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Abstract

We describe a technique for construction of 3D Euclidea?) (Eetworks with partially-prescribed rings. The algorithm starts with 2D
hyperbolic (H?) tilings, whose symmetries are commensurate with the intrinsic 2D symmetries of triply periodic minimal surfaces (or
infinite periodic minimal surfaces, IPMS). The 2D hyperbolic pattern is then projected froo I3, forming 3D nets. Examples of
cubic and tetragonal 3-connected nets with up to 288 vertices per unit cell, each linking a pair of 6-rings and a single 8-ring, are derived
by projection onto the P, D, Gyroid and I-WP IPMS. A single example of a projection from close-packed tre%sdrE?—l(via the D
surface) is also shown, that leads to a quartet of interwoven equivalent chiral nets. The configuration describes the channel system of a nove
guadracontinuous branched minimal surface that is a chiral foam with four identical, open bubbles.
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1. Introduction should be linked by an edge. By analogy with the fullerene,
Cs0, We demand that each vertex lies on two 6-rings and a

Solid state chemistry is fertile ground for interesting geo- Single 8-ring (vertex symbol (6.6.8), cf. (6.6.5) fosd}
metrical challenges. Structural chemists, like Sten Anders-
son, have their way of finding the most reasonable answers.
A good account of that approach can be found in his pre- 2. 2D non-Euclidean nets and crystallography
scient 1983 “review”, a manifesto on form in atomic sys-
tems, that still sparkles with imagination and insight[1]. Our ~ Our route to construction of suitable networks bypasses
offering here is somewhat duller and less intuitive. But it is, the intricacies of 3D Euclidean space until the very last step.
we think a usefublgorithmic process to generate 3D crys- Instead, we work in 2D hyperbolic space, or the hyperbolic
talline nets. The process sidesteps the deep intuitive knowl-Plane, H. The reason is simple: 2D nets whose vertices are
edge of 3D Euclidean space that Sten displays. common tog p-rings are necessarily hyperbolic if

Recently, we were confronted with a structural challenge,
that is easy to pose, but less easy to solve. The problem,(p —2G=2>-4 (1)
that arose from analysis of a novel carbon material, is to In addition, trulyregular examples of p, ¢}* are possible in
construct “regular” three-connected nets containing only 6- H2 for all p, ¢ satisfying Eq. (1). The hyperbolic plane has
and 8-rings. Some related examples are known already [2,a wealth of regular tilings, far richer than Euclidean 2D (or
3], but to our knowledge the nets derived here are new (and3D) space.
not easy to derive from usual techniques). Their “regularity” By analogy with conventional Euclidean crystallography,
requirement is set by the chemistry of C—C pnding: the tilings in H? are described by symmetry groups known
nets should have as far as practicable, equal edge lengthsis orbifolds. The orbifold concept, due to Thurston (see
and vertex angles. Also, we expect non-bonded interatomic[4]), is a very useful one, particularly for 2D groups, be
distances to exceed those of bonded atoms: nearest verticethey elliptic, flat or hyperbolic. (They allow for an almost

* Corresponding author. 1 The first entry denotes the order of the (regular hyperbolic) polygon,
E-mail address: stephen.hyde@anu.edu.au (S.T. Hyde). the second the number of such polygons incident at vertices.
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Fig. 1. (a) The {6,3} network (6.6.6), a Platonic tiling of the Euclidean
plane, E. The hatched triangle denotes a domain dbBunded by mirrors
intersecting atr/2, w/3 andx/6, that covers E by repeated reflections

in those mirrors, forming the universal cover. The triangle defines a single
*236 orhifold. The {6,3} net can be produced by decoration of that domain
with a (half) vertex and edges. (b) A single triangut28: orbifold, whose
universal cover is a (6.n) tiling.

trivial enumeration of planar (wallpaper) groups, as well
as all point groups.) The orbifold symbol, invented by
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Table 1

Character strings and costs associated with 2D symmetry elements of orb-
ifolds. The orbifold characteristic is calculated from these costs (Eq. (1)).
The string nomenclature is applicable to any 2D symmetric pattern, whether
it is elliptic, planar or hyperbolic. (Crystallographic point groups are ellip-
tic, 2D planar groups are Euclidean.)

