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ABSTRACT   

With increasing in heterogeneity of the mobile and wireless networks, including the use of licensed 

and unlicensed spectrum, and diversity in types of User Equipment (UEs), managing how traffic flows 

through network while maintaining high level of users’ quality of experience is crucial. In this paper, 

we present a novel traffic management mechanism that maintains the users’ quality of experience as 

well as guaranteeing fairness among users. This traffic management has two separate elements, one 

that is located at the UE and one that is located at the cloud-based network controller. While each UE 

maximizes their utility function, which is modelled based on the QoS parameters, selfishly, at the 

network side, the attempt is to maximize fairness among all users’ flows. 

Keywords: 5G mobile; QoS; Fairness; traffic management; LTE; WiFi; SDN; central controller. 

1 Introduction  

The next generation of mobile networks, a.k.a. 5G, will be deployed with dense small cells of different 

technologies including LTE femtocells and picocells, WiFi access points, and novel radios, such as 

millimeter wave. Faced with an ever larger portfolio of applications to serve and with a corresponding 

number of requirements to satisfy, it is commonly recognized that 5G need to consider various 

requirements of different application domains and industry sectors. 

To address the above, there has been number of initiatives for the design of new mobile network 

architecture. One of the avenues for the 5G architecture design is the fully decoupled architecture. 

Decoupling of uplink and downlink has been well studied over the past few years [1] and its pros and 

cons are discussed in the community. Decoupling of the control and data plane is another well-

investigated topic that is mostly studied within the context of Software-defined Networking (SDN) [2], 

[3]. Virtualisation and cloudification of the mobile networking functionalities is another element of 5G 

network that is enabled in such a decoupled architecture [4]. 

On the other hand and with the ever increasing data traffic in mobile networks, traffic management 

and maintaining Quality of Service (QoS) is more than ever challenging. According to Cisco Visual 

Networking Index, global mobile data traffic reached the 2.5 exabytes per month at the end of 2014, 

and this figure will surpass 24.3 exabytes by 2019 [5]. Hence, more efficient traffic managements are 

needed that can deal with the backhaul congestion, and guarantee the QoS for users. In the SDN-

based 5G network, it has been shown that centralized traffic management mechanism can provide 

guaranteed QoS and more efficient traffic management [6]. 

To this end, we discussed a device-controlled mechanism in our previous work [7], where all decisions 

are made at the User Equipment (UE). Such device-controlled decision making mainly focuses on the 
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users’ QoS requirements and is a fully “selfish” decision. We designed the algorithm for selecting radio 

access at the UE with a reinforcement learning process that takes Received Signal Strength (RSS) and 

battery status of the UE into consideration. Here, we extend our previously designed device-controlled 

traffic management to address the issue of fairness, i.e. while users maximize their own interest, 

network maintains fairness among users. 

Therefore, we define a traffic management mechanism based on “selfish” users and “fair” network, 

where the network side is a cloud-based central controller. We use Jain’s fairness index to quantify 

fairness [8], and simulated annealing as a heuristic to solve the optimization problem at the controller 

side. The Jain’s index has been well-used for quantifying fairness in communication networks [9]. At 

the UE side, the problem of long-term QoS maximization is formulated as a Q-learning problem. The 

contributions of this paper are threefold: 

o We propose a new QoS-based traffic management mechanism which can maximizes QoS 

utility of each UEs while implementing fairness maximization for the network system. In this 

paper, we call this scheme QoS and Fairness maximization (QFM). We use Jain’s fairness to 

define fairness among UEs and assume such fairness in maintained at the “central controller”. 

