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Abstract—Transmission Control Protocol (TCP), the almost
universally used reliable transport protocol in the Internet, has
been engineered to perform well in wired networks where packet
loss is mainly due to congestion. TCP throughput, however, de-
grades over wireless links, which are characterized by a high and
greatly varying bit error rate and by intermittent connectivity.
Over such wireless links, the performance achieved by TCP
can be improved through the use of cross-layer algorithms at
the link-level, which interact with the TCP state machine. In
this paper, a TCP-aware dynamic ARQ algorithm is therefore
proposed, which utilizes TCP timing information to prioritize
ARQ packet retransmissions. Numerical investigation of the
proposed algorithm demonstrates the performance improvements
that can be attained through this approach, in comparison with
TCP-agnostic link-layer approaches.
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I. INTRODUCTION

The evolution to wireless networks creates new challenges
in communications. Moreover, newer generations of wireless
networks aim to support higher data rates and carry heavier
traffic while maintaining a low cost. To meet these challenges,
cross-layer architectures have become an important topic in
improving the performance of wireless networks. This topic is
a motivation for numerous researches to examine the issue of
cross-layer design principles on wireless networks in addition
to answering the main question; If it is leading to a good
architectural design or not [1].

Transmission Control Protocol (TCP) is by far the most
widely used reliable end-to-end transport protocol supporting
congestion control over the Internet. Hence TCP is also well
used over wireless networks, as a significant majority of
connections over such networks are using the Internet at some
point in the end-to-end communication path. TCP reacts to all
packet losses as being an indication of congestion somewhere
in the end-to-end path. On the other hand, over wireless links
losses can be the effect of the higher bit error rates experienced
by these links, thus leading to TCP incorrectly attributing
these losses to congestion, hence incorrectly reducing its
transmission rate. Numerous approaches have therefore been
proposed in the literature to optimize TCP performance in
wireless networks [2], [3]. These works can be categorized
into two main classes: The first class of researches, modify
TCP to improve TCP compatibility to wireless networks, and
the second class tries to improve TCP performance with no
modifications to the TCP state machine but by modifying

algorithms in other layers.
This paper focuses on the second category of solutions,

which are further described in the Section II. We attempt in
this work to achieve an intelligent link-layer through using
information obtained by a cross-layer interaction with the TCP
transport layer. More specifically, the proposed scheme utilizes
the Round Trip Time (RTT) of the TCP flows to prioritize
the (re)transmissions so that unnecessary time out events are
avoided. A TCP-aware dynamic Automatic Repeat reQuest
(ARQ) algorithm is proposed, which improves end-to-end
performance without modifying the TCP state machine. The
main contributions of this paper are therefore the introduction
of this dynamic ARQ scheme, and the subsequent investigation
of its effects on performance using a realistic TCP model
within the OPNET simulation platform.

The remainder of this paper is organized as follows. In the
next Section, the second aforementioned category of research
on TCP performance optimization is outlined. In Section III,
the focus is on ARQ algorithms in the link-layer, where our
novel adaptation of the the link-layer ARQ algorithm is also
described. In Section IV our simulation results are presented
and Section V concludes and discusses potential future work.

II. TCP OVER WIRELESS LINKS

TCP provides a reliable end-to-end transport layer. Most
usually, a TCP flow initiates the congestion window (cwnd)
to one Maximum Segment Size (MSS), and in the slow start
phase doubles it each RTT. In the absence of losses, TCP
continues increasing the cwnd until it reaches the Slow Start
threshold (SSthresh), whereby it then switches to congestion
avoidance phase thence increases it by only 1 MSS per RTT.
For each packet loss, dependent on the type of packet loss,
the congestion control mechanism of TCP reduces the cwnd in
anticipation of congestion [4], by either halving it or by setting
it to 1. Due to the time taken for the cwnd to increase again
to an optimum rate, this can have the effect of significantly
decreasing the throughput if it happens frequently. TCP is
therefore designed to perform well in wired networks in which
packet losses are usually a result of congestion; however, over
wireless links, which suffer from a high bit error rate as well as
burst errors due to intermittent connectivity such as hand offs,
TCP reacts to all losses as congestion, hence unnecessarily
reduces throughput.
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Various studies of the impact of retransmissions on through-
put have been performed in the literature, commencing with
Jacobson’s experiments on congested wired networks [5]
which led to the improvements incorporated into the TCP
Reno protocol [6]. These improvements are particularly em-
bodied as Fast Retransmit and Recovery (FRR)1. More re-
cently, extensive efforts have been expended on modifications
to improve the performance of TCP via advanced algorithms
implemented in other layers of the protocol stack. Such
efforts usually attempt to avoid the TCP congestion control
mechanism being incorrectly triggered as a result of random
wireless errors. Some of them are briefly discussed as follows.

