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Abstract. We study the dynamics of on-line learning in large (N → ∞) perceptrons, for
the case of training sets with a structural O(N0) bias of the input vectors, by deriving exact
and closed macroscopic dynamical laws using non-equilibrium statistical mechanical tools. In
sharp contrast to the more conventional theories developed for homogeneously distributed or
only weakly biased data, these laws are found to describe a non-trivial and persistently non-
deterministic macroscopic evolution, and a generalization error which retains both stochastic and
sample-to-sample fluctuations, even for infinitely large networks. Furthermore, for the standard
error-correcting microscopic algorithms (such as the perceptron learning rule) one obtains learning
curves with distinct bias-induced phases. Our theoretical predictions find excellent confirmation
in numerical simulations.

1. Introduction

Rosenblatt [1] first introduced the perceptron and proved the famous perceptron convergence
theorem in 1962. It is an indicator of the richness of the perceptron as a dynamical
system that almost 40 years later it continues to yield fascinating results which have hitherto
remained hidden. Especially during the last decade, considerable progress has been made in
understanding the dynamics of learning in artificial neural networks through the application of
the methods of statistical mechanics. The dynamics of on-line learning in perceptrons has been
analysed intensively, but for the most part such studies [2] have been carried out in the idealized
scenario of so-called complete training sets (in which the number of training examples is large
compared with N , the number of degrees of freedom), and have also assumed a homogeneous
input data distribution. A recent review of work in this field is contained in [3]. A general
theory of learning in the context of restricted training sets (where the size of the training
set is proportional to N ) is generally much more difficult, although an exact solution of the
dynamical equations for the more elementary problem of unbiased on-line Hebbian learning
with restricted training sets and noisy teachers has been found [4, 5]. Nevertheless, substantial
progress has been made towards a general theory of the dynamics of on-line learning with
restricted training sets and the reader may refer, for example, to [6–9], for details.

In this paper we consider complete training sets, but we admit the possibility of a structural
bias of the input vectors. This is a significant issue since in real-world situations a training
sample will generally have a non-zero average; this is especially important in the case of on-
line learning, where examples are not available prior to learning, so that one cannot correct
for any bias prior to processing. This in itself would be sufficient motivation for the present
study. However, it turns out that the introduction of structurally biased input data leads to
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Figure 1. Evolution of the generalization error Eg as measured in a single simulation experiment
of the perceptron rule, with N = 1000, learning rate η = 1 and bias a = 1

2 , following initial

conditions Q(0) = 10, R(0) = 0 and S(0) = √
N (see the text for details). The inset, magnifying

the early transients, shows phases I and II. Clearly, no learning takes place in phase I.

qualitative (rather than only quantitative) modifications of the actual learning curves observed
in numerical simulations and the mathematical theories required for their description. Various
authors [10, 11] have studied so-called clustered examples, in which examples are drawn from
two Gaussian distributions situated close to each other, with an input bias of the order of
N−1/2 (i.e. in magnitude similar to finite-size effects). Learning with input bias has also been
considered in the context of linear networks [12]; the linear theory was then used to construct
an approximation for a class of nonlinear models, and it was shown that on-line learning is
more robust to input bias and outperforms batch learning when such bias is present.

Here we consider a situation which is more natural and less restrictive than that considered
in [10, 11], and which does not require the linearity of [12]: we study the familiar (nonlinear)
perceptron, with the perceptron learning rule and with a structural, i.e. O(N0), bias in the input
data. Using B, J and A to denote the teacher weights, the student weights and the bias vector
(precise definitions follow), we develop our theory in terms of three macroscopic observables:
the standard observables Q = J2, R = J · B, and a new observable S = J · A (the overlap
between student weights and the bias vector). In contrast to the dynamics of the bias-free case,
we find that in the presence of an O(N0) input bias the system passes though three phases,
characterized by different scalings of typical times and of macroscopic observables. This could
already have been anticipated on the basis of numerical simulations (see, e.g., figure 1). We
obtain a closed system of equations in which the evolution of {Q,R} is deterministic in the
limit N → ∞, as in the bias-free case, but where S is (generally) a stochastic variable, whose
conditional probability distribution Pt(S|Q,R) becomes non-trivial. Phase I is a short phase,
in which the system reduces the alignment of the student weight vector J relative to the bias
vector A. During phase I, the observable S is deterministic, is rapidly driven towards zero
and no learning takes place. Before the state S = 0 is reached, however, the system enters
phase II, a very short phase in which S evolves stochastically to a quasi-stationary probability
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distribution (which we calculate) and in which both Q and R are frozen. In phase III, where
most of the learning takes place, the S distribution is modified by a non-negligible random
walk element, which generates a diffusion term in the equation controlling the evolution of
Pt(S|Q,R), whereas Q and R satisfy coupled differential equations which involve averages
over Pt(S|Q,R). The stochastic nature of S is reflected in the fact that the generalization error
also exhibits fluctuations (see figure 1). The (exact) equations describing phase III cannot be
further simplified, but we introduce an approximation yielding more tractable equations for
{Q,R}, which still have the merit of reducing to the more familiar equations when no-bias
is present. Moreover, they are found to be in excellent agreement with the results obtained
from numerical simulations. Compared with the unbiased case, having a finite bias is found
to change the pre-factor in the asymptotic power law of the asymptotic time dependence of
the generalization error, but not the exponent. A preliminary and more intuitive presentation
of some of the present results can be found in [13].

2. Definitions

We study on-line learning in a student perceptron � : {−1, 1}N → {−1, 1}, which learns a
task defined by a teacher perceptron T : {−1, 1}N → {−1, 1} whose fixed weight vector is
B ∈ 
N . The teacher and student output are given by the familiar recipes

T (ξ) = sgn[B · ξ] �(ξ) = sgn[J · ξ].

We assume that B is normalized such that B2 = 1, the components being drawn randomly
with mean zero and standard deviation of the order of O(N−1/2), and statistically independent
of the input data. In order to model the bias in the input sample we assume that for
ξ = (ξ1, . . . , ξN) ∈ {−1, 1}N all ξi are independent, with 〈ξi〉 = a, so that the probability of
drawing ξ is given by

p(ξ) =
∏
i

1
2 [1 + aξi]. (1)

We define ξi = a + vi , such that the (independent) vi have a mean of zero and variance
σ 2 = 1 − a2, and the shorthand A = a(1, . . . , 1) (i.e. a vector with all N entries equal to a, to
be referred to as the ‘bias vector’). The teacher-bias overlap B ·A is now a random parameter
which is O(1), since 〈(B · A)2〉 = ∑

i,j a
2〈BiBj 〉 = a2, whose distribution will be Gaussian

for N → ∞, with mean 0 and standard deviation a.
The student perceptron � is being trained according to an on-line learning rule of the form

Jm+1 = Jm + �Jm, where at each iteration step an input vector ξm is drawn independently
according to (1), and where

�Jm = η

N
ξm sgn(B · ξm)F[|Jm|,Jm · ξm, sgn(B · ξm)].