Hence, the final decisions of network selection will be made by both UE and central controller 

together in order to maximize QoS utility of the UEs as well as Jain’s fairness index between 

all traffic flows. 

o We maximize fairness levels of the system with QoS values constraints. It can be implemented 

by our system model which combines device-controlled mechanism and cloud central 

controller together. Device-controlled mechanism has been explained in our previous work 

which is a fully distributed mechanism used to consider UEs’ location information and their 

QoS requirements. In this paper, we add a cloud central controller on top of the whole system 

and devise an optimization approach to ensure traffic resource has been effectively managed 

based on our QFM mechanism. 

o When backhaul congestion has been taken into account, we can maximize UEs’ QoS values by 

using channels with less congestion. Backhaul congestion tends to decrease the overall system 

performance and generate unfairness issues among UEs. In this paper, instead of measuring 

one-way packet delay to detect congested transport backhaul link in LTE networks which has 

been proposed in existing literature [10], we propose a novel approach using central 

controller on top of the system to provide information of backhaul links to UEs in the future 

networks. 

The remainder of this paper is organized as follows. Section II briefly reviews the state of art for cloud-

based central controller and fairness in traffic management. After elaborating our system model and 

fairness approach in Section III, our problem formulation and traffic management approach will be 

described in Section IV and V, respectively. Section VI presents simulation study and performance 

observations. Finally, highlights of this work and road ahead are discussed in Section VII. 

2 Related Works 

In this section, we review the state of art in cloud-based control plane and also traffic management 

mechanisms in mobile networks. There is a large body of research on virtualization of mobile network 

functions and the design of different architecture for cloud-base control plane [10]. Using the SDN 

paradigm for decoupling data and control and managing network centrally has also been discussed in 

the 5G literature. Examples of such work are the presented research in [2], [3] and [4]. In [2], new 



SDN-based architecture for 5G is presented so as to reduce latency for mission critical applications. In 

[3], it has been shown how logically central controller can be placed in the LTE network architecture. 

The effect of such architecture design on signalling overhead and agility of control are also discussed 

in this paper. Furthermore, research work in [4] focuses on the design of access cloud in SDN-based 

5G architecture. 

On the other hand, the explosive growth of cloud-based applications for mobile devices, brought 

attention to the development of networking architectures and mechanisms to assist operators in 

managing traffic as dynamically as possible. Well-designed traffic management will allow network 

operators to draw maximum value from available capacity by managing network resources as 

efficiently as possible. Running traffic management at the UEs side allow such decision to be made 

where the required information are available in the most up-to-date and precise format (all measured 

at the UE and utilised at the UE). Hence, users can potentially achieve their desired QoS level that is 

either improving their received data rate, and communication latency or lowering their power 

consumption. In this regard, the device-centric network architecture has been listed as a solution to 

address users’ stringent QoS requirements in [11]. In [12], automatic Access Network Selection (ANS) 

has been proposed in a device-controlled manner for better traffic management. Furthermore, 

various ANS mechanisms for enabling “always-best” connectivity are reviewed in [13], and it has been 

concluded that introduction of cognition and advanced learning capabilities, can act as a catalyst for 

improving the quality of ANS decisions. Based on the discussed literature here, we propose a dynamic 

traffic management mechanism within SDN-based 5G architecture, and with integrating learning 

capabilities based on the analytics of networks. 

Cognition and learning capabilities have been introduced in different aspects of mobile networks 

including routing, resource management and dynamic channel selection [14], [15]. We use Q-learning 

in this paper that is a model-free reinforcement learning technique. Q-Learning and reinforcement 

learning are frequently used in the mobile and wireless networks. An online path selection algorithm 

based on Q-learning has also been proposed in [16] for minimizing the probability of burst loss in 

optical switching networks. In [17], fuzzy Q-learning algorithm is used to optimize call dropping rate 

for traffic steering. 

The last topic we touch on, in our background section is consideration of fairness in mobile networks. 

Fairness has been well-studied in the context of scheduling and wireless recourse allocations, either 

on the wireless channel or over the end-to-end flow [18, 19]. Similarly fairness has been studied in 

workload distribution in Datacenters [20]. To quantify fairness, various different fairness measures 

have been proposed in the literature. The Jain’s fairness index [8], which was conceived to measure 

fairness in computer networks, is a very well used measure of fairness in both wired and wireless 

networks [21], thanks to its advantageous mathematical properties. Therefore, we also use Jain’s 

index to measure fairness in this paper. 

