

### **Enhance the Experience of Users over the Mobile/Wireless Internet**

#### **Toktam Mahmoodi**

Centre for Telecommunications Research King's College London University of London

Toktam.Mahmoodi@kcl.ac.uk





Wireless and Mobile communications.

- Were we currently stand?
- Mobile Internet Traffic forecast.
- Constraints and new requirements.
- Design of a smart wireless link-layer.
- Some open-ended research problems
  - Look a head strategies.
  - Centralisation | Decentralisation.







C ENTER for T ELECOMMUNICATIONS R ESEARCH

University of London

#### To the "father of modern anthropology"



- Claude Levi-Strauss is one of the central figures in the structuralist school of thought.
  - Structuralism has been defined as "the search for the underlying patterns of thought in all forms of human activity."

#### Claude Levi-Strauss 28 Nov. 1908–30 Oct. 2009








### Where we Currently Stand?



**University of London** 



Increasing the data rate by moving from 56kbps Dial-up connections to ADSL connections



Fiber optic cable enables highspeed networking



Wireless Networking faces the similar expectations







Mobile/Wireless Traffic Growth over the Internet



- The Internet is not an isolated phenomenon, but rather part of the general ICT revolution. Hence, many believes that its growth follows Moor's Law for semiconductors.
  - Gordon Moore had predicted that the number of transistors on a chip will double about every two years, which is popularly known as Moor's law.
- The Mobile Internet Forecast released in Jan. 2009 show.
  - The data growth of 400% between 2008-2013.
  - Video is responsible for the majority of this growth (?).







- The wired network relies on the functionality of the transport protocol for the data transmission, among which the most popular is called TCP.
  - Currently TCP is responsible for the delivery of more than 90% of Internet traffic.
- TCP provides robust end-to-end communications,
  - Controls congestion over the end-to-end paths.
  - Provides reliability for the per flow data transmission.
  - Guarantee fairness among the competing flows of different characteristics (e.g. flows that face various round trip time or packet loss rate).







**TCP over Wireless** 



- Despite the mentioned functionalities, TCP does not perform well over wireless networks due the wireless characteristics.
  - Random and burst packet loss.
  - Intermittent connectivity due to hand-off or loosing coverage temporarily.
  - The available resources are more scarce and pricy.
  - Wireless link-level algorithms allocate the resources according to the constraints and requirements of the wireless link, and are not interacting with the end-host TCP.
- TCP treats the random loss, intermittent connectivity, and scarce available bandwidth as congestion; thus reduce the data transmission rate.







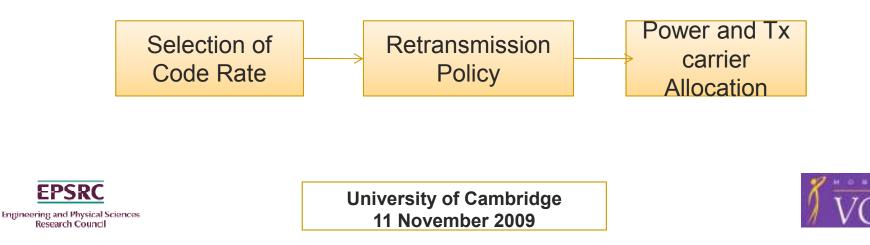


- o distinguish the source of loss.
- Take more conservative approach towards congestion
- change the notion of congestion
- On the other hand, the wireless link-layer can act so as to hide these issues from the end-host TCP.
  - Reliable link-layer is incorporated in almost all the current wireless technologies that attempts to provide reliability over the last transmission link.
  - The wireless scheduler can also consider the constraints of the end-to-end communications.





**ENTER** for


ESEARCH

ELECOMMUNICATIONS





- TCP state variables (cwnd, and RTT), as well as the version (flavour) of TCP are used in the design of the wireless link-layer.
- A set of techniques are applied to the link-layer algorithms in the top-down fashion of the transmission pipe line.