For Hebbian learning, for instance, we have

F[J, u, T ] = 1: �Jm = η

N
ξm sgn(B · ξm)

whilst the familiar perceptron learning rule is defined by

F[J, u, T ] = θ [−uT ]: �Jm = η

2N
ξm[sgn(B · ξm) − sgn(Jm · ξm)]. (2)

We will derive, from the microscopic stochastic process for the weight vector J , a macroscopic
dynamical theory in terms of the familiar observables Q = J2 and R = J · B, as well as (in
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order to obtain closure) a new observable S = J ·A measuring the overlap between the vector
J and the bias vector. The student and teacher output can then be written in the form

�(ξ) = sgn[λ1 + x] T (ξ) = sgn[λ2 + y] with λ1 = Ĵ · A λ2 = B · A

with Ĵ = J/|J |, and where the local fields {x, y, z} are defined by x = Ĵ · v, y = B · v and
z = Â·v (the latter field zwill also enter our calculation in due course). Note that λ1 = S/

√
Q.

For large N , the three fields {x, y, z} are zero-average Gaussian random variables, each with
variance σ 2 = 1 − a2, and with correlation coefficients given by

〈xy〉 = ωσ 2 〈xz〉 = σ 2S/|A| 〈yz〉 = σ 2λ2/|A|. (3)

We note that equation (3) implies that z will be independent of (x, y) for largeN if S = o(
√
N)

so that

p(x, y, z) = [
σ
√

2π
]−1

e−z2/2σ 2
p(x, y)

p(x, y) = [
2πσ 2

√
1 − ω2

]−1
e− 1

2 [x2−2ωxy+y2]/σ 2(1−ω2)
(4)

with ω = Ĵ · B = R/
√
Q. It will turn out that most of the averages to appear in this

paper, involving (4) (to be written as 〈· · ·〉), may be expressed in terms of the function
K(x) = erf (x/

√
2). The generalization error Eg = 〈θ [−(Ĵ · ξ)(B · ξ)]〉, for example,

can be written as

Eg =
∫

dx dy p(x, y)θ [−(λ1 + x)(λ2 + y)] = I1(λ1,−λ2,−ω) + I1(−λ1, λ2,−ω) (5)

where

I1(λ1, λ2, ω) =
∫ ∞

λ1

dx
∫ ∞

λ2

dy p(x, y) = 1

4

[
1 − K

(
λ2

σ

)]
− 1

2

∫ ∞

λ2/σ

Dy K

(
λ1 − ωσy

σ
√

1 − ω2

)
with the Gaussian measure Dy = (2π)−1/2e− 1

2 y
2
dy (see appendix A for details). This then

gives

Eg = 1

2
− 1

2

∫ ∞

−λ2/σ

Dy K

(
λ1 + ωσy

σ
√

1 − ω2

)
+

1

2

∫ ∞

λ2/σ

Dy K

(
λ1 − ωσy

σ
√

1 − ω2

)
. (6)

Note that, due to the identity
∫ ∞

0 Dy K(ωy/
√

1 − ω2) = 1
2 − 1

π
arccosω, formula (6) reduces,

as it should, to the well known expression Eg = π−1 arccosω in the case where the input bias
is zero (i.e. for a → 0).

3. From microscopic to macroscopic laws

We now consider the dynamics of the macroscopic observables {Q,R, S} in the limit of large
N . In the bias-free case, where for large N the fluctuations in the macroscopic observables
are insignificant, this can be done in a direct and simple way. Here, for a �= 0, the situation
is qualitatively different, since (as it will turn out) the fluctuations in S will no longer vanish,
and their distribution will have a strong impact on the macroscopic laws. In order to provide a
setting for our theory we briefly review a well known procedure [3] which enables us to pass
from a discrete to a continuous time description. We suppose that at time t the probability
that the perceptron has undergone precisely m updates is given by the Poisson distribution
πm(t) = 1

m! (Nt)me−Nt . For large N this will give us t = m
N

+ O(N−1/2), the usual real-valued
time unit, and the uncertainty as to where we are on the time axis vanishes as N → ∞. It is
not hard to show that the probability density pt(J) of finding the vector J at time t satisfies

d

dt
pt (J) = N

∫
dJ ′ {〈δ[J − J ′ − �J]〉ξ − δ[J − J ′]

}
pt(J

′)
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where, for the perceptron learning rule (2), the single-step modification �J is given by

�J = η

2N
ξ [sgn(B · ξ) − sgn(J · ξ)]

and where and 〈· · ·〉ξ denotes the average over all questions ξ in the training set {−1, 1}N .
The macroscopic observables Ω = (Q,R, S), in turn, have the probability density Pt(Ω) =∫

dJ pt(J)δ[Ω − Ω(J)], which satisfies the macroscopic stochastic equation

d

dt
Pt (Ω) =

∫
dΩ′ Wt [Ω,Ω′]Pt(Ω′)

where

Wt [Ω,Ω′] = N
〈 〈δ[Ω − Ω(J + �J)]〉ξ − δ[Ω − Ω(J)]

〉
Ω′,t

with the so-called sub-shell (or conditional) average 〈· · ·〉Ω′,t , defined as

〈f (J)〉Ω,t =
∫

dJ pt(J)δ[Ω − Ω(J)]f (J)∫
dJ pt(J)δ[Ω − Ω(J)]

.

It is possible to make various assumptions regarding the scaling behaviour of our observables
at time t = 0, but once this has been specified the scaling at subsequent times is determined
by the dynamics. We make the natural assumption that Q(0) = O(1) so that, in accordance
with our assumptions regarding the statistics of B, we have R(0) = O(N−1/2). We suppose
that S(0) = O(N1/2), the maximum permitted by the Schwarz inequality.

In this context it is worth remarking that in the idealized case of zero bias, Hebbian
learning is known to outperform the perceptron learning rule; but in the more realistic situation
of even moderately biased data the Hebbian rule fails miserably. For example, if we assume
that S(0) is O(1), and that Q,R are initially O(1), it follows from the learning rule (or from
the methods which we apply below to the perceptron learning rule) that in the initial evolution
of the Hebbian system dS/dτ = ηa2K(λ2/σ), where τ = Nt , so that S rapidly diverges
and no learning takes place; the student vector J cannot break away from its alignment to the
bias vector. We shall show, however, that the perceptron has no problem coping with extreme
initial conditions such as S(0) = O(N1/2), and that in due course effective learning occurs.
The Hebbian example also serves to show that, even if we were to choose the weaker initial
scaling S(0) = O(N0), dependent on the specific choice we make for the learning rule, the
order parameter S might well be driven towards S = O(N1/2) states.

