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Abstract—Numerous flavors of TCP are already in existence,
and further variations on TCP mechanisms are frequently being
introduced in order to, for example, cope with the packet
loss characteristics of wireless links. Moreover, the proliferation
new wireless standards and the relative performance differences
among them have been mushrooming in recent years. Given the
increasingly heterogeneous nature of the Internet, mechanisms do
not usually exist for a server to specifically select an appropriate
TCP flavor for each individual download. In this paper, we
therefore present and assess a cross-layer solution for a node
(e.g. a base-station) to rapidly adapt lower layer characteristics
(the coding rate and local ARQ retransmissions threshold) based
on the detected TCP flavor, in order to optimize the end-to-end
performance of the download for that utilized flavor of TCP. We
demonstrate that the proposed scheme has considerable potential
to improve the overall download throughput, while placing no
burden on the server and requiring no changes to existing TCP
flavors.

I. INTRODUCTION

Transmission Control Protocol (TCP) [1] is the predom-
inantly utilized transport protocol to achieve reliable data
transfer from a server to a client over the Internet. TCP is,
however, continually being remolded, initially to optimize its
performance over wired networks [2][3][4], but more recently
also to improve its performance over large bandwidth-delay
links and wireless links [5]. This latter consideration is par-
ticularly challenging, as the random losses of wireless links
typically fool TCP congestion control into thinking that these
losses are due to congestion, causing TCP to unnecessarily
reduce its transmission rate.

The Internet as an entity is becoming more and more
heterogeneous. With the advent and increasing proliferation
of wireless means to support packet data transfer, in addition
to new wired transport means such as ADSL, the performance
characteristics of the ’black box’ end-to-end link over the In-
ternet have become increasingly difficult to predict. Moreover,
the means commonly do not exist for a server, which might be
serving a vast number of different types of clients with each
particular file for download, to be able to detect the lower-layer
performance characteristics of each end-to-end connection to
each individual client. For this among other reasons, the TCP
flavor used by the server for an end-to-end download is likely
to be fixed beforehand, and not modifiable on a case-by-
case basis to optimize performance based on the lower-layer
characteristics experienced by each flow.

In this work, based on the prior observations, we assume
a top-down approach to cross-layer optimization. At a base
station for example, we show that it is possible to, based
on the quick determination of the utilized TCP flavor for
each connection, use this information to optimize lower layer
parameters (such as coding and local ARQ retransmission
thresholds) for that flow in order to achieve an improved
overall end-to-end TCP performance. Our solution is par-
ticularly pertinent given that the ways in which different
flavors of TCP might react to lower-layer performances vary
greatly. TCP Reno (TCPR) for example might be fooled by
random losses hence unnecessarily reduce its transmission
rate, whereas TCP Westwood (TCPW) might be negligibly
affected by random losses. Hence in the TCPR case it could
be beneficial to provide a small amount of additional lower-
layer Forward Error Correction (FEC) over the wireless link
to reduce random losses, whereas for TCPW this additional
FEC might represent a waste of wireless capacity hence a
reduction in goodput. This suggested algorithm builds on our
past work on top-down cross-layer TCP optimization [6], and
is compatible with active solutions to improve end-to-end
performances of reliable services, such as [7].

This paper is structured as follows. In the next section,
we quickly introduce common TCP flavors and discuss their
performances and procedures under packet losses. Afterwards,
the TCP throughput modeling is described and different TCP
flavors throughput is compared, in this process also verifying
aspects of our simulation model. In section III we investi-
gate levels of local link ARQ persistence and FEC, thereby
also arguing the chosen parameterizations for our cross-layer
scheme. In section IV we prove the performance benefit of
our scheme, before concluding in section V.

II. TCP FLAVORS AND PACKET LOSSES

For the vast majority of the time, TCP connections are likely
to be in one of two phases: slow start or congestion avoidance.
In the slow start phase, TCP increases its congestion window
(cwnd) exponentially, leading to a doubling of the cwnd per
Round Trip Time (RTT). In the congestion avoidance phase,
initiated upon the cwnd reaching the slow-start threshold
(ssthresh), the cwnd is increased linearly by one packet per
RTT.

Packet losses in a TCP connection can be detected by Du-
plicate ACKnowledgements (DupACKs), or by retransmission
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timer expirations. DupACKs (i.e., acknowledgements where
the sequence number has not been incremented) are returned
by the TCP receiver as an immediate response to receiving an
out-of-order segment. From the sender’s perspective however,
DupACKs might be caused by a number of other issues, such
as re-routing and traffic shaping, in addition to packet loss.
Hence, to be conservative, loss detection is trigged only upon
receiving three consecutive DupACKs.