 

3 System Model 

3.1 Model of the system-level architecture 

Different elements of our proposed QoS and fairness maximization (QFM) traffic management is 

detailed in this section, and depicted in Figure 1. The three main layers in this model are the UE layer, 

the wireless network layer (i.e. radio access and mobile core, e.g. EPC), and the cloud layer (i.e. central 



controller). These three layers are elaborated here and the flow chart of communication between 

these layers has been described in Fig 2. 

 
Fig.1. SDN-based System Architecture. 

 

o UE Layer: In our model, UEs can communicate with the Access Network Discovery and 

Selection Function (ANDSF) server via the S14 interface [22]. We further assume ANDSF 

includes network analytics server and UE can acquire network analytics through S14. The 

analytics, we consider here, are performance of different RANs in terms of QoS level for the 

UEs previously connected to the RAN. This information can be collected from database 

Candidate Networks Information (CNI) which connects with ANDSF directly. The central 

controller can also communicate with UEs through open interfaces, i.e. the OpenVSwitch on 

the mobile device operating systems, so that controller’s decision on fairness maximization 

can be communicated to the UEs. 



 

Fig.2. Communication Architecture 

o Wireless Network Layer: The wireless network layer comprises of the radio access and mobile 

core network that provide connectivity to UEs. We model the radio access network with four 

different Access Points (AP), consisting of LTE macro (i = 1), pico (i = 2) and femto (i = 3) as well 

as one WiFi access point (i = 4). The coverage area of these wireless access points is a circle 

with diameter Ri meter, where R = {500; 300; 50; 100} (values from [23]). For simplicity, both 

of the WiFi AP and cellular base stations are referred to as wireless AP from this point on. The 

core network consists of serving gateway (S-GW), packet data network gateway (P-GW), 

mobility management element (MME) and policy and charging rules function (PCRF) that have 

been used to implement connection, mobility and QoS management. 

o Cloud Central Controller: Our cloud-based central controller implements the following rules: 

(1) based on periodically updated information from UEs and APs, central controller can 

check if any of the AP is available. If only one AP is available for a given UE, controller will 

assign this AP to the UE; (2) if more than one AP is available for the UE, controller will run 

fairness maximization algorithm and provide the priority list of available APs to the access 

network selection at the UE.  

3.2 UE’s battery Models 

The UE’s battery consumption and how it will be affected by the application’s throughput, is 

modeled here. We use the model described in [27] for the battery discharging rate, ζ, during the 

lifetime of battery, T, based on Equation (1). 

𝜁(𝑇) =
𝜋2

3𝛽2 𝑒−𝛽2𝑇   (1) 

where 𝛽 is the value of chemical parameter and may vary from battery to battery in the range of (0.4, 

1). It has been shown in [28] that by running three different applications concurrently on various smart 



phones, their battery lasts for two hours. Therefore, T is set to 120 minutes working time is the value 

we used for our simulations. 

The energy consumption of the device, when connected to the i-th AP with distance d is detailed in 

Equation (2). 

𝐸𝑖 =  𝜁(𝑇) + 𝜂𝑑𝑖
𝑛    (2) 

where 𝜂 and n denote the battery consumption per distance unit, and the propagation loss coefficient, 

respectively [28]. 

 

4 Problem Formulation 

In this section, we present details of the optimization problems that formulate our proposed QMF 

mechanism. We will describe two sets of problems, first those who describe the decision making of 

selfish users and then those that depict fairness maximization at the network. Throughout the 

problem formulation, we interchangeably use UE and user, assuming each user corresponds to a 

unique device. 

4.1 Selfish Users 

In our designed traffic management, UEs aim to maximize their QoE. We define QoE as a utility 

function based on received throughput and the battery consumption, as Equation (3). 

