) a Gaussian distribution w(n) will not support detailed balance. Here
we will work out details only for the choice w(n) = 1[I — tanh?(n)], and for 7 > 0
(where both discrete systems are ergodic). For parallel dynamics the transition
matrix is given in (4), now with g[z] = tanh[z], and the detailed balance condition
(22) becomes

P2 o), (6) PO, (g)
[T cosh[Bhi(6))] — I, cosh[Bhi(o)]

All py(c) are nonzero (ergodicity), so we may safely put py(o) =

P2, 0otk (o) [, cosh[Bh;(e)], which, in combination with definition (1) simplifies
the detailed balance condition to:

for all o,0’. (23)

K(6) —K(d¢') = Z oilij — Jilo; for all 6,0, (24)
ij
Averaging (24) over all possible ¢’ gives K (o) = (K(¢')), for all o, i.e. K is a con-

stant, whose value follows from normalizing p,(6). So, if detailed balance holds the
equilibrium distribution must be:
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Deq(6) ~ &P 20 [ cosh(pi(a)]. (25)

For symmetric systems detailed balance indeed holds: (25) solves (23), since
K(6) = K solves the reduced problem (24). For nonsymmetric systems, however,
there can be no equilibrium. For K(6) =K condition (24) becomes
> OilJij — Jji]o) = 0foralle,6’ € {1, 1}". For N > 2 the vector pairs (6, 6) span
the space of all N x N matrices, so J;; —J;; must be zero. For N =1 there simply
exists no non-symmetric synaptic matrix. In conclusion: for binary networks with
parallel dynamics, interaction symmetry implies detailed balance, and vice versa.

For sequential dynamics, with w(n) = 1[I — tanh?*(n)], the transition matrix is
given by (5) and the detailed balance condition (22) simplifies to

eBGihi(Fi“)poo (F,o) e~ Poihi 6poo (G)

cosh[ph:(F6)]  cosh[phi(o)] for all ¢ and all 7.

Self-interactions J;, inducing h;(F;6) # h;(6), complicate matters. Therefore we first
consider systems where all J; = 0. All stationary probabilities p,, (o) being nonzero
(ergodicity), we may write:

) (26)

Doo(0 _exp< [29014— ZGJ,]GI—FK c)
i#]

USiIlg relations like Zk?HJHF[(GkGZ) = Zk?g]JlekGl —20; Zk#[t],'k +Jki}ck we

can simplify the detailed balance condition to K(Fie) — K(6) = 6; >, [Jix — Julok

for all ¢ and all i. If to this expression we apply the general identity

(1 = Ff (6) = 20,(0,f ()., we find for i # J:

[F; — 1][F; — 1]K(6) = =2 0;0;[J;; — J;;| for all ¢ and all i # j.

The left-hand side is symmetric under permutation of the pair (i, j), which implies
that the interaction matrix must also be symmetric: J;; = Jj; for all (i, /). We now
find the trivial solution K (o) = K (constant), detailed balance holds and the corre-
sponding equilibrium distribution is

Deq(6) ~ e P(o) = f—z 6:J;j0; — ZG o;. (27)

i#j

In conclusion: for binary networks with sequential dynamics, but without self-in-
teractions, interaction symmetry implies detailed balance, and vice versa. In the case
of self-interactions the situation is more complicated. However, here one can still
show that nonsymmetric models with detailed balance must be pathological,since
the requirements can be met only for very specific choices for the {J;;}.

2.3.2. Detailed balance for networks with continuous neurons
Let us finally turn to the question of when we find microscopic equilibrium (sta-
tionarity without probability currents) in continuous models described by a Fokker—
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Planck equation (11). Note that (11) can be seen as a continuity equation for the
density of a conserved quantity: & p,(¢) + 3,52 Ji(s, 1) = 0. The components J; (o, ¢)
of the current density are given by

Ko = |f(0) T 5|

O;

Stationary distributions p. (o) are those which give Ei%Ji(c, o0) = 0 (divergence-

free currents). Detailed balance implies the stronger statement J;(o,00) = 0 for all i
(zero currents), so fi(6) = T0log p(6)/00;, or

fi(6) = —0H(6)/30;,  pus(6) ~ e P (28)

for some H (o), i.e. the forces f;(6) must be conservative. However, one can have
conservative forces without a normalizable equilibrium distribution. Just take
H(e) =0, ie. fi(o,t) =0: here we have p.(6) = C, which is not normalizable
for 6 € RY. For this particular case Eq.(11) is solved easily: p;(6) =
[4nTi) —N/2 fdc’pg(c’)e*["""]z/‘m, so the limit lim,_,, p,(¢) indeed does not exist. One
can prove the following (see e.g. [4]). If the forces are conservative and if
Poo(6) ~ e P is normalizable, then it is the unique stationary solution of the
Fokker—Planck equation, to which the system converges for all initial distributions
po € L'[RN] which obey [, do eP(®) pt(o) < oo.

Assessing when our two particular model examples of graded response neurons
or coupled oscillators obey detailed balance has thus been reduced mainly to
checking whether the associated deterministic forces f;(¢) are conservative. Note
that conservative forces must obey

for all o, for all i # j: 9f;(0)/00; — 0f;(c)/00; = 0. (29)

In the graded response equations (18) the deterministic forces are fi(u)=
>, Jijtanhlyu;] — u; + 6, Here = 9fi(u)/0u; — 0f;(w) /du; = y{Jy[l—  tanh’[yu;]—
Jii[l — tanh’ [yu;]}. At u =0 this reduces to J;; —J; = 0, i.e. the interaction matrix
must be symmetric. For symmetric matrices we find away from u=0:
0fi(u)/du; — Of;(u)/ou; = vJ;;{tanh*[yu;] — tanh*[yu;]}. The only way for this to be
zero for any u is by having J;; = 0 for all i # j, i.e. all neurons are disconnected (in
this trivial case the system (18) does indeed obey detailed balance). Network models
of interacting graded-response neurons of the type (18) apparently never reach
equilibrium, they will always violate detailed balance and exhibit microscopic
probability currents. In the case of coupled oscillators (13), where the deterministic
forces are fi(¢p) = > . Jy;sin[d; — ¢;] + o; one finds the left-hand side of condition
(29) to give 0fi($)/0d; — 0f;()/0d; = Uy — J;] cos[d; — ¢;]. Requiring this to
be zero for any ¢ gives the condition J;; = J; for any i # j. We have already seen
that symmetric oscillator networks indeed have conservative forces: fi(¢) =
—0H(b)/0d;, with H(dp) = —%ZUJU cos[p; — d;] = >, 0. If in addition we
choose all ®; = 0 the function H(e) will also be bounded from below, and, although
Poo() ~ e PH@®) s still not normalizable on ¢ € RV, the full 2n-periodicity of
the function H(e) now allows us to identify ¢; +2rn = ¢; for all i, so that now
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NS [—n,n]N and [dé e PH(9) does exist. Thus symmetric coupled oscillator net-
works with zero natural frequencies obey detailed balance. In the case of nonzero
natural frequencies, in contrast, detailed balance does not hold.

2.3.3. Equilibrium statistical mechanics

The above results establish the link with equilibrium statistical mechanics (see
e.g. [5,6]). For binary systems with symmetric synapses (in the sequential case:
without self-interactions) and with threshold noise distributions of the form
wn) =3[1- tanh?(n)], detailed balance holds and we know the equilibrium dis-
tributions. For sequential dynamics it has the Boltzmann form (27) and we can
apply standard equilibrium statistical mechanics. The parameter  can formally be
identified with the inverse ‘temperature’ in equilibrium, B = 7~!, and the function
H (o) is the usual Ising spin Hamiltonian. In particular we can define the partition
function Z and the free energy F:

- 1
Deq(0) = Z¢ BH()  H(e) = —52 c:iJij0; — Z 0;0;, (30)
7 i

Z= Ze’ﬁH(‘”, F=—p'logz. (31)
c

The free energy can be used as the generating function for equilibrium averages.
Taking derivatives with respect to external fields 0; and interactions J;;, for instance,
produces (o;) = —0F/00; and (c;0;) = —0F /0J;;, whereas equilibrium averages of
arbitrary state variables f(¢) can be obtained by adding suitable generating terms to
the Hamiltonian: H(¢) — H (o) + Af(6), (f) = lim;_,o OF /OA.

In the parallel case (25) we can again formally write the equilibrium probability
distribution in the Boltzmann form [7] and define a corresponding partition function
Z and a free energy F:

1

Peq(0) = Ee—ﬁﬁ ), H(e)=-) 6ic;— %Z log 2 cosh|[B,(o)], (32)

7= Ze’ﬁﬁ(">7 F=—-pllogZ, (33)

which again serve to generate averages: H(¢) — H (o) + Af(c), { f) = lim;_o OF /0.
However, standard thermodynamic relations involving derivation with respect to
need no longer be valid, and derivation with respect to fields or interactions gen-
erates different types of averages, such as

_0F /06, = (o) + (tanh[Bhi(6)]), —0OF /aJ; = (o; tanh[Bhi(s)]),
i # j: —0F JoJ;; = (o; tanh[Bh;(s)]) + (o, tanh[Bh;(c)]).

One can use (o;) = (tanh[pA;(0)]), which can be derived directly from the equilib-
rium equation peq(6) = >, W[o; 6’| peq(6’), to simplify the first of these identities.



Statistical mechanics of recurrent neural networks I — statics 547

A connected network of graded-response neurons can never be in an equilibrium
state, so our only model example with continuous neuronal variables for which we
can set up the equilibrium statistical mechanics formalism is the system of coupled
oscillators (13) with symmetric synapses and absent (or uniform) natural frequencies
®;. If we define the phases as ¢; € [—r, n] we have again an equilibrium distribution
of the Boltzmann form, and we can define the standard thermodynamic quantities:

Pea(®) = e PO H() = 3 3y coslr — o) (34)
ij

Z:/ / dp e P F— _pllogZ. (35)

These generate equilibrium averages in the usual manner. For instance
(cos[d; — ¢;]) = —OF /dJ;, whereas averages of arbitrary state variables f(¢) follow,
as before, upon introducing suitable generating terms: H(¢d) — H(d) + Af(d),
<f> = limiHO 6F/67»

In this chapter we restrict ourselves to symmetric networks which obey detailed
balance, so that we know the equilibrium probability distribution and equilibrium
statistical mechanics applies. In the case of sequential dynamics we will accordingly
not allow for the presence of self-interactions.

3. Simple recurrent networks with binary neurons

3.1. Networks with uniform synapses

We now turn to a simple toy model to show how equilibrium statistical mechanics is
used for solving neural network models, and to illustrate similarities and differences
between the different dynamics types. We choose uniform infinite-range synapses
and zero external fields, and calculate the free energy for the binary systems (1)
and (2), parallel and sequential, and with threshold noise distribution w(n) =
L[l — tanh*(n)):

Jij=Ji=JIN (i#j), Ji=0;=0 foralli.

The free energy is an extensive object, limy_,., F/N is finite. For the models (1) and
(2) we now obtain:
Binary and sequential:

. T -1 BN[Lm? ()
A}EI;CF/N I&EI;O(BN) log;e
Binary and parallel:

R 1 -1 Nllog 2 cosh[BJm(s)]]
A}EECF/N_ A}EIOIO(BN) logz‘r:e og2cos ¢

with the average activity m(¢) = 13", ox. We have to count the number of states &
with a prescribed average activity m = 2n/N — 1 (n is the number of neurons i with
c; = 1), in expressions of the form



548 A.C.C. Coolen
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Fig. 2. The functions fsq(m)/T (left) and fpar(m)/T (middle) for networks of binary neu-
rons and uniform synapses, and for different choices of the re-scaled interaction strength J /T
(T =PB"). Left picture (sequential dynamics): J/T = —3, %, 1,%.3.3 (from top to bot-
tom). Middle picture (parallel dynamics): J/T = is i3 +1 5 (from top to bottom, here the

free energy is independent of the sign of J). The rlght picture gives, for J > 0, the location of

the nonnegative minimum of fiq(m) and fpar(m) (Which is identical to the average activity in

thermal equilibrium) as a function of 7/J. A phase transition to states with nonzero average
activity occurs at 7/J = 1.

