
Can QoS be dynamically manipulated by the
end-device initialization?

Fragiskos Sardis, Massimo Condoluci, Toktam Mahmoodi, Mischa Dohler
Centre for Telecommunications Research

Department of Informatics
King’s College London, UK

[fragkiskos.sardis|massimo.condoluci|toktam.mahmoodi|mischa.dohler]@kcl.ac.uk

Abstract—The traffic growth as well as the diversity in Quality
of Service (QoS) requirements are drastically increasing the
challenges in achieving effective network management. The need
to handle dynamic QoS requests exacerbates such challenges
and dictates novel solutions able to make network management
more flexible and adaptable to traffic changes. To this aim, in
this paper we propose a novel approach aiming at dynamically
managing the QoS within the Software-defined Networks through
flow initialization and termination requests from the end-client.
Our approach allows management and control planes to be
informed as soon as possible about the changes in the traffic
requirements of the network, thus introducing a more flexible
(re)configuration of the network according to the actual traffic
demands. Such flexibility is particularly interesting within the
next generation networks that aim to serve diverse set of vertical
industries. While the full picture of the network architecture is
depicted in this paper, we present the prototype implementation
of this novel approach. The latency and overhead as introduced
by the proposed approach in this paper are studied using the
prototype implementation.

Index Terms—Software-defined Networking, Quality of Ser-
vice, network resource allocation; QoS Broker.

I. INTRODUCTION

The effective and quick adaptation of resources to the actual
traffic demand is one of the main features expected to be
effectively handled by next-to-come networks [1]. Guaran-
teeing flexibility in traffic management while simultaneously
supporting strict and dynamic Quality of Service (QoS) re-
quirements is yet critical and challenging. A step forward in
introducing flexibility in network management is represented
by the Software-defined Networking (SDN) paradigm [2],
where control and data planes that traditionally reside on the
same device are decoupled and split into logically centralized
network intelligence and an underlying infrastructure which
is abstracted. As a consequence, the SDN control is directly
programmable. Furthermore, abstracting control from forward-
ing allows administrators to dynamically adjust network-wide
traffic flow to meet varying requirements.1

Among the various key features of the SDN, the pro-
grammability and agility of the network (re)configurations
can significantly ease management of diverse set of QoS
requirements. The main architecture design of SDN consists
of three layers representing the infrastructure, control and

1https://www.opennetworking.org/sdn-resources/sdn-definition

application layers. Alongside the three main layers of the
SDN architecture, a fourth vertical layer is interfacing with
the main layers of the architecture to provide control and
management functions, i.e. the management layer [3], [4].
While management functions reside on all planes, in the
controller plane, management functions configure the policies
that define the scope of control given to the SDN application
and monitor the performance of the system. The legacy SDN
relies on the management plane to set/manage/modify the rules
exploited by network switches to handle QoS [2]. Therefore,
end-devices are not able to interact with the network in the
control plane and their role is limited to transmit/receive data
packets. This will further limits the adaptability of the network,
since dynamical QoS changes need to be contracted by the
management/control plane, which could directly affect the
interval between the time new QoS is requested and the time
network is ready to manage it.

To this end, we propose a novel approach for dynamic
QoS management in the SDN where the request of a flow
initialization is triggered by the end-devices. Within this new
design, the flow is initiated with specific QoS request for
a particular End-to-End (E2E) communications path by the
end-device and will be terminated (again by the end-devices
request) upon the termination of the actual communication.
Such technique will allow a common ground in providing
diverse and dynamic QoS to the range of vertical industries
that are sharing the same network infrastructure in the vision of
next generation networks. In vertical application domains such
as Industry networks, reservation of the E2E communication
path with specific QoS that is also performed with high
agility is of significant importance. Our proposed approach
aims to achieve such agile QoS (re)configuration by allowing
end-devices to directly interact with the management/control
planes. Furthermore, through explicit flow removal messages
sent by the end-devices, our approach allows to dynamically
adapt the number of entries in the flow table of switches
within the infrastructure layer. The reference architecture for
discussion in this paper is shown in Fig. 1, that is depicted
based on the Open Networking Foundation (ONF) architecture
with the modifications proposed in this paper.