Symmetry element Symbol i
Mirror * 1
Glide reflection X 1
n-fold rotation center (cone point) n ”T‘l
Mirror intersection (angler/n) n %1
Translation ° 2

The symbol string allows direct reckoning of the cost of
the orbifold, via the equation:

C=2—Z§u

where¢; values are associated with each character entry in
the orbifold symbol (Table 1). Conway’s notation is more
than concise: the cost per orbifold is in fact identical to
the Euler—Poincaré characteristic, and scales linearly with
the integral Gaussian curvature of the asymmetric domain
in the relevant 2D space. Since the spaces are of constant
Gaussian curvature, the Gauss—Bonnet theorem implies that
the cost also scales with the area of the asymmetric domain.
If the cost is positive, the geometry is elliptic (e.g. spherical
2D groups, the crystallographic point groups); zero implies
Euclidean character (usual 2D planar groups); negative costs
are associated with hyperbolic space.

Decoration of the*236 orbifold leads to the regular
(6.6.6), or {6,3} net (Fig. 1a). Simple arithmetic confirms
the Euclidean nature of this 2D pattern: the c@st (1 +
1/4 + 2/6 + 5/12)) vanishes, and the integral curvature
of the orbifold is zero. We generalize a little. We can
“symmetry mutate” [7] the graphite net to give elliptic and
hyperbolic analogs of graphite. Identical decoration of a
*23n kaleidoscopic orbifold leads to tlsemi-regular (6.62)
net, with two symmetrically distinct edges (Fig. 1b).

The *235 pattern, with a positive cost (Euler—Poincaré
characteristie=2 — (1+ 1/4+ 2/6 + 4/10) = 1/60) gives

(2)

John Conway, is a character string whose entries define theihe (6.6.5) net. The elliptic plane can be mapped info E

symmetry in an extremely elegant fashion [5].
We need consider here only two of the four possible
symmetry operations in 2D: reflection (in a line) and rota-

via projection onto the 2D sphere? r any topologically
identical closed shell), whose Euler—Poincaré characteristic
is 2. To close the shell, 120 orbifold domains are needed,

tional symmetries. (Other possible operations—translationseach with a half vertex, or 60 verticés toto. This net is

and glide reflections—are a product of these first two oper- equivalent to G (and the*235 orbifold is the Schoenflies
ations for all examples treated here.) The most symmetric point group ).

patterns are those whose fundamental domains are bounded Recall that we seek the (6.6.8) net topology, which is

by intersecting reflection lines. Coxeter, naturally enough,
called thesekaleidoscopic groups [6]. These examples con-

realizable in H, via decoration of 238 according to Fig. 1b.
The resulting tiling is drawn in the Poincaré disc model of

sist of a closed polygon, bounded by mirrors (lines). Denote H? [8] in Fig. 2.

the vertex angles of the polygon by/a, 7w /b, /c... The
resulting orbifold symbol iSabc. .. For example, a subset
of the reflections in the regular graphite net, {6,3}, has orb-
ifold symbol*236 (Fig. 1a).

(H? is massively more superficial than the 2D disc. The
Poincaré model manages to squeeze alloifitb the disc by
extreme radial compression, without disrupting any angles.
Indeed, the (6.6.8) net in Fig. 2 can be drawn with identical
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mirror lines: these are thatrinsic mirrors lyinginthe IPMS
(often distinct from the extrinsic 3D mirror planes, that are
a function of the embedding of the IPMS irf)g. These
gridlines give a map of the universal cover of the IPMS in
H2, by the following construction.

The symmetries of the map reveal the underlying hyper-
bolic orbifold. Its most compact form contains a single copy
of the orbifold. The universal cover in3tonsists of infi-
nitely many copies of the orbifold, generated by repeated
reflections in all (2D mirrors) boundary arcs. The orbifold
pertaining to a particular IPMS is easy to determine from
the symmetries of its Weierstrass parametrisation, in turn in-
duced by the symmetries of the Gauss map of the IPMS.
Indeed, the conformal structure of the IPMS at all points, ex-
cept the isolated flat points, is identical to that of the Gauss
map. The distortion of the surface conformal structure at flat
points is a simple scaling of all angles, whose multiplicities
depend on the order of branch points in the Gauss map (cor-
responding to flat points). For example, flat points, located
on monkey saddles [1], lead to first order branch points in
Fig. 2. The most symmetric form of the (6.6.8) network in the hyperbolic the Gauss map, and angles between arcs running through
plane, H. Adjacent rings are shaded for convenience. Single copies of that flat point on the IPMS are multiplied by a factor of two