        Ω =
[∑ 𝐶𝑖𝑗𝑖 ]𝑤1+[∑ 𝐸𝑖𝑗𝑖 ]𝑤2

∑ 𝐶𝑖𝑗+∑ 𝐸𝑖𝑗𝑖𝑖
   (3) 

where 𝐶𝑖𝑗 and 𝐸𝑖𝑗 represent values of received throughput, and consumed energy by user j = {1, 2, 

…,U} as a result of connection to the i-th AP, i = {1, 2, …,N}. The first term in the numerator shows 
the total received throughput by user j, in case this user is connected to multiple APs. Similarly the 
second term is the total energy consumption at the UE. The 𝑤1 and 𝑤2 are weight values, 
representing the significance of these two different criteria in the utility. We further assume that 
backhaul congestion affects UE’s throughput. We model the backhaul link of each AP as a queue 
with exponentially distributed service time, 1/𝜇𝑖. Assuming 𝜎𝑖𝑗 is the received throughput over the 

wireless channel (using Shannon equation), then the received throughput through the i-th AP is 
𝐶𝑖𝑗 = min {𝜎𝑖𝑗 , 𝜇𝑖}. 

To this end, the following optimization problem will be solved at each UE, i.e. 𝑈𝐸𝑗. 

(P1): Maximize Ω𝑗 

Subject to: 

∑ 𝐸𝑖 𝑖𝑗 ≤ 𝑃𝑗        𝑖 = {1, 2, … 𝑁}   (4) 

Where 𝑃𝑗 denotes the remaining battery at the j-th UE. 

4.2 Fair Network 

The cloud-based controller aims to maximize fairness among all connected UEs. As explained earlier, 

we use Jain’s fairness index to quantify the achieved fairness among UEs as a result of our proposed 

traffic management. Jain’s fairness index can be explained as: 

𝐽(𝑋) =
(∑ 𝑥𝑗

𝑈
𝑗=1 )2

𝑈∗∑ 𝑥𝑗
2𝑈

𝑗=1

     (5) 

Where 𝑥𝑗 = ∑ 𝐶𝑖𝑗𝑖 , that is the total received throughput by 𝑈𝐸𝑗. 



Therefore, the optimization problem at cloud-based controller can be formulated as: 

(P2): Maximize 𝐽(𝑋) 

Subject to: 

𝑥𝑗 ≥ 𝐶𝑗
𝑚𝑖𝑛      ∀𝑗 ∈ {1, … , 𝑈}    (6) 

Where, 𝐶𝑗
𝑚𝑖𝑛  show the QoS requirement (in this case minimum required throughput) of user j 

depending on its application. 

5 Traffic Management Solutions 

We present different solutions for the proposed traffic management optimizations in section IV. First, 

we use Q-learning to solve the selfish user optimization problem (P1) and then we use simulated 

annealing as a metaheuristic to solve the fairness maximization problem (P2). 

5.1 Solutions to (P1) Using Q-learning 

In order to solve (P1) for QoS optimization, we use Q-learning. The main reason for using a learning 

based approach is the possibility of including historical data so as to make a decision that is optimal 

choice for longer period of time, and to potentially reduce the number of handovers.   

Q-learning is an incremental dynamic planning process, which can be used to determine the optimal 

strategy through step by step approach. Hence, we need to define time-varying states, actions and 

reward function for the process of selecting the AP. At each time t, s(t) describes the state of a given 

AP, which will alter to s(t + 1) by executing action a(t). The Q-value of this transition is defined as the 

expected value in Equation (5). 

𝑄(𝑡)(𝑠, 𝑎) = 𝐸{𝑅𝑡|𝑠 = 𝑠(𝑡), 𝑎 = 𝑎(𝑡)}.   (7) 

The state s(t), action a(t) and reward value of R(t) are, 
o 𝑠𝑖(𝑡): State of 𝐴𝑃𝑖  at time t is denoted by 𝑠𝑖(𝑡) ∈ 𝑆 and represent receiving service through 

𝐴𝑃𝑖. 

o 𝑎𝑖(𝑡): Actions 𝑎𝑖(𝑡) ∈ 𝐴 represent changing from one AP to another. 

o 𝑅𝑖(𝑡): We define the “Reward Function” based on the value of Ω in Equation (3). Equations 

(8) and (9) describe the immediate reward, 𝑟𝑖(𝑡), and the weighted and aggregated reward 

function over time, 𝑅𝑖(𝑡). 