The remainder of this paper is organized as follows. Section
II will provide an overview on the QoS management within
the SDN and will further discuss the limitations of the current

(a) End-device initiated flow initialization (b) Communication diagram among involved entities

Fig. 1. SDN enhanced by end-device flow initialization.

approaches in the literature. Section III will introduce our
proposed solution, whose prototype implementation is detailed
in Sec. IV. Section V will discuss the preliminary results
for flow initialization achieved with our prototype, while last
Section will conclude the manuscript and will focus on the
future work.

II. QOS MANAGEMENT IN SDN

A. OpenFlow and QoS management

OpenFlow [5] is the most consolidate communication inter-
face between the control and infrastructure layers. It is used to
access and manipulate the configuration of infrastructure de-
vices by installing/removing rules in the switches’ flow tables.
These rules are initially programmed on the SDN controller
using northbound Application Programming Interfaces (APIs)
(please, refer to Fig. 1) and are then pushed onto infrastructure
devices using OpenFlow in order to set up traffic flows on
the switches and routers. In this way, the forwarding plan is
configured to perform various functions such as conditionally
forwarding packets based on their arrival rate at the switch.

The QoS can be managed according to two different solu-
tions: (i) through OpenFlow; (ii) through the SDN controller
that manipulates the rules installed in the switches. Focusing
on the first solution, QoS in SDN can be implemented at the
infrastructure layer by using two different OpenFlow features
that are queues and meters [6]. Packets belonging to a specific
flow can be set to a queue on the switch which has a pre-
configured transmission rate on an output port. The field
associated to the type of service in the IP header can then be
used alongside queues to implement QoS control mechanisms
such as DiffServ. Meters deal with the idea of setting a
transmission rate threshold which can be used as a limiter or
to trigger other functions once the rate is exceeded. OpenFlow
uses meter tables, similarly to flow tables where various meter
bands can be defined and packets may be assigned to them.
Furthermore, a packet may be assigned to multiple meters,

each one performing a different function once its threshold is
reached. So, meters in combination with queues can be used
to perform complex QoS manipulation functions.

Handling QoS management through such mechanisms has
been studied in the literature and a summary of those are given
in the following.

B. State of the Art in QoS Management

The provisioning of end-to-end QoS requirement across
Internet is yet challenging. It is for example complex for
service providers to implement their strategic and business
policies dynamically. Differentiated Services (DiffServ), Inte-
grated Services (IntServ) and Multiprotocol Label Switching
(MPLS) can provide QoS guarantees at different levels of
confidence and granularity, however they still don’t allow
for a specific application to request a certain level of QoS
for E2E communication. In this direction, SDN is giving an
opportunity for such flexibility and dynamics. Although the
controller in SDN has the ability to define data flows, the
QoS management for end-users still remains a challenging
task because the SDN controller does not provide QoS policy
and management mechanism to define constraint on an E2E
flow. In this direction, a framework for enforcing policies in
the SDN network is introduced by [7], entitled “PolicyCop”.
This framework allows SDN to automatically perform network
reconfigurations based on statistics gathered from the network
elements and their comparison to the service level agreement
or the QoS parameters. Although using this scheme, the QoS
of a particular flow or aggregation of flows can be dynamically
adjusted, an increased packet loss will be initially experienced.
The resulted packet loss is studied in [8], which mainly
occurs because packets are allocated to different queues on
the switches and throughput limits are imposed.

Another QoS management scheme aimed at multimedia
traffic prioritisation is “OpenQoS” [9]. The packet header
fields are used to identify multimedia traffic. The prioritisation

is achieved by querying the status of all forwarding devices on
the network in order to identify the current load on each one.
Path computation takes into consideration the load on each
forwarding device and routes multimedia packets accordingly
in order to satisfy the required QoS. Similar to PolicyCop, in
the “OpenQoS” the traffic classification and assignment to a
specific QoS level is done based on predetermined policies on
how packets should be forwarded. Once a path is calculated,
frequent measurements on the load of forwarding devices are
used as a feedback mechanism in order to identify if the path
should be recalculated.