A. TCP Congestion Control in the Presence of Losses

In the presence of losses, the behavior of TCP congestion
control varies dependent on the TCP flavor. In this paper,
we concentrate on the TCP Reno (TCPR), TCP NewReno
(TCPNR), and TCP Westwood (TCPW) flavors, as well as the
presence of the SACK option in TCPR and TCPNR. These
characteristics are therefore summarized as follows.

TCPR congestion control [3], which can be considered as
the baseline for modern TCP implementations, supports fast
retransmit and fast recovery upon segment losses. In TCPR,
when a sender detects a segment loss through a retransmission
timer expiration, the cwnd is set to one segment and the
ssthresh is set to half of the FlightSize, where the FlightSize
is the amount of outstanding data in flight within the network.
If it detects packet loss through incoming DupACKs, the TCP
sender invokes fast retransmit, which performs a retransmis-
sion of the lost segment immediately without having to wait
for timer expiry. Fast recovery, which is used in conjunction
with fast retransmit in TCPR and later flavors, sets the ssthresh
to half of the FlightSize and the cwnd to the ssthresh plus
3 segments; this is deemed appropriate because although a
loss has happened, packets are still getting through hence any
reversion to slow-start would be far too severe. Upon receipt
of the next ACK for new data, the cwnd is set to ssthresh,
and congestion avoidance phase resumes. This received ACK
therefore acknowledges all segments sent between the initial
lost segment and its retransmission (including segments that
triggered DupACKs, as well as those transmitted since and
that were already in flight).

TCPR is known to generally not recover efficiently if there
are multiple losses in a single flight of packets. TCPNR on
the other hand presents a modification to the fast recovery
algorithm of TCPR to improve recovery from multiple packet
losses per window [4]. In the case of TCPNR, the ACK for
new data is a partial ACK. The algorithm then retransmits
the first unacknowledged segment, and deflates the congestion
window by the amount of new data acknowledged by the
cumulative acknowledgement field. Upon receipt of an ACK
which acknowledges all segments, fast recovery phase exits.

The Selective ACKnowledgement (SACK) option can sig-
nificantly further improve performance if there are a large
number of packet losses per transmission window (e.g., if
there are burst-losses). The SACK option allows a receiver
to specify, in acknowledgements, whole blocks of packets
which have been received successfully. Generally however, the
options part of a TCP header is only be large enough to allow
for a maximum of three SACK blocks.

B. Shared Medium Wireless Access

The mechanisms described above can handle competition
fairly well through cwnd and ssthresh changes in response
congestion-related losses. However, in shared medium access
networks the available bandwidth for a TCP flow is highly
variable dependent on channel utilization and medium access
protocol dynamics. If a sudden change in available bandwidth
occurs, TCP may be too slow to converge to this bandwidth.
Moreover, TCPR/TCPNR and TCP SACK are usually not
robust when random (e.g., wireless) losses occur, as they
misinterpret these losses as being caused by congestion. Alter-
natively, TCPW [5], which only requires modifications to the
server-side TCP, has been proposed to solve these problems.
In response to a packet loss as detected by DupACKs, TCPW
sets the cwnd and ssthresh to an estimated eligible bandwidth,
which is calculated by low-pass filtering the rate of incoming
ACKs (i.e., if ACKs are being returned at a certain rate, then
packets are getting to the receiver at that same rate hence the
network can support that rate). Describing this mathematically,
if a loss is the result of DupACKs, the values for cwnd and
ssthresh are set to
ssthresh = BWE ·RTTmin/SegmentSize,
cwnd = min(cwnd, ssthresh).
In the case of a retransmission timer expiring under TCPW,
these values are set to
ssthresh = max(BWE ·RTTmin/SegmentSize, 2),
cwnd = 1.

It will be seen later that TCPW performs far better in cases
of random losses (or even in congestion-related losses), as
the cwnd and ssthresh are far more appropriately set after the
random loss, instead of blindly being halved.

C. TCP Throughput Modeling

TCP throughput models are proposed in the literature to
analytically describe throughput dynamics as affected by the
RTT and Packet Error Rate (PER). Under the assumption of
independence of packet losses between rounds, and that the
send rate is not limited by the receiver’s advertised window,
a closed form for TCPR throughput is proposed in [8] and
revised in [9].

An analytical model for TCPNR throughput is proposed in
[10], where the same assumptions as above apply. A TCPW
analytical throughput model is proposed in [11]. Here it is
assumed that the system is always in congestion avoidance
phase, and that only a single packet loss occurs in each cycle.