𝑟𝑖(𝑡) = (∑ Ω𝑗(𝑡)𝑖 − ∑ Ω𝑗(𝑡 − 1)𝑖 ),  (8) 

𝑅𝑖(𝑡) = ∑ 𝛾𝑘𝑟𝑖(𝑡 − 𝑘),10
𝑘=1    (9) 

Where 𝑘 demonstrate number of historical records that are taken into account and 𝛾 is the 

discount factor. In other words, 𝛾 represents significance of the previously recorded reward 

values on 𝑅𝑖(𝑡). In the simulation study of this paper, we set 𝛾= 0.995 and the ten time stamps 

in Equation (9) similar to the described algorithm in [14]. 

Based on parameters described above, we can calculate Q-values by considering historical records, as 

follows: 

𝑄(𝑡)(𝑠, 𝑎) = 𝑄(𝑡)(𝑠, 𝑎) + 𝛼[𝑅(𝑡) + 𝛾𝑄(𝑡)(𝑠, 𝑎) − 𝑄(𝑡−1)(𝑠, 𝑎)]  (10) 

where 𝑄(𝑡)(𝑠, 𝑎) is the current value of 𝑄 for a given AP at time t, and 𝑄(𝑡−1)(𝑠, 𝑎) is the historic value 

that was stored in the CNI and retrieved by the UE. Parameter 𝛼 represents the learning rate, that is 



a value in the range of (0, 1), if 𝛼  = 0, the Q value is never updated. Summary of the Q-learning 

algorithm for solving (P1) is described in Algorithm 1. 

 

5.2   Solution to (P2) using Simulated Annealing 

Simulated Annealing (SA) is a well-used heuristic for solving combinatorial problems. At each step of 

the SA algorithm, current solution will be replaced with a new solution given a certain probability. 

That probability depends on both difference between the current solution and randomly generated 

neighbor solution and also the temperature value T of the system [24]. 

In this section, we describe a solution for (P2) based on simulated annealing algorithm, which runs at 

the central controller. This algorithm, detailed in Algorithm 2, maximizes achieved fairness among the 

UEs. We are using Jain’s fairness index as explained in IV-B to quantify fairness. Solving (P2), using the 

SA algorithm to consider maximizing  𝐽(𝑋). If the value of 𝐽(𝑋) for the neighbor AP is higher than the 

current one, the algorithm triggers a move to the neighboring AP. Otherwise, the algorithm choose an 

AP between the current AP and the neighbor AP according to a generated probability value. The 

random selection will allow solution to converge to global optimal point. The generated probability 

value for replacing current AP to the neighbor AP is based on
T

XJ
p

)(
 , where )(XJ  shows the 

difference of J(X) value between the current AP and the neighbor one.  

 



 

 

6 Performance Evaluations 

In this section, we explain our simulation settings and discuss and analyze the results.  

6.1   Simulation Parameters 

As mentioned earlier, we have modeled our system as an integrated wireless network that has four 

APs: one LTE macro cell, one pico cell and one femto cell, as well as one WiFi access point. We assume 

coverage areas of the three latter access points are included in the coverage area of the macro cell. 

The wireless channel is modeled with path loss (see Table I), and hence the RSS can be explained as 

𝑅𝑆𝑆𝑖 = 𝑇𝑃𝑖 − 𝑃𝐿(𝑑𝑖) , where 𝑇𝑃𝑖  denotes the transmit power of the i-th AP, 𝑑𝑖  is the distance 

between UE and the i-th AP and 𝑃𝐿(𝑑𝑖) is the associated path loss value [25]. Detailed simulation 

parameters are described in Table 1. 