Compared to PolicyCop, OpenQoS has a more limited scope
in terms of QoS mainly because of basis of measurements
being the link utilisation on forwarding devices rather than the
actual QoS metrics that the multimedia application requires
(latency, jitter, throughput, packet loss). PolicyCop, in con-
trast, uses actual throughput measurements in its experimental
implementation and demonstrates the ability to reroute flows
when a policy violation occurs. For both of these schemes,
policies are used to classify traffic and assign it to a set of
QoS parameters that need to be satisfied. Due to the flexibility
offered by SDN, it would also be possible to create a module
where applications on the clients may send their exact QoS
requirements so that detailed of the E2E flow may be created
and tighter control of QoS can be applied.

The work in [10] discusses the requirements of a northbound
API for SDN that will satisfy real-time dynamic QoS adap-
tation in Real-Time Online Interactive Applications (ROIA).
Authors in [10] argue that ROIA may have varying QoS
requirements from the network depending on the state of
an application and they use online games and e-learning as
examples of how the state of the applications and participant
interactions with it translates into higher or lower throughput
and latency on the network. They propose a northbound API
for SDN that will allow ROIA applications to communicate
with the controller and to define the level of service required
from the network.

On a more similar ground to the proposed solution in this
paper, a QoS management mechanism is discussed in [11],
where the authors propose a controller reference architecture
that allows client applications to make QoS requests to the
controller. These requests are scheduled by the controller to
the appropriate network devices based on available topology
for controlling the level of service that applications receive in
real time. However, we put one step forward in dynamic QoS
adaptation over the E2E path by extending the responsibility
of requesting communication flows to the client as well as
defining the desired QoS for them. This effectively means that
by default the network will not provide any connectivity to the
clients and no reachability to local or remote hosts is required
(with the exception of controller itself).

C. New Opportunities for QoS management in SDN

The capability of SDN to make the network programmable
through northbound APIs and its inherent separation of data
and control planes presents the opportunity of rethinking

how communication is established and carried out. Neverthe-
less, although control/data splitting aims to achieve network
(re)configurability and flexibility, the provisioning of QoS
flows pushes new issues and challenges in terms of dynamic
QoS management as (potentially large) set of rules for has to
be designed for each flow, a-priori. At present, devices do not
control the policies and forwarding rules of the networks they
are part of, as this is performed in the management plane. This
limits the flexibility of the QoS management in current SDN
networks in number of ways.

The QoS rules need to be defined by the management plane
and installed in the switches through the southbound interface.
For example, switches may need to store huge number of
rules this may involve performance degradation during packet
forwarding as, for each packet, the switch has to search the
proper rule among a large set of candidates. The use of
timeouts in flows can assist in minimising the number of flows
in tables by setting expiry times either relative to the last
packet received that matches the flow or absolute time-to-live
for the flow.

How flows are installed on the forwarding devices is another
important aspect affecting performance of OpenFlow. A packet
arriving on an OpenFlow switch that does not match any of
the existing flows in the tables, will have its header forwarded
to the controller over the southbound interface. This can
cause congestion on the southbound interface on a network
with a large number of diverse flows. This issue has also
been addressed in the literature and opportunities to improve
performance are discussed. For example, in [12], and in the
context of mobile networks, a redirection-based rule-sharing
scheme for SDN switches is proposed, where neighboring
forwarding devices can contact each other in order to update
their flow tables. This scheme can partially mitigate the effects
of fine-grained QoS control on E2E communication which
calls for individual flows to be installed on switches for each
pair of communicating devices.

III. END-DEVICE FLOW INITIALIZATION

Current SDN relies on the management plane to set the
rules on how traffic is forwarded and QoS is applied. The end-
devices are not able to interact with the network in the control
and management planes in order to request QoS characteristics
and influence how their traffic is being forwarded. However,
SDN provides the ability to create such functionality through
the use of controller modules. In this paper, we propose a
novel approach suitable for dynamic QoS management in SDN
where end-devices can request (i) QoS parameters according
to the application needs and (ii) flow instantiation so as
to satisfy these requirements. As depicted in Fig. 1(a), we
assume a logical connection exists between end-devices and
the management/control plane, and can be used to request/set-
up as well as to delete flows directly by the end-devices. Such
client-initiated flows with requested QoS over an E2E path
is of significant importance in various domains and where
not only deterministic QoS performance is expected from the

