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Abstract—Failure in the network devices can be identified
by detecting changes in the behaviour of the network. Such
a network can be part of the communication infrastructure,
which will play a significant role in the emergency managements.
Network power consumption behaviour, namely its power profile,
is a relatively robust profile such that from changes in that profile
failure of the links or/and the nodes in the network can be
detected. In this paper, we propose a statistical change detection
system that relies on the ICI-based test to detect variations in
the profile of the power consumption. After failure detection,
the proposed solution continues reading new samples of power
consumption data to build the new power profile, which will
allow us to detect multiple failures that occur in series. Through
numerical examinations we show the effectiveness of the change
detection action.

Index Terms—network failure detection;network power model;
change detection test;

I. INTRODUCTION

Faults or failures in a network (i.e., a network of servers
or routers) can happen due to a faulty functioning in the
electronic, software bugs or link problems at the connection
layer. Such failures can clearly affect the correct operational
work of, which can be part of the critical infrastructure. Faults
and failures must hence be detected as soon as possible to limit
the degradation of the services and this goal can be achieved
by promptly detecting abnormal behaviours in the network.
Precision and sharpness in such detection are important as the
sooner the failure is detected the less drawbacks it may have
on the performance. Moreover, some network operation may
be reluctant to a single failure, which opens the need for the
identification of multiple failure that may occur in sequence.

The power consumption model, namely power profile, is
one of the relatively robust behaviour of the network. For this
reason, it can be used to identify anomalous behaviours in the
network since failures of the links or/and the network nodes
generally imply variations in this profile. It is worth noting
that the power profile depends on the network load: the power
consumption of the network varies with the amount of traffic
carried by the units within the network. For example, when the
network is lightly loaded small changes in the load may induce
large changes in the power consumption, while in higher
traffic level these changes could be smoother [1] (see Figure
1). Therefore, any change detection ability should provide

different sensitivity to the changes in the power consumption
values depending on the load region.

The need to promptly and effectively detect faults (or in
general variations in the behaviour of the network) can be
satisfied by considering the use of change detection tests
(CDTs) that are statistical techniques able to assess the station-
ary of a data generating process over time. These techniques
have been successfully applied to several applicative domain
such as fault detection and identification, quality inspection
systems, classification techniques working in nonstationary
environments, just to name a few. For the first time in the
literature we here suggest to monitor the behaviour of a
network by applying a CDT to its power profile. Among the
wide range of CDTs (see [2][3] for a detailed review), the non-
parametric sequential change point detection tests guarantee
an on-line detection change-detection action (i.e., these tests
are able to work on stream of data) without requiring any
apriori information about the process or the change. For these
reasons, this family of CDT represents a good candidate to be
considered for the detection of variations in the power profiles
of the network. In more detail, among the non-parametric
sequential change point detection tests present in the literature
[4], [5], [6], [7], we adopt the ICI-based CDT [8] since it
guarantees a prompt and effective detection ability together
with a reduced computational complexity. Moreover, it does
not require any a-priori information about the process or the
change. As described in Section III, to address the problem
of the dependency between the power profile and the network
load, we divide the power profile curve into a set of regions
and consider an ensemble of CDTs, in which each CDT
assesses the stationary of the power profile in a subset of the
network load range. This approach allows us to detect the
changes more precisely and more quickly than a single test
whose detection abilities are limited to changes affecting the
whole power profile.

In addition to the failure detection, identifying such changes
and reflecting accordingly on the power consumption model
could benefit the performance of the network algorithms that
operates in the power-aware manner. By increasing demands in
saving energy in the backbone of the communication networks,
more number of network protocols utilise power consumption
as a design and decision criterion. For example, the energy-



Figure 1. A PC-based router power consumption versus traffic, for different
size of packets [1].

aware routing protocol introduced in [9] is an autonomic
algorithm, which modifies the paths with the objective of
minimising power in addition to the other quality related
parameters. Also, the effect of considering network energy
consumption in the admission policy is investigated in [10].