*238 and*2424 orbifolds are marked by the triangle and quadrilateral . its G We id | f reflecti
(cf. Fig. 1b). The Poincaré disc model ofHs used here, that allows InIts Lauss map. Ve consider only arcs ot retiection sym-

the entire H space to be mapped into a unit (2D Euclidean) disc. The Metry in the IPMS: (with the exception of the gyroid) these

map is conformal—angles are unchanged on mapping into the Poincaréare plane lines of curvature or linear asymptotes in the sur-

disc_—though lengths are increasingly foreshortened as the boundary of thefagce. The Gauss map (whose domain can be taken to be the

disc is approached. unit sphere, 3, is thus a symmetric tiling of (possibly many
covers of) 8. A single asymmetric patch of the Gauss map,

vertex angles of 120everywhere. The edges appear t0 pounded by these mirror arcs, defines a single “kaleidoscop-

shrink as the boundary of the disc is approached: this is duejc” orpifold, whose Conway symbol is of the fortabc-. . .

to that shrinkage, and the trué Het has equal edges as well (it follows from differential geometry that a vertex of the

as equal angles.) Just as the elliptic patterns can be mapped? ohifold whose Conway symbol entry exceeds four, or is

into E® via projection onto the sphere (or any genus-zero neven, is a flat point on the IPMS. Flat points can also be

surface), hyperbolic patterns can be projected frofiro  ocated on non-intersecting mirrors. We denote these sites
E° via prOJ_ect|on onto multi-handled hyperbolic surfaces by the redundant Conway symbol entry 1.) The analogous
embedded in & hyperbolic tiling that captures the conformal structure of the

IPMS is formed by a symmetry mutation [7] of the Gauss
] map orbifold from spherical space?,30 hyperbolic space,
3. From 2D to (Euclidean) 3D space H2. The mutation rule is simple: the angle between intersect-
. ] ) ing mirrors of the orbifold must be divided lj% + 1), where
To generate 3[1:rysta|!|ne patterns in B, we project b is the order of the corresponding point on the IPMS (zero
onto crystalline hyperbolic surfaces embedded i Hhis for points on negative Gaussian curvature, positive for flat
operation is delicate as _2Hcar_mot project directly into  y4ints) [10]. The corresponding Conway symbol entries for
E3 without some metric distortions (inducing variations of the IPMS are therefore simple multiples of that of its Gauss
Gaqssian curvature_), in contrast to the .possi.bility.of an map. For example, the asymmetric domain of the Gauss map
undistorted embedding ofsn E°. The required distortions ¢ 1he p and D surfaces is a spherical triangle, with vertex
depend on the particular hyperbolic surface. For a variety anglest /2, /4, 7 /3. The last vertex is a first order branch

of reasons, the simplest hyperbolic surfaces to adopt for ,ins o the relevant orbifold for the universal covering of

this construction are the triply periodic minimal surfaces

in E3 (or IPMS). The attraction of IPMS as substrates for

network reticulation (rather than other hyperbolic sponges) 2 These lines are the symmetry arcs of reflection symmetry of the

lies in the well-understood intrinsic 2D symmetry structure complexVWeierstrass product polynomial used to explicitly parametrise the

of IPMS, investigated already in detail to derive explicit Surface from the complex plane 6 via the Weierstrass equations) [9]-
L L They can be determined explicitly by symmetry mutating the orbifold of the

parametrisation of IPMS [9] To enable the prqjectlon, we Gauss map of the surface (defined éntBerefore an elliptic kaleidoscopic

construct aratlas of the IPMS, conformally equivalent on  orpifold), and depend on the elliptic orbifold and the branch-point order of

H2 and the IPMS. The gridlines of the atlas are the in-surface the Gauss map surrounding flat points of the IPMS.
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Table 2
Orbifold symmetries for the regular three-periodic minimal surfaces. The surface orbifolds are simple “symmetry mutations” of the orbifoldisfsmea®
of the surfaces and their characteristics are given by Eq. (2)

Surface Branch points Surface orbifold Surface orbifold Orbifold (Euler—Poincaré) Sub-group order
(%) (H2) characteristic (relative t6246)