network but also dynamic QoS management is needed2.
Assuming a network where all devices and software are

under a single administrative control (such as SDN), allowing
some autonomy at the end-devices could potentially improve
the efficiency of the network by: (i) enabling strict E2E
communication on a need-to-have basis; (ii) deterministically
distributing the network resources according to client de-
mands; (iii) giving fine-grained control over E2E communi-
cation paths; (iv) hiding devices from the network when they
are not communicating by explicitly removing the flow at
the controller and involved switches once it is terminated; (v)
reducing the number of rules to the simultaneously managed
by network switches by explicitly removing the flow at the
controller and involved switches once it is terminated.

The proposed model here, introduce a new SDN controller
module (or a new application) which plays the role of QoS
Broker in the network. As shown in Fig. 1(b), end-devices
should immediately be able to contact the QoS Broker in order
to request the level of service they need for their applications.
This can be done at different levels of granularity such as
at device level or at application level. The request could be
in form of a “service level bundle”, where QoS metrics are
predefined in standardised policies or in the form of “explicit
QoS values” for e.g., throughput, latency, jitter and packet loss.
The criticality of the communication should also be reported
to the controller for prioritization purposes, in particular if
network lacks sufficient resources to satisfy QoS for all flows.

A. System-level considerations

For the overall system to function, requests from devices
will have to be orchestrated so that flows can be aggregated if
possible and resource allocation can be orchestrated efficiently.
This will allow QoS requirements by applications to be met
without overloading the underlying infrastructure. Although
it may be simpler in terms of implementation for the end-
devices to request a QoS level rather than individual values
for each metric, the latter would allow for a more efficient
orchestration and management of resources due to the closer
matching that can be achieved between demands and network
resources. Another important aspect to consider is security so
that only authorised devices can use the network and they
can only do so in compliance with access policies in order to
protect the functionality and reliability of the network.

B. QoS Broker

On the controller side, the QoS Broker module (depicted
in Fig. 2) is responsible for allocating network resources
on devices and should maintain a view of the network to
offer a simple interface for end-devices to request resources.
The requested QoS from an end-device for a given E2E
communication path should then be translated by the QoS
Broker into network paths and flows assigned to the OpenFlow
meters and queues. In a simple implementation, the QoS
Broker may accept or reject a flow based on current network

2An example application is exploited within the H2020 VirtuWind project.

Fig. 2. Our proposed QoS Broker entity with related connections.

load, however more complex policies can be used to prioritise
the communications based on their criticality. The QoS Broker
can decide to satisfy the QoS for a critical flow and demote
other flows to the best-effort delivery. The QoS Broker must
always be aware of the available resources on the network as
well as the status of flows for the purpose of monitoring if QoS
is being maintained. Depending on the application, the QoS
Broker may offer soft or hard QoS guarantees which should
be monitored after flow establishment to ensure guarantees
are met. Such monitoring can be achieved by retrieving this
information directly from the forwarding devices. However,
in our proposed model, the QoS Broker is already in contact
with the end devices as well and separate agents on these
devices may also assist in confirming the QoS status for their
connection. For example an application on a client device may
report a QoS failure if the round-trip time does not match the
requested latency.

C. Design Implications

There are three key aspects and implications of the proposed
model that require attention and they are related to the initial
delay of establishing communication, the security implications
and the additional load on the SDN controller from the client
requests. Our approach introduces a delay in the establishment
of communication between devices because it implies that a
device is not ready to transmit/receive packets at all times.
Instead a device will have to first request a communication
channel from the QoS Broker, the path will have to be
calculated and finally the flow will have to be generated and
installed on the controller and forwarded to the OpenFlow
switches. This additional overhead occurs once, before estab-
lishing E2E communication and does not interfere with the
communication afterwards unless the device makes a request
to alter the QoS during the communication. In such an event,
there will be an initial delay before the QoS is adjusted but as

also indicated in [8], transport protocol may also be affected by
packet retransmissions and therefore wasted network resources
as packets are assigned to different queues, especially if they
are demoted to lower priority queues.