1 1 NU[m(o)] _ 1 1 S N NU[2n/N—1]
N ogZe =¥ ogz e

:—log/ dm gNllog2=¢ (m)+Ulm]] Jim —logZeNU
=log2+ n?alxl]{U[m] —c*(m)}
me|—1,

with the entropic function ¢*(m) =1(1+m)log(1+m)+31(1—m)log(l —m). In
order to get there we used Stirling’s formula to obtain the leading term of the
factorials (only terms which are exponential in N survive the limit N — o), we
converted (for N — oo) the summation over s into an integration over
m=2n/N —1¢€[-1,1], and we carried out the integral over m via saddle-point
integration (see e.g. [8]). This leads to a saddle-point problem whose solution gives
the free energies:

1
Jm PN = min fg(n). Bfg(m) = ¢ () ~ log2 =3 B (36)
—00 me[—1,

A}im F/N = rr[li?”fpar(m)7 Bfpar(m) = c*(m) — 2log2 — log cosh[BJm].
—00 me[—1,
(37)

The functions to be minimized are shown in Fig. 2. The equations from which to
solve the minima are easily obtained by differentiation, using & c*(m) = tanh ™! (m).
For sequential dynamics we find
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Binary and sequential:
m = tanh[f Jm] (38)
(the so-called Curie—Weiss law). For parallel dynamics we find
m = tanh[BJ tanh[f Jm]].

One finds that the solutions of the latter equation again obey a Curie—Weiss
law. The definition # = tanh[B|/|m] transforms it into the coupled
equations m = tanh[B|/|m] and sm =tanh[B|J|m|, from which we derive
0<[m — m]* = [m — m[tanh[|J|m] — tanh[|J|m]] <O. Since tanh[B|/|m] is a mono-
tonically increasing function of m, this implies m = m, so

Binary & Parallel:

m = tanh|[B|J|m]. (39)

Our study of the toy models has thus been reduced to analyzing the nonlinear
equations (38) and (39). If J >0 (excitation) the two types of dynamics lead to the
same behavior. At high noise levels, 7 > J, both minimization problems are solved
by m = 0 (see Fig. 2), describing a disorganized (paramagnetic) state. This can be
seen upon writing the right-hand side of (38) in integral form:

m? = mtanh[BJm| = BJm* /1 dz[1 — tanh?[B Jmz]] < pJm>.
0

So m?[1 — BJ] <0, which gives m = 0 as soon as BJ < 1. A phase transition occurs
at T =J (a bifurcation of nontrivial solutions of (38)), and for 7' < J the equations
for m are solved by the two nonzero solutions of (38), describing a state where either
all neurons tend to be firing (m > 0) or where they tend to be quiet (m < 0). This
becomes clear when we expand (38) for small m: m = BJm + O(m?), so precisely at
BJ =1 one finds a de-stabilization of the trivial solution m = 0, together with the
creation of (two) stable nontrivial ones (see also Fig. 2). Furthermore, using the
identity ¢*(tanhx) = xtanhx — log coshx, we obtain from (36) and (37) the relation
limy_.o F /N =2limy_ F/N. For J <0 (inhibition), however, the two types of
dynamics give quite different results. For sequential dynamics the relevant minimum
is located at m = 0 (the paramagnetic state). For parallel dynamics, the minimiza-
tion problem is invariant under J — —J, so the behavior is again of the Curie-Weiss
type (see Fig. 2 and Eq. (39)), with a paramagnetic state for 7 > |J|, a phase
transition at 7 = |J|, and order for T < |J|. This difference between the two types of
dynamics for J < 0 is explained by studying dynamics. As we will see in a subse-
quent chapter, for the present (toy) model in the limit N — oo the average activity
evolves in time according to the deterministic laws

%m = tanh[BJm| — m, m(t + 1) = tanh[BJm(¢)]

for sequential and parallel dynamics, respectively. For J < 0 the sequential system
always decays towards the trivial state m = 0, whereas for sufficiently large B the



550 A.C.C. Coolen

parallel system enters the stable limit-cycle m(t) = Mp(—1)" (where Mj is the nonzero
solution of (39)). The concepts of ‘distance’ and ‘local minima’ are quite different for
the two dynamics types; in contrast to the sequential case, parallel dynamics allows
the system to make the transition m — —m in equilibrium.

3.2. Phenomenology of Hopfield models

3.2.1. The ideas behind the Hopfield model

The Hopfield model [9] is a network of binary neurons of the type (1) and (2), with
threshold noise w(n) = [l — tanh?(n)], and with a specific recipe for the synapses
Jij aimed at storing patterns, motivated by suggestions made in the late 1940s [10].
The original model was in fact defined more narrowly, as the zero noise limit of the
system (2), but the term has since then been accepted to cover a larger network class.
Let us first consider the simplest case and try to store a single pattern & € {—1, l}N
in noise-less infinite-range binary networks. Appealing candidates for interactions
and thresholds would be J;; = £,&; and 6; = 0 (for sequential dynamics we put J; = 0
for all 7). With this choice the Lyapunov function (17) becomes:

2
1 1
Lyeqg[o] = EN ) lz &ici] .

It will have to decrease monotonically during the dynamics, from which we im-
mediately deduce

> &0i(0)>0: 6(c0) =& Y £0,(0) <0 6(c0) = —&

This system indeed reconstructs dynamically the original pattern & from an input
vector ¢(0), at least for sequential dynamics. However, en passant we have created
an additional attractor: the state —&. This property is shared by all binary models in
which the external fields are zero, where the Hamiltonians H () (30) and H (o) (32)
are invariant under an overall sign change ¢ — —o. A second feature common to
several (but not all) attractor neural networks is that each initial state will lead to
pattern reconstruction, even nonsensical (random) ones.

The Hopfield model is obtained by generalizing the previous simple one-pattern
recipe to the case of an arbitrary number p of binary patterns &' =

@&, e e {—1, 1"

1 & . .
Jij = N g, 0;=0 foralli (sequential dynamics:J; — 0 foralli). (40)
p=1

The prefactor N~ has been inserted to ensure that the limit N — oo will exist in
future expressions. The process of interest is that where, triggered by correlation
between the initial state and a stored pattern &, the state vector & evolves towards
g, If this happens, pattern & is said to be recalled. The similarity between a state

vector and the stored patterns is measured by so-called overlaps
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T=N
|£ =

Fig. 3. Information represented as specific microscopic neuronal firing patterns & in an
N = 841 Hopfield network and drawn as images in the plane (black pixels: & = 1, white
pixels: &, = —1).

m(o) =33 el (41)

Numerical simulations illustrate the functioning of the Hopfield model as an asso-
ciative memory, and the description of the recall process in terms of overlaps. Our
simulated system is an N = 841 Hopfield model, in which p = 10 patterns have been
stored (see Fig. 3) according to prescription (40). The two-dimensional arrangement
of the neurons in this example is just a guide to the eye; since the network is fully
connected the physical location of the neurons is irrelevant. The dynamics is as given
by (2), with T'=0.1. In Fig. 4 we first show (left column) the result of letting the
system evolve in time from an initial state, which is a noisy version of one of the
stored patterns (here 40% of the neuronal states o; where corrupted, according to
o; — —0o;). The top left row of graphs shows snapshots of the microscopic state as
the system evolves in time. The bottom left row shows the values of the p = 10
overlaps m,, as defined in (41), as functions of time; the one which evolves towards
the value 1 corresponds to the pattern being reconstructed. The right column of
Fig. 4 shows a similar experiment, but here the initial state is drawn at random. The
system subsequently evolves towards a mixture of the stored patterns, which is
found to be very stable, due to the fact that the patterns involved (see Fig. 3) are
significantly correlated. It will be clear that, although the idea of information
storage via the creation of attractors does work, the choice (40) for the synapses is
still too simple to be optimal; in addition to the desired states " and their mirror
images —&", even more unwanted spurious attractors are created. Yet this model will
already push the analysis to the limits, as soon as we allow for the storage of an
extensive number of patterns &".

3.2.2. Issues related to saturation: storage capacity and non-trivial dynamics

In our previous simulation example the loading of the network was modest; a total
of 1N(N — 1) = 353,220 synapses were used to store just pN = 8410 bits of infor-
mation. Let us now investigate the behavior of the network when the number of
patterns scales with the system size as p = a N (a0 > 0); now for large N the number
of bits stored per synapse will be pN/3N(N — 1) ~ 2a. This is called the saturation
regime. Again numerical simulations, but now with finite o, illustrate the main
features and complications of recall dynamics in the saturation regime. In our ex-
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Fig. 4. Information processing in a sequential dynamics Hopfield model with N = 841, p =10 and 7 = 0.1, and with the

p = 10 stored patterns shown in Fig. 3. Left pictures: dynamic reconstruction of a stored pattern from an initial state which is a

corrupted version thereof. Top left: snapshots of the system state at times t = 0, 1, 2, 3, 4 iterations/neuron. Bottom left: values

of the overlap order parameters as functions of time. Right pictures: evolution towards a spurious state from a randomly drawn

initial state. Top right: snapshots of the microscopic system state at times ¢ = 0, 1,2, 3, 4 iterations/neuron. Bottom right: values
of the overlap order parameters as functions of time.
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Fig. 5. Simulations of a parallel dynamics Hopfield model with N = 30,000 and

o =T =0.1, and with random patterns. Left: overlaps m = m;(6) with pattern one as

functions of time, following initial states correlated with pattern one only, with

mi(6(0)) € {0.1,...,0.9}. Right: corresponding flow in the (m,r) plane, with r=
ol PO mﬁ(c) measuring the overlaps with nonnominated patterns.

ample the dynamics is given by (1) (parallel updates), with 7= 0.1 and threshold
noise distribution w(n) =1[1 — tanh?(n)]; the patterns are chosen randomly.
Figure 5 shows the result of measuring in such simulations the two quantities

m=m(e), r=o"'Y m|(o) (42)

pu>1

following initial states which are correlated with pattern &' only. For large N we can
distinguish structural overlaps, where my(6) = (1), from accidental ones, where
my(6) = O(N ) (as for a randomly drawn o). Overlaps with nonnominated patterns
are seen to remain O(N72), i.e. /() = O(1). We observe competition between pattern
recall (m — 1) and interference of nonnominated patterns (m — 0, with » increas-
ing), and a profound slowing down of the process for nonrecall trajectories. The
initial overlap (the ‘cue’) needed to trigger recall is found to increase with increasing
o (the loading) and increasing 7 (the noise). Further numerical experimentation,
with random patterns, reveals that at any noise level T there is a critical storage level
o.(T) above which recall is impossible, with an absolute upper limit of
o = maxy o (7T) = 0,c(0) =~ 0.139. The competing forces at work are easily recog-
nized when working out the local fields (1), using (40):

(o) = Elm(6) + 8 S G+ 0N ), )

p>1 J#

The first term in (43) drives ¢ towards pattern &' as soon as m, (6) > 0. The second
terms represent interference, caused by correlations between ¢ and nonnominated
patterns. One easily shows (to be demonstrated later) that for N — oo the fluctua-
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tions in the values of the recall overlap m will vanish, and that for the present types
of initial states and threshold noise the overlap m will obey

> (44)

If all 5;(0) are drawn independently, Prob[c;(0) = +&]] = 111 £m(0)], the central
limit theorem states that Py(z) is Gaussian. One easily derives (z), = 0 and (z%), = ,
so at t = 0 Eq. (44) gives

m@+n:/¢3@mmmmm+m,
H(z)lei;r;o}vZ< [z——zé;a“zg“oj

p>1 J#

dz
ZZ

\/2_6 tanh[B(m(0) + zy/a)]. (45)
The above ideas, and Eq. (45) in particular, go back to [11]. For times ¢ > 0,
however, the independence of the states o; need no longer hold. As a simple ap-
proximation one could just assume that the o; remain uncorrelated at all times, i.e.
Prob[o;(f) = +&)] = 211 £ m(1)] for all £>0, such that the argument given for ¢ = 0
would hold generally, and where (for randomly drawn patterns) the mapping (45)
would describe the overlap evolution at all times:

dz

[ =e* tanhipn) + =) (46)
This equation, however, must be generally incorrect. Firstly, Fig. 5 already shows
that knowledge of m(¢) only does not yet permit prediction of m(¢+ 1). Secondly,
upon working out its bifurcation properties one finds that Eq. (46) predicts a
storage capacity of o, = 2/m = 0.637, which is no way near to what is actually being
observed. We will see in the paper on dynamics that only for certain types of
extremely diluted networks (where most of the synapses are cut) Eq. (46) is indeed
correct on finite times; in these networks the time it takes for correlations between
neuron states to build up diverges with N, so that correlations are simply not yet
noticeable on finite times.

For fully connected Hopfield networks storing random patterns near saturation,
i.e. with o > 0, the complicated correlations building up between the microscopic
variables in the course of the dynamics generate an interference noise distribution
which is intrinsically non-Gaussian, see e.g. Fig. 6. This leads to a highly nontrivial
dynamics which is fundamentally different from that in the limy_,o, p/N = 0 regime.
Solving models of recurrent neural networks in the saturation regime boils down to
calculating this non-Gaussian noise distribution, which requires advanced mathe-
matical techniques (in statics and dynamics), and constitutes the main challenge to
the theorist. The simplest way to evade this challenge is to study situations where the
interference noise is either trivial (as with asymmetric extremely diluted models) or
where it vanishes, which happens in fully connected networks when o = limy_.» p/
N =0 (as with finite p). The latter o = 0 regime is the one we will explore first.
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Fig. 6. Distributions of interference noise variables z; = %Zpl gled D it gfo;, as mea-

sured in the simulations of Fig. 5, at £ = 10. Uni-modal histogram: noise distribution fol-

lowing m(0) = 0.9 (leading to recall). Bi-model histogram: noise distribution following
m(0) = 0.1 (not leading to recall).