A. Proxy TCP

The Snoop protocol [7] is one of the first such methods. The
”Snoop Agent”, implemented at the local wireless link (e.g.
the base station), works by not passing duplicate acknowledg-
ments to the TCP layer, and instead retransmits the lost packet
locally. Through this approach, TCP is not aware of packet
losses and the cwnd is therefore not incorrectly reduced.

B. Reliable Link-Layer

Another approach is to use a reliability enhancing methods
at the link-layer to prevent packet losses over the wireless
channel. ARQ and Forward Error Correction (FEC) can
provide this reliability at the local link [8], [9], [10]. The
drawback of ARQ is that it causes the RTT to fluctuate, and the
drawback of FEC is that, dependent on implementation, it may
consume extra bandwidth through pro-actively transmitting
redundant information. These drawbacks present the need for
careful consideration in the use of link-level ARQ and FEC,
based on application type. For example, applications which are
sensitive to delay may prefer not to use an ARQ mechanism,
and may rely on FEC instead [11]. Hence, the aim of this
paper is to find the best reliability approach for the wireless
link, in order to enhance end-to-end TCP performance.

C. TCP and ARQ

As discussed, a common approach to improve TCP per-
formance is the use of some form of ARQ mechanism that
prevents the TCP source from misinterpreting packet losses
as being caused by congestion. TCP over ARQ has therefore
been extensively studied in the last few years [12], [13]. As
mentioned above, ARQ potentially increases, or at least causes
fluctuations in the RTT of TCP, and this may interfere with
the TCP timeout. The TCP retransmission timer may expire at
the time a lost packet is being retransmitted over the wireless
link. Such shortcomings, can be improved by adapting the
maximum number of local link retransmissions dependent on
the TCP state machine. Reference [14] therefore attempts to
optimize the number of link-layer retransmissions dependent
on the end-to-end packet loss rate perceived by TCP.

1If the sender receives three duplicate acknowledgements, it assumes that
the data segment indicated by the acknowledgements is lost and immediately
retransmits the lost segment. With FRR, time is not lost waiting for a timeout
in order for a retransmission to begin.
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Figure 1. RTTs at the end-to-end TCP layer and at the local link-layer

III. LINK-LAYER ADAPTIVITY

Retransmissions at the link-layer are performed via the
local link ARQ algorithm, which has two main advantages
compared with TCP end-to-end retransmissions. Firstly, re-
transmissions at the link-layer are performed faster, due to the
local link having a much smaller RTT– this is seen in Fig. 1.
Secondly, if retransmissions at the link-layer are successful,
packet losses can be hidden from TCP. Thus the cwnd will
not be incorrectly altered.

In this work, we assume the stop-and-wait ARQ algorithm
over the link-layer. Unacknowledged packets are therefore
successfully retransmitted if the required number of retrans-
mission attempts is less than or equal to the maximum allowed
number of retransmissions. We try to select an appropriate
value for the maximum number of retransmissions (Nret),
as well as an appropriate order of retransmissions, so as to
optimize the ARQ algorithm.

A. TCP-Aware Dynamic ARQ

ARQ serves similar reliability functions to TCP, albeit at
a different layer. Hence the assignment of ARQ parameters
without having taking advantage of information from the TCP
state machine is suboptimal for TCP flows. We therefore define
a cross-layer interaction with the TCP layer, by assigning
Nret, as well as the retransmission priority for each packet,
dynamically. An ultimate objective is to achieve a TCP-aware
dynamic ARQ algorithm, under the assumption that we pos-
sess information on the TCP timer when the Retransmission
Time Out (RTOTCP) is close to expiration. Note that ensuring
that the packet arrives rapidly at the receiver becomes more
critical in this case. The details of our algorithm are described
as follows.