The remainder of this paper is organized as follows. Section
II illustrates how detecting changes in the power profile
can be used as an identification of a network failure. In
Section III, details of the proposed change detection system are
discussed. After describing different scenarios for examining
the performance of the proposed CDS, results are presented in
Section IV. Furthermore, figures of merit used for performance
examinations are introduced in this section. The road ahead
and possible extensions to this research is discussed in Section
V. Finally, this paper concludes in Section VI.

II. NETWORK FAILURE AND CHANGES IN ITS POWER
PROFILE

We assume that the power consumption of the network
routers is available in a manner which is correlated with the
traffic carried by the routers. The representation of power
consumption versus traffic is called “power profile” throughout
this paper. Figure 1 shows an example of a PC-based router
power profile. Given such a profile for all the entities in the
network, the power profile of any instant of the network can
be available.

Once we have acquired such a representation, this is as-
sumed as a normal operational curve of that router and (or) the
network such that changes in the behaviour can be observed as
a failure within the router or in the connectivity of the network.
For example if there is a failure in any of the routers or any
link between two routers, the length of available shortest path
may change and this results in the change of the pattern of
power consumption for the certain amount of input traffic.

In the first case, i.e. failure in the router, the change can be
observed on the pattern of the corresponding router’s power
consumption. In the second case, the change is observed on the
power profile of all the network instances that include any of
the failed/modified links. Our interest is first to identify such
changes and inform the network operator of such a failure.
Afterwards, the power profile of the corresponding entity is
updated promptly such that the new behavior is captured, so
that serial failures can also be detected.

III. THE PROPOSED CHANGE DETECTION SYSTEM

The dependency between power consumption and network
load did not allow us to rely on the traditional approach of
CDTs in which a CDT assesses the stationary of a stream
of data. In fact, in the considered application scenario, such
an approach could only guarantee a coarse change detection
ability (i.e., changes affecting the whole power profile could
be detected) and might not perceive variations affecting only
part of the power profile.

To overcome this problem the change detection system
(CDS) proposed in this paper divides the range of network
loads into M partitions and a single CDT is applied to each
partition of loads individually and independently. Figure 2
shows this partitioning over the measured power profile of a
PC-based router. The value of M is chosen as a fixed, constant
value, and as high as the complexity of the system and the
amount of samples available for the training phase allow us.
We present two partitioning policies: fixed number of samples
and fixed width. The first one assumes a constant number
of collected samples (i.e. N is constant), and afterwards
M partitions are shaped such that each partition includes
approximately an equal number of samples (n = N/M ).
The second policy assumes that the fixed and equal width
partitions but N is not a-priori fixed, and thus the learning
phase continues such that minimum n number of samples are
obtained in each partition (a constraint on the maximum N
could be considered to bound the learning phase). The first
policy has a simpler learning phase, although the second policy
compromises a simpler partitioning. We perform tests using
both policies and the accuracy of the CDS using any of these
partitioning is examined.

As stated in Section I, among the wide range of CDTs we
selected on the ICI-based CDT for its high change detection
ability and the reduced computational complexity. Moreover,
this CDT does not require any a-priori information neither
about the data model nor about the change (i.e., change model,
magnitude of the change, time instant the change started). The
ICI-based CDT aims at detecting variations in the data w.r.t.
to a reference stationary state that is learnt during an initial
training phase. For this reason, to guarantee the detection
ability, the proposed CDS needs to be trained by exploiting a
sequence of N samples of (Λj , P (Tj)) with 1 <= j <= N
representing the power consumption of the network in the
stationary state (i.e., no failure may occur in the system). After
this, the CDS enters its working phase in which variations
from the trained profile will be detected. The value of N can



Figure 2. The architecture of the proposed change detection system for the
detection of changes in the power consumption profile.

be either fixed or dynamically identified depending on how
the change detection system exploits data. This issue will be
described in the next Section.