3.3. Analysis of Hopfield models away from saturation

3.3.1. Equilibrium order parameter equations

A binary Hopfield network with parameters given by (40) obeys detailed balance,
and the Hamiltonian H(s) (30) (corresponding to sequential dynamics) and the
pseudo-Hamiltonian H (6) (32) (corresponding to parallel dynamics) become

p=1

H(e6) = —%NZmﬁ(o-) —|—%p, H(o) = —%Zlog 2cosh [Bzg“mu(c)] (47)
p=1 i

with the overlaps (41). Solving the statics implies calculating the free energies /7~ and
F:

1 - | 7
F=—=logy e P F—=__log) e P,
R poE2

Upon introducing the shorthand notation m = (m,...,m,) and &, = (&l,....e,

both free energies can be expressed in terms of the density of states
Z(m) =27 37, 5[m — m(o)]:

1 1
F/N = —Elog2 - B—Nlog/dm c@(m)e_%BN"‘2 +% (48)
- 1 1 N
F/N = —ElogZ — B—Nlog/dm c@(m)ezl‘:1 log 2 cosh[m] (49)

(note: [dm3[m — m(s)] = 1). In order to proceed we need to specify how the
number of patterns p scales with the system size N. In this section we will follow [12]
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(equilibrium analysis following sequential dynamics) and [13] (equilibrium analysis
following parallel dynamics), and assume p to be finite. One can now easily calculate
the leading contribution to the density of states, using the integral representation of
the o-function and keeping in mind that according to (48) and (49) only terms
exponential in N will retain statistical relevance for N — oo:

1 1 : .Y
lim —logZ(m) = lim —log/dx e‘N"'m<e“Z,1 Giii-X>
N—oo N N—oo N

~ Jim ~log / dx N im(ogcosisx)y

[0

with the abbreviation (®(&)); = limNHm%Zf;  ©(&;). The leading contribution to
both free energies can be expressed as a finite-dimensional integral, for large N
dominated by that saddle-point (extremum) for which the extensive exponent is real
and maximal:

lim F/N— ——log/dmdxe’Nﬁﬂ“"‘) = eXtrym f(m,Xx)

lim F/N = —B—log/dm dx e N/ (mx) — extrym f(m,X)

N—oo

with

f(m,x) = —%mz —ix-m — B~ (log2 cos[E - X])e
f(m,x) = —p~'(log 2 cosh[pE - mj); —ix-m— B! (log 2 cos[pE - X])e.
The saddle-point equations for / and f are given by:

f: x=1im, im = (€ tan[BE - x])¢,
o x = i(5tanh(Be - ml);, im = (% tan[BE - x]).

In saddle-points x turns out to be purely imaginary. However, after a shift of the
integration contours, putting x = ix*(m) + y (where ix*(m) is the imaginary saddle-
point, and where y € ) we can eliminate x in favor of y € R which does have a
real saddle-point, by construction.! We then obtain?

1 Our functions to be integrated have no poles, but strictly speaking we still have to verify that the
integration segments linking the original integration regime to the shifted one will not contribute to
the integrals. This is generally a tedious and distracting task, which is often skipped. For simple
models, however (e.g. networks with uniform synapses), the verification can be carried out properly,
and all is found to be safe.

2 Here we used the equation 0/ (m, x)/0m = 0 to express X in terms of m, because this is simpler. Strictly
speaking we should have used 9f(m,x)/0x = 0 for this purpose; our short-cut could in principle
generate additional solutions. In the present model, however, we can check explicitly that this is not
the case. Also, in view of the imaginary saddle-point x, we cannot be certain that, upon elimination of
x, the relevant saddle-point of the remaining function f(m) must be a minimum. This will have to be
checked, for instance by inspection of the 7' — oo limit.
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Sequential dynamics:
m = (& tanh[Bg - m]),
Parallel Dynamics:
m = (& tanh[BE - [(&' tanh[BE’ - m])y]]);

(compare to e.g. (38) and (39)). The solutions of the above two equations will in
general be identical. To see this, let us denote m = (§ tanh([Bg - m])., with which the
saddle point equation for f decouples into:

m = (& tanh[BE ), 1 = (& tanh[BE - m]),

SO

m — ]* = ([(§ - m) — (& - )][tanh (BE - ) — tanh(BE - m)]);.

Since fanh is a monotonicaly increasing function, we must have [m —m] - § = 0 for
each & that contributes to the averages (- --);. For all choices of patterns, where the
covariance matrix Cy = (§,, )¢ is positive definite, we thus obtain m = m. The final
result is: for both types of dynamics (sequential and parallel) the overlap order
parameters in equilibrium are given by the solution m* of

m = (§ tanh[Bg - m]),, (50)

which minimizes?

f(m) :%mz—%ﬂogZCosh[B&-m])g. (51)
The free energies of the ergodic components are limy_ . F/N = f(m*) and
limy_ F/N = 2f(m*). Adding generating terms of the form H — H + hg[m(s)] to
the Hamiltonians allows us to identify (g[m(e)]),, = lim; o 0F /0k = g[m"]. Thus, in
equilibrium the fluctuations in the overlap order parameters m(c) (41) vanish for
N — oo. Their deterministic values are simply given by m*. Note that in the case of
sequential dynamics we could also have used linearization with Gaussian integrals
(which we will use for coupled oscillators with uniform synapses) to arrive at this
solution, with p auxiliary integrations, but that for parallel dynamics this would not
have been possible.

3.3.2. Analysis of order parameter equations: pure states and mixture states
We will restrict our further discussion to the case of randomly drawn patterns, so

<(D(§)>§ =27 Z (D(g)? <E.>p>2; =0, <§pav>}’; = Suv
ge{-11}

3 We here indeed know the relevant saddle-point to be a minimum: the only solution of the saddle-point
equations at high temperatures, m =0, is seen to minimize f(m), since f(m)+ B 'log2 =

sm(1 - B) + O(BY).
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(generalization to correlated patterns is in principle straightforward). We first es-
tablish an upper bound for the temperature for where nontrivial solutions m* could
exist, by writing (50) in integral form:

my = B<éu(é -m) /01 dA[1 — tanh?®[BAE - m]]>§

from which we deduce

1
o2 . 2 _ 2 .
0=m [3<(§ m) /0 dA[1 — tanh’[BAg m]]>

For T > 1 the only solution of (50) is the paramagnetic state m = 0, which gives
for the free energy per neuron —7log?2 and —27 log?2 (for sequential and parallel
dynamics, respectively). At 7 =1 a phase transition occurs, which follows from
expanding (50) for small |m| in powers of T =f — 1:

> =B mp),

my = (1 + ‘C)m” - %Zmvmpmk<ipévépéx>a+(9(m5a Tm3)
vph
2, 2 (S 3
:mu|:1 +1—-m —|—§mu} + O(m’, Tm”)

The new saddle-point scales as m, = i, 1"/ + 0(1*/?), with for each p: 7z, =0 or
0=1—m*+3m;. The solutions are of the form s, € {—m,0,m}. If we denote
with n the number of nonzero components in the vector m, we derive from the
above identities: i, = 0 or niz, = +v/3/v/3n — 2. These saddle-points are called
mixture states, since they correspond to microscopic configurations correlated
equally with a finite number # of the stored patterns (or their negatives). Without
loss of generality we can always perform gauge transformations on the set of
stored patterns (permutations and reflections), such that the mixture states acquire
the form

n times  p—n times

m=m,(l,...,1,0,...,0), m,= [ 3

3n—2

12
} B4 (52)

These states are in fact saddle-points of the surface f(m) (51) for any finite tem-
perature, as can be verified by substituting (52) as an ansatz into (50):

u<n: m, = <E_,Htanh [an2§v]> )
€

v<n

p>n: 0= <E_,Htanh[[3mnz&v]> .
3

v<n
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The second equation is automatically satisfied since the average factorises. The first
equation leads to a condition determining the amplitude m, of the mixture states:

my = < [IZ &p] tanh [an Zavl > . (53)
n<n vsn 3

The corresponding values of f(m), to be denoted by f,, are

1 1
Jn = Enmi 5 <10g2 cosh [an Z E_,V] >€. (54)

vsn

The relevant question at this stage is whether or not these saddle-points corre-
spond to local minima of the surface f(m) (51). The second derivative of f(m) is
given by

0°f (m)

Om, Om,

= 8 — B(&,&,[1 — tanh’[BE - m]] ), (55)

(a local minimum corresponds to a positive definite second derivative). In the trivial
saddle-point m = 0 this gives simply 8,,(1 — B), so at 7 = 1 this state destabilizes. In
a mixture state of the type (52) the second derivative becomes:

D) =8 — B<éuév [l — tanh’ lﬁmn 3 épH > :
g

p<n

Due to the symmetries in the problem the spectrum of the matrix D" can be
calculated. One finds the following eigenspaces, with Q = (tanh?[Bm, > p<nGplle

and R = (€&, tanh’[Bm, >, €, ])e:

Eigenspace Eigenvalue
I :x=(0,...,0,x11,...,%p) 1 - B[l - 0]
n:x=(1,...,1,0,...,0) 1-B[l-=0+ (1 -n)R]

al:x = (x1,..,%,0,...,0), 37 x =0 1-p[l —O0+R]

Eigenspace /Il and the quantity R only come into play for n > 1. To find the smallest
eigenvalue we need to know the sign of R. With the abbreviation Mz = ) p<n &, we
find:

n(n — 1)R = (M tanh®[Bm,Mg]); — n{tanh®[Bm, M)
= (M — (Mg)] tanh® [Bm, [ M),

_ <{M§ - <M§,>§,Htanh2 [Bm\/@ _ tanh? [an (M) }>§>0.

We may now identify the conditions for an n-mixture state to be a local minimum of
f(m). For n =1 the relevant eigenvalue is /, now the quantity Q simplifies consid-
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Fig. 7. Left picture: Amplitudes m, of the mixture states as functions of temperature. From

top to bottom: n = 1,3,5,7,9, 11, 13. Solid: region where they are stable (local minima of f).

Dashed: region where they are unstable. Right picture: corresponding ‘free energies’ f,,. From

bottom to top: n=1,3,5,7,9,11,13. Dashed line: ‘free energy’ of the paramagnetic state
m = 0 (for comparison).

erably. For n > 1 the relevant eigenvalue is ///, here we can combine Q and R into
one single average:

n=1:1-B[1—tanh?[Bm]] >0,
n=2:1-p>0,

n=3: 1 B[l - <tanh2 [an > ap} >J > 0.

The n =1 states, correlated with one pattern only, are the desired solutions. They
are stable for all 7' < 1, since partial differentiation with respect to p of the n =1
amplitude Eq. (53) gives

my = tanh[pm;] — 1 — B[l — tanh?[Bm,]] = my[1 — tanh>[Bm,]](Om, /OP) "

(clearly sgn[m;] = sgn[0m, /0B]). The n = 2 mixtures are always unstable. For n>3
we have to solve the amplitude Eq. (53) numerically to evaluate their stability. The
result is shown in Fig. 7, together with the corresponding ‘free energies’ f, (54). It
turns out that only for odd » will there be a critical temperature below which the n-
mixture states are local minima of f(m). From Fig. 7 we can also conclude that, in
terms of the network functioning as an associative memory, noise is actually ben-
eficial in the sense that it can be used to eliminate the unwanted n > 1 ergodic
components (while retaining the relevant ones: the pure n = 1 states). In fact the
overlap equations (50) do also allow for stable solutions different from the n-mixture
states discussed here. They are in turn found to be continuously bifurcating mixtures
of the mixture states. However, for random (or uncorrelated) patterns they come
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into existence only near 7' = 0 and play a marginal role; phase space is dominated by
the odd »n-mixture states.

We have now solved the model in equilibrium for finite p and N — oco. Most of
the relevant information on when and to what extent stored random patterns will be
recalled is summarized in Fig. 7. For nonrandom patterns one simply has to study
the bifurcation properties of Eq. (50) for the new pattern statistics at hand; this is
only qualitatively different from the random pattern analysis explained above. The
occurrence of multiple saddle-points corresponding to local minima of the free
energy signals ergodicity breaking. Although among these only the global minimum
will correspond to the thermodynamic equilibrium state, the nonglobal minima
correspond to true ergodic components, i.e. on finite time-scales they will be just as
relevant as the global minimum.