The security considerations for the proposed model are
revolving around the fact that clients may make requests on the
network that have the potential of affecting the communication
of other devices. Authentication and authorization are two
aspects that partially address the problem of admitting devices
on the network but there is also a question of trust for devices
that get authenticated and are authorized access. For example,
a legitimate device may be granted access to the network,
however a malicious user or application may make requests
for very high QoS that can affect other devices. Security
policies may address this problem to an extent by identifying
the maximum level of QoS that may be allocated to a particular
device or application, however it is evident that strict control
is required not only on the hardware and operating system but
also on the applications running on these devices.

Finally, it should be noted that potentially the SDN con-
troller may become overloaded with client requests which
will cause delays to setting up new flows or modifying the
QoS of existing ones, therefore having adverse effects on the
network’s functionality and performance. Similarly, if QoS is
set up per E2E flow, on a large SDN-based network, this may
lead to a very high number of flow entries on the controller
and switches which also negatively impacts the forwarding
performance of the network. However, depending on the
granularity of flow definitions and on the algorithms used
for flow aggregation and management, it may be possible to
partially mitigate the effects of large flow tables on forwarding
devices. In the next section we measure the performance
implications of this model using a Raspberry Pi. The aim of
this experiment is to identify the impact of end-device driven
flow instantiation on communication establishment, in terms
of latency and overhead.

IV. PROTOTYPE IMPLEMENTATION

Fig. 3. Setup of prototype implementation

The prototype platform’s objective is to measure the over-
head introduced to an end-user application from configuring
the network before establishing a connection. At this stage
the prototype does not dynamically manipulate the QoS of
the flows it creates and does not use any matching rules to
establish flows explicitly between the IP addresses of the two
nodes. Instead, the focus is placed on how long it would take
for the application to construct the simplest configuration for a
flow, send it to the controller and receive a response from the
controller before it starts using the network. Flows are set up
on OpenDaylight (ODL) via Representational State Transfer
(REST) in JavaScript Object Notation (JSON) format for the
parameters using basic authentication. Flows are submitted
to the configuration data store in ODL which then calls
an Remote Procedure Call (RPC) to install the flow in the
operational database.

A. Network Setup

The prototype implementation consists of a Pica8 P-3290
White-Box OpenFlow switch3, a laptop running ODL Lithium
SDN controller4, two Raspberry Pi 2B5 nodes serving as the
communicating devices and a legacy Layer 2 switch. ODL
connects to the management interface of the P-3290 and to one
of the Raspberry Pi nodes via the Layer 2 switch. The Layer 2
switch also connects to one of the managed interfaces of the P-
3290. Finally, the second Raspberry Pi node connects directly
to one of the P-3290 managed interfaces. Fig. 3 illustrates the
physical layout of the test platform.

In order to simplify the setup, all devices are configured with
IP addresses from the same subnet and P-3290 is configured
with a single bridge consisting of the two managed interfaces
that connect to the Layer 2 switch and Node B. P-3290 is
running in Open vSwitch (OvS) mode with no flows pre-
installed on the switch or ODL. During testing, the devices
have exclusive control of the network and the controller with
no other devices present on the network. The Raspberry Pi is
chosen as an example of embedded devices that can be found
in sensor networks and its performance in this scenario can
give us a better indication of the communication overhead that
this approach introduces. This setup choice eliminates the need
for using an Dynamic Host Configuration Protocol (DHCP)
server along with default flows to allow the devices to acquire
and IP address upon joining the network and also ensures that
minimal configuration is needed with no previous states stored
in the system in order to make it function. Consequently, this
speeds up the testing process and eliminates configurations that
may impact the system’s performance and allows us to focus
on the best-case response time we can get from the controller
in our setup.