To graphically investigate the effect of random packet losses
on TCP throughput, and to verify our simulation platform (the
simulation code for TCPW in the utilized OPNET platform
was created by ourselves, based on the UCLA model for ns-
2), each TCP flavor is simulated in a single-flow scenario with
a wireless link at the client. The same conditions of 100ms
RTT, 2Mbps bottleneck link, and a random packet loss rate
varied between ∼ 10−5 and ∼0.15 are applied to the analytical
model and OPNET simulations; moreover, the simulations are
all performed over a download file size of 16MB (∼11,000
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Figure 1. Single-flow analytical model and simulation results comparisons
for TCPR, TCPNR, and TCPW

packets). Referring to Figure 1, the simulations compare well
with the analysis.

III. ARQ PERSISTENCE AND FEC
In wireless networks, in order to counter the effects of

random losses, some degree of additional reliability is often
provided at the Link-Layer (LL). This reliability is usually
achieved through local link Automatic Repeat Requests (ARQ)
in conjunction with some form of FEC.

ARQ over a single wireless link is more rapidly reactive
than TCP’s acknowledgment control loop. This is because
TCP operates over a much longer delay path than a single
wireless link, and because packets (and retransmissions, or
coded FEC packets) at the LL are usually much smaller than
at the network-layer due to LL fragmentation. ARQ protocols
are characterized by their persistency, which affects the length
of time the link is allowed to delay a packet [12]. Setting
a lower LL persistency reduces the potential to accidentally
cause TCP retransmission timeouts, and may therefore reduce
the probability of duplicate copies of the same packet being
sent by TCP and the connection incorrectly entering slow
start. Alternatively, setting a higher persistency increases the
wireless link reliability.

FEC coding also improves reliability by sending redundant
data coded from the original data sequence prior. This redun-
dant data allows the receiving system to correct a proportion of
errors caused by channel corruption. The reliability of FEC is
increased by increasing the redundancy rate; this will also in-
crease the channel load and possibly the processing/reception
delay. The relationship between the bandwidth utilized by
FEC, the extra delay caused by ARQ, and the throughput
gained by a TCP flow, is examined thoroughly in the literature
(see, e.g., [13]).

A. Assumed Parameters
Among the TCP flavors investigated in this work, TCPR

degrades most dramatically in the event of random losses, and

the least degradation occurs with TCPW. Thus the degree of
reliability necessary for TCPR flows is high, although this is
decreased for TCPNR and much more so for TCPW. Further-
more, the SACK option can yield significant improvements
for TCP and TCPNR, hence the required FEC rate can be
decreased if the SACK option is advertised.

Given the above observations, for TCPR flows, the set of
1
3 code rate and a maximum of 4 LL ARQ retransmission
attempts (denoted in this paper as ( 1

3 , 4) is chosen. Given the
use of the SACK option with TCPR, these values are changed
to ( 1

2 , 4). The TCPNR flows are given the set ( 1
3 , 2), which

is decreased to ( 1
2 , 2) given the use of SACK. Lastly, for

TCPW, these values are set to ( 2
3 , 4). In all cases, we assume

a convolutional FEC code implemented in the code rates: 1
3 ,

1
2 , 2

3 , or 1 (i.e., no coding).
We assume the NASA standard convolutional en-

coder/decoder which is well implemented e.g. in Actel enc/dec
core [14], and can support selectable code rates of 1/3, 1/2, and
2/3. The constraint length K is equal to 7 and the polynomials
are g0 = 171, g1 = 133. The minimum distance of the code,
dfree, values for the described enc/dec are calculated from the
convolutional Trellis diagram with K = 7 and are equal to 15,
10, and 6 respectively for the four mentioned code rates [14].

Identification of the TCP flavor is performed via a mecha-
nism presented in [15]. Here, the TCP flavor and state is deter-
mined by monitoring changes in the estimated cwnd, where,
using this approach, the cwnd can be estimated passively at
any point within the network (e.g., at access points). Of the
TCP flavors, TCPR, TCPNR, as well as the use of SACK
options, are covered by [15], but TCPW is not considered. We
therefore use our own mechanism to identify TCPW, whereby
if a DupACK-triggered loss indication does not result in an
approximate halving of the cwnd, the flavor is assumed to be
TCPW by deduction. Further work on the detection of TCPW
may be pursued by us in the future.

IV. PERFORMANCE INVESTIGATION

To validate the proposed cross-layer scheme, a Wireless
Local Area Network (WLAN) within the OPNET platform
is simulated. TCPR, TCPNR, as well as the use of SACK
options, were all supported already within OPNET; however,
we had to implement TCPW within OPNET ourselves based
on the UCLA model which was already available for Net-
work Simulator 2 [16]. We have verified, through comparison
with published simulation results and by comparison with an
analytical model (see Figure 1), that our implementation is
correct. We have also liaising with the designers of TCPW.