A systematic exploration of the possible scaling scenarios reveals the following†. For
the perceptron learning rule and for the initial scaling conditions as specified above, the only
self-consistent solution of the macroscopic equations is one describing a situation where the
system passes through three phases {I, II, III} defined by time-scales t = {τN−1/2, τN−1, τ },
in which our observables are O(1) quantities in all three phases, with the exception of S which
is O(N1/2) in phase I. We will write S = S̃N1/2 in phase I, with S̃ = O(N0), and formulate
our phase I equations in terms of S̃ rather than S. The number of iterations m is related to the
original time t by m = Nt so that the number of iterations up to time τ , in each of the three
phases, is given by m = {τN1/2, τN0, τN}. We incorporate these scaling properties into our
equations in each of the three phases, by working henceforth only with O(N0) time units τ

and O(N0) observables Ω, which satisfy

d

dτ
Pτ (Ω) =

∫
dΩ′ Wτ [Ω,Ω′]Pτ (Ω′) (7)

† For brevity, in this paper we will only describe the resulting self-consistent solution, which is indeed perfectly
consistent with the observations in numerical simulations such as in figure 1.
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with

Wτ [Ω,Ω′] = FI,II,III 〈 〈δ[Ω − Ω(J + �J)]〉ξ − δ[Ω − Ω(J)] 〉Ω′,t

= FI,II,III

(2π)3

〈∫
dΩ̂ eiΩ̂·Ω{〈e−iΩ̂·Ω(J+�J)〉ξ − e−iΩ̂·Ω(J)

}〉
Ω′,t

(8)

and FI = N1/2, FII = N0 FIII = N . In a subsequent stage it will be convenient to write
�J = k + k′, where

k = η

2N
A[sgn(B · ξ) − sgn(J · ξ)] k′ = η

2N
v[sgn(B · ξ) − sgn(J · ξ)] (9)

so that

�J · A = 1
2ηa

2[sgn(λ2 + y) − sgn(λ1 + x)] + ηa
z

2
√
N

[sgn(λ2 + y) − sgn(λ1 + x)]. (10)

We are now in a position to discuss the dynamics in each of the three phases in which different
scaling laws apply.

4. Phase I: elimination of bias-induced activation

In phase I we define the O(N0) observables Ω = (S̃,Q,R) = (J · A/
√
N,Q,R) and

FI = √
N . Upon expanding the exponential e−iΩ̂·Ω(J+�J) in powers of �J we obtain from

equation (8)

Wτ [Ω,Ω′] = − 1

(2π)3

∫
dΩ̂ 〈eiΩ̂·[Ω−Ω(J)]{· · ·}I〉Ω′,τ

where

{· · ·}I = i
∑
iµ

〈
N1/2�Ji

∂-µ

∂Ji

〉
ξ

-̂µ +
1

2
i
∑
ijµ

〈
N1/2�Ji�Jj

∂2-µ

∂Ji∂Jj

〉
ξ

-̂µ

+
1

2

∑
ijµν

〈
N1/2�Ji�Jj

∂-µ

∂Ji

∂-ν

∂Jj

〉
ξ

-̂µ-̂ν + O(N−1).

A straightforward calculation using equation (9) and the two averages 〈sgn(λ2+y)〉 = K(λ2/σ)

and 〈sgn(λ1 + x)〉 = K(λ1/σ) = sgn(S̃) (which is valid for large N in phase I) now gives

{· · ·}I = 1

2
iηa2

[
K

(
λ2

σ

)
− sgn(S̃)

]
-̂1 + iηS̃

[
K

(
λ2

σ

)
− sgn(S̃)

]
-̂2.

We can now apply equation (7) to compute the time derivative of the probability densityPτ (Ω).
Note that the sub-shell average 〈· · ·〉Ω′,τ involves an integration over all J for which Ω(J) = Ω′

(in a distributional sense) so in calculating the relevant integrals we may effectively replace
Ω(J) by Ω′ at appropriate stages. For example,

∫
dΩ̂ -̂jeiΩ̂·[Ω−Ω(J)] = i(2π)3∂j ′δ[Ω − Ω′],

where ∂j ′ denotes differentiation with respect to -′
j . We now find for Pτ (S̃,Q,R) a Liouville

equation

d

dτ
Pτ (S̃,Q,R) = − ∂

∂S̃

[
ηa2

2

[
K

(
λ2

σ

)
− sgn(S̃)

]
Pτ (S̃,Q,R)

]
− ∂

∂Q

[
ηS̃

[
K

(
λ2

σ

)
− sgn(S̃)

]
Pτ (S̃,Q,R)

]
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with the deterministic solutionPτ (S̃,Q,R) = δ[S̃−S̃(τ )] δ[Q−Q(τ)] δ[R−R(τ)], where the
actual deterministic trajectory {S̃(τ ),Q(τ), R(τ)} is the solution of the coupled flow equations

d

dτ
S̃ = 1

2
ηa2

[
K

(
λ2

σ

)
− sgn(S̃)

]
d

dτ
Q = ηS̃

[
K

(
λ2

σ

)
− sgn(S̃)

]
d

dτ
R = 0.

It follows that S̃(τ ) = S̃(0) + 1
2ηa

2τ [K(λ2/σ) − sgn(S̃)]. We see that S̃ is driven to zero in
times τ = τ± (with ± referring to the cases S̃0 > 0 and S̃0 < 0, respectively), which are given
by

τ± = 2|S̃0|
ηa2(1 ∓ K(λ2/σ))

.

Irrespective of the value of S̃0, the system seeks to eliminate any strong alignment of the learning
vector J relative to the bias vector A. This is clearly confirmed by numerical simulations. Our
equation for Q also readily integrates to give Q = Q0 + [S̃2 − S̃2

0 ]/a2. We see that the length
J = √

Q of the student weight vector decreases and that J → [J 2
0 − S̃2

0/a
2]1/2 as τ → τ±.

Again, this is confirmed by numerical simulations. The equation dR/dτ = 0 implies that ωJ
is constant in phase I. As can be clearly seen in figure 1, no learning takes place in this phase,
since expression (6) for Eg reduces to Eg = 1

2 [1 − sgn(S)K(λ2/σ)] in the limit |λ1| → ∞
(note λ1 = S/J ). However, at times τ approaching τ± it is no longer valid to argue that S is
O(

√
N); it is now O(N0) and we enter the scaling regime of phase II.

5. Phase II: transition to error correction

As shown in the previous section, S is an O(N0) quantity in phase II, and it is also clear that
{Q,R} are O(N0) at the start of phase II. In phase II (and, as we will see, also in phase III)
we have to consider the observables Ω = (S,Φ), with Φ = (Q,R); the reason for this
slight departure from our phase I terminology will soon become clear. We can now express
equation (8) as

Wτ [Ω,Ω′] = FII,III

∫
dΩ̂

(2π)3
eiΩ̂·Ω〈〈e−iŜS(J+�J)−i

∑2
µ=1 1̂µ1µ(J+�J)〉ξ − e−iΩ̂·Ω(J)

〉
Ω′,τ .