4. Simple recurrent networks of coupled oscillators

4.1. Coupled oscillators with uniform synapses

Models with continuous variables involve integration over states, rather than
summation. For a coupled oscillator network (13) with uniform synapses J;; = J /N
and zero frequencies ®; = 0 (which is a simple version of the model in [14]) we
obtain for the free energy per oscillator:

llm F/N—— hm —log/ / do

2 2
+ Z sin(d),-)}

We would now have to ‘count’ microscopic states with prescribed average cosines
and sines. A faster route exploits auxiliary Gaussian integrals, via the identity

e’ :/Dzeyz (56)

x exp| (BJ/2N) [Zcos

with the shorthand Dx = (Zn)féef%xzdx (this alternative would also have been open
to us in the binary case; my aim in this section is to explain both methods):

z\}illch/N__ lim —log/ / do
X /Dx Dy exp+/BJ/N [chos(d)i) +yz sin((])i)]
b N
= — lim BLNIOg/Dny |:/Tc dd)ecos(ib)\/ BJ(x2+y2)/N:|

N—oo

N
= — hm —log/ dgge™ VB4 {/n do Bl g cos(d) sgn(J)] ,
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Fig. 8. The function f(q)/T (left) for networks of coupled oscillators with uniform synapses

Jij=J /N and for different choices of the re-scaled interaction strength J/T (T = p~'):

J/T =— 7 72 3 (from top to bottom). The right picture gives, for J > 0, the location of the

nonnegative minimum of f(g) (which measures the overall degree of global synchronisation in

thermal equilibrium) as a function of 7/J. A transition to a synchronised state occurs at
T/J =3

where we have transformed to polar coordinates, (x,y) = ¢q+/BJJ|N(cos 0, sin 6), and
where we have already eliminated (constant) terms which will not survive the limit
N — oo. Thus, saddle-point integration gives us, quite similar to the previous cases
(36) and (37):

J>0: = 1BlJ|¢* — log[2 nlo(BlJ

lim /N = min /(q) Bf(q) = 1Bl \q2 og[2m 0<[.3| lg)]

920 J <0: Bf(q) =Bl |g" —log[2nh (iBl/]q)]

in which the 7,(z) are the modified Bessel functions (see e.g. [15]). The function f(g)

is shown in Fig. 8. The equations from which to solve the minima are obtained by
differentiation, using £1o(z) = 1, (2):

L(Bllg) 11(iBl/]q)

L(Bllg)’ L(iBl/1q)”

Again, in both cases the problem has been reduced to studying a single nonlinear
equation. The physical meaning of the solution follows from the identity

—20F /o] = (N3, cos(d; — b;)):

,\}Erolo< [%ZCOS(¢i) > + 1\}520< l]leSIH(¢1)] > = Sgn(J)qz~

i i

J>0: g= J<0: g= (58)

From this equation it also follows that ¢<1. Note: since 0f(q)/0g =0 at the
minimum, one only needs to consider the explicit derivative of f(g) with respect to
J. If the synapses induce antisynchronization, J < 0, the only solution of (58) (and
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the minimum in (57)) is the trivial state ¢ = 0. This also follows immediately from
the equation which gave the physical meaning of g. For synchronizing forces,
J > 0, on the other hand, we again find the trivial solution at high noise levels, but
a globally synchronized state with ¢ > 0 at low noise levels. Here a phase transition
occurs at T = 1J (a bifurcation of nontrivial solutions of (58)), and for T < 1J the
minimum of (57) is found at two nonzero values for ¢. The critical noise level is
again found upon expanding the saddle-point equation, using Iy(z) = 1 + 0(z*) and
Li(z) =4z+ 0(2): q=1BJg+ O(q*). Precisely at BJ = 2 one finds a de-stabilization
of the trivial solution ¢ = 0, together with the creation of (two) stable nontrivial
ones (see Fig. 8). Note that, in view of (57), we are only interested in nonnegative
values of g. One can prove, using the properties of the Bessel functions, that there
are no other (discontinuous) bifurcations of nontrivial solutions of the saddle-point
equation. Note, finally, that the absence of a state with global antisynchronization
for J < 0 has the same origin as the absence of an antiferromagnetic state for J < 0
in the previous models with binary neurons. Due to the long-range nature of the
synapses J;; = J/N such states simply cannot exist: whereas any set of oscillators
can be in a fully synchronized state, if two oscillators are in anti-synchrony it is
already impossible for a third to be simultaneously in antisynchrony with the first
two (since antisynchrony with one implies synchrony with the other).

4.2. Coupled oscillator attractor networks

4.2.1. Intuition and definitions

Let us now turn to an alternative realization of information storage in a recurrent
network based upon the creation of attractors. We will solve models of coupled
neural oscillators of the type (13), with zero natural frequencies (since we wish to use
equilibrium techniques), in which real-valued patterns are stored as stable config-
urations of oscillator phases, following [16]. Let us, however, first find out how to
store a single pattern & € [—n,n]N in a noise-less infinite-range oscillator network.
For simplicity we will draw each component &; independently at random from
[—m, n], with uniform probability density. This allows us to use asymptotic prop-
erties such as [N~! > ¢s| = O(N2) for any integer £. A sensible choice for the
synapses would be J;; = cos[g; — &1] To see this we work out the corresponding
Lyapunov function (20):

A ;Vz S cosle, — £,] cosld, — )],
ij
1 ! 1
L[&] = _chosz[?;i — &]] = -2 + @(N_7>
ij

(the factors of N have been inserted to achieve appropriate scaling in the N — oo
limit). The function L[¢], which is obviously bounded from below, must decrease
monotonically during the dynamics. To find out whether the state & is a stable fixed-
point of the dynamics we have to calculate L and derivatives of L at ¢ = &:
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oL 1 .
F :WZSIH[2(E_,

62L
2

- %COSZ & — éj}

Zcos i#£j: L
-V il 36,00, |.
Clearly limy_. L[g] = — §. Putting ¢ = & + Ad, with Ad, = O(N?), we find

LE+ Ad] — ZA@%

Z AP, ¢,a¢a¢ +0(AdY)

:ﬁz 2N22A¢ Ad; cos”[E; — &] + O(N T, AdY)
2
%{%Zm? - [}VZM] - [%Zmicos(z @)1
- Li,ZAd)z sin(2 ;)

2
} + O(N72, AQY). (59)

In leading order in N the following three vectors in RV are normalized and
orthogonal:

el \/L]V(l,l,...,l),
€ = j—;v(cosﬁ &), c08(28y)),
€ = :;?V(sm(ﬂ’; )y -5 sin(2Ey)).

We may therefore use Ap>=(Ad - e;)” + (Ad - e2)> + (Ad - e3)?, insertion of which
into (59) leads to

LE+Ad] - L[E] >

2
77 3 Adieos( @)}

2
+O(N 72, AP?).

77 3 Absin(28)

Thus for large N the second derivative of L is nonnegative at ¢ = &, and the phase
pattern § has indeed become a fixed-point attractor of the dynamics of the noise-free
coupled oscillator network. The same is found to be true for the states
b =+&+0a(l,...,1) (for any o).
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4.2.2. Storing p phase patterns. equilibrium order parameter equations
We next follow the strategy of the Hopfield model and attempt to simply extend the
above recipe for the synapses to the case of having a finite number p of phase

patterns &" = (&,...,&k) € [-m, )", giving
P
Jij = %ZCOS[&? — &Y (60)
p=1

(the factor N, as before, ensures a proper limit N — oo later). In analogy with our
solution of the Hopfield model we define the following averages over pattern vari-
ables:

<g é_llm Z‘jél l_ 17"'7&1]) [ ]P_

We can write the Hamiltonian H(¢) of (34) in the form
1 P
L3S cosle — Eeoslo, —
p=1 i

P
_ _%Vz{mu 2 (0) + il () + il () ]
in which

" (d) :}%Zcos(i’;f)cos(d)i), mb (¢ Zcos (EF) sin(d (61)

=Y sin(& cos(e),  m(#) = 1 > sin(&)sin(@) (62)

The free energy per oscillator can now be written as
1
F/N = —B—Nlog/u-/d(j)e’BH(q’> = —log/ /dq)e"BNZ}.Zﬂ ol

with xx € {cc,ss,cs,sc}. Upon introducing the notation m,, = (m! ... mf,) we

can again express the free energy in terms of the density of states

7({m.}) = 2m) " [ [ dO L, S[m.. — m.()]

félog@ ) — Bing I;Idm** Z({m,, })ePV 2o (63)

F/N =
Since p is finite, the leading contribution to the density of states (as N — oo), which
will give us the entropy, can be calculated by writing the d-functions in integral
representation:
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lim +log 7({m,.})
Jim Slog 7 ({m..}
- iNx,,m,,
A}glgc log/H dx €

X exp <—z Z Z [x cos(E) cos(d;) + xk cos(&L) sin(d;)

+af, sin(€}) cos(¢;) + xf sin(&)) Sin(d>i)]>

= extryy,, }{ Zx** m,, + <log/j—¢exp <—1Zx“ cos(&,) cos(d)

m
+ xl, cos(E,) sin(d) + x¥, sin(&,) cos(d)

—_
3

The relevant extremum is purely imaginary so we put x,, = iPy,, (see also our
previous discussion for the Hopfield model) and, upon inserting the density of states
into our original expression for the free energy per oscillator, arrive at

lim F/N = extriy,, , 1/ ({ma.y..})

N—oo

1 1
.f({m**vy**}) = _Blog(z TC) - Egmi* + ;y** QLI

_ % < log / gexp <B %:[yﬁc cos(&,) cos(d) + vk cos(E,) sin(d)

+ ¥ sin(§,,) cos(d) + vy sin(g,) Sin(d>)]> > :
d

Taking derivatives with respect to the order parameters m,, gives usy,, = m,,, with
which we can eliminate the y,,. Derivation with respect to the m,, subsequently
gives the saddle-point equations

mb, = (cos[g,]
J docos[dlexp(Beos[p] 3, [my, cos[E,] +my, sin[E,]] + Bsin[d] 3, [my cos[E,] +my, Sin[ivﬂ)>
Jddexp(Beos[d] 3=, [y, cos[E,] +my,sin[€,]] + Bsin[¢] 3=, [my cos[E,] +mysin[E ]]) /]

64
mh = <cos[&u] (4

Jdosin[blexp(Beos[d] 3, [my, cos[E,] +my sin[E,]] + Bsin[¢ ]ZV[MZSCOSKV]+M§s5in[§vﬂ)>
Jdbexp(Beos[d] 3=, [mY, cos[&,] +my, sin[E,]] + Bsin[¢] 3, [my, cos[E,] +mysinE,]]) &
(65)
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mb, = (sin[g]
J ddcos[blexp(Bcos[d] >, [my, cos[E,] +my, sin[E,]] + Bsin[d] - [my, cos[E,] + my; sin[E,]])
J ddexp(Beos[d] 32, [my, cos[E,] +my, sin[E,]] + Bsin[d] 3= [my cos[E,] + my, sin[E,]])

>§a
(66)
mis = (sin[&, ]
J ddsin[lexp(Bcos[d] 37, [me, cos[S,] + my sin[&,]] + Bsin[d] 37, [me; cos[S,] + my sin[S,]])
Jddexp(Beos[d] 32, [my, cos[E,] + my, sin[E,]] + Bsin[¢] 32, [mY cos[E,] + my; sin[&,]])

e
(67)

The equilibrium values of the observables m,,, as defined in (61) and (62), are now
given by the solution of the coupled equations (64)-(67)which minimizes

f({my, }) =3 Z m

-5 < log / doexp (BCOS[¢] S [, cos[g,] + m, sin[&,]

\Y

+ Bsin[p] Y _[my; cos[E,] +m), Sin[évﬂ> > : (68)
3

\Y

We can confirm that the relevant saddle-point must be a minimum by inspecting the
B = 0 limit (infinite noise levels): limp_o /({m,.}) = 1>, m?, — %10g(2n).

4.2.3. Analysis of order parameter equations: pure states

From now on we will restrict our analysis to phase pattern components &!' which
have all been drawn independently at random from [—m=, ], with uniform proba-
bility density, so that (g[&]) = (2n) 7 [*....[", d& g[g]. At p =0 (T = oo) one finds
only the trivial state m, = 0. It can be shown that there will be no discontinuous
transitions to a nontrivial state as the noise level (temperature) is reduced. The
continuous ones follow upon expansion of the equations (64)—(67) for small
{m**},Which is found to give (for each p and each combination #x):

i Bm“ +0({m}).