3Pica8. Products-Available Switches. http://www.pica8.com/products/pre-
loaded-switches

4Linux Foundation. Opendaylight https://www.opendaylight.org/lithium
5Raspberry Pi Foundation. Raspberry Pi 2 B

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

B. Prototype Software

For testing the functionality of the prototype we use Python
2.7 running on Raspbian Wheezy6. We run a Python script on
Node B that sets up a listening TCP port with 4KB buffer
and accepts incoming connections, places incoming data to a
buffer and then discards it. On Node A, we run a Python script
that first contacts ODL to set up a flow and then transmits
data to Node B. While data is being transferred, the script
measures the achieved throughput and we define an acceptable
threshold for the throughput which is used to determine if the
flow satisfies the application’s requirements. If the throughput
falls below the threshold then communication is interrupted
and the flow is deleted from ODL thus preventing any further
communication between the two nodes until the script is reran.

The script running on Node A consists of three main
methods. The first method plays the role of an application
that is ready to transmit data by generating 1MB of random
characters and storing it as a string. The second part of the
script contacts the controller and sets up a predefined flow. It
measures the time it takes to process the JSON string holding
the flow configuration, transmit it to the controller and receive
a response from the controller. Once the response from the
controller is received, the third part of the script transmits
the data stored in the buffer to Node B while measuring the
time it takes to send the full buffer. The transmission time is
then used to calculate the throughput. This part of the process
loops infinitely by invoking each time the first method to
generate more data and transmit it. If the throughput result
falls below the defined threshold, the loop breaks and a method
for deleting the flow from the controller is invoked.

V. METHODOLOGY AND RESULTS

Performance results are recorded over ten runs. The re-
sponse time of setting up the flow is measured as the time
difference between the transmission of the REST message
to the controller over HTTP and the moment that HTTP
OK is received on Node A. This approach guarantees that
data transmission between the Nodes will not begin before
the controller has successfully accepted the flow and allows
us to directly measure the overhead of setting up the flow
before communication can occur. From the perspective of an
application that wants to transmit data, this delay represents
the total delay experienced from the moment the data is placed
in the buffer until it is ready to be transmitted. Therefore, this
delay represents the overhead introduced by the mechanism
that generates the flow’s parameters as well as the response
time of the controller.

The flow used in our testing is a generic flow that forwards
traffic as an Layer 2 switch normally would, without introduc-
ing any Ethernet and IP matching rules or performance queues.
The options for the flow are set in the software using variables
rather than storing the entire flow as a single string. To ensure
that the transmission loop terminates, we set the threshold
to a value of 7 MB/s where due to processing overheads

6Raspberry Pi’s Debian Wheezy implementation.

on the Pi, it is likely that it will be violated, resulting in
termination of the transmission and flow deletion. Using these
settings we measured an average response time of 80 ms for
setting up a flow on the controller and 20 ms for deleting
the flow over ten repetitions of the test. Using POSTMAN
on the same computer running ODL, we measure an average
response time of 43 ms for pushing the same flow to the
controller which indicates that the extra 37 ms measured on
the Pi are introduced by hardware performance and the extra
work needed to construct the JSON string for the flow. The
novelties of the proposed approach altogether with the main
features and results are summarized in Table I.

It is worth noting that the current implementation only
measures throughput for a particular application and not the
overall throughput achieved by the network interface. In an
environment where the application has exclusive use of the
network, this is not a problem; however, in scenarios where
multiple applications are using the network interface, the
performance threshold for a particular application may not
be reached due to contention on the local interface rather
than due to core network performance. This is evident in
our implementation where the Raspberry Pi has Fast Ethernet
interface while the P-3290 is capable of Gigabit Ethernet.
One way of eliminating such false alarms in a fully func-
tional system would be to implement an additional check
on the network in order to confirm that the degradation has
occurred due to network load. Alternatively, on the client side
a second check can be made on the status of the Network
Interface Card to ensure that it is not being overloaded by
other applications. A second drawback that becomes apparent
through this implementation is that CPU performance on the
Pi can also affect the measured throughput and therefore
despite the application having exclusive access to the network
interface, any applications running in parallel, including the
operating system’s processes, can load the CPU and affect
the performance of the networking stack thus causing the
threshold to be violated. Once again, this can be tackled by
making a second check on the network to make sure no
forwarding devices are overloaded.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a horizontal approach in SDN
where end-devices initiate E2E communication by communi-
cating the required QoS to the network. This is achieved by
using a QoS Broker module that is responsible for receiving
end-device requests, validating, translating into flows and
submitting them to the controller. We discussed the security
and performance implications and focused on measuring the
impact of the flow setup delay additions to the communication
latency of the devices. Delay was measured experimentally
using embedded devices as clients that communicate directly
with the SDN controller. This setting provided us with the
best-case response time without considering any additional
delays introduced by the QoS broker. We also demonstrated
how QoS measurements on the client side may be used to
alter the configuration of the network in order to terminate