Here

1µ(J + �J) = 1µ(J) +
∑
i

�Ji
∂1µ

∂Ji
+

1

2

∑
ij

�Ji�Jj
∂21µ

∂Ji∂Jj

(this expansion is exact, since {Q,R} are quadratic and linear functions, respectively).
Substituting and expanding the exponential gives

Wτ [Ω,Ω′] =
〈
FII,III

∫
dΩ̂

(2π)3
eiΩ̂·[Ω−Ω(J)]〈e−iŜ�J ·A − 1〉ξ −

∫
dΩ̂

(2π)3
eiΩ̂·[Ω−Ω(J)]{· · ·}II,III

〉
Ω′

where

{· · ·}II,III = iFII,III

∑
iµ

〈
�Ji

∂1µ

∂Ji
e−iŜ�J ·A

〉
ξ

1̂µ +
1

2
iFII,III

∑
ijµ

〈
�Ji�Jj

∂21µ

∂Ji∂Jj
e−iŜk·A

〉
ξ

1̂µ

+
1

2
FII,III

∑
ijµν

〈
�Ji�Jj

∂1µ

∂Ji

∂1ν

∂Jj
e−iŜ�J ·A

〉
ξ

1̂µ1̂ν + O(N−3/2). (11)
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Note that whereas it is valid to expand e−iΦ̂·Φ(J+�J) in the manner just described, we cannot
treat e−iŜS(J+�J) in the same way since

∑
i �Ji(∂S/∂Ji) = A ·�J = O(N0) in phases II and

III. Equations (7) and (11) form the basis for our study of phases II and III.
The time-scale τ in phase II is related to t via t = τN−1, so that FII = N0, but although

this phase is of short duration it has an important role as regards the stochastic evolution of
the bias overlap parameter S. It is straightforward to show that the third term in equation (11)
makes no contribution in the limit of large N . Moreover, in the very short phase II we may
approximate �J · A by k · A (10). Referring to the details and notation in the appendix we
have

〈e−iŜk·A〉 = 1 − Eg + eiηa2Ŝ I1(−λ1, λ2,−ω) + e−iηa2Ŝ I1(λ1,−λ2,−ω) (12)

and we then find that in phase II

Wτ [Ω,Ω′] = I1(−λ1, λ2,−ω)δ[S − S ′ + ηa2]δ[Φ − Φ′]

+I1(λ1,−λ2, ω)δ[S − S ′ − ηa2]δ[Φ − Φ′] − Egδ[Ω − Ω′].

With substitution into (7) and repetition of the arguments used for phase I we find that Q and
R remain constant in phase II, whilst the conditional distribution Pτ (S|Q,R) satisfies

d

dτ
Pτ (S|Q,R) = I1(λ1(S

−),−λ2,−ω)Pτ (S
−|Q,R) + I1(−λ1(S

+), λ2,−ω)Pτ (S
+|Q,R)

−Eg(S,Q,R)Pτ (S|Q,R)

where S± = S ± ηa2. The distribution equilibrates, on the relevant time-scale, to a stationary
distribution P(S|Q,R) given as the solution of

Eg(S,Q,R)P (S|Q,R) = I1(λ1(S
−),−λ2,−ω)P (S−|Q,R)

+I1(−λ1(S
+), λ2,−ω)P (S+|Q,R).

Using relation (5) we find that this equilibrium condition can be written as A(S) +
B(S) = A(S+) + B(S−), where A(S) = I1(−λ1(S), λ2,−ω)P (S|Q,R) and B(S) =
I1(λ1(S),−λ2,−ω)P (S|Q,R). One can easily show by taking Fourier transforms that it
is satisfied by B(S) = A(S+), the correctness of which is evident by substitution. In this phase
the permissible values of S are those which differ from some initial value S(0) by an integral
multiple of ηa2. Upon writing the allowed values of S as Sn = S(0) + nηa2, we immediately
obtain P(S|Q,R) = ∑∞

n=−∞ w(Sn+1|Q,R) δ[S − Sn], where

w(Sn+1|Q,R) = I1(λ1(n),−λ2,−ω)

I1(−λ1(n + 1), λ2,−ω)
w(Sn|Q,R) (13)

with I1 as given in (A1). Equation (13) fully determines the quasi-stationary distribution
P(S|Q,R). Comparison with numerical simulations shows very satisfactory agreement (see,
e.g., figure 2). The above picture is also in line with our intuition, since in a single step the
change in S is given by

�S = �J · A = 1
2ηa

2[sgn(λ2 + y) − sgn(λ1 + x)] + 1
2ηa

z√
N

[sgn(λ2 + y) − sgn(λ1 + x)].

Provided we can neglect the N−1/2 term in this expression, which is true on the time-scale of
phase II, we see that in a single update �S ∈ {0,±ηa2}. However, if the N−1/2 term could
be neglected indefinitely this would imply that, far into the future, the system would retain a
memory of its initial conditions. In fact, the term 1

2ηaz[sgn(λ2 + y) − sgn(λ1 + x)]/
√
N

represents a random walk superposed on the quasi-stationary distribution found for S in
phase II.
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Figure 2. Histogram of values for λ1 = S/J as measured in a single simulation experiment with
N = 400 000, η = 1 and a = 1

2 , during the interval t ∈ [0, 0.07]. Here phase I is absent, by virtue
of the choice S(0) = 0, and λ2 = 0.287. The stars indicate the predicted occurrence probabilities
as calculated from (13). Over a short observation time-scale the observed distribution for λ1 is
truly discrete: no values of λ1 were found in between the centres of the histogram bars.

6. Phase III: error correction

As we enter phase III, where FIII = N , the above ‘random walk’ term will come to have a
significant role after approximatelyN iterations†, leading to a modified probability distribution
which contains a diffusion term: Sn → Sn + s(t). The walk is given by

s(t) = ηa

2
√
N

Nt∑
µ=1

z(µ)[sgn(λ2 + y(µ)) − sgn(λ1(µ) + x(µ))]

in an obvious notation, where the fields z(µ) are, as we have seen earlier, independent of (x, y).
The random walk addition s(t) has a mean of zero, and a variance given by

〈s2(t)〉 = η2a2σ 2

2N

Nt∑
µ=1

〈[1 − sgn(λ2 + y(µ)) sgn(λ1(µ) + x(µ))]〉 = t (ηaσ)2〈Eg〉 (14)

where 〈Eg〉 is to be interpreted as a time average of Eg over phase III, up to time t .
In order to extract the macroscopic laws in phase III we will now have to analyse this

diffusion effect carefully, starting from equation (11). The details of this analysis are given
in appendix B, where we show that for large N the macroscopic distribution in phase III will
again be of the form Pτ (S,Q,R) = Pτ (S|Q,R)δ[Q − Q(τ)]δ[R − R(τ)], but now with the
deterministic values {Q(τ), R(τ)} given as the solution of the coupled equations

d

dτ
Q = η

√
Q

∫
dS (K1 + L1 + M1)Pτ (S|Q,R) + 1

2η
2
∫

dS (K3 + L3 + M3)Pτ (S|Q,R)

(15)

† We are grateful to Peter Sollich for pointing this out.
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d

dτ
R = 1

2η

∫
dS (K2 + L2 + M2)Pτ (S|Q,R). (16)