Thus a continuous transition to recall states occurs at 7 = %. Full classification of all
solutions of (64)—(67) is ruled out. Here we will restrict ourselves to the most rele-
vant ones, such as the pure states, where m¥, = m,. 8,5 (for some pattern label 1).
Here the oscillator phases are correlated with only one of the stored phase patterns
(if at all). Insertion into the above expression for f({m..}) shows that for such
solutions we have to minimize

S{mu}) = 3 Z %/%log / dd exp(P cos[d][mc cos[E] + my, sin[E]]

+ B sin[¢] [mes cos[E] + myg sin[E]]). (69)
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We anticipate solutions corresponding to the (partial) recall of the stored phase
pattern &" or its mirror image (modulo overall phase shifts &, — &; + 6, under which
the synapses are obviously invariant). Insertion into (64)—(67) of the state
b, = EF+ 8 gives (mec, Me, Meg, yy) = 1 (cos 8, —sin 8, sin §, cos ). Similarly, inser-
tion into  (64)(67) of ;= —E 4+  gives (M, Mye, Meg, Mys) =
%(cos d,sin d, sin d, — cos 3). Thus we can identify retrieval states as those solutions
which are of the form

(i) retrieval of 2’;7‘ : (Meey Mge, Meg, Mg ) = m(cos O, — sin d, sin 3, cos d)

(ii) retrieval of — &k 0 (Mee, Mge, Meg, Mgs) = m(cos d, sin J, sin 8, —cos §)
with full recall corresponding to m = % Insertion into the saddle-point equations
and into (69), followed by an appropriate shift of the integration variable ¢, shows

that the free energy is independent of  (so the above two ansétze solve the saddle-
point equations for any 6) and that

1 [ddcos[p]ePmeosie)
- E fd(b eBmcos[d]

- Sm) = = glog [ apetneots

Expansion in powers of m, using log(l +z) =z — —z + 0(z%), reveals that nonzero
minima m indeed bifurcate continuously at 7 = p~! 4.

1 (m) +%1og[zn} = (1 _%s> m? +$B3m4 + O(m®). (70)

Retrieval states are obviously not the only pure states that solve the saddle-point
equations. The function (69) is invariant under the following discrete (noncom-
muting) transformations:

(mCC7 Mse, —Meg, _mss)>

(mcsa Mg, Mec, msc)~

It (mcca Mcy Mg,y mss) -
II: (mCC7 My Mg, mss) -
We expect these to induce solutions with specific symmetries. In particular we an-
ticipate the following symmetric and antisymmetric states:

(iif) symmetric under I: (Meey Moy Mg, Mgg) = \/§m(cos d,sind,0,0),

(iv) antisymmetric under I:  (mec, mge, mes, mgs) = v/2m(0,0,cos 3, sin §),

(v) symmetric under II: (Meey Moy Meg, Mys) = m(cos d,sin d,cos §,8in d),

(vi) antisymmetric under II: (., mge, Mg, my) = m(cos d,sin d, — cos 3, —sin §).

Insertion into the saddle-point equations and into (69) shows in all four cases the
parameter 0 is arbitrary and that always

Bmv/2 cos|d] cos|]
1 / d gy Jddeosldle
V2] 2n [dd ePmv/2 cos[¢] cos[¢]

)

f(m) :m2 B dél g/dd) Bm/2 cos[¢] co%[ﬁ
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Fig. 9. The function f(m)/T (left) for networks of coupled oscillators with phase patterns

stored via the synapses J; = N~! PO cos[&f' —&F], and for different choices of B = -1

B=1,3,57 (from top to bottom). The right picture gives the location of the nonnegative

minimum of f(m) (which measures the overall degree of global synchronization with one

recalled phase pattern in thermal equilibrium) as a function of 7. A transition to a recall state
occurs at T = 1.

Expansion in powers of m reveals that nonzero solutions m here again bifurcate
continuously at 7 =1

1
p

31

f(m) +=log[2n] = (1 iB)szrz 7 BPm* +O(m®). (71)

However, comparison with (70) shows that the free energy of the pure recall states is
lower. Thus the system will prefer the recall states over the above solutions with
specific symmetries.

Note, finally, that the free energy and the order parameter equation for the pure
recall states can be written in terms of modified Bessel functions as follows:

_ 15 (Bm)

1
2 (Bm)” B

B

f(m) = m® — ~log[2 nly(Pm)).

The behavior of these equations and the observable m for different noise levels are
shown in Fig. 9. One easily proves that [m| <1, and that limg_ m = 1. Following
the transition to a state with partial recall of a stored phase pattern at T’ = i, further
reduction of the noise level 7' gives a monotonic increase of retrieval quality until
retrieval is perfect at 7 = 0.
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5. Networks with Gaussian distributed synapses

The type of analysis presented so far to deal with attractor networks breaks down if
the number of patterns stored p no longer remains finite for N — oo, but scales as
p=o0oN (o> 0). Expressions such as (48) and (49) can no longer be evaluated by
saddle-point methods, since the dimension of the integral diverges at the same time
as the exponent of the integrand. The number of local minima (ergodic components)
of Hamiltonians such as (30) and (32) will diverge and we will encounter phenomena
reminiscent of complex disordered magnetic systems, i.e. spin glasses. As a conse-
quence we will need corresponding methods of analysis, in the present case: replica
theory.

5.1. Replica analysis

5.1.1. Replica calculation of the disorder-averaged free energy

As an introduction to the replica technique we will first discuss the equilibrium
solution of a recurrent neural network model with binary neurons o; € {—1,1} in
which a single pattern & = (£,...,&y) € {—1,1}" has been stored (via a Hebbian-
type recipe) on a background of zero-average Gaussian synapses (equivalent to the
SK model, [17]):

ﬁ,ﬁ, +—=z;, Z;=0, 2 = 1, (72)

7 Z
in which Jy > 0 measures the embedding strength of the pattern, and the z; (i < /)
are independent Gaussian random variables. We denote averaging over their dis-
tribution by = (the factors in (72) involving N ensure appropriate scaling and
statistical relevance of the two terms, and as always J; = 0). Here the Hamiltonian
H (30), corresponding to sequential dynamics (2), becomes

1
H(o) = —ENJOm (6) += Jo — ZG,GJZU (73)

l<j

with the overlap m(6) = %Zk o1&, which measures pattern recall quality. We clearly
cannot calculate the free energy for every given realization of the synapses, fur-
thermore it is to be expected that for N — oo macroscopic observables like the free
energy per neuron and the overlap m only depend on the statistics of the synapses,
not on their specific values. We therefore average the free energy over the disorder
distribution and concentrate on

F:—fhmloZ 7= g P (o) 74
g im log Z (74)

The disorder average is transformed into an average of powers of Z, with the
identity
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1 1
logZ = hn?) [Z"—1] or, equivalently, logZ = hm log Z". (75)
n—0n n—0n

The so-called ‘replica trick’ consists in evaluating the averages Z” for integer values
of n, and taking the limit » — 0 afterwards, under the assumption that the resulting
expression is correct for noninteger values of n as well. The integer powers of Z are
written as a product of terms, each of which can be interpreted as an equivalent
copy, or ‘replica’ of the original system. The disorder-averaged free energy now
becomes

F = —11m logZ” = —hm—log Z e Bt
cl..o"

From now Roman indices will refer to sites, i.e. i = 1...N, whereas Greek indices
will refer to replicas ie. o =1...n. We introduce a shorthand for the Gaussian

measure, Dz = (21:)_2 e ¥ dz, dnd we will repeatedly use the identity [Dz e* = = e,
Upon insertion of the Hamiltonian (73) we obtain

_ 1 o EE o
F= —BNlogz - lir%(Bn)il 10g<e” i 5 ch,c {/ Dz eVt 2 /}>
= i<j {o-a}

1 . -1
=— EN10g2 - 11113(1)([311)

X log<exp< ZZ{;%G o} +B—2226?676;/G},>> :
{o*}

o i#j oy i#j

2 2
ZG?‘G} = lz G;‘] —N, ZG?G?G;/G}, = [Z c“c“’] —N.

The averaging over the neuron states {6*} in our expression for F will now factorize
nicely if we insert appropriate d-functions (in their integral representations) to iso-
late the relevant terms, using

IZ/dQI;;[S[QuB—%ZG?G?l = [ ] /dqdq eldeBtu[tu 1 oo ]
fenTE ey er] - [ faman i 5

The integrations are over the n x n matrices q and q and over the n-vectors m and m.
After inserting these integrals we obtain



572 A.C.C. Coolen

1
Jim /N = ~glos2 = Jim liny gy,

n°+n
N 1 1,202 12
x log l—] /dq dqdm dm e "o B/
2n
" exp( l Z%/qwlZmamﬁ R Dt WZ%WD
oy
(ol pece])
i oy o {6}

The neuronal averages factorize and are therefore reduced to single-site ones. A
simple transformation ; — &,o; for all i eliminates the pattern components &; from
our equations, and the remaining averages involve only one n-replicated neuron
(o1,...,0,). Finally one assumes that the two limits n — 0 and N — oo commute.
This allows us to evaluate the integral with the steepest-descent method:

1 Nextr®+--- _ 12 1
A}Erolmlqlg(l)—nlog/dxe = LIE»?)/\}TgoNn loge = 11113(1); extr @. (76)

The result of these manipulations is

Jim F/N = lim extr /(q, m; q, m) (77)
a n 1 GyOy—i Ty Gy,
f(q7m1 q, m ) = ﬁlOgZ - B— |:10g< Zw{q“ sz >G

, . . N 1 1
FED oy 1Yo+ 5 B0 Y n+ 1B g |
oy o o oy

Variation of the parameters {g,p} and {m,} allows us to eliminate immediately the
conjugate parameters {¢,5} and {7, }, since it leads to the saddle-point requirements

N 1. N .
Gup = 5182 qup, 1y = iBJoms. (79)
Upon elimination of {g,, 711, } according to (79) the result (77) and (78) is simplified to
lim F/N = limextr /(q,m), (80)
1 Jo 2
f(q7m):_Blog2+_chxy Ezma
o
1 18272 m
> )
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Variation of the remaining parameters {¢,3} and {m,} gives the final saddle-point
equations

<GKGP CXp (% B> 2oy 4y SaSy + Bl 32, muca) >
<exp (% p2J2 >y 400y + B0 >, maca) >6
<67\ eXp (% B2J2 ZO‘Y quy0u Oy + BJo Zu muca) >0_
<€Xp (% B2 Y, 4uyCuTy + Bl Y, maca) >G

The diagonal elements are always ¢,, = 1. For high noise levels, f — 0, we obtain
the trivial result

Qrp = <, (82)

my, = (83)

Goy = Suya my = 0.

Assuming a continuous transition to a non-trivial state as the noise level is lowered,
we can expand the saddle-point equations (82) and (83) in powers of q and m and
look for bifurcations, which gives (A # p):

Gp = B2 qop + O(qm)*,  my = BJomy, + O(q, m)*.

Therefore we expect transitions either at 7' =Jy (if Jy > J) or at T =J (if J > Jp).
The remaining program is: find the saddle-point (q, m) for 7 < max{Jy,J} which for
integer n minimizes f, determine the corresponding minimum as a function of », and
finally take the limit » — 0. This is in fact the most complicated part of the pro-
cedure.