Every non-ACK packet is categorized in a priority queue,
according to its weight. The packet weight is assigned based
on RTOTCP and the number of transmission attempts of the
packet. If we denote Pij as the jth packet in the queue from
TCP flow i, then wij , the weighting of Pij , is described by

wij = 104 ∗ nij + RTOij , (1)
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where nij is the number of reattempts of packet Pij . The
RTT of TCP is of the order of one second (103 ms), thus the
coefficient 104 normalizes the weighting function value to the
RTOTCP.

We subsequently define three queues, namely Q1, Q2, and
Q3, and each Pij is placed in one of these queues at a position
according to its weight. Retransmission starts from Q1 and is
followed by Q2, and then Q3. The main idea for implementing
these queues is to avoid retransmitting any specific packet
iteratively.

The priority of each packet is changed after each retrans-
mission, by replacing its queue. One main weak point remains
in this procedure. If any of the Pijs which are located in Q2
or Q3 have an RTOTCP close to expiration, the RTOTCP will
expire before the packet has one more retransmission chance
at the local link. Hence to solve this, the retransmission starts
from Pi11j11 , and simultaneously RTOi21j21 and RTOi31j31

are compared with RTT. If either of these is less than 2·RTT,
the corresponding packet will be retransmitted first, then the
procedure will continue with Pi11j11 . At the beginning of
each retransmission, this procedure will be repeated. After the
Q1 retransmission is performed, the algorithm will continue
retransmissions from Pi21j21 with the same routine, then re-
transmits Pi31j31 etc. The maximum number of retransmission
attempts is limited to 3, which is well used number for
this purpose in wireless networks. Hence, after the third
retransmission attempt, the packet is discarded.

Algorithm 1 presents the complete description of the pro-
cedure.

Algorithm 1 TCP-AWARE DYNAMIC ARQ ALGORITHM
DESCRIPTION

1: IF wij IS LESS THAN 104 THEN
Q1 ← Pij

2: ELSE IF wij IS LESS THAN 2 ∗ 104 THEN
Q2 ← Pij

3: ELSE IF wij IS LESS THAN 3 ∗ 104 THEN
Q3 ← Pij

4: ELSE DROP THE PACKET
5: Sort Q1: RTOi11j11 < RTOi12j12 < ... < RTOi1nj1n

6: Sort Q2: RTOi21j21 < RTOi22j22 < ... < RTOi2nj2n

7: Sort Q3: RTOi31j31 < RTOi32j32 < ... < RTOi3nj3n

8: Starts Retransmission from Q1
9: IF RTOi11j11 OR RTOi21j21 OR RTOi31j31 IS LESS

THAN 2 ∗RTT THEN
Retransmit the corresponding packet
ELSE
Retransmit Pi11j11

10: Continue with Q2 and then Q3

Another issue that needs to be addressed is the RTT
measurement. The RTT is estimated passively, by using the
Timestamp option or the TCP self clocking method. The
Timestamp option regarding RFC 1323 [15], is placed in the
TCP header. TCP headers containing this option will increase
from 20 bytes in size to 32 bytes. The receiver then echoes

the Timestamp value in the acknowledgement, thus allowing
the sender to calculate an RTT for each received ACK.

The self-clocking RTT estimation method does not have to
rely on TCP Timestamps. Hence it can be used in the absence
of TCP Timestamp option. In [16] two methods are proposed
to passively measure the RTT at an intermediate measurement
point, which have an error rate of less than 10%. Using these
methods, the achieved accuracy is related to the measurement
location, which must be not too far from the sender. Another
technique, proposed in [17], measures RTT passively in the
middle of the path with an error rate of less than 10% for
90% of the senders.

Given the estimated RTT, the RTO is calculated as [4]

RTO = RTT + 4 ∗DRTT , (2)

where DRTT is the deviation of the RTT.