The factors {Ki, Li,Mi}, defined in appendix B, are indeed functions of S (via λ1) and of
{Q,R}. The origin and meaning of these two equations can be appreciated more clearly by
writing them in the following, somewhat more appealing, form (without as yet specifying the
learning rule F[J, u, T ]):
d

dτ
Q = 2ηJ

∫
dS Pτ (S|Q,R) 〈(λ1 + x) sgn(λ2 + y)F[

√
Q,λ1 + x, sgn(λ2 + y)]〉

+η2
∫

dS Pτ (S|Q,R) 〈F2[
√
Q,λ1 + x, sgn(λ2 + y)]〉

d

dτ
R = η

∫
dS Pτ (S|Q,R) 〈|y|F[

√
Q,λ1 + x, sgn(λ2 + y)]〉

(see [13] for details). Although equations (15) and (16) are superficially similar to the equations
which we derived in phase I, we now have a situation in which functions of S are weighted
with respect to the probability distribution Pτ (S|Q,R) which satisfies a partial differential
equation derived from equation (B4) (in appendix B) by integration over Q and R, namely
d

dτ
Pτ (S|Q,R) = N

[
I1(−λ1(S

+, λ2,−ω)Pτ (S
+|Q,R) + I1(λ1(S

−,−λ2,−ω)Pτ (S
−|Q,R)

−Eg(S,Q,R)Pτ (S|Q,R)
]

+
1

2
η2a2σ 2

[
∂2

∂S2
[I1(−λ1(S

+), λ2,−ω)Pτ (S
+|Q,R)]

+
∂2

∂S2
[I1(λ1(S

−),−λ2,−ω)Pτ (S
−|Q,R)]

]
. (17)

Equations (15)–(17), together with the definitions of the shorthand version {Ki, Li,Mi} as
given in appendix B, provide an exact and closed set of equations for the macroscopic
dynamics in phase III, in terms of the observables {S,Q,R}. In the large-N limit, Q and
R satisfy deterministic equations, as in conventional no-bias theories, but S remains stochastic
throughout phase III. Furthermore, the persistent appearance of the factor λ2 (which depends
on the actual realization of the teacher weights) induces sample-to-sample fluctuations. An
example of the result of solving the coupled equations (15)–(17) numerically (via a numerical
realization, i.e. Monte Carlo, of the conditional stochastic process (17) for S) is shown in
figure 3, and compared with numerical simulations of the underlying microscopic perceptron
learning process. The agreement between theory and experiment is quite satisfactory.

7. Asymptotics of the generalization error

A full numerical study of our equations (15)–(17) would be difficult, but these equations
undergo a great simplification, permitting further analysis, if we make the approximation
Pτ (S|Q,R) = δ[S − 〈S〉], and assume that λ1(〈S〉) = λ2; numerical simulations confirm
the validity of the replacement of λ1 by λ2 on average in phase III. In this approximation
equations (15) and (16) become

d

dτ
Q = η

√
Q[K1 + L1 + M1] + 1

2η
2[K3 + L3 + M3]

d

dτ
R = 1

2 [K2 + L2 + M2].

Note that K1 + L1 + M1 = λ1[(A1 + B1 + C1) − (A2 + B2 + C2)] + (A3 + B3 + C3) −
(A4 + B4 + C4). Referring to appendix A for the relevant expressions for {Ai, Bi, Ci}
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Figure 3. Evolution of the order parameters J = |J | (upper) and S̃ = S/
√
N = J · A/

√
N

(lower), for a = 1
2 and η = 1. Markers indicate simulation results (for N = 1000), the full curve

is the theoretical curve obtained by numerical solution of equations (15)–(17). Initial conditions:
Q(0) = 10, R(0) = 0 and S̃(0) = 1. On the time-scale t = µ/N only phase III is visible. The
inset shows a magnified view of the initial stage of the process, where phase I can be observed.

in terms of the integrals I1(λ1, λ2, ω) and I2(λ1, λ2, ω), and using the identity K(α) =∫ ∞
−∞ Dy K((α − ωy)/

√
1 − ω2), we find that in the approximation λ1 = λ2 the following

identities hold:

A1 + B1 + C1 = K(λ2/σ) A2 + B2 + C2 = K(λ2/σ)

A3 + B3 + C3 =
√

2

π
ωσ exp

[
− λ2

2

2σ 2

]
A4 + B4 + C4 =

√
2

π
σ exp

[
− λ2

2

2σ 2

]

K1 + L1 + M1 = −
√

2

π
σ(1 − ω) exp

[
− λ2

2

2σ 2

]
.

K2 + L2 + M2 = (A5 + B5 + C5) − (A6 + B6 + C6) =
√

2

π
σ(1 − ω) exp

[
− λ2

2

2σ 2

]
K3 + L3 + M3 = 1 −

∫ ∞

−λ2/σ

Dy K

(
λ2 + ωσy

σ
√

1 − ω2

)
+

∫ ∞

λ2/σ

Dy K

(
λ2 − ωσy

σ
√

1 − ω2

)
= 2Eg

and equations (15) and (16) therefore become (upon rewriting the equation for Q in terms of
J = √

Q)

d

dτ
J = − η√

2π
σ(1 − ω) exp

[
− λ2

2

2σ 2

]
+

η2

2J
Eg

d

dτ
R = η√

2π
σ(1 − ω) exp

[
− λ2

2

2σ 2

]
.

(18)

The corresponding equation for ω = R/J is

d

dτ
ω = η

J
√

2π
σ(1 − ω2) exp

[
− λ2

2

2σ 2

]
− ωη2

2J
Eg (19)
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Figure 4. Distribution p(λ1) of λ1 = S/J , as measured during a single simulation run, with
N = 1000, a = 1

2 and η = 1, over the time intervals [0, 100] (dotted curve), [950, 1050] (broken
curve) and [9900, 10 000] (full curve). One observes that the fluctuations in λ1 are reduced to zero,
as time progresses.

which is to be solved in combination with (6). The numerical solution of these equations
is found to be in very good agreement with the results of numerical simulations, even for
finite times; however, it is relevant to consider what basis exists for making the approximation
λ1 = λ2, other than the fact that it works. We have already observed that the probability
distribution for S in phase III is a random walk superposed on the underlying discrete
distribution which emerged in phase II. Equation (14) indicates that the random walk, reflected
in the diffusion terms in equation (17), could, in principle, lead to a large variance for S, were
this random walk is not coupled to the underlying discrete distribution via equation (17). The
discrete distribution and the random walk, however, are found to interact in such a way that
the fluctuations actually tend to zero in the limit τ → ∞; this is confirmed by the results of
numerical simulations which show that the fluctuations in λ1 = S/J decrease with time and
that on average λ1 tends to λ2 (see figure 4). In a single step the average change in S is equal
to

1
2ηa

2〈[sgn(λ2 + y) − sgn(λ1 + x)]〉 + 1
2ηa

〈z〉√
N

〈[sgn(λ2 + y) − sgn(λ1 + x)]〉

= 1
2ηa

2

[
K

(
λ2

σ

)
− K

(
λ1

σ

)]
so, as the fluctuations in S diminish, we do indeed expect that λ1 will tend to λ2.