5.2. Replica-symmetric solution and AT-instability

5.2.1. Physical interpretation of saddle points

To obtain a guide in how to select saddle-points we now turn to a different (but
equivalent) version of the replica trick (75), which allows us to attach a physical
meaning to the saddle-points (m,q). This version transforms averages over a given
measure W:

- ;g%nz 5" w() [[ (e (54)
a=1

v=1 ¢!...0"

The trick again consists in evaluating this quantity for integer n, whereas the limit
refers to noninteger n. We use (84) to write the distribution P(m) of overlaps in
equilibrium as
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2 0lm =33 E..,Gl] “prte

= Z i

—,l,ananZZes[m——Za | e

If we average this distribution over the disorder, we find identical expressions to
those encountered in evaluating the disorder averaged free energy. By inserting the
same delta-functions we arrive at the steepest descend integration (77) and find

= lim — ZS m—my], (85)

n—0 n

where {m,} refers to the relevant solution of (82) and (83). Similarly we can imagine
two systems ¢ and ¢’ with identical synapses {J;;}, both in thermal equilibrium. We
now use (84) to rewrite the distribution P(g) for the mutual overlap between the
microstates of the two systems

P(q) = > ea Old — 2 oioyle P o)~BH()
7= Zwre BH (o) ~BH (@)
=lim— Z Z dlg—— ZG He’ﬁH(“u).
n~>0]’ln— 7»7&,/0-1 p 5

Averaging over the disorder again leads to the steepest descend integration (77) and
we find

m n—»Onn—IZSq %y (86)

K;év

where {g;,} refers to the relevant solution of (82) and (83). We can now partly
interpret the saddle-points (m,q), since the shape of P(q) and P(m) gives direct
information on the structure of phase space with respect to ergodicity. The crucial
observation is that for an ergodic system one always has

P(m)zalm— OILUN] P(q)za[q— %szq]- (57

If, on the other hand, there are L ergodic components in our system, each of which
corresponding to a pure Gibbs state with microstate probabilities proportional to
exp(—PH) and thermal averages (...),, and if we denote the probability of finding
the system in component ¢ by W, we find

st[m%gm» , Z Wil [q12< Milo >]
(=1 i

00=
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For ergodic systems both P(m) and P(g) are d-functions, for systems with a finite
number of ergodic components they are finite sums of d-functions. A diverging
number of ergodic components generally leads to distributions with continuous
pieces. If we combine this interpretation with our results (85) and (86) we find that
ergodicity is equivalent to the relevant saddle-point being of the form:

qop = 5043 + q[l — Suﬁ}, my = m, (88)

which is called the ‘replica symmetry’ (RS) ansatz. The meaning of m and g is
deduced from (87) (taking into account the transformation o; — &;o; we performed
along the way):

1 — 1 3
mzﬁz&i<ci>eq’ q:NZ<Gi>§q‘

1

5.2.2. Replica symmetric solution
Having saddle-points of the simple form (88) leads to an enormous simplification in
our calculations. Insertion of (88) as an ansatz into Egs. (81)—(83) gives

1 1 1
flg.m) = —zlog2 - AP = ) + 5 dom’

1 1
1 1 00
B og<exp 2qBJ l% Oy,

(o102 exp(LgB22[32, 0] +BJom 3, 54))
(exp(LgB*2[Y2, 0u) +BJom S, 04))q
(01 exp (4B [, 0o +BJom 3, 0a)s

(exp(LgB*2 [, 0u) +BJom Y, 04))q

We linearize the terms [Za Gd]z by introducing a Gaussian integral, and perform
the average over the remaining neurons. The solutions m and ¢ turn out to be well-
defined for n — 0 so we can take the limit:

2

+BJom Y _ o, > +0(n),

c

. 1 1, , , 1 5

— %/ Dz log cosh [BJom + BJzy/q], (89)

q= /Dz tanh? [BJom + BJz\/q], m = /Dz tanh [BJom + BJzy/q].  (90)

Writing the equation for m in integral form gives

m= BJom/O1 da [1 — /Dz tanh? [AB Jom + BJZ\/@]}
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Fig. 10. Phase diagram of the model (72) with Gaussian synapses, obtained from the

replica-symmetric solution. P: paramagnetic phase, m = ¢ = 0 (more or less random evolu-

tion). SG: spin-glass phase, m = 0, ¢ # 0 (‘frozen’ equilibrium states without pattern recall).

F: recall (‘ferro-magnetic’) phase, m # 0, g # 0. Solid lines: second-order transitions. Dashed:
the AT instability.

From this expression, in combination with (90), we conclude:
T>Jy: m=0 T>Jpand T>J: m=q=0.

Linearization of (90) for small g and m shows the following continuous bifurcations:

at from to
Jo>J: T=Jy m=q=0 m#0,qg>0
Jo<J: Tr=J m=q=0 m=0,qg>0

T <max{Jo,J}: T=JL[l—¢q] m=0,¢g>0 m=#0,4g>0

Solving numerically equations 7 = Jy[l — ¢] and (90) leads to the phase diagram
shown in Fig. 10.

5.2.3. Breaking of RS: the AT instability

If for the replica symmetric solution we calculate the entropy S = p>0F /0B nu-
merically, we find that for small temperatures it becomes negative. This is not
possible.  Firstly, straightforward differentiation shows 0S/0p = B[(H >§q—
(H?),]<0, so S increases with the noise level 7. Let us now write
H (o) = Hy + H (o), where Hj is the ground- state energy and H (o) >0 (zero only for
ground-state configurations, the number of which we denote by Ny>1). We now
find
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;Q})Shm{logz:e BH(o) 1 B(H), }

= Blim [logZe_Bm“) + B(I-?)eq} = log Ny.

We conclude that §>0 for all 7. At small temperatures the RS ansatz (88) is
apparently incorrect in that it no longer corresponds to the minimum of f(q, m)
(81). If saddle-points without RS bifurcate continuously from the RS one, we can
locate the occurrence of this ‘replica symmetry breaking’” (RSB) by studying the
effect on f(q, m) of small fluctuations around the RS solution. It was shown [19] that
the ‘dangerous’ fluctuations are of the form

Gup = Sop +q[1 = Sop] + Mgy D Myp =0 Vo (91)
B

in which g is the solution of (90) and n,g = ng,. We now calculate the resulting
change in f(q, m), away from the RS value f(qgg, mrs), the leading order of which is
quadratic in the fluctuations {n,g} since the RS solution of (90) is a saddle-point:

B o B
f(g,m) — f(qgrs, mrs) = An Moy = 872 Z Moy N Gop
oEY oy pF#h
with
1,272 2
<GaGprGx exp (5 qB~J [Zu Gu] +PmJy >, Gm) >6
5 .

<exp( qpJ? [>, 00 +Bmty Y, Gu) >G
Because of the index permutation symmetry in the above average we can write for
a#vyand p#£ A\

Goypr = Bupdy + 8nOyp + Gall — Sop][1 — 8,5 ][1 — S [1 — )]
+ Go{Bup[l = 8] + 801 = 8up] + Soa[1 = ] + 8yp[1 — 8] }

Goypr =

with

[ Dz tanh’[BJom + BJz,/q] cosh” [BJom + BJZ\/']

Ge = [ Dz cosh” [BJom + BJz,/q]

Only terms which involve precisely two d-functions can contribute, because of the
requirements o # v, p # A and ZB Nog = 0. As a result:

2
Slam) ~ flagsomes) = Pp (1= B 262 + Go)] Yo,
oY

The condition for the RS solution to minimize f(q, m), if compared to the so-called
‘replicon’ fluctuations (91), is therefore
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1> 22 lim(1 —2G, + Ga).
After taking the limit in the expressions G, this condition can be written as

1> p2J? / Dz cosh™* [BJom + BJzy/q]. (92)

The so-called AT line in the phase diagram where this condition ceases to be met,
indicates a continuous transition to a complex ‘spin-glass’ state where ergodicity is
broken (i.e. the distribution P( ) (86) is no longer a d-function). It is shown in
figure 10 as a dashed line for Jy/J > 1, and coincides with the line 7/J =1 for
Jo < 1.

6. The Hopfield model near saturation

6.1. Replica analysis

We now turn to the Hopfield model with an extensive number of stored patterns, i.e.
p = oN in (40). We can still write the free energy in the form (48), but this will not be
of help since here it involves integrals over an extensive number of variables, so that
steepest descent integration does not apply. Instead, following the approach of the
previous model (72), we assume [18] that we can average the free energy over the
distribution of the patterns, with help of the replica-trick (75):

F=—1i m—lo e e B He)
nl~>0 n & Z" ]
G ...G
Greek indices will denote either replica labels or pattern labels (it will be clear from
the context), i.e. o, =1,...,mand p,v=1,...,p. The p x N pattern components

{€!'} are assumed to be drawn independently at random from {—1,1}.

6.1.1. Replica calculation of the disorder-averaged free energy

We first add to the Hamiltonian of (30) a finite number ¢ of generating terms, that
will allow us to obtain expectation values of the overlap order parameters m, (41) by
differentiation of the free energy (since all patterns are equivalent in the calculation
we may choose these £ nominated patterns arbitrarily):

0
HHH+ZK Zc,,, (my(@))eq = lim 5 F/N. (93)

We know how to deal with a finite number of overlaps and corresponding patterns,
therefore we average only over the disorder that is responsible for the complications:
the patterns {ﬁ”l, ..., &} (as in the previous section we denote this disorder-av-
eraging by —). Upon inserting the extended Hamiltonian into the replica-expression
for the free energy, and assuming that the order of the limits N — oo and » — 0 can
be interchanged, we obtain for large N:
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_ 1 1 1
F/N =-a—=log2 — lim——

2 B n—0 BNn
1 2
1 o aght
X Og<exp< Buzq;liuzszil 2N|:ch&l:| :|)
R o 67&F]2> |
{o*}
We linearize the p</¢ quadratic term using the identity (56), leading to n x ¢
Gaussian integrals with Dm = (Dml, ..., Dm'):
_ I 1 1
F/N=-o—-
/ ok B10g2 hln YBNn
L ozl 2
x log / D“‘<exp (ZZZG“@* [\f Lav Bxubem&zw[iﬁfé] > .
u<e o i {e*}

Anticipating that only terms exponential in the system size N will retain statistical
relevance in the limit N — oo, we rescale the n x ¢ integration variables m according

to m — my/BN:

_ 1 1 1
F/N:Ecx—ElogZ LILnBN
nt 2
X log{ l:l;]"\.[]:| ) / dm eféﬁNmz <eﬁngz; Zm Z‘,G?Q:'[mi—%.]e%zq Zp/’[z, G?i?]_> }
{o*}

(94)

Next we turn to the disorder average, where we again linearize the exponent con-
taining the pattern components using the identity (56), with Dz = (Dzy, ..., Dz,):

7y Pt

ISR MO

{/Dz m}
[ orTreon | (8) soet| |

o 0 p
{/DZ 2 0 22, T } : (95)

We are now as in the previous case led to introducing the replica order parameters
CIQB:

p—t
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1:/dq HSl%s—;ZG?‘G?]
[ ] /d dg eNEB%ﬁ[%B ¥, 0t0l]

Inserting (95) and the above identities into (94) and assuming that the limits N — oo
and n — 0 commute gives:

1 1
lim F/N—iot——logZ lim llrr(l)—log/dmdqdq

N—oo B N—oon—

1 £ Zy2Z|
X exp <N iZunBtu —> pm’> + oclog/Dz e’ Do B%ﬁ])
ap

X <exp<322267i5‘[’n5 — ] —iZ‘?uBZG?G?>> :
ap i {c*}

pu<e o i

The n-dimensional Gaussian integral over z factorizes in the standard way after
appropriate rotation of the integration variables z, with the result:

[ 2z 1
log/Dz o D I —Elog det[I — Bq],

in which I denotes the n x n identity matrix. The neuron averages factorize and are
reduced to single-site ones over the n-replicated neuron ¢ = (o1, ..., 0,):

1 1
lim F/N_Eot—glogZ lim 11m—10g/dmdqdq

N—oo N—o0n—0

X eXp (N [thwtu - %Bm2 - %ozlogdet[l - Bq]])
ap
X H<exp (BZZGNE) mk, — k — lzquGuG[?,) >

u<e o

and we arrive at integrals that can be evaluated by steepest descent, following the
manipulations (76). If we denote averages over the remaining ¢ patterns in the
familiar way

E=(E....8), (@) =2" Y @)
ge{-1,1}

we can write the final result in the form

lim F/N = limextr f(m, q,q), (96)
N—oo n—0
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11 1
i) = -0 — ~log2 — —
f(m,q,§) =50 5log "

X [<log<exp (BZZGuéu[mg — M) - izﬁ:(juﬁcuog>> >
p<e o o ol ¢

N A 1 1
+i Z Qopdop — 5 Bm? — ioclog det[I — Bq]] .
ap

Having arrived at a saddle-point problem we now first identify the expectation
values of the overlaps with (93) (note: extremization with respect to the saddle-point
variables and differentiation with respect to A commute):

(my(6))eq =1lim llma%extrf(m q,9)

n—0r—0

_ hm<§p<%zq OCuCXp (BZN Y o Oabymb — izaﬁfluﬁcucﬁ) >0> 97)

<eXP(BZp<eZaGaéum§_iZaBQ“BGuGB)>o 3

which is to be evaluated in the A = 0 saddle-point. Having served their purpose, the
generating fields &, can be set to zero and we can restrict ourselves to the A =0
saddle-point problem:

. 1 1
f(m,q,q) = 2 B10g2 l anﬁqug Bm2 — quog det[I — Bq]

+<10g<exp (BZZGaiumg —izquﬁcacﬁ>> > 1 (98)
u<é o af ol &

Variation of the parameters {m, Gops gsp} gives the saddle-point equations:

_ é <Guexp(B Zugé Zot Gaéumg - iZch Quﬁcucﬁ»o‘ (99)
8 (exp(B pr[ Zot Gaapmg - iZaB Quﬁcucﬁ»o’ g
. (oropexp(B Zpge Do Ou&umb — iZmB éuBGuGB»c
Grp = L (100)
(exp(B Zugé Zot G&épmu -1 Za[} Qaﬁcacﬁ»c g
dzzz, —3z-[1-Pqjz
Gy = Siap B3 2 (101)

[dz eIl

furthermore,
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(my(6))., = lim - Z m! (102)

n—0n

replaces the identification (97). As expected, one always has ¢,, = 1. The diagonal
elements g, drop out of (99) and (100), their values are simply given as functions of
the remaining parameters by (101).