 

Table 1: Simulation Parameters 

Parameter  Value 

Peak Data Rate LTE 100 Mbps 

WiFi 11 Mbps 

Tx Power LTE Macro 46 dBm 

LTE Pico 23 dBm 

LTE femto 13 dBm 

WiFi 20 dBm 

Noise Spectral Density  128.1+37.6 log(d) 

Application throughput Video 500-700 Kbps 

Interactive 300-600 Kbps 

P2P 700-1000 Kbps 

E-service 600-800 Kbps 



Cell Coverage LTE Macro 500 meter 

LTE Pico 300 meter 

LTE femto 50 meter 

WiFi 100 meter 

  

6.2   Simulation Scenarios 

o Scenario One: QoS-based traffic mechanism: In this scenario, we examine QoS-based RAN 

selection without considering history records. Weight values of different criteria have been 

set as 0.8 for received throughput and 0.2 for consumed energy by UEs, respectively. We 

assume decisions have been made by the UEs that can communicate with the ANDSF directly 

in order to receive information of candidate APs as described in 3.1. Therefore, UEs selects 

the AP that offers highest value of QoS utility, based on Equation (3). 

o Scenario Two: learning-based traffic mechanism: In this scenario, we examine reinforcement 

learning based RAN selection. Compared with scenario one, we run Q-learning algorithm at 

UEs side by considering history Q-values of each available APs. This is based on solving P1 as 

explained in section 5.1. The main aim of using history values is to reduce the potential 

number of handovers by selecting the AP that has high performance over a period of time 

(and not only instantaneously). 

o Scenario Three: QFM-based traffic mechanism: In this scenario, we examine our proposed QoS 

and Fairness maximization (QFM) based RAN selection. In scenario three we solve (P1) using 

Q-learning at the UE side and (P2) at the network controller side. ??? If there exists conflict 

between the results from the UE side and network controller side, the received throughput 

values by 𝑈𝐸𝑗  should be checked simultaneously. If received throughput values that 

generated from the network controller side are in the field of application throughput 

described in Table 1, then the process of selecting APs is based on the results generated from 

the network controller side. Otherwise, the selected APs are based on the results generated 

from UE side. 

6.3   Result Analysis 

Our considered Key Performance Indicators (KPI) are: Users’ throughput, UEs’ battery consumption, 

number of handovers and Jain’s fairness index. 
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Fig. 4. Sum throughput Vs. number of active users 
 
Fig 4 indicates aggregated average received throughput for UEs in three different scenarios as we 

described above. Observing from this figure, it can be seen that throughput values in scenario one are 

the highest.  That is because, the aim of QoS-based traffic mechanism in scenario one is maximizing 

QoS values based on Equation (3). Maximizing QoS values means maximizing the value of UEs received 

throughput. Since backhaul congestion are also considered in Scenario one, users were able to 

connect with an AP that provides higher throughput (and not only higher data rate over the wireless 

channel). Therefore, the value of sum average throughput UEs received in scenario one is higher than 

that in scenario two and three.  

In scenario two, the sum average UEs’ throughput is approximately 50% lower than those of scenario 

one. That is because, the main aim of learning-based traffic mechanism in this scenario is reducing the 

potential number of handovers without focusing on improving UEs received throughput. Therefore, 

the value of throughput in this scenario has decreased dramatically and from this figure not all UEs 

receive their required throughput values. 

In scenario three, it can be explicit shown that the sum average UEs’ throughput is lower than that in 

scenario one but higher than that in scenario two. That is because, the aim of QFM-based traffic 

mechanism is improving fairness allocation for all UEs which is restricted by achieving minimum UEs 

required throughput. Therefore, the value of sum throughput should be increased compared with 

scenario two but still reduced compared with that in scenario one which is mainly focus on maximized 

throughput values. 

 
 
 



 

Fig. 6. UEs’ average battery consumptions 
 

Fig 6 shows battery consumption of the UEs in three different scenarios. It can be seen that values of 

battery consumption in scenario two are the lowest, and those values in scenario three are the 

highest. Because in scenario two, Q-learning algorithm has been implemented at UEs side. Cumulative 

reward values can help UEs to learn from history experience of candidate networks and can help them 

to perform best actions at each time steps.  The aim of using Q-learning is reducing number of 

handovers for all UEs to help them maintain their ongoing communications for longer period of time. 