We will now use the coupled equations (6) and (19) to derive an asymptotic expression
for the generalization error Eg . Differentiation of (6) with respect to ω gives

∂Eg

∂ω
= − e− 1

2 β
2

π
√

1 − ω2
e− 1

2 β
2(1−ω)/(1+ω)
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with the constant β = λ2/σ . Changing the variable to ω = cos θ , and expanding for θ → 0
gives

Eg = π−1e− 1
2 β

2
∫ θ

0
du e− 1

2 β
2 tan2(u/2) = π−1e− 1

2 β
2

[
θ − β2θ3

24
+ O(θ5)

]
. (20)

Equation (18) for J and equation (19) for ω can now be written

dJ

dτ
= − ησ√

2π
(1 − cos θ)e− 1

2 β
2

+
η2Eg

2J

−J sin θ
dθ

dτ
= ησ√

2π
sin2 θ e− 1

2 β
2 − η2Eg cos θ

2J
.

Using the expansion tan θ = θ + 1
3θ

3 + O(θ5) we then expand our previous equations for the
evolution of J and θ , giving

d

dτ
θ = e− 1

2 β
2

{
− ησθ

J
√

2π
+

η2

2πJ 2
− η2θ2ρ

2πJ 2

}
+ O(θ4) with ρ = 1

24β
2 + 1

3

d

dτ
J = e− 1

2 β
2

{
− ησθ2

2
√

2π
+

η2

2πJ

[
θ − 1

24β
2θ3

]}
+ O(θ5).

Upon making the asymptotic ansatz J = A/θ , the equation for J can now be expressed so as
to give a second equation for θ . The two resulting equations for dθ/dτ are

d

dτ
θ = ησθ4

2A
√

2π
e− 1

2 β
2 − η2θ4

2A2π

[
1 − β2θ2

24
+ O(θ4)

]
e− 1

2 β
2

and

d

dτ
θ = − ησθ2

A
√

2π
e− 1

2 β
2

+
η2θ2

2πA2
e− 1

2 β
2

+ O(θ4).

Consistency requires that A be given by A = η/σ
√

2π . The asymptotic equation for θ

subsequently becomes dθ/dτ = − 1
2σ

2θ4e− 1
2 β

2
, from which we obtain the asymptotic power

law θ = kτα , where α = − 1
3 and k3 = 2e

1
2 β

2
/3σ 2. Combining this, finally, with (20) we then

obtain, recalling that in phase III one simply has τ = m/N = t :

Eg(t) = ρ(a)e−λ2
2/3σ 2

t−1/3 (t → ∞) ρ(a) =
[

2

3π3

]1/3

(1 − a2)−1/3. (21)

Note that the power of τ occurring in this expression is the same as the power which appears
in the asymptotic form of the generalization error in the conventional no-bias theory; the
coefficient is, however, different, but reduces to the familiar form in the case of zero bias,
where a = λ2 = 0 and σ = 1. Moreover, our prediction of the asymptotic form of Eg is in
excellent agreement with the results of numerical simulations. This is evident from figure 5,
where we show the observed function ρ(a), defined as ρ(a) = limt→∞ Eg(t)t

1/3eλ
2
2/3σ 2

, versus
the theoretical prediction as given in (21). Note that the dependence of (21) on the teacher-bias
overlap λ2 = B · A implies sample-to-sample fluctuations.
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Figure 5. Comparison of ρ(a) as found in simulations (N = 1000 and η = 1, see the main text
for details of its definition), for various values of the teacher-bias overlap λ2 = B · A (squares),
with the theoretical prediction (21) (full curve).

8. Discussion

We have studied analytically the dynamics of on-line learning in nonlinear perceptrons, trained
according to the perceptron rule, for the scenario of having structurally biased, i.e. O(N0), input
data. The bias changes the learning process qualitatively, inducing three distinct phases (with
different scaling properties) and persistent stochastic as well as sample-to-sample fluctuations
in the generalization error, even for N → ∞. At a theoretical level, the need to introduce
an extra order parameter S (the projection of the student weight vector in the direction of the
bias) which is neither deterministic nor self-averaging, makes the analysis considerably more
involved than that of the idealized bias-free case. In the third and final phase, in which most
of the learning takes place, we have obtained a set of exact closed equations which involve the
conditional probability density of S. However, because of their complicated nature, an exact
analytic solution of these equations appears to be out of the question, as is also generally the
case in the more familiar no-bias scenarios. Nevertheless, we have found that an approximate
(and much simpler) version of our equations yields results which are in excellent agreement
with numerical simulations. We show that the asymptotic power law for the generalization
error is largely preserved, with the bias showing up only in the pre-factor. At various stages
throughout out calculations we have compared the predictions of our macroscopic dynamic
equations with the results of numerical simulations of the underlying (microscopic) learning
process, which consistently showed excellent agreement.

Although in this paper we have confined ourselves to the perceptron learning rule, it is
clear that our analysis is in no way restricted to this particular rule, and can be applied to other
rules such as the AdaTron learning rule, where �J = η

2N ξ[sgn(B · ξ) − sgn(J · ξ)]|J · ξ|;
one could even study optimal learning rates and optimal learning rules, generalizing [14] to
the case of having a �= 0. Preliminary studies of the AdaTron learning rule with structurally
biased data show, for instance, that the simple result (13), describing the phase II distribution
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in the case of the perceptron, is replaced by the integral equation

EgPτ (S̃|Q,R) = ηa2J

∫ ∞

−λ1

dρ G(ρ, λ2) Pτ (S̃ + (λ1 + ρ)ηa2J )|Q,R)

+ηa2J

∫ ∞

λ1

dρ G(ρ,−λ2)Pτ (S̃ + (λ1 − ρ)ηa2J )|Q,R)

where G is defined by

G(x, λ2) = e−(x2/2σ 2)

2σ
√

2π

[
1 − K

(
λ2 + ωx

σ
√

1 − ω2

)]
.

The discrete distribution which in the present paper we found for the perceptron in phase II
no longer applies in the AdaTron case, and is replaced by a continuous distribution which
satisfies the above integral equation. The analysis of the AdaTron in the case of biased data is
more complicated than for the perceptron, as might have been expected from the nature of the
AdaTron learning rule, but much of the work which we have presented for the perceptron can
be carried through and the results will be published later. There is also scope for a more detailed
mathematical investigation of the partial differential equation which we derived to describe
the conditional probability distribution Pτ (S|Q,R) for the perceptron, but this is likely to be
difficult, and is beyond the scope of the present paper.
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Appendix A. Integrals and averages

We recall that the function K is defined by K(x) = erf(x/
√

2). In terms of this definition
note that

∫ ∞
τ

dζ e− 1
2 ζ

2 = 1
2

√
2π [1 − K(τ)]. We now proceed to list various integrals which

occur in our calculations, or are referred to in the text, and where appropriate outline a brief
derivation. Recall that the joint distribution of (x, y) = (Ĵ · v,B · v) is given by

p(x, y) = [2πσ 2
√

1 − ω2]−1 exp

[
−1

2

[x2 − 2ωxy + y2]

σ 2(1 − ω2)

]

where σ 2 = 1 − a2 and ω = B · Ĵ . We then find that

I1(λ1, λ2, ω) =
∫ ∞

λ1

dx
∫ ∞

λ2

dy p(x, y)

=
∫ ∞

λ2

dy

2πσ
exp

[
− y2

2σ 2

] ∫ ∞

(λ1−ωy)/(σ
√

1−ω2)

dζ e− 1
2 ζ

2

= 1

4

[
1 − K

(
λ2

σ

)]
− 1

2

∫ ∞

λ2/σ

Dy K

(
λ1 − ωσy

σ
√

1 − ω2

)
(A1)
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and similarly

I2(λ1, λ2, ω) =
∫ ∞

λ1

dx x
∫ ∞

λ2

dy p(x, y) =
∫ ∞

λ1

dx x

2σ
√

2π
exp

[
− x2

2σ 2

]

−
∫ ∞

λ1

dx x

2
√

2πσ
exp

[
− x2

2σ 2

]
K

(
λ2 − ωx

σ
√

1 − ω2

)

= σ

2
√

2π
exp

[
− λ2

1

2σ 2

][
1 − K

(
λ2 − ωλ1

σ
√

1 − ω2

)]

+
ωσ

2
√

2π
exp

[
− λ2

2

2σ 2

][
1 − K

(
λ1 − ωλ2

σ
√

1 − ω2

)]
.