Cubic 1,1,1,1,1,1,1, 1 *243 *246 -5 1

P,D,G

tP, tD “ #2214 #2224 -1 3

CLP “ #2124 #2224 7% 3

C(P) {2,1..} *433 *446 -1 4

H “ *2213 #2226 -3 4

hCLP “ *2123 #2226 - 4

F-RD 2,1..} *22%% *2243 -3 5

l-WP {2,2,2,2) *2323 *2424 -1 6

oCLP “ *22112 *22222 -1 6

oPb, oDb “ *21221 *22222 -1 6

rPD ‘ *3131 *6262 -3 8

C(D) {4,1..) *2433 *2436 -3 9

oPa, oDa “ *222 *222222 -1 12

(internal first order flat point)

the P and D surfaces is a tiling of identical hyperbolic tri- of Fig. 3. In that way, a multiplicity of 3D Euclidean nets—

angles with vertex angles/2, = /4, 7 /6. Asymmetric do- realized by projection onto different IPMS, can be generated
mains of the Gauss map and the universal cover are boundedrom a single 2D net. The idea will be illustrated by example
by mirrors by construction, so the relevant orbifolds 243 below.

and*246 respectively. The respective costs@asel/24 and The geometry of the universal covering of IPMS is not

¢ = —1/24, consistent with their elliptic & and hyperbolic uniquely constrained by the orbifold, though its conformal
(H?) characters. All the IPMS orbifolds considered here are structure is fixed, with the exception of triangular kaleido-
necessarily kaleidoscopic. The relevant orbifolds for all the scopic orbifolds (of fornfabc). For example, the geometry
“regular” IPMS, whose Gauss maps are described explicitly of the *2226 orbifold tiling’, relevant to the H surface, can
elsewhere [9], are given in Table 2. be deduced from the equations governing hyperbolic poly-
Just as the Euclidean plane can be projected onto thegons. We split the quadrilateral into a pair of triangles, with
cylinder by gluing points separated by the circumferential angles and edges defined in Fig. 4.
collar on the cylinder wrapping, projection of the universal A standard equation from hyperbolic trigonometry can be
cover of the orbifold in ® to E® results in the IPMS  applied to the pair of triangles [11], equating their edge

topology. cos) cos(f) + cosx/6) _ sin(@)sin(p)

We make a number of observations about these IPMS . . = 3)
orbifolds. First, all the orbifolds display integral ratios ) sin(e) sm(-,B) c-os(o;) costh)
of costs with respect to the most symmetric cas®46. leading to the single constraint:
(That order can be deduced from the ratios of the orbifold 1 13 3
characteristics.) However, they are not all sub-groups of cogw) :‘/Z — Eco§(,3) — Zcos(ﬁ). 4)

*246. The group—sub-group relations for the simpler IPMS . _

(excluding the F-RD and C(D) surfaces) can be classified Thus, the geometry of the tiles of the universal cover of

into three families, related to tHe246 (cost,c = —2/48), the H surface contains a single free parameter. This corre-

*248(c = —3/48) and*24(12) (c = —4/48) orbifolds. The sponds to the single free parameter in the H surface itself:

Fig. 3. also in the Gauss map). Indeed, hyperbolic polygons with
Those group-sub-group relations between the IPMS' €dges and fixed vertex angles (e.g., kaleidoscopic orbifolds

orbifolds are useful: they allow a single?Hiling that is with » numerical entries in their Conway symbol) exhibit

commensurate with one of the IPMS orbifolds to be mapped

onto tilings commensurate with other IPMS. The distortion 3 gor convenience, we call the tiling induced by the universal cover of a

path from one case to another follows the symmetry relations kaleidoscopic orbifold in @ the “orbifold tiling”.
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Fig. 3. Group-sub-group relations between the relevant orbifolds for
simpler triply periodic minimal surfaces (IPMS, listed below the orbifold
symbol) and related supergroup orbifolds. The cost of each orbifold locates
the height of the orbifold entry (true cost equal-td/48 times the values
listed on the left) and the order of the sub-group relative to the group is
equal to the ratio of costs.
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Fig. 4. A single tile of the universal covering of the H surface (f2226
orbifold), a hyperbolic quadrilateral with vertex anglesmof2, /2, /2

and /6. The dotted diagonal defines a pair of triangles, some of whose
angles are marked within the tile.
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Fig. 5. The*246 tiling of H2. Dotted (left) and hatched (right) domains
are single orbifolds of order 3 and 6 sub-group$ #46:*2224 and*2424
respectively, relevant to the tP (and tD, tG) surfaces and the I-WP surface.

(n — 3) degrees of freedom. It follows then that the universal
coverings of tetragonal and hexagonal IPMS have orbifold
symbols with at least four numerical entriéabcd) and or-
thorhombic cases have at least five numerical entries. Con-
versely, cubic IPMS generally lead to universal coverings
of symmetry typ€abc. Comparison with entries in Table 2
shows that this assertion fails for the cubic I-WP surface. In
this case, however, the cubic symmetry of the surface is “ac-
cidental”, as it is one member of the generic tetragonal class
of IPMS [9].