Therefore, the value of battery consumption should be reduced in scenario two and it is lower 

compared with that in the other two scenarios. 

Higher battery consumption in scenario three than in scenario one is because the more handover 

occurred. Based on the Equation (2), device energy consumption is based on the three different 

variables which are d, β and T. In these three scenarios, values of β are the same separately. The more 

number of handovers, the more time T wasted. From Table 2, the total numbers of handovers are 209, 

171 and 257 in these three scenarios separately. Therefore, in Fig 6, decreased and increased values 

of energy consumption are proportional to scenario one. The more number of handovers generates 

the more battery consumption.   

Table 2. Total Number of Handovers in each scenario 

 Scenario One Scenario Two Scenario Three 

Total number of 
Handover 

209 172 257 

 

Number of handover over the course of simulation are demonstrated in Fig 7, 8, and 9. It can be seen 

that average number of handovers in scenario two (Fig 8) is lower than those in scenario one (Fig 7). 



Reduced number of handovers of UEs can decrease values of battery consumption and confirms the 

results presented in Fig 6.  Higher number of handover can be observed in Fig 9 that correspond to 

the higher battery consumption of scenario three in Fig 6.  

 

 

Fig. 7. Number of Handovers in Scenario one (QoS-based) 

 
 

Fig. 8. Number of Handovers in Scenario two (Learning-based) 



 
 

Fig. 9. Number of Handovers in Scenario 3 (QFM-based) 
 
 

 
 

Fig. 10. QoS Utility based on Equation (3)  



 
 

Fig. 11. Average Jain Index in Vs simulation time steps. 
 
 

Furthermore, Fig 10 shows the QoS utility value (as Equation (3)). It can be seen that the QoS utility is 

lowest in scenario three and highest in scenario one. That is because, the aim of scenario one is 

enabling UEs to connect with optimal APs which can provide maximum value of QoS. Based on 

Equation (3), though the value of energy consumption are higher in scenario one, weight value of it is 

much smaller compared with throughput which is the main affect factor for QoS level. Therefore, QoS 

level of scenario two is lower than that in scenario one, even though the energy consumption has 

been reduced to a large extent. In scenario three, our proposed QFM mechanism implements fairness 

traffic mechanism which will reduce values of QoS for UEs at the same time. After UEs select APs by 

considering their selfish requirements, our cloud central controller reassign traffic resource to UEs 

with respect to fairness. 

 
Finally, Jain’s fairness index is plotted in Fig 11. As expected, scenario three has the highest fairness 

index and scenario one has the lowest fairness index. Based on fairness Equation (5), the value of J(X) 

is in the field of (0,1) and the higher the better. Higher J(X) value will be generated when values of 

(∑ 𝑥𝑗
𝑈
𝑗=1 )2  and (𝑈 ∗ ∑ 𝑥𝑗

2𝑈
𝑗=1 ) are quite similar. In scenario three, fairness problem (P2) has been 

solved by our proposed QFM mechanism. Network resource has been allocated efficiently while 

minimum requirements of UEs have been satisfied as well. In scenario one, each UEs purchases higher 

throughput and connects with the AP which can provide the highest resource at the same time. 

Therefore, the value of throughput will be quite different between each UEs and it will generate lowest 

fairness index in scenario one.  

 



7 Conclusions 

In this paper, we presented a novel approach of traffic management in heterogeneous networks, 

which is QoS and Fairness Maximization (QFM) mechanism. With the rapid increasing number of 

mobile devices, their throughput demand and longer battery lifetime requirements, maximizing their 

QoS levels will be the significant part in the next generation networks. Meanwhile, how to allocate 

traffic resource in a fairness way is another important issue for us to consider. Our proposed QFM 

mechanism is composed by two parts which are fully distributed QoS maximization mechanism at UE 

side and centralized fairness traffic management mechanism at controller side. These two parts are 

implemented by UEs and cloud central controller separately with the whole view of the system. Based 

on analysis results, we can find that our proposed fairness problem have been solved. Resources of 

the network have been fairly allocated and the fairness index has been maximized as well. 
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