The following averages with respect to the distribution p(x, y) are easily calculated:

〈sgn(λ1 + x)〉 = K

(
λ1

σ

)
〈x sgn(λ2 + y)〉 =

√
2

π
ωσ exp

[
− λ2

2

2σ 2

]

〈x sgn(λ1 + x)〉 =
√

2

π
σ exp

[
− λ2

1

2σ 2

]
〈sgn(λ1 + x) sgn(λ2 + y)〉 = I1(λ1, λ2, ω) − I1(−λ1, λ2,−ω) − I1(λ1,−λ2,−ω)

+I1(−λ1,−λ2, ω)

=
∫ ∞

−λ2/σ

Dy K

(
λ1 + ωσy

σ
√

1 − ω2

)
−

∫ ∞

λ2/σ

Dy K

(
λ1 − ωσy

σ
√

1 − ω2

)
.

Finally, in studying phases II and III we require the following averages:

〈sgn(λ2 + y) e−iŜk·A〉 = A1 + B1eiŜηa2
+ C1e−iŜηa2

〈sgn(λ1 + x) e−iŜk·A〉 = A2 + B2eiŜηa2
+ C2e−iŜηa2

〈x sgn(λ2 + y) e−iŜk·A〉 = A3 + B3eiŜηa2
+ C3e−iŜηa2

〈x sgn(λ1 + x) e−iŜk·A〉 = A4 + B4eiŜηa2
+ C4e−iŜηa2

〈y sgn(λ2 + y) e−iŜk·A〉 = A5 + B5eiŜηa2
+ C5e−iŜηa2

〈y sgn(λ1 + x) e−iŜk·A〉 = A6 + B6eiŜηa2
+ C6e−iŜηa2

〈e−iŜk·A〉 = A7 + B7eiŜηa2
+ C7e−iŜηa2

〈sgn(λ1 + x) sgn(λ2 + y) e−iŜk·A〉 = A8 + B8eiŜηa2
+ C8e−iŜηa2

where

A1 = −[I1(λ1, λ2, ω) − I1(−λ1,−λ2, ω)]

B1 = −I1(−λ1, λ2 − ω)

C1 = I1(λ1,−λ2,−ω)

A2 = −[I1(λ1, λ2, ω) − I1(−λ1,−λ2, ω)]

B2 = I1(−λ1, λ2,−ω)

C2 = −I1(λ1,−λ2,−ω)
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A3 = [I2(λ1, λ2, ω) + I2(−λ1,−λ2, ω)]

B3 = −I2(−λ1, λ2,−ω)

C3 = −I2(λ1,−λ2,−ω)

A4 = [I2(λ1, λ2, ω) + I2(−λ1,−λ2, ω)]

B4 = −I2(−λ1, λ2,−ω)

C4 = I2(λ1,−λ2,−ω)

A5 = [I2(λ2, λ1, ω) + I2(−λ2,−λ1, ω)]

B5 = I2(λ2,−λ1,−ω)

C5 = I2(−λ2, λ1,−ω)

A6 = [I2(λ2, λ1, ω) + I2(−λ2,−λ1, ω)]

B6 = −I2(λ2,−λ1,−ω)

C6 = −I2(−λ2, λ1,−ω)

A7 = 1 − Eg

B7 = I1(−λ1, λ2,−ω)

C7 = I1(λ1,−λ2,−ω)

A8 = [I1(λ1, λ2, ω) + I1(−λ1,−λ2, ω)]

B8 = −I1(−λ1, λ2,−ω)

C8 = −I1(λ1,−λ2,−ω).

All these formulae may be established by elementary methods. For example,

〈x sgn(λ2 + y) e−iŜk·A〉 =
∫

dx dy x p(x, y) sgn(λ2 + y)e− 1
2 iŜηa2[sgn(λ2+y)−sgn(λ1+x)]

=
[∫ −λ1

−∞
dx x +

∫ ∞

−λ1

dx x

][∫ ∞

−λ2

dy e− 1
2 iŜηa2(1−sgn(λ1+x))p(x, y)

]

−
[∫ −λ1

−∞
dx x +

∫ ∞

−λ1

dx x

][∫ ∞

λ2

dy e
1
2 iŜηa2(1+sgn(λ1+x))p(x,−y)

]

=
∫ ∞

λ1

dx x
∫ ∞

λ2

dy p(x, y) −
∫ ∞

−λ1

dx x
∫ ∞

λ2

dy eiŜηa2
p(x,−y)

−
∫ ∞

λ1

dx x
∫ ∞

−λ2

dy e−iŜηa2
p(x,−y) +

∫ ∞

−λ1

dx x
∫ ∞

−λ2

dy p(x, y)

= I2(λ1, λ2, ω) − eiŜηa2
I2(−λ1, λ2,−ω) − e−iŜηa2

I2(λ1,−λ2,−ω)

+I2(−λ1,−λ2, ω)

= A3 + B3eiŜηa2
+ C3e−iŜηa2

as required.
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Appendix B. Analysis of macroscopic distribution in phase III

Here we give the details of our analysis of the macroscopic distributionPτ (S,Q,R) in phase III,
starting from equation (11). We note that, in phase III:

e−iŜ�J ·A = e−iŜk·A
{

1 − iηazŜ

2
√
N

[sgn(λ2 + y) − sgn(λ1 + x)]

− (ηazŜ)2

4N
[1 − sgn(λ1 + x) sgn(λ2 + y)] + · · ·

}
.