In addition to the detection ability, the proposed CDS also
provides an estimate of the time instant the change begun
by relying on the change-detection refinement procedure [11]
of the ICI-based CDT. This information is fundamental to
guarantee the adaptability of the system in which the CDS
has to work since it allows to distinguish between the obsolete
acquired data (i.e., data acquired before the change) and the
up-to-date data (i.e., data acquired after the change). The latter
set of data becomes precious to retrain both the CDS (to be
able to detect multiple faults) and update the estimates of the
power consumption profile of the network. Thus, an effective
estimate of the time instant the change begun is particularly
important to guarantee the adaptivity of the system over time.
In more detail, let T ∗ be the time instant the change occurred
and T

′
be the time instant the change is detected by the CDS.

The detection delay (DD), defined as T
′ − T ∗, represents the

amount of time elapsed from the occurrence of the change
and its detection. Lower detection delays mean that the CDS is
prompt in detecting changes. Moreover, the CDS provides also
an estimate T

′′
of the change start time, and the gap between

this estimate and T ∗ is called refined detection delay (RDD)
and can be described as T

′′ −T ∗. Hence, data samples in the
period [T

′′
, T

′
] are used as the new data set for learning of

the CDS and the power profile estimation. If T
′′−T

′
< N the

CDS will wait for additional samples coming from the field up
to the point that either N or N

′
samples are available as in the

training phase of policy 1 and 2, respectively (we are assuming
the no change happens between T

′
and the time instant the

change detection system has enough samples to perform its
training phase). Meanwhile, the learning machine keeps on
introducing new data coming from the field to increase the
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Figure 3. Dataset One : Detection Delay Vs. the scale of change in the
power model (δ), when M = 2
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Figure 4. Dataset Two : Detection Delay Vs. number of partitions (M ),
when δ = 5%

estimation accuracy of the power reconstruction profile over
time. To this end, the CDS can reconstruct the new model
that describes power versus traffic at time T

′
, which can be

utilised for further monitoring of the network.

IV. PERFORMANCE EXAMINATIONS

For our experiments, we use the polynomial model for
network power consumption presented in [1]. Based on this
model, four sets of data samples are produced, while the
similar assumptions apply to the statistical behavior of all the
data samples. We assume each change detection test runs over
a set of 4000 data samples among which 2000 samples are
in the stationary mode and a change occurs at the 2001st
sample as a results of a failure in the network. The traffic
values (or loads), Λ, are generated as uniformly distributed
random variables in the range [10, 85000] packet-per-seconds
(pps) in ten data sets with the length of 200 samples, and



each set is sorted in the increasing order of traffic. The power
consumption vector P as corresponds to the data set of traffic,
is separately available.

By using the first partitioning policy (we refer to it as rule
one in the results’ explanation), the number of data samples
that are used for the training phase, are set to 200 and 400
(N = 200 and N = 400). Hence, the effect of number of
training samples N on the accuracy and responsiveness of the
CDS is examined. To this end, partitions are made such that
approximately k = N/M samples exist in each partition. We
then considered the second policy (i.e., rule two) where the
partitions are fixed and we assume the minimum number of
required sample in each partition is k. Given that the number
of samples in the training set N

′
would vary, we bound it

such that it will not get more than 10% larger than the value
of N in the first policy (e.g., its maximum would be either 220
samples or 440 samples depending on the scenario). As the
traffic data are uniformly distributed, having the minimum of
k samples in each partition can be achieved within a training
set that is not much larger than the one in the previous setting
(i.e. N ).

In order to investigate the performance of CDT, we present
four performance metrics. The first and the second one are the
detection delay (DD), which represents how prompt the change
is being detected, and the refined detection delay RDD, which
shows how precise the start point of change can be estimated
by the CDS. Both figures of merit have been presented in the
previous section. Furthermore, we introduce the rate of False
Positive (FP) and False Negative (FN) detections. The rate of
FP refers to the percentage of the experiments in which the
CDS detects a change when there is not, while the rate of FN
refers to the percentage of experiments the test can not detect
the change although it occurred.