It is worth commenting here on the connection between
our orbifold approach and an earlier (profound) paper of
Sadoc and Charvolin on IPMS crystallography [12]. They
have discussed in some detail the gluing patterns for the
P, D and G(yroid) IPMS with reference to the Platoni¢ H
tilings (consisting of symmetrically identical faces, edges
and vertices), denoted by their Schlafli symbols {6,4} and
(its dual) {4,6}. Kaleidoscopic orbifolds have a natural as-
sociation with a tiling, consisting of identical tiles. The in-
finite tiling is the universal cover of the kaleidoscopic orb-
ifold in the relevant space (elliptic, Euclidean or hyperbolic),
with a well-defined topology: each tile is a single copy of
the orbifold and tile edges are the bounding mirrors of the
(kaleidoscopic) orbifold. The Htiling resulting from the
universal cover of th&246 orbifold—germane to the P, D
and G surfaces—consists of identical triangular tiles, with
4, 8 and 12 connected vertices in cyclic order about each
tile (Fig. 5). The simplest regular polygonal tiles resulting in
Platonic coverings of Athat are subgraphs of the full tri-
angular tiling are the {6,4} and {4,6} tilings, discussed in
detail by Sadoc and Charvolin. (The result is generé24&
orbifold yields{z, 4} and{4, z} as the maximal Platonic sub-
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graph of the*24z universal covering.) The same construc- vectors required to refold the surface into the compact
tion gives {8,4} or {4,8} for the C(P) surface. Analogous genus-four closed surface. To respect both the gluings
tilings for other IPMS are not Platonic (the faces contain un- and the translational symmetries of the I-WP surface, all
equal edges). They hat@pology (5,4) or (4,5) forthe oCLP,  eight identifications must be symmetries of the (6.6.8)
oPb and oDb surfaces; (6,4) or (4,6) for the CLP, tP, tD, oPa pattern superimposed on the universal cover*afi24.
and oDa surfaces; (8,4) or (4,8) for the I-WP surface; (12,4) (In formal language, the three-handled orbifold, &' o”
or (4,12) for the H and hCLP surfaces; (12,12) for the rPD in Conway’s notation, must be a subgroup of the group
surfaces. of the (6.6.8) tiling.) Clearly, the*2424 group respects
all eight identifications 2424 is indeed a supergroup of
the relevanto o o orbifold). It follows that the distorted
4. 3D Euclidean (6.6.8) nets (6.6.8) superimposed on th@424 tiling can be projected
onto the I-WP surface, as the symmetry of the pattern is
The technique can now be applied to the (6.6.8) network itself *2424. The projection leads to a network containing
mentioned in the Introduction. Consider first the most (6.6.8) rings on the I-WP surface, and extra “collar” rings
symmetric realisation of that network within its natural surrounding the(111) and (100 channels of the surface.
space, H: a decoration of th&238 orbifold with a single  The conventional cubic cell of the I-WP surface has Euler—
(half) vertex (on an edge), inducing equivalent vertices Poincaré characteristic equal tol2 (twice genus four),
(Figs. 1b, 2).*238 (cost,c = —1/48) is a supergroup of  containing 48 individual2424 tiles (cf. cost per orbifold,
order 12 of the*2424 group ¢ = —1/4), characteristic of ~ Table 2). The unit cell of the resulting®6.6.8) embedding
the I-WP surface (Fig. 3). This relation is evident in Fig. 2: thus contains 4& 6 = 288 vertices.
the most symmetric form of th&2424 orbifold contains Given a single Euclidean 3D embedding, via reticulation
twelve *238 triangles. Superposition of the (6.6.8) network of the I-WP surface, we use next the group—sub-group
onto the universal covering of the I-WP surface can be done relations of Fig. 3 to generate other (6.6.8) 3D Euclidean
by inspection (Figs. 2, 6). The resulting tiling contains 6 nets. Reticulations of the cubic P, D and Gyroid surfaces
vertices pei2424 tile. are feasible by (i) superposing tfi246 tiling on the*2424
To form the (6.6.8) network in £ we use the diagram tiling, via the*2224 tiling (the latter is an order 3 subgroup
in Fig. 6, that represents the location of the (6.6.8) network of the former, Fig. 3) and (ii) transposing the superposed
on the I-WP surface “unglued” onto?HdThe 3D network (6.6.8) on*2424 pattern to (6.6.8) ori246. The*2224
results from regluing the universal cover irf,Eaccording pattern in H is shown in Fig. 7. Unlike th&2424 symmetry
to the gluing rules for the I-WP surface. The I-WP surface (6.6.8) tiling, this pattern doe®t respect all the intrinsic 2D
is a genus-four IPMS, so the surface can be unfolded symmetries of the cubic P, D, G tilinGZ46).
into H? to give a (16,16) network [13], with eight gluing