TABLE I
SUMMARY OF THE PROPOSED END-DEVICE TRIGGERED FLOW INITIALIZATION

Novelties End-device input towards establishing flows and QoS
End-device feedback mechanism for QoS failures

Architectural modifications

Inclusion of QoS Broker entity to manage client requests
API for the communication between QoS Broker and clients
Client access policy database
Orchestration and flow aggregation modules for flow table management

Results
80ms avg. flow instantiation time from Raspberry Pi
43ms avg. flow instantiation time from PC running the controller
37ms client overhead in generating the flow request

Concluding Remarks
Controller response time and scalability are important
Security should be addressed to prevent network misconfiguration by clients
Flow setup time may delay E2E communication initialization

the communication or manipulate the QoS. Our findings show
that delay in establishing a communication is dependent on the
clients’ processing power as well as the amount of information
passed from the clients to the QoS Broker.

Based on our findings, the planned future work will focus
on the design and prototype implementation of the QoS Broker
along with APIs for communication with the clients and the
controller. The first aim will be to identify and solve bottle-
necks that will increase the overhead in the communication
setup phase. Second goal will be the minimization of the
response time for setting up flows.

VII. ACKNOWLEDGEMENT

This work has been supported in part by the 5GPP Vir-
tuWind (Virtual and programmable industrial network proto-
type deployed in operational wind park) Project.

REFERENCES

[1] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, “Toward an
sdn-enabled nfv architecture,” IEEE Communications Magazine, vol. 53,
pp. 187–193, April 2015.

[2] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, pp. 14–76, Jan
2015.

[3] Open Networking Foundation, “Software-Defined Networking: The New
Norm for Networks.” White Paper, April 2012.

[4] Open Networking Foundation, “SDN architecure.” ONF TR-502, June
2014.

[5] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
openflow: A survey,” IEEE Communications Surveys Tutorials, vol. 16,
pp. 493–512, First 2014.

[6] Open Networking Foundation, “OpenFlow Switch Specification.” TS-
006, June 2012.

[7] M. Bari, S. Chowdhury, R. Ahmed, and R. Boutaba, “Policycop: An
autonomic qos policy enforcement framework for software defined
networks,” in IEEE SDN for Future Networks and Services (SDN4FNS),
pp. 1–7, Nov 2013.

[8] R. Durner, A. Blenk, and W. Kellerer, “Performance study of dynamic
qos management for openflow-enabled sdn switches,” in IEEE/ACM
International Symposium on Quality of Service (IWQoS), (In press).

[9] H. Egilmez, S. Dane, K. Bagci, and A. Tekalp, “Openqos: An openflow
controller design for multimedia delivery with end-to-end quality of ser-
vice over software-defined networks,” in Asia-Pacific Signal Information
Processing Association Annual Summit and Conference (APSIPA ASC),
pp. 1–8, Dec 2012.

[10] T. Humernbrum, F. Glinka, and S. Gorlatch, “A northbound api for qos
management in real-time interactive applications on software-defined
networks,” Journal of Communications, vol. 9, no. 8, 2014.

[11] K. Govindarajan, K. C. Meng, H. Ong, W. M. Tat, S. Sivanand,
and L. S. Leong, “Realizing the quality of service (qos) in software-
defined networking (sdn) based cloud infrastructure,” in International
Conference on Information and Communication Technology (ICoICT),
pp. 505–510, May 2014.

[12] M. Ito, N. Nishinaga, and Y. Kitatsuji, “Redirection-based Rules Sharing
Method for the Scalable Management of Gateways in Mobile Network
Virtualization,” in IEEE Global Communications Conference (GLOBE-
COM), Dec. 2015.