We perform two sets of experiments, both for a number
of partitions ranging from M = 1 to M = 5. In the first
set of experiments, changes have been applied to the power
profiles across the whole range of traffic values such that the
values of the power consumptions are increased/decreased by
δ%. This change can be the effect of total failure of a node
in the network that can change the power profile across the
whole range of traffic. In the following plots dataset one refers
to the change in the power consumption represented as P

′

j =

(1+δ)Pj ∀ Tj , and dataset two refers to P
′

j = (1−δ)Pj ∀ Tj .
Change detection test runs independently on each data set and
the delay of detecting the occurrence of change is plotted in
Figures 3 and 4. In Figure 3, the detection delay is plotted
versus the magnitude of the change in the power consumption
model. Clearly the larger the scale of change, the easier to be
detected by the CDS and thus the detection delay in detecting
the change is decreased. Figure 4 shows the detection delay
versus the number of partitions.

The significant reduction in the detection delay between
M = 1 and M > 1 confirms the advantages provided by the
partitioning methods. This phenomena is also related to the
shape of the power consumption model, which can potentially
be divided into two parts, a curve part and an approximately
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Figure 5. Dataset Three : Detection Delay Vs. number of partitions (M ),
when δ = 5%.

flat part. In the case of M = 1 a large variation among
data samples can be observed, although when there are two
partitions, the samples corresponds to the semi flat part of the
model that are characterized by the small standard deviation
lies in the same partition and allow a more precise training
phase. When M > 2, although similar to the M = 2 more
precise training phase is possible, each partition includes less
training samples. Also in the operational phase, the probability
that an incoming sample belongs to any single partition is less
than the case of M = 2 and thus it takes slightly longer for
the CDS to discover the change.

It is also interesting to note that the test trained by larger
number of samples (N = 400) provides higher detection
delays than the scenario with less training samples (N = 200).
The main reason for this behavior is the statistical charac-
teristic of the CDT i.e. by increasing the number of training
samples the rate of false positives is decreased significantly but
at the expense of higher detection delays. Further observations
from these two figure show that detection delays are very
similar when either of partitioning rule one or two are used.
As mentioned earlier, traffic values are uniformly distributed
and, thus, the total numbers of training samples are very close
in the two partitioning rules, which is the main reason for the
similar performance. Despite this, it can be seen later that the
rate of FP signals are largely different.

The second set of experiments are designed such that power
model is modified for the certain range of traffic values.
Such a change can for example resemble failures of some
but not all links of the node, which can only affect if load
is higher than certain value. In this set, the values of power
consumption is increased/decreased by δ% by using the same
model as described above but only when traffic is larger
than 42 kpps (we recall that traffic values vary in the range
of 10 pps to 85 kpps). Thus, data set three is created by
applying the following change to the power consumption
values, P

′

j = (1 + δ)Pj , if Tj ≥ 42000, and for data set
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Figure 6. Dataset Four : Detection Delay Vs. the scale of change in the
power model (δ), when M = 2.

four P
′

j = (1 − δ)Pj , if Tj ≥ 42000. The detection delay
as achieved by this set of experiments are plotted in Figures
5 and 6. It can be seen that the enhancement in detection
delay due to the partitioning is more significant with respect
to the results presented in Figure 4. This is due to the fact that
the perturbation affects only part of the data samples and, by
looking at the whole set as just one partition (i.e. M = 1), the
effect of the perturbation is less evident, and thus detecting the
change is far more difficult. This effect can be also confirmed
by observing the larger gap between the delay at M = 1 and
M > 1 in Figure 5 comparing to this gap in Figure 4, and
also the actual delay at M = 1 in Figure 5, which is larger
than its equivalent in Figure 4.

We also investigate how the change of M , N and δ can
affect the rate of FP and FN signals. These two figures of
merit clearly indicate the effectiveness of our test. The rate of
FP and FN detection are shown in Figures 7(a) and 7(b) for the
data set one and δ = 0.05. The most interesting observations
from these results are the advantages and drawbacks of the
partitioning. It can be seen that the rate of false positive
increases with M , which is due to the reduction in the
training samples in each partition to effectively characterize
the stationary state and by the fact that we are running multiple
tests in parallel. Therefore the largest FP is achieved when
N = 200 and M = 5 (that implies the least number of samples
in one partition). On the contrary, FN rates decreases by
increasing the number of partitions, as each test can focus on
a smaller subset of data and capture a more precise statistical
characterisation of that data.