B. Cross-Layer Point of View

The objective is for us to optimize our cross-layer design
with the lowest Complexity, while keeping the existing proto-
col stack and aspiring to longevity and stability in the design.
To achieve all of the above, a cross-layer information box is
created for the interaction between TCP and the link-layer, in
order to transfer information to our TCP-aware dynamic ARQ
algorithm. More detail on the implementation model is given
in the following Section.

IV. SIMULATION

To observe how the TCP performance is influenced by our
TCP-aware dynamic ARQ approach, a Wireless Local Access
Network (WLAN) model within the OPNET platform is
simulated. The TCP state diagram implementation in OPNET
is the same as described in RFC 793 [18]. TCP Reno is
assumed in this work, as it is a commonly-used transport
protocol in the Internet. The aforementioned Timestamp option
is enabled, which is incremented by one every 500ms. This
is well within the recommendation to increment by one at an
interval of between 1ms and 1s. Link-level retransmissions are
performed using the stop-and-wait ARQ algorithm.

In the considered scenarios, the WLAN nodes setup con-
nections with wired servers via a single WLAN Access Point
(AP) and wired routers. This is a similar configuration to that
depicted in Fig. 1. Our TCP-aware dynamic ARQ functionality
is placed in the AP. A cross-layer information box is placed
in the protocol stack of the AP, in order to extract TCP timing
information and transfer it to our algorithm implemented in
the link-layer. Weights are assigned to packets according to
the system described in Section III.A, and this information is
passed to the ARQ algorithm.

Specific simulation parameters are given as follows: -

• Simulation Duration: 600s,
• FTP servers: 16MB file download size,
• HTTP servers: HTTP1.1, page interarrival time = expo-

nential (mean 60s), object size = exponential (mean 5kB),
number of objects per page = exponential (mean 7),
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• Email servers: Email size: 2kB, Interarrival time = expo-
nential (mean 120s),

• TCP Maximum Segment Size (MSS): 1460B, Reno TCP,
• MAC buffer size: 32kB,
• MAC frame size: 320B (Fragmentation enabled),
• Physical-Layer characteristic: OFDM (802.11a, 6Mbps),
• Operating frequency: 5.4GHz.
The channel is modeled with the path loss (α = 3), Rayleigh

fading (exponential random variable, β = 1) and LogNormal
shadowing (standard deviation 4dB). In each scenario, every
mobile terminal connects to a unique server via the wireless
AP and the wired routers. The mix of traffic includes FTP,
Web browsing and Email traffic, where in all scenarios, 40%
of the clients are FTP users, 35% are HTTP users and the
other 25% are Email users. Simulation results are presented in
terms of end-to-end throughput, comparing our dynamic ARQ
scheme with the normal 802.11a scheme, using a maximum of
3 retransmission attempts in both cases. The maximum value
of the aggregated end-to-end throughput shows an approximate
15−60% improvement, in various conditions, for our dynamic
ARQ scheme as compared to the default scheme.

In the first simulated scenario using 15 wireless clients, the
RTT for each flow is a uniformly distributed random variable
with bounds set 5ms and 100ms. Throughput for this scenario,
versus wireless link distance, is plotted in Fig. 2. Results here,
show that the dynamic ARQ scheme improves the end-to-end
throughput for a range of mobile clients being connected to
the AP.

In a second simulated scenario, 15 wireless clients are
mobile at a fixed distance of 55m from the AP. RTTs of end-to-
end paths are set according to different random distributions:
Uniform (a = 5ms, b = 100ms), Normal (µ = 50ms, σ =
20ms), and Exponential (β = 50ms). Results for this scenario,
presented in Table 1, show that the throughput improvements
of our dynamic ARQ scheme are largely unaffected by the
specific RTT distribution.

In a third simulation scenario, using the same uniform
distribution for end-to-end paths’ RTTs, wireless clients are in
the distance of 55m from the AP. Throughput for this scenario
is plotted against the number of clients in the simulation,
varied from 5 through 20, in Fig. 3. The results in Fig. 3.
show the scalability of our dynamic ARQ scheme, which still
levies a significant performance improvement even if there is
a high numbers of clients.