Fig. 7. Realisation of a (6.6.8) network in2Hvith *2224 symmetry. A

Fig. 6. (6.6.8) network in P with *2424 symmetry. A single orbifold s single orbifold is outlined and edges of the tiling within the orbifold are
outlined and edges of the tiling within the orbifold are thickened. thickened.
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Fig. 8. Reticulations of the (a) P (b) D and (c) Gyroid minimal surfaces
with the (6.6.8) network. The 3D Euclidean nets are projections of the
hyperbolic pattern shown in Fig. 7 onto the P and D surfaces. For (the
authors!) convenience, the surfaces are coloured to expose tilifig2»22
symmetry (a, b) and336 symmetry (c).

The formation of (6.6.8) networks in3Eby projection

41

The gluings for these surfaces (discussed in [12]) are
indeed translations of the (6.6.8) pattern, and the projection
leads to P, D and G (6.6.8) networks ir? Bith three
distinct topologies (including the collar rings) induced by
the gluings.

The P, D and G surfaces are all genus-three surfaces,
referred to their primitive oriented unit cells (of symmetry
Pm3m, Fd3m and 74132, respectively). The conventional
non-oriented unit cells (symmetriési3m, Pn3m andla3d
resp.) thus have Euler characteristics equat-th —2 and
—8. As they have three (6.6.8) vertices @224 orbifold
(cost,¢c = —1/8), the P, D and G embeddings ir? Bf
(6.6.8) have 96, 48 and 192 vertices per unit cell respectively.
Images of the P and D embeddings are shown in Fig. 8.

5. Net relaxation in E3

The projection of networks from Hto E induces net-
works with curved geodesic edges, lying in the minimal sur-
faces. One final step remains: to “relax” thé Eetworks,
forming geodesic edges irfEstraight lines) with maximal
symmetry in B. This process generates a canonical repre-
sentation of B nets. We relax the net numerically, following
modification of O’Keeffe’s recipe [14]: the relaxed, maxi-
mally symmetric net is one with equal edges (normalized to
one, for convenience) and maximal unit cell volume con-
sistent with the network topology induced by the projec-
tion onto the sponges. The latter constraint is modified for
our purposes: we seek instead to make all vertex angles as
equal as possible, consistent with the imposition of equal
edge lengths.

The numerical code we use runs as follows. The initial
network geometry, consisting of a set of vertex positions in
Cartesian spaceéy;, yi, z;), IS obtained from the reticulation
on the IPMS. That initial structure is then “relaxed” by
motion under the influence of a vector force on each
n-connected vertex. Those forces are calculated by the
gradient of the (elastic) energy function, comprising edge
length and vertex angle equalization components. We adopt
the following form for the energy:

E = Eangle+ Elength (5)
with:
nn-1)
7
Eangle=k» Z (r — 9ijk)2 (6)
i,j,k=1
and
n
Elength= Ks Z (dij - l)z, (7)

i,j=1
wherexy, ks denote the elastic moduli for equalizing angles

to the P, D and G surfaces is possible provided the P, D and edges respectively ahdenotes the rest spring length.

and G gluings are commensurate with tH224 pattern.

The indiced, j, k label the verticess;;; denotes the angle
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Table 3
Crystallographic description of relaxed network configurations, with equal edges of unit length and maximal symmetry, for (6.6.8) nets prnjeébted on
simpler IPMS. The net density is equal to the number of vertices per unit volume