- Upon transmission, link-layer codes data using various schemes i.e. reed solomon, and convultional coding; this allows the receiver to correct a proportion of errors caused by corruption from the wireless channel.
- The tradeoff here is between increasing the amount of trannsmission data and the amount of error that can be corrected.
- Knowing the version of TCP used at the end-host, the code rate is allocated so that vulnerable TCP flows are more protected.







C ENTER for ELECOMMUNICATIONS R ESEARCH

### **Prioritising ARQ retransmission**

- Retransmissions of the lost packets at the link-layer is handled via ARQ mechanism that is mainly characterised by its level of persistency in the retransmissions.
  - The standard ARQ algorithm operates over a single FCFS queue.
- The prposed technique store packets in the priority queues after assigning a weight parameter to each packet. The weighing coefficinet is computed based on the RTT of the TCP flow.
  - This scheme can avoid up to 50% of the timer expirites at the TCP.







### **Power and Carreir Allocation**



- Various resource allocation startegy are in use over the wireless link as the last stage before the packte transmission; popular oschems are e.g. Round robinand maxC.
- The TCP-aware technique compute the theoretical TCP throughput that can be achieved over the endto-end path (this is a function of the corresponding flow's RTT and PER).
  - This throughput is used as the optimal achievable throughput by that flow, thus the resource allocation scheme attempts to achieve as close as possible to that over the wieless link.









## **Opportunistic | Fair?**

- The allocation schemes at the wireless base station are mostly opportunistic; they attemp to maximise the wireless capacity.
  - Some allocation schemes consider also fairness over the wireless link, but aspects as pertain to the end-user can not be addressed.
- The discussed techniques in the TCP-aware linklayer not only can enhance the end-to-end throughput but also provide an opportunity for the fair allocation of resources among the end-to-end flows.









## **Opportunistic | Fair?**

- The open discussion exist in the community to balance well between the opportunistic allocations and fairness.
- Also fairness can have various elaborations.
  - Max-min fairness
  - Proportioan fairness
  - Or any other quantitaive/qualitative index that is introduces by social science.







### Browsing Webpage: Faster for some | Available for all



- The web page response times can vary considerably based on the transport layer used as well as the location of end-host.
- By penalising the users with better experience, we can increase the number of satisfied (?!) users.
  - Some studies show that the average delay of 3s in loading a wqeb page can be tolerated by most of the Interent users.







### -Open-Ended Research Problems



- Look-ahead strategies:
  - The possibility exists to plan ahead; e.g. with looking into the requirements of a flow pror to connection setup, the end-server and end-to-end path can be selcetd accordingly.
- The vision of always on connectivity faces constraints such as power consumption.
- The availability of small wireless devices such as sensors everywhere and the various services that they utilise, dramatically adds to the heterogeneity of the wireless networks.









- To provide such a predictive solution, a central management is required by the network.
  - To receive all the call requests.
  - To select the optimal end-server, and find the optimal rout with the considerations of the requested service, the wireless conditions, etc.
- Status of the current communicatiosn network?
  - Does centralise approach work?







### Centralising | Decentralising Telecommunications/Society



- - First, the telephon centers were distributed.
    - One should call to their local center to connect to anywehre esle.
    - This is similar to classic socities with local goverments.
  - Then, the telephony network became centralised.
    - Centralised switches handled the calls globally.
    - The transition was similar to how central government s were shaped.
  - Modern communication network is distributed.
    - Large amount of processing was the main concern to decentralise the network.
    - Large societies distribute power within the local authorities.







-Central Management is back on the table.



- Currently, with the increasing number of services and applications i.e. multimedia, the centralise idea returned by the all IP networks.
- The centralised design can be beneficial also for the power consumption.
- The proposals such as cloud computing are in support of the central management.
  - The main computing will be handled by the IP cloud .







# Conclusions



- The dream of always on connectivity came true; although we face new constraints in the service of such a large and heterogenious wireless network.
- The problems that address these constraints are yet open ended.
  - Some solutions are presented in this talk.







#### **Thanks for your attention!**

#### Toktam.Mahmoodi@kcl.ac.uk