In the fourth simulated scenario, RTTs are again given the
same uniform random variable, and wireless clients are placed
a uniformly distributed distance from the AP (a = 40m, b =
70m). Results for this scenario show a 32% improvement in
end-to-end throughput.

In addition to throughput improvement, it can be seen that
TCP retransmissions is decreased using our scheme. These
results are summarized in Table 2. for the above 4 simulated
scenarios.

In the fifth and final simulated scenario using 15 wireless
clients, and the same RTTs for the end-to-end paths, the
wireless link Bit Error Rate (BER) is increased from 10−6 to
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Figure 2. Max. end-to-end aggregated throughput vs. wireless propagation
distance for the first simulated scenario

10−3. Throughput for this scenario is plotted in Fig. 4, which
shows the performance improvement increases as the BER of
the channel goes higher.

With regard to simulation results presented in Tables 1-2
and Figs. 2-4, the proposed TCP-aware dynamic ARQ algo-
rithm improves TCP performance in the variety of scenarios.
Packet loss experienced by TCP is decreased, and end-to-end
throughput is increased. Additionally, our TCP-aware dynamic
ARQ approach presents a TCP-friendly link-layer. Some other
advantageous characteristics of the proposed scheme can be
summarized as follows: -

• It performs RTO-based link-level retransmissions, which
makes the link-layer compatible with the TCP limitations.

• The algorithm is of low complexity from both the pro-
cessing and buffering point of view. The highest complex-
ity procedure is sorting packets with regard to the weight-
ing function–this complexity is O(log n). The scheme
does not affect queuing or storage memory requirements
of the link-layer.

• Using the priority queuing idea as presented, no packet
will remain at the same level of priority after it’s re-
transmission. Therefore, the same packet will not be
retransmitted continuously.

• The algorithm allows packets which are close to expira-
tion to jump the queue and to get a last retransmission
chance within their RTOTCP.

• Our dynamic ARQ scheme avoids wasted retransmissions
being sent after the associated packet’s RTOTCP timer
has expired.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have investigated the effect of the maxi-
mum allowed number of retransmissions (Nret) of the stop-
and-wait ARQ algorithm on TCP performance. This has been
done utilizing the OPNET simulation platform. A TCP-aware
dynamic ARQ algorithm has been proposed, which dynam-
ically adapts the maximum allowed number and priority of
transmission reattempts, based on two parameters: The TCP
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Figure 3. Max. end-to-end aggregated throughput vs. number of wireless
clients for the third simulation scenario, propagation distance is 55m
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Figure 4. Max. end-to-end aggregated throughput vs. wireless link BER

retransmission time-out, and the number of retransmissions
which have thus-far been sent. A devised packet priority
weighting function assists the retransmission process by re-
ceiving information via an information box implemented as the
cross-layer interaction between TCP and the link-layer. Specif-
ically, this box extracts information on TCP retransmission
time-outs, and passes it to the aforementioned algorithm which
operates at the link-layer. The results presented in Tables 1-2
and Figs. 2-4 show a 15 − 60% improvement in end-to-end
performance through our novel approach.

In future work, it would be interesting to further investigate
the influence on end-to-end performance of including extra
TCP parameters, such as the cwnd, in the packet priority
weighting function.
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TABLE I
AVERAGE PERCENTAGE OF TCP RETRANSMITTED PACKETS IN THE FIRST,

SECOND, THIRD AND FOURTH SCENARIOS.

Simulated Scenario 1st 2nd 3rd 4th

Dynamic Scheme (ret. packets) 10% 9.7% 11.5% 10.4%

3. Ret Scheme (ret. packets) 11.6% 11.2% 13% 12%

TABLE II
MAXIMUM END-TO-END AGGREGATED THROUGHPUT FOR THE UNIFORM,

NORMAL AND EXPONENTIALLY DISTRIBUTED RTTS

RTT Distribution Uniform Normal Exponential

Throughput (kbps): Dynamic 550 560 325

Throughput (kbps): 3. Ret 280 340 275
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