In our simulation scenarios, wireless clients set up connec-
tions with wired servers via a single WLAN Access Point
(AP) at the wireless side. Each wireless client connects to
a unique server, whereby the bottleneck is assumed to be at
the wireless link. LL retransmissions are performed via the
stop-and-wait ARQ algorithm, and the channel is modeled by
the free space path loss, Rayleigh fading (exponential random
variable, β=1), and Lognormal shadowing (standard deviation
4dB). Unless otherwise stated, all wireless clients are the same
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Figure 2. End-to-end throughput vs. wireless propagation distance for the
second simulated scenario

distance from the AP in order to ensure that the end-to-end
loss characteristics are similar for the competing flows in the
simulation; the wireless link propagation distance is 400m, and
RTTs are all set to 100ms. Fading and shadowing attenuations
are updated on a per-packet basis according to the assumed
channel model.

Other specific simulation characteristics are as follows:
• Simulation duration: 600s
• FTP servers: 16 MB file download size (∼11,000 packets)
• HTTP servers: HTTP1.1, page interarrival time = expo-

nential (mean 60s), html size = 1kB, images per page =
5, image size = uniform (500B, 2kB)

• Email servers: Email size = 2kB, interarrival 360s
• TCP Maximum Segment Size (MSS): 1,460B
• MAC Buffer size: 32kB
• Physical-layer characteristic: OFDM (802.11a)
• Operating Frequency: 5.4GHz

It is noted that we have concentrated on 802.11a to ensure
maximum relevance to novel and future RATs.

The first simulated scenario is a relatively simple case where
there are 4 wireless clients and 4 FTP servers, respectively
operating with TCPR, TCPNR, TCPW, and TCPR with the
SACK option enabled. The performance of our cross-layer
optimization scheme is compared with the performance of
the 802.11a default settings, specifying a maximum of 4 LL
retransmission attempts and a code rate of 1

2 . Under this
scenario, aggregated end-to-end throughput shows an average
improvement of approximately 11% for our proposed cross-
layer scheme, as compared with the use of the default 802.11a
LL settings.

In a second more complicated simulation scenario using 18
wireless clients, a range of applications and flavors of TCP
are assumed, as conveyed in Table I. Throughput results for
this scenario, versus the wireless link propagation distance, are
plotted in Figure 2.

In a third simulated scenario, using an otherwise identical

TABLE I
APPLICATIONS AND TCP FLAVORS FOR SCENARIOS TWO, THREE AND

FOUR

TCP Flavor/Traffic FTP HTTP Email
TCPR 4clients 1client 2clients
TCPNR 1client 1client 1client
TCPW 1client 1client 1client
TCPR+SACK 1client 1client 1client
TCPNR+SACK 1client 0clients 1client

TABLE II
END-TO-END AGGREGATED THROUGHPUT FOR THE NORMAL,

EXPONENTIAL AND UNIFORMLY DISTRIBUTED RTTS

RTT Distribution Normal Exponential Uniform
Throughput(Mbps) 1.180 1.159 1.098
flavor aware scheme
Throughput(Mbps) 0.918 0.987 0.944
( 1
2

, 4) scheme

configuration to the prior scenario, the RTTs of end-to-end
paths are set according to a random variable. There are three
chosen RTT distributions: Normal (µ = 100ms, σ = 10ms),
Exponential (µ = 100ms), and Uniform (0ms lower bound,
200ms upper bound). Results for this scenario are presented
in Table II. Again, significant performance improvements are
achieved by our cross-layer scheme, for all random RTT
distributions.

In the fourth and final simulated scenario, using the same
18-flow configuration, wireless clients are placed a normally
distributed random distance from the AP as opposed to their
distances being fixed. The results for this scenario again
show an approximate 11% improvement in aggregated end-
to-end throughput as achieved by our cross-layer optimization
scheme.

V. CONCLUSION

In this paper, we have presented a cross-layer mechanism
to optimally set the ARQ retransmission threshold and coding
rate over the wireless link, based on the end-to-end TCP
flavor for each flow as detected at that wireless link. Our
solution imposes no requirements on servers and implies no
adaptations to current TCP designs. We have highlighted the
means for achieving our mechanism, and have simulated its
performance over an OFDM wireless network. Simulation
results clearly demonstrate a significant increase in transport-
layer throughput that can be achieved by our mechanism.
These performance increases are typically 11% as compared
with the use of the default 802.11a coding rate and ARQ
retransmissions threshold.
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