Surface for projection Space group symmetry Vertices per unit cell Vertex positions in asymmetric unit Vertex angles
(cell edges) (net density) (crystallogr. coordinates)
D P4y/nnm 48 (0,0.5,0.072) 130115, 115
(a=b=532A (0.241) (0.184,0.316,0.25) 120120, 12¢°
c=7.04A) (0.294,0.426,0.044) 124116, 120°
(0.147,0.412,0.132) 124138, 108
P I4/mmm 96 (0.138,0.436,0.209) 1201253, 1158
(a=b=783A (0.223) (0.213,0.436,0) 121120, 120
c=7.02A) (0.227,0.227,0.311) 128121°, 121°
(0.218,0.373,0.124) 143113, 1053
Gyroid 14, /acd 192 (0.008,0.062,0.623) 122100°, 138
Non-standard setting: (0.249) (0.133,0.349,0.004) °1a0r, 117
lat (0.25,0.25,0.5) (0.039,0.397,0.038) 14208, 11C¢°
(a=b=897A (0.208,0.271,0.028) 106123, 131°
c=957A) (0.143,0.428,0.334) 122126, 112
(0.384,0.027,0.126) 1081271°, 131°
I-wpP Im3m 288 (0,0.209,0.406) 76142, 142
(a=b=c=1121A) (0.204) (0,0.418,0.121) 118118, 12#
(0.079,0.079,0.422) 107107, 146
(0.141,0.141,0.438) 121138, 117°
(0.104,0.222,0.445) 781432, 139

(centered on vertex) subtended by the three (edge-linked) which give
verticesi, j, k; of magnitude:

@+ﬁ—%)
2d;;d;y '
whered;; denote; fche distance of the vector joining vertices gy o F,:  df « Fg; dy o« F,.
andj. That metric is dependent on the cell parameters (edges

a, b andc and cell ang|eg, B, 7/) as well as vertex positions: In practice, the magnitudes of the elastic moduli are tuned to
ensure convergence to a final configuration with all edges of

dax F,; dbxFp; dcxF,

1
(xj —xi)%a® + (yj — yi)?b? + (zj — zi)%c?\ 2 equal length/) and angles as nearly equal as possible.
di; = +2(xj — xi)(yj — yi)abcosy) ‘ Canonical, maximally symmetric, network geometries
! +2(yj — yi)(zj — zi)bccoga) for the (6.6.8) examples induced by projection onto the
+2(zj — zi)(xj — xi)accogp) I-WP, P, D and G IPMS described above are listed in

Periodic boundary conditions are imposed on a single unit Table 3. We note that the latter three projections induce
cell of the network, to mimic the crystal framework. The tetragonal networks, consistent with t2224 symmetry
relaxation is achieved by allowing deformation of the unit (that of tetragonal IPMS, cf. Table 2) of their hyperbolic
cell shape as well as vertex sites within the cell. The energy counterparts (Fig. 6). The G network is chiral, induced by

therefore depends on, y;, zi,a,b,c,a, B, y. the chiral projection of B to E3 forming the G surface.
The force acting on each-connected vertex is the  The projections onto IPMS induce channels in thg E
gradient ofE respect tox;, yi, zi: embeddings; these are surrounded by “collar rings” that
dE dE dE surround the channels. The collar rings consist of 18 vertices
Fr = _d_x,»; Fy, = _d_yi; Fr = Tdz for the I-WP network, 14- and 20-rings for the P network and

18-rings for the D and G networks (Fig. 9).
The relaxed structures are of variable “regularity”, com-
pared to an ideal regular three-connected net with equal edge

In order to minimize the energy, the position of the vertices
changes by an amount proportional to these forces:

dx; oc Fy;;  dy; o Fy,;  dz o Fy,. lengths and all vertex angles equal to/3*. The variations
The “forces” acting to deform the unit cell are calculated in vertex angle are due to three effects: (i) the inherent irreg-
from Egs. (5)—(7) and: ularity in the H universal cover, (i) distortions induced by
dE dE dE the projection onto IPMS and (ii) angle variations induced
“TTda T A T T de
dE dE dE 4 The (6.6.8) net cannot be realised as a regular net, everf.irSek
Fo= T da’ B= _@v Fy = _av Note added in proof at end of article.
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f

(d)

Fig. 9. Relaxed (6.8.8) nets formed by reticulations of IPMS. (a) The (cubic) I-WP surface reticulation, (b) the (tetragonal) P reticulatioftetfe)gibreal)
D reticulation and (d) the (tetragonal) Gyroid reticulation. (Crystallographic descriptions are listed in Table 3.)