6.1.2. Physical interpretation of saddle points
We proceed along the lines of the Gaussian model (72). If we apply the alternative
version (84) of the replica trick to the Hopfield model, we can write the distribution

of the ¢ overlaps m = (my,...,my) in equilibrium as
= li S - Y —BH(c%)
W=ty % oy T I
with &, = ( l,...,Ef) Averaging this distribution over the disorder leads to ex-

pressions identical to those encountered in evaluating the disorder averaged free
energy. By inserting the same delta-functions we arrive at the saddle-point inte-
gration (96) and (98) and find

P(m) = lim — ZBm m,], (103)

n—0n
where m, = (mlf7 . 7mi) refers to the relevant solution of (99)—(101).
Similarly we imagine two systems ¢ and ¢’ with identical realization of the
interactions {J;;}, both in thermal equilibrium, and use (84) to rewrite the distri-
bution P(g) for the mutual overlap between the microstates of the two systems

P(q)—igr(l)nn_IZZSlq— ZG ]HeBH(m)

}4#{ ol..o"

Averaging over the disorder again leads to the steepest descend integration (96) and
(98) and we find

P(g) = lim——— " 8[q — g1, (104)

n Onnfl
- )iA

where {g;,} refers to the relevant solution of (99)—(101).

Finally we analyze the physical meaning of the conjugate parameters {¢,s} for
o # B. We will do this in more detail, the analysis being rather specific for the
Hopfield model and slightly different from the derivations above. Again we imagine
two systems ¢ and ¢’ with identical interactions {J;}, both in thermal equilibrium.
We now use (84) to evaluate the covariance of the overlaps corresponding to non-
nominated patterns:
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1 '
v < Zoiz;r> <Nzo;a;>
],1 +1 eq ! eq
n;onN 15/012 3 [ Zc?if] [%Z c,-yif’] ]:[e*ﬁH(“’> (105)

k;ﬁy ol..o"

(using the equivalence of all such patterns). We next perform the same manipula-
tions as in calculating the free energy. Here the disorder average involves

L S g | LN gree [ S ]
[WZ %a,-] M.Z a]

N y ———
{/Dze% ZZazclg,} Dz O (s .y o

[3 az;ﬁzy
p—t—1 —_—
{ [ et I } [ DT s

(after partial integration). We finally obtain an expression which involves the surface
(98):

]Z z
[dmdqdq [W] BN/ (ma.d)
1. . ze e
" B}'ll}l(l)}/l(’/l - 1) AEp A}Ego fdm dqdqe_Ban(mJl‘fl)

The normalization of the above integral over {m, q, q} follows from using the replica
procedure to rewrite unity. The integration being dominated by the minima of f, we
can use the saddle-point Eq. (101) to arrive at

n_}()n qup zotB r. (106)

The result (105) and (106) provides a physical interpretation of the order parameters

{QQB}
Ergodicity implies that the distributions P(g) and P(m) are 3-functions, this is
equivalent to the relevant saddle-point being of the form:

m‘/1 My,  Gyp = Oyp + q[l — Svp]v Gyp = lOtB [RS v + r[ Syp]], (107)

which is the RS ansatz for the Hopfield model. The RS form for {¢.g} and {m}} is a
direct consequence of the corresponding distributions being 6-functions, whereas the
RS form for {g,s} subsequently follows from (101). The physical meaning of m, and

qis
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= ol 4=y > (0

i

Before proceeding with a full analysis of the RS saddle-point equations, we finally
make a few tentative statements on the phase diagram. For = 0 we obtain the
trivial result g, = Oy, Grp =0, m) = 0. We can identify continuous bifurcations to
a nontrivial state by expanding the saddle-point equations in first-order in the rel-
evant parameters:

mh =Pkt g = ~2idy, + o (0 ),
X 1 iof p
Do =373 Sip JFTBQM[I - 67\P]i| o
2
Combining the equations for q and q gives g;, = oc[%} gip + - - - Thus we expect a

continuous transition at 7 = 1 + y/a from the trivial state to an ordered state where
qrp # 0, but still (my)., = 0 (a spin-glass state).

6.2. Replica symmetric solution and AT-instability

The symmetry of the ansatz (107) for the saddle-point allows us to diagonalize
the matrix A =1-— fq which we encountered in the saddle-point problem,

Agp = [1 = B(1 — q)]3up — Bg:

eigenspace eigenvalue multiplicity

X:(l,...,l) I_B(l_q)_Bqn 1

D ouXa =0 1-B(l—gq) n—1
so that

logdet A = log[l — B(1 — ¢) — Bgn] + (n — 1) log[1 — B(1 — g)]

Pg 2
=nllog[l = B(1 —¢)] - —————| + O(n").
| =1 B(l —q) ()
Inserting the RS ansatz (107) for the saddle-point into (98), utilizing the above
expression for the determinant and the shorthand m = (my, ..., my), gives

s, s ins) =~ glog 2+ 51 + Br(1 —g)]
1 o Bg
+§m2 +E [log[l -B(l—q)] - m}

1 pme > oy tlorp 3 o) (n
)

We now linearize the squares in the neuron averages with (56), subsequently average
over the replicated neuron o, use cosh”[x] = 1 + nlogcosh[x] + ¢(n*), and take the
limit n — 0:
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]\}iBgCFRS/N = l%f(mR87qR87QRS)

;szr;a[l + Br(1 —q) +%10g[1 —B(l—¢q)]—

1
—E</Dz log?2 coshB[m-§+z\/ﬂ>

The saddle-point equations for m, ¢ and » can be obtained either by insertion of the
RS ansatz (107) into (99)—(101) and subsequently taking the » — 0 limit, or by
variation of the RS expression (108). The latter route is the fastest one. After per-
forming partial integrations where appropriate we obtain the final result:

q
1-B(1-¢q)

. (108)
:

m= <a/Dz tanhﬁ[m-§+z\/@]>é, (109)
q= </Dz tanhZB[m-§+z\/ﬂ>i, r=q[l —B(l —q)] > (110)

By substitution of the equation for r into the remaining equations this set can easily
be further reduced, should the need arise. In case of multiple solutions of (109) and
(110) the relevant saddle-point is the one that minimizes (108). Clearly for o = 0 we
recover our previous results (50) and (51).

6.2.1. Analysis of RS order parameter equations and phase diagram

We first establish an upper bound for the temperature 7 = 1/f for nontrivial so-
lutions of the set (109) and (110) to exist, by writing (109) in integral form:

my = B<&p(§«m)/old7»/Dz[l —tanhzﬁ(xg-m+z\/w)}>a

from which we deduce
0=m’— B<(§ . m)z/1 dk/Dz[l — tanh> (A& - m +zﬁ)]>
0
> m’ —p((e-m)’) = m’[1 - pl.

g

Therefore m =0 for 7> 1. If T>1 we obtain in turn from (110), using
tanhz(x) <x’and0<g<1: g=0o0rq<1++/a—T. We conclude that ¢ = 0 for
T > 1+ +/a. Secondly, for the free energy (108) to be well defined we must require
g > 1 — T. Linearization of (109) and (110) for small ¢ and m shows the continuous
bifurcations:

at from to
a>0: T=1+y/o m=0,g=0 m=0,¢4>0
a=0: T=1 m=0,¢g=0 m#0,9g>0
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The upper bound T = 1 + /o turns out to be the critical noise level indicating (for
o > 0) a continuous transition to a spin-glass state, where there is no significant
alignment of the neurons in the direction of one particular pattern, but still a certain
degree of local freezing. Since m = 0 for 7' > 1 this spin-glass state persists at least
down to T = 1. The quantitative details of the spin-glass state are obtained by
inserting m = 0 into (110) (since (109) is fulfilled automatically).

The impact on the saddle-point Egs. (109) and (110) of having o >0, a
smoothening of the hyperbolic tangent by convolution with a Gaussian kernel, can
be viewed as noise caused by interference between the attractors. The natural
strategy for solving (109) and (110) is therefore to make an ansatz for the nominated
overlaps m of the type (52) (the mixture states). Insertion of this ansatz into the
saddle-point equations indeed leads to self-consistent solutions. One can solve nu-
merically the remaining equations for the amplitudes of the mixture states and
evaluate their stability by calculating the eigenvalues of the second derivative of
f(m,q,q), in the same way as for o = 0. The calculations are just more involved. It
then turns out that even mixtures are again unstable for any 7 and o, whereas odd
mixtures can become locally stable for sufficiently small 7 and o. Among the mixture
states, the pure states, where the vector m has only one nonzero component, are the
first to stabilize as the temperature is lowered. These pure states, together with the
spin-glass state (m = 0,¢ > 0), we will study in more detail.

Let us first calculate the second derivatives of (108) and evaluate them in the
spin-glass saddle-point. One finds, after elimination of » with (110):

0% f Jom,dm, = 8, [1 — B(1 —gq)],  0°f/dm,dq = 0.

The (£ + 1) x (£ + 1) matrix of second derivatives with respect to variation of (m, g),
evaluated in the spin-glass saddle-point, thereby acquires a diagonal form

1-B(1-q)

0*f =
1—-B(1—gq)
o°f /oq?

and the eigenvalues can simply be read off. The /-fold degenerate eigenvalue
1 — B(1 —gq) is always positive (otherwise (108) would not even exist), implying
stability of the spin-glass state in the direction of the nominated patterns. The
remaining eigenvalue measures the stability of the spin-glass state with respect to
variation in the amplitude g. Below the critical noise level T = 1 + /o it turns out to
be positive for the spin-glass solution of (110) with nonzero ¢. One important dif-
ference between the previously studied case o = 0 and the present case o > 0 is that
there is now an m = 0 spin-glass solution which is stable for all T < 1 + /o In terms
of information processing this implies that for o > 0 an initial state must have a
certain nonzero overlap with a pattern to evoke a final state with m # 0, in order to
avoid ending up in the m = 0 spin-glass state. This is clearly consistent with the
observations in Fig. 5. In contrast, for oo = 0, the state with m = 0 is unstable, so any
initial state will eventually lead to a final state with m # 0.
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Fig. 11. Left: RS amplitudes m of the pure states of the Hopfield model versus temperature.

From top to bottom: o = 0.000 — 0.125 (Ao = 0.025). Right, solid lines: ‘free energies’ f of

the pure states. From bottom to top: o = 0.000 — 0.125 (Ao = 0.025). Right, dashed lines:

‘free energies’ of the spin-glass state m =0 (for comparison). From top to bottom:
o = 0.000 — 0.125 (Ao = 0.025).

Inserting the pure state ansatz m = m(1,0,...,0) into our RS equations gives
B zB\/og -~ zB/og
m—/Dz tanh[Bm+1_B(l_q)], q—/DZ tanh? |:Bm+l—ﬁ(l—q):|’
(111)
_L, 1 4B -q9(B-2) 1 e
f—zm +50 (1-gq) 1 pl— g +Blog[1 B(1 f])]]
—%/Dzlochosh{Bm—i—%} (112)

If we solve Eq. (111) numerically for different values of o, and calculate the corre-
sponding ‘free energies’ f (112) for the pure states and the spin-glass state m = 0, we
obtain Fig. 11. For o > 0 the nontrivial solution m for the amplitude of the pure
state appears discontinously as the temperature is lowered, defining a critical tem-
perature Ty (o). Once the pure state appears, it turns out to be locally stable (within
the RS ansatz). Its ‘free energy’ f, however, remains larger than the one corre-
sponding to the spin-glass state, until the temperature is further reduced to below a
second critical temperature T¢(a). For 7 < T.(a) the pure states are therefore the
equilibrium states in the thermodynamics sense.

By drawing these critical lines in the (o, 7) plane, together with the line
T,(o) = 1 + /o which signals the second-order transition from the paramagnetic to
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the spin-glass state, we obtain the RS phase diagram of the Hopfield model, depicted
in Fig. 12. Strictly speaking the line 7Ty would appear meaningless in the thermo-
dynamic picture, only the saddle-point that minimizes f* being relevant. However,
we have to keep in mind the physics behind the formalism. The occurrence of
multiple locally stable saddle-points is the manifestation of ergodicity breaking in
the limit N — oo. The thermodynamic analysis, based on ergodicity, therefore ap-
plies only within a single ergodic component. Each locally stable saddle-point is
indeed relevant for appropriate initial conditions and time-scales.