The terms which we neglected are O(N−2), since when performing averages over the training
set the average of the z3 term is zero. Equation (11) now yields

Wτ [Ω,Ω′] = N

∫
dΩ̂

(2π)3

〈
eiΩ̂·[Ω−Ω(J)]

〈
e−iŜk·A − 1

− (ηaσ Ŝ)2

4N
e−iŜk·A[1 − sgn(λ1 + x) sgn(λ2 + y)]

〉
ξ

−
∫

dΩ̂
(2π)3

eiΩ̂·[Ω−Ω(J)]{· · ·}III

〉
Ω′

(B1)

where

{· · ·}III = iN
∑
iµ

〈
ki
∂1µ

∂Ji
e−iŜk·A

〉
ξ

1̂µ +
1

2
iN

∑
ijµ

〈
kikj

∂21µ

∂Ji∂Jj
e−iŜk·A

〉
ξ

1̂µ

+
1

2
N

∑
ijµν

〈
kikj

∂1µ

∂Ji

∂1ν

∂Jj
e−iŜk·A

〉
ξ

1̂µ1̂ν. (B2)

We showed in appendix A that∫
dx dy p(x, y) sgn(λ1 + x) sgn(λ2 + y) e−iŜk·A = I1(λ1, λ2, ω) − I1(−λ1, λ2,−ω) eiŜηa2

−I1(λ1,−λ2,−ω) e−iŜηa2
+ I1(−λ1,−λ2, ω)

so that∫
dx dy p(x, y) e−iŜk·A[1 − sgn(λ1 + x) sgn(λ2 + y)]

= 2
[
eiŜηa2

I1(−λ1, λ2,−ω) + e−iŜηa2
I1(λ1,−λ2,−ω)

]
by virtue of equation (12) and the fact that I1(λ1, λ2, ω)+ I1(−λ1,−λ2, ω) = 1−Eg . Bearing
in mind the sub-shell average we may write∫

dŜ Ŝ2 eiŜ[S±ηa2−S(J)] = −2π
∂2

∂S ′2 δ[S ± ηa2 − S ′].

Upon combining equations (7), (12) and (B1) we find that in phase III the joint probability
density Pτ (S,Q,R) satisfies

d

dτ
Pτ (S,Q,R) = N

[
I1(−λ1(S

+), λ2,−ω)Pτ (S
+,Q,R)

+I1(λ1(S
−),−λ2,−ω)Pτ (S

−,Q,R) − Eg(S,Q,R)Pτ (S,Q,R)
]
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+
1

2
η2a2σ 2

∫
dΩ′ Pτ (Ω′)

[
I1(−λ1(S

′), λ2,−ω)
∂2

∂S ′2 δ[S + ηa2 − S ′]

+I1(λ1(S
′),−λ2,−ω)

∂2

∂S ′2 δ[S − ηa2 − S ′]
]
δ[Φ − Φ′]

−
∫

dΩ′

(2π)3
Pτ (Ω′)

〈∫
dΩ̂ eiΩ̂·[Ω−Ω(J)]{· · ·}III

〉
Ω′

where {· · ·}III is given by equation (B2), and hence

d

dτ
Pτ (S,Q,R) = N

[
I1(−λ1(S

+), λ2,−ω)Pτ (S
+,Q,R)

+I1(λ1(S
−),−λ2,−ω)Pτ (S

−,Q,R) − Eg(S,Q,R)Pτ (S,Q,R)
]

+
1

2
η2a2σ 2

[
∂2

∂S2
[I1(−λ1(S

+), λ2,−ω)Pτ (S
+,Q,R)]

+
∂2

∂S2
[I1(λ1(S

−),−λ2,−ω)Pτ (S
−,Q,R)]

]
−

∫
dΩ′

(2π)3
Pτ (Ω′)

∫
dΩ̂

〈
eiΩ̂·[Ω−Ω(J)]{· · ·}III

〉
Ω′ . (B3)

As regards the evaluation of {· · ·}III we note that

N
∑
iµ

〈
ki
∂1µ

∂Ji
e−iŜk·A

〉
ξ

1̂µ = ηJ
〈
(λ1 + x)[sgn(λ2 + y) − sgn(λ1 + x)] e−iŜk·A〉

1̂1

+ 1
2η〈(λ2 + x)[sgn(λ2 + y) − sgn(λ1 + x)] e−iŝk·A〉1̂2

= ηJ [K1 + L1eiŝηa2
+ M1e−iŝηa2

]1̂1 + 1
2η[K2 + L2eiŝηa2

+ M2e−iŜηa2
]1̂2

in which

K1 = λ1(A1 − A2) + (A3 − A4) K2 = λ2(A1 − A2) + (A5 − A6)

L1 = λ1(B1 − B2) + (B3 − B4) L2 = λ2(B1 − B2) + (B5 − B6)

M1 = λ1(C1 − C2) + (C3 − C4) M2 = λ2(C1 − C2) + (C5 − C6)

and Ai, Bi and Ci are functions defined in appendix A, and expressed in terms of the integrals
I1(λ1, λ2, ω) and I2(λ1, λ2, ω). In a similar way we find that

N
∑
ijµ

〈
kikj

∂21µ

∂Ji∂Jj
e−iŜk·A

〉
ξ

1̂µ = η2
〈
[1 − sgn(λ1 + x) sgn(λ2 + y)] eiŝk·A〉

1̂1

= η2
[
K3 + L3eiŝηa2

+ M
−iŝηa2

3

]
1̂1

where K3 = A7 − A8, L3 = B7 − B8 and M3 = C7 − C8. Note that the term

N
∑
ijµν

〈
kikj

∂1µ

∂Ji

∂1ν

∂Jj
e−iŜk·A

〉
ξ

1̂µ1̂ν

makes no contribution to Wτ [Ω,Ω′] in the limit of large N . Using equations (B2) and (B3)
we can now carry out the remaining integrations using standard formulae from distribution
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theory, as described for earlier phases, and find that

d

dτ
Pτ (S,Q,R) = N

[
I1(−λ1(S

+), λ2,−ω)Pτ (S
+,Q,R)

+I1(λ1(S
−),−λ2,−ω)Pτ (S

−,Q,R) − Eg(S,Q,R)Pτ (S,Q,R)
]

+ 1
2η

2a2σ 2

[
∂2

∂S2
[I1(−λ1(S

+), λ2,−ω)Pτ (S
+,Q,R)]

+
∂2

∂S2
[I1(λ1(S

−),−λ2,−ω)Pτ (S
−,Q,R)]

]
− ∂

∂Q

[
ηJ [K1Pτ (S,Q,R) + L1Pτ (S

+,Q,R) + M1Pτ (S
−,Q,R)]

+ 1
2η

2[K3Pτ (S,Q,R) + L3Pτ (S
+,Q,R) + M3Pτ (S

−,Q,R)]
]

− ∂

∂R

[
1
2η[K2Pτ (S,Q,R) + L2Pτ (S

+,Q,R) + M2Pτ (S
−,Q,R)]

]
. (B4)

Integration over S now gives, in combination with the relation Eg = I1(−λ1, λ2,−ω) +
I1(λ1,−λ2,−ω):

d

dτ
Pτ (Q,R) = − ∂

∂Q

{
Pτ (Q,R)

[
ηJ

∫
dS (K1 + L1 + M1)Pτ (S|Q,R)

+
1

2
η2

∫
dS (K3 + L3 + M3)Pτ (S|Q,R)

]}
− ∂

∂R

{
Pτ (Q,R)

[
1

2
η

∫
dS (K2 + L2 + M2)Pτ (S|Q,R)

]}
which is a Liouville equation with solution Pτ (Q,R) = δ[Q − Q(τ)]δ[R − R(τ)], where
the deterministic flow trajectories (Q(τ), R(τ)) are given as the solutions of (15) and (16), as
claimed.
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