by the relaxation process i’ ENote first that the most sym- A strong correlation between the network topology and
metric (6.6.8) net in M is itself irregular. The lower sym-  the geometric density of the relaxed configuration has been
metry *2224 and2424 (6.6.8) embeddings are less regular noted elsewhere for a range of nets, including theoretical
still. The second and third sources of geometrical distortion, carbon frameworks and zeolites [15]. The theoretical density
the B projection and subsequent relaxation process, are de-of a {p, ¢} network,r, defined to be the number of vertices
pendent on the variations in Gaussian curvature in the IPMS per unit volume (for edges of unit length), can be expressed
relative to H and the surface embedding if.B'he P/D/G in terms of the two-dimensional surface reticulation and ring
family of IPMS are more uniformly curved than the I-WP  sizes as follows:

surface. That effect is likely to be the principal cause of the H g+ 1—q/2
extreme irregularity of the I-WP reticulation compared with = (93/2)( » )
the others. The I-WP reticulation is unlikely to be useful

for carbon frameworks, due to the wide variability of vertex The (6.6.8) frameworks have connectivigy= 3 and aver-
angles. The P, D and G reticulations are more regular and@9€ 'ng size,

are perhaps reasonable candidate structures for novel carbon 3

frameworks. P=16+1/6+1/8

(8
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(d)

Fig. 10. (a) A dense packing of 3-connected regular treeszilmﬂ-Edge length arcosh(3), commensurate with*#46 orbifold tiling (alternately coloured
tiles). (b) Projection of (a) onto the D surface. (c) The pattern of edges in (c): a quartet of identical, interwoven, ‘thies$.(d) The quadracontinuous
minimal surface whose channels are those of (c). (For clarity a pair of closely separated parallel surfaces, displaced to both sides of thefauaijrizal sur
shown.) Each domain is coloured distinctly, one domain is extended into an adjacent unit cell.

The homogeneity index{ is close to its ideal value of/3 The agreement between these estimates and actual values
for IPMS, equal to 0.7776, 0.7498, 0.7425 and 0.7163 for (Table 3) is impressive.

the G, D, I-WP and P surfaces respectively. The area per

vertex of the surface reticulation can be estimated from the

Euclidean equation [15]: 6. Generalisations

q b
22~ =tan — .
4 (fl ) Sten Andersson’s 1983 review [1] contains the following

Substitution of these values into Eq. (8) gives the estimates: lines: ‘canaminimal surface divide spaceinto three or more
interpenetrating subvolumes? This | do not know”. Only

rp=0.236 rp=0.225 r5=0241 r-wp=0.233 now, two decades later, can we respond: “Yes, a number
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of solutions exist”. The projection algorithm can be used to Note added in proof
generate examples [10,16].

They are particularly beautiful, as they result from pro- While the *236 decoration can be arranged with equal
jections oftrees (with no rings) from H to E2. In con- edge lengths so that all vertex angles are equal, and the re-
trast to their Euclidean counterparts, regular trees, with (ansulting {6,3} network is regular, regular tilings are impossi-
infinity of) identical edges and vertices and free of self- ble for (6.6n), wheren exceeds six. Standard formulae from
intersections, are found in®dIndeed, identical trees can be  hyperbolic trigonometry [11] lead to the following relation
close-packed in A to yield a dense forest [10] (Fig. 10a). If between the edgesandb and the angler (cf. Fig. 1b):
the edge length of the trees is tuned to be commensurate with (ST 2 112
an IPMS orbifold, the forests can be projected onto IPMS arcosk(é?éﬂfi) _ arsinr(%)

(Fig. 10b), and thereby projected fronf kb E3. For exam-  — = oI ) (3)

ple, a dense forest of three-connected trees with edges equa arcosN g /o )

to arcosh(3) is a sub-group 6246. PrOJ_ectlon_onto_the D Imposing the constraint of equal edge lengths implies the
surface is therefore allowed. The resulting reticulations gen- angle « = 2.792 for the (6.6.8) tiling, leading to vertex
erally consist of multiple disjoint interwoven networks, anal- angles of 115.53 115.53 and 128.94. (It is a curious fact
ogous 'Fo the pair of inte_rwoven nets defining the channels of {4t two of the vertex angles for generic hyperbolic (6)6.
“bicontinuous” IPMS (Fig. 10c). tilings approach tetrahedral vertex angles ascreases (the

These projected forests can be considered as channejree vertex angles for the (66) tiling are arcoS—%),
systems of “multicontinuous” space partitions. One partic- arcos—1), 27 — 2arcos—1).)
—3h g —3)

ularly pretty example is the quadracontinuous, chiral sur-
face, whose faces are minimal surfaces, edges are common
to three_faces with dihedral angles of /B and vertices Ii_nk References
four incident edges, whose angles are tetrahedral (Fig. 9d).
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