6.2.2. Zero temperature, storage capacity

The storage capacity o, of the Hopfield model is defined as the largest o for which
locally stable pure states exist. If for the moment we neglect the low temperature re-
entrance peculiarities in the phase diagram (12) to which we will come back later, the
critical temperature Ty (o), where the pure states appear decreases monotonically
with o, and the storage capacity is reached for 7' = 0. Before we can put 7 — 0 in
(111), however, we will have to rewrite these equations in terms of quantities with
well-defined 7 — 0 limits, since ¢ — 1. A suitable quantity is C = B(1 — ¢), which
obeys 0 < C <1 for the free energy (108) to exist. The saddle-point equations can
now be written in the form

Fig. 12. Phase diagram of the Hopfield model. P: paramagnetic phase, m = g = 0 (no re-
call). SG: spin-glass phase, m =0, g # 0 (no recall). F: pattern recall phase (recall states
minimise /), m # 0, ¢ # 0. M: mixed phase (recall states are local but not global minima of f).
Solid lines: separations of the above phases (7,: second-order, Ty and 7: first-order). Dashed:
the AT instability for the recall solutions (7R ). Inset: close-up of the low temperature region.
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m= /Dz tanh [Bm + ZIB\/&C?] , /Dz tanh [Bm + B\/_]

in which the limit 7 — 0 simply corresponds to tanh(px) — sgn(x) and ¢ — 1. After
having taken the limit we perform the Gaussian integral:

m = erf[M]’ C = (1 _ C) ie—mz(l—C)z/Zx.
V2o om

This set can be reduced to a single transcendental equation by introducing

= m(1 - C)/V2o:

2x _,
V20 =F(x), F(x)=erf(x) N (113)
Eq. (113) is solved numerically (see Fig. 13). Since F(x) is antisymmetric, solutions
come in pairs (x, —x) (reflecting the symmetry of the Hamiltonian of the system with
respect to an overall state-flip 6 — —6). For o < o, ~ 0.138 there indeed exist pure
state solutions x # 0. For o > o, there is only the spin-glass solution x = 0. Given a
solution x of (113), the zero temperature values for the order parameters follow from

-1
limm = erflx], lim C = { 4+ e }
T—0 T—0 2

with which in turn we can take the zero temperature limit in our expression (112) for
the free energy:

. 1 53 1 2 2 —x2 ot _x2
}{r(l)f—ierf[x]—i—ge _E[C —&—1/7“)6 nerflx] + ¢ ]

Comparison of the values for limy_ f thus obtained, for the pure state m > 0 and
the spin-glass state m = 0 leads to Fig. 13, which clearly shows that for sufficiently
small o the pure states are the true ground states of the system.

6.2.3. The AT-instability

As in the case of the Gaussian model (72), the above RS solution again generates
negative entropies at sufficiently low temperatures, indicating that RS must be
broken. We can locate continuous RS breaking by studying the effect on f(m, q, q)
(98) of small replicon [19] fluctuations around the RS solution:

qop — 6:1[3 + q[l - 6@[}] + n:xﬁ’ nuB = nﬁw Moo = 07 Znuﬂ =0. (114)
o

The variation of q induces a similar variation in the conjugate parameters q through
Eq. (101):

. 1, . . 1
dup — 510![32 [Rdup + r[1 — 8up] + mg], Nop = EZ MNys [Gopys — Gupdys)
Yo
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with

_ fdzszBZYZSef%Z‘[kBqRS]Z _ fdzz@zﬁei%[[liﬁqks}z
Jubro = [dz e 2 [1-Bapslz  ’ Iob = dee*%Z‘[l’BqRS]z

Wick’s theorem (see e.g. [4]) can now be used to write everything in terms of second
moments of the Gaussian integrals only:

Gapys = Japdvs T Jaydps + Jasdpy

with which we can express the replicon variation in ¢, using the symmetry of {n,s}
and the saddle-point Eq. (101), as

ﬁotB = Zgw/nyﬁgéiﬁ
Vo
=B [R8uy + r[1 = 8uy] | [ROsp + r[1 — Bep]
Y#3
= B*(R — r)’nyg (115)
since only those terms can contribute which involve precisely two d-symbols, due to
> uNop = 0. We can now calculate the change in f(m, q,q), away from the RS value

f(mRgs, qrs, grs), the leading order of which must be quadratic in the fluctuations
{Nyp} since the RS solution is a saddle-point:

f(mRS7 q, (i) - f'(mRS7 qRrs> (iRS)

T [ 2718 detll - pagg] ks

1 5 R . <eﬁé'mks Zu Gafic»[qks+%ia[32ﬂ]o'>c
g

<eB§»mRs Za cifio'-(]ksc>
Evaluating (116) is simplified by the fact that the matrices qrg and n commute,
which is a direct consequence of the properties (114) of the replicon fluctuations and

the form of the replica-symmetric saddle-point. If we define the n x n matrix P as the
projection onto the vector (1,...,1), we have

Pg=n"' P-q=nP=0, qzs=(1—q)1+ngP,

Grs M =""qrs = (1 —¢)n (117)
o 1 Png
= Paws] = g T =g — praT = PO =]

We can now simply expand the relevant terms, using the identity
logdet M = Tr log M:
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det[1 — B(qrs +n)]
det[1 — Bqgs]

—Tr log[1 - Bnl — Pags] ']

= Tr{—Bﬂ[l - Bqu]fl—%Bz {ﬂ[l - B(IRS]IF} +0(n’)

1 p’ 2 3
=————— Trqn"+0(n") (118)

2[1-B(1—q))

Finally we address the remaining term in (116), again using the RS saddle-point

Eqgs. (109) and (110) where appropriate:

<eﬁé'mRs Z% Gy —i6-Grs0 [l + %uBzo' 1o + % 0£2B4(0- . ﬁc)2 + .. ] >o'
log —
<eBc‘;»mRs Za croﬁu'f-qksrf>6 :

1 R 1 L
= EaﬁzTr[n “qrs] + §O€234 Z Nop 5[ Gopys — Hapys] + -+ (119)
aPyd

with

apyd — <eB§'mRs Zu G@*i“‘qksc>6 §7

Haps = (6,05 ePemrs >, <'Sath‘CIRsG>6 (0,05 ePEmrs >, failﬁ'fms“% '
<eB§~mR5 Zm (Yq—lG~qRSG>G <eB§~mRs E“ ca—zoﬂquo—>6 :
Inserting the ingredients ((115), (117)—(119)) into expression (116) and rearranging
terms shows that the linear terms indeed cancel, and that the term involving H,p,s
does not contribute (since the elements H,g,5 do not depend on the indices for o #
and v # 9), and we are left with:

f(mRSaqa(]) _f(mRS>qRSa(iRS)

1 1 o’ 2 1o 2 2
=—|—w————— =T +zaf"(R—r)Trn
Bn[4u—su—qw 7P =)
1
—g @B R =)D My Gapra | +

apyd

Because of the index permutation symmetry in the neuron average we can write for
o#vyand p# A\

Gw{p)\ = 8up571 + 5ux6~/p + Gy [1 — 8@] [1 — &/d [1 - (30()\] [1 - &/p]
+ Gz{ﬁup [1 - 6«/)»] + Byx[l — Sup] + 5@[1 — 5yp] + 5yp[1 — 5(11}}
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with

c [ Dztanh’ Blm - & + zy/0] cosh” B[m - & + z/or]
T [ Dzcosh” B[m - § + z\/or] é'

Only terms which involve precisely two d-functions can contribute, because of the
replicon properties (114). As a result:

f(mgs,q,q) — f(mgs, qgs, qrs)
I ap? 1 4 2
—ETI'I] [—Zm+§aﬁ (R—I")

1
fZOLZBS(Rfr)“[l —2Gy+Gal| + -

Since Try? = Zaﬁ niﬁ, the condition for the RS solution to minimize f(m, q,q), if
compared to the ‘replicon’ fluctuations, is therefore
1 2 2 6 4
2R —r) —af’(R—7)"[1 —=2G2+ G4] > 0. (120)
[1—B(1—q)]

After taking the limit in the expressions G, and after evaluating

) 1. .1 [dz 2o 1-Parslz
limR = -1lim gyy = lim— -
n— n—0 n—0nf de e 2% [I-Bags]z

—m L n—1 1 _ 1 1=P+2p
_;lg(l)nﬁ[l—B(l—Q)le—B(l—q*”Q)} Bli—p(—gf

and using (110), condition (120) can be written as

[1—-p(1—q) > oq32</ Dz cosh™ B[m - & + z\/ar] >& (121)

The AT line in the phase diagram, where this condition ceases to be met, indicates a
second-order transition to a spin-glass state, where ergodicity is broken in the sense
that the distribution W (104) is no longer a &-function. In the paramagnetic regime
of the phase diagram, m =0 and ¢ =0, the AT condition reduces precisely to
T > T, = 1 + \/o.. Therefore the paramagnetic solution is stable. The AT line co-
incides with the boundary between the paramagnetic and spin-glass phase. Nu-
merical evaluation of (121) shows that the RS spin-glass solution remains unstable
for all T < T,, but that the retrieval solution m # 0 is unstable only for very low
temperatures 7' < Tr (see Fig. 12).

7. Epilogue

In this paper I have tried to give a self-contained exposé of the main issues, models
and mathematical techniques relating to the equilibrium statistical mechanical
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analysis of recurrent neural networks. I have included networks of binary neurons
and networks of coupled (neural) oscillators, with various degrees of synaptic
complexity (albeit always fully connected), ranging from uniform synapses, via
synapses storing a small number of patterns, to Gaussian synapses and synapses
encoding an extensive number of stored patterns. The latter (complex) cases I only
worked out for binary neurons; similar calculations can be done for coupled os-
cillators (see [16]). Networks of graded response neurons could not be included,
because these are found never to go to (detailed balance) equilibrium, ruling out
equilibrium statistical mechanical analysis. All analytical results and predictions
have later also been confirmed comprehensively by numerical simulations. Over the
years we have learned an impressive amount about the operation of recurrent net-
works by thinking in terms of free energies and phase transitions, and by having
been able to derive explicit analytical solutions (since a good theory always super-
sedes an infinite number of simulation experiments ...). I have given a number of key
references along the way; many could have been added but were left out for practical
reasons. Instead I will just mention a number of textbooks in which more science as
well as more references to research papers can be found. Any such selection is
obviously highly subjective, and I wish to apologize beforehand to the authors
which I regret to have omitted. Several relevant review papers dealing with the
statistical mechanics of neural networks can be found scattered over the three
volumes [20-22]. Textbooks which attempt to take the interested but nonexpert
reader towards the expert level are [8,23]. Finally, a good introduction to the
methods and backgrounds of replica theory, together with a good collection of
reprints of original papers, can be found in [24].

What should we expect for the next decades, in the equilibrium statistical me-
chanics of recurrent neural networks? Within the confined area of large symmetric
and fully connected recurrent networks with simple neuron types we can now deal
with fairly complicated choices for the synapses, inducing complicated energy
landscapes with many stable states, but this involves nontrivial and cutting-edge
mathematical techniques. If our basic driving force next is the aim to bring our
models closer to biological reality, balancing the need to retain mathematical
solvability with the desire to bring in more details of the various electro-chemical
processes known to occur in neurons and synapses and spatio-temporal charac-
teristics of dendrites, the boundaries of what can be done with equilibrium statis-
tical mechanics are, roughly speaking, set by the three key issues of (presence or
absence of) detailed balance, system size, and synaptic interaction range. The first
issue is vital: no detailed balance immediately implies no equilibrium statistical
mechanics. This generally rules out networks with nonsymmetric synapses and all
networks of graded response neurons (even when the latter are equipped with
symmetric synapses). The issue of system size is slightly less severe; models of
networks with N < oo neurons can often be solved in leading order in N =2, but a
price will have to be paid in the form of a reduction of our ambition elsewhere (e.g.
we might have to restrict ourselves to simpler choices of synaptic interactions).
Finally, we know how to deal with fully connected models (such as those discussed
in this paper), and also with models having dendritic structures which cover a long
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(but not infinite) range, provided they vary smoothly with distance. We can also
deal with short-range dendrites in one-dimensional (and to a lesser extent two-
dimensional) networks; however, since even the relatively simple Ising model
(mathematically equivalent to a network of binary neurons with uniform synapses
connecting only nearest-neighbor neurons) has so far not yet been solved in three
dimensions, it is not realistic to assume that analytical solution will be possible
soon of general recurrent neural network models with short range interactions. On
balance, although there are still many interesting puzzles to keep theorists happy
for years to come, and although many of the model types discussed in this text will
continue to be useful building blocks in explaining at a basic and qualitative level
the operation of specific recurrent brain regions (such as the CA3 region of the
hippocampus), one is therefore led to the conclusion that equilibrium statistical
mechanics has by now brought us as far as can be expected with regard to in-
creasing our understanding of biological neural networks. Dale’s law already rules
out synaptic symmetry, and thereby equilibrium statistical mechanics altogether, so
we are forced to turn to dynamical techniques if we wish to improve biological
realism.
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