Another interesting observation from Figure 7(a) is the
difference in FP rates as achieved by the partitioning rule one
and two. When M = 2 and M = 3, partitioning rule two
shows smaller FP rate, since it is able to rely on more samples
in one or more partitions comparing to the first rule. While
for M > 3, partitioning rule one outperforms the rule two
and even their difference is increased by increasing M to five.
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Figure 7. Rate of (a) False Positive (FP) detections (b) False Negative (FN)
detections versus number of partitions in examination of data set one, when
δ = 5%

From the experimental results, it can be seen that for M > 3,
the number of training samples always reach the maximum
allowed (e.g. 220 or 440), that shows the partitioning was
unsuccessful in acquiring k samples in each partition.

V. FUTURE WORKS

A. Using the measured data

One clear extension of this work is applying our CDT to the
sets of data from the real network measurements. In order to
capture the more complex behaviour of the real network, larger
amount of data from network measurements are required. For
example, the measured data show higher standard deviation
among its samples that reflects the measurement errors. In
this section, we provide some preliminary examinations with
small data sets from the measurements. While not having
large enough data sets, the performance metrics vary widely,
some preliminary results can be found here. For thorough
investigations based on the measured data in the future, larger
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data sets are required. Similar to the previous experiments,
different number of partitions from M = 1 to M = 5 are
examined, while number of samples in the training set is the
same as the previous experiments. In the presented results of
Figures 8, dataset four refers to the changes applied to the
power models across the whole range of traffic values (such
that the values of power consumption is increased/decreased
by δ = 10%), while in dataset five changes are applied when
the value of the load exceeds 250 kpps (traffic values here
vary in the range of 10 pps to 500 kpps).

Figure 8 shows the detection delay that runs in the two
datasets four and five, where it can be seen that delay in the
case of data set five is significantly increased comparing with
the examination on dataset four. This is due to the fact that
less data samples are modified in dataset five and thus there
is a less probability for the change to be detected. Further
observations from this figure show that by increasing the
length of training set from 200 to 400 samples in dataset
five, the delay is decreased significantly comparing to the
test applied to dataset four. As mentioned above, in dataset
five, less data samples are modified after the change and
thus increasing the training set can potentially have a more
significant effect on the performance.

B. Ensamble of CDTs

The experimental section showed the effectiveness of the
partitioning in detecting changes in the power profile. Unfor-
tunately, as stated in the previous section, the drawback of
such an approach is the possible increase in FP as the number
of partitions increases due to the fact that multiple CDTs are
running in parallel. To deal with such a unpleasant issue, we
can extend the suggest CDS to a hierarchical architecture
in which the output of a set of CDTs are provided to an
higher level CDT (e.g., a statical hypothesis test) that perform
more advanced analysis (e.g., by correlating measurements and
detection at the group level of CDT) to validate the detection.

Such an approach, as suggested in [12], can provide very low
detection delays together with a reduced false positive rates.

VI. CONCLUSIONS

Failures in the network devices or links can be identified
by the changes in the way network behaves. Network power
consumption is one of those behaviour that can be used to
identify failures. In this paper, a statistical Change Detection
System (CDS) is presented that can capture the changes in
the network power profile, and also can modify the power
consumption model to the new behaviour such that multiple
and serial failures can be detected. The proposed CDS relies
on the ICI-based test to detect variations in the profile of the
power consumption. Moreover, the CDT can also improve the
precision of the power profile. The network power profile and
its accuracy is important for the performance of energy aware
network policies, and therefore the CDT can also benefit those
areas. Through performance investigations, we show that the
discussed CDS can detect the changes and modify the power
profile with a small delay after the occurrence of change.
In addition, the presented CDT in this paper, can easily be
extended to the other network performance metrics and be
used as the